Download - GO Quantum Versi Indo

Transcript
Page 1: GO Quantum Versi Indo

Interaksi Cahaya dan

Materi (2)Sifat cahaya pada tingkat atom (at the atomic

level)

Penjelasan tentang interaksi cahaya dengan

materi

Teori Gelombang tidak dapat menjelaskan

fenomena fisika pada tingkat atau skala atomik

contoh pada efek fotolistrik ( the photoelectric

effect)

Page 127

Page 2: GO Quantum Versi Indo

Emitter Plate

(Cathode)Collector

Plate

(Anode)

Elektron

dipancarkan dari

plat logam

Aliran Arus

Efek Fotolistrik

Cahaya dipancarkan

ke katoda yang

terbuat dari logam

dalam tabung

vakum

menyebabkan

elektron-elektron

terlepas dan pergi

menuju anoda

Arus mengalir

dalam rangkaian

VACUUM TUBE

Ammeter

+

Page 3: GO Quantum Versi Indo

Efek Fotolistrik

Teori Gelombang Menerangkan bahwa:

a) Energi yang terkumpul dari cahaya yang diserap logam

akan menyebabkan elektron terlepas (“sunbathing” effect)

b) Setiap panjang gelombang dari cahaya akan menghasilkan

emisi terpicu/stimulasi elektron selagi energi total yang

datang ke logam cukup.

c) Semakin kuat energi cahaya yang datang, semakin besar

energi yang dipunyai elektron yang terlepas.

Page 4: GO Quantum Versi Indo

(a) Energi yang terkumpul dari cahaya yang diserap logam

akan menyebabkan elektron terlepas (“sunbathing”

effect)

Efek Fotolistrik

(c) Semakin kuat energi cahaya yang datang, semakin besar

energi yang dipunyai elektron yang terlepas.

Teori Kuantum membuktikan bahwa terori gelombang salah:

Elektron terlepas secara instant selagi energi foton

yang datang melebihi energi ikat elektron dengan inti

Hanya panjang gelombang cahaya dengan energi >

dari energi ikat yang dapat melepaskan elektron

Energi Kinnetik dari elektron yang terlepas tidak

bergantung pada Intensitas cahaya yang datang

(b) Setiap panjang gelombang dari cahaya akan

menghasilkan emisi terpicu/stimulasi elektron selagi

energi total yang datang ke logam cukup.

Page 5: GO Quantum Versi Indo

Tingkat Energi Atom:

(yang tidak bisa dijelaskan dengan Teori

Gelombang)

Pada Tingkat atom, cahaya digambarkan

sebagai paket-paket energi (foton)

Setiap foton mempunyai tingkat – tingkat

energi yang diskrit.

Elektron yang mengorbit inti atom berada pada

tingkat-tingkat energi yang diskrit.

Page 6: GO Quantum Versi Indo

E = energy per photon

h = Planck’s constant (6.62 10-34

joule sec)

= photon frequency

c = velocity of light in a vacuum

= photon wavelength

Energi Foton

chhE

Page 7: GO Quantum Versi Indo

Frekuensi (Panjang Gelombang) vs.

Energi Foton

joulesch

hE

nmGreen

19

9

834

1038.3106.587

1031062.6:)6.587(

Perbandingan energi yang dibawa oleh foton cahaya

hijau (Green - 587.6 nm) dan foton dari cahaya biru

(Blue - 400 nm) :

joulesch

hE

nmBlue

19

9

834

1097.410400

1031062.6:)400(

Page 8: GO Quantum Versi Indo

Defenisi dari electron Volt (eV)

jouleseVvoltelectron 1910602.1)(1

Untuk menghindari pengunaan pangkat negatif yang

besar (pada range 10-19 ) untuk energi foton (joule)

maka didefinisikan satuan energi yang lebih

mudah :

1 electron volt = energi yag diproleh oleh sebuah

foton ketika ia dipercepat melalui sebuah beda

potensial 1 volt (J/C)

Page 9: GO Quantum Versi Indo

Energi Foton dalam eV

Cahaya Biru (400 nm): E = 3.10 eV

Cahaya Hijau (587.6 nm): E = 2.11 eV

Cahaya Merah (700 nm): E = 1.77 eV

Page 10: GO Quantum Versi Indo
Page 11: GO Quantum Versi Indo
Page 12: GO Quantum Versi Indo
Page 13: GO Quantum Versi Indo
Page 14: GO Quantum Versi Indo
Page 15: GO Quantum Versi Indo
Page 16: GO Quantum Versi Indo
Page 17: GO Quantum Versi Indo
Page 18: GO Quantum Versi Indo
Page 19: GO Quantum Versi Indo
Page 20: GO Quantum Versi Indo
Page 21: GO Quantum Versi Indo
Page 22: GO Quantum Versi Indo
Page 23: GO Quantum Versi Indo
Page 24: GO Quantum Versi Indo

photoelectron

Tingkat Energi atom Ketika terjadi

Efek Fotolistrik

Page 25: GO Quantum Versi Indo

Electron absorbs

photon and jumps to

higher energy level

Tingkat-Tingkat Energi: Peristiwa

Penyerapan Foton

Dengan menyerap

foton dengan energi

yang cukup, sebuah

elektron dapat

meloncat ke tingkat

energi yang lebih

tinggi.

Page 26: GO Quantum Versi Indo

Elektron memancarkan

(emisi) foton dan

meloncat ke tingkat

energi yang lebih

rendah.

Tingkat-Tingkat Energi: Peristiwa

Emisi Foton

Page 27: GO Quantum Versi Indo

Tingkat-Tingkat Energi: Peristiwa

Emisi Foton

When an electron

drops to a lower energy

level, a photon is

emitted

Page 28: GO Quantum Versi Indo

Atomic Energy Levels Ground state (E0): lowest, most stable energy level in

an atom:

strongest electrostatic attraction between nucleus and

electron

lowest electron kinetic energy

Excited states (E1 E2 etc.): with elevation to higher

energy levels, electrons become less stable:

weaker electrostatic attraction

higher electron kinetic energy

farther (on average) from nucleus

Page 128

Page 29: GO Quantum Versi Indo

Tingkat energi Level:

Atom Hidrogen

voltelectoneV

stateexcitationmwherem

eVEm

)(2,1,0

)1(

6.132

Page 129

Page 30: GO Quantum Versi Indo

Tingkat energi Level:

Atom Hidrogen

eVeV

E 6.131

6.130

eVeV

E 4.34

6.131

eVeV

E 51.19

6.132

eVeV

E 85.016

6.133

)(2,1,0

)1(

6.132

stateexcitationm

m

eVEm

Tanda Negatif indicates

electrostatic attraction to

nucleus (Binding Energy)

Consider negative electron

energy as the “electrostatic hill”

that the electron must climb to

be freed from the atom

Zero energy free electron

Page 31: GO Quantum Versi Indo

Atomic Energy Diagram

Shows all the valid energy levels for the atom.

Energy required for an electron to jump to a

higher level

Photon energy released as an electron drops to a

lower level

Page 32: GO Quantum Versi Indo

Hydrogen Energy Diagram

Page 33: GO Quantum Versi Indo

-14

-13

-7

-9

-8

-10

-11

-12

-2

0

-1

-3

-4

-5

-6

E0

E1

E2

E3E4

E5

0 eV

10.2 eV

Tra

nsi

tion L

evel

above

Gro

und S

tate

(eV

)

Ele

ctro

n E

ner

gy

(eV

)

13.6 eV

12.74 eV

12.09 eV

Ionization State

91 nm

121 nm

486 nm656 nm

HYDROGEN ENERGY

LEVEL DIAGRAM

103 nm

97 nm

Fig 78, p 128

Page 34: GO Quantum Versi Indo

Hydrogen Balmer

series encompasses

transitions up or

down to/from the first

excited state (E1).

Note the hydrogen F

line (E3 E1) and C

line (E2 E1)

Page 35: GO Quantum Versi Indo

Energy Levels: Hydrogen Atom

After absorbing energy, the electron remains in an

excited state for an extremely short period (~ 10 nsec)

Spontaneous emission: as the unstable, excited electron

drops to a lower energy level, it emits a photon.

Photon energy is equal to the difference in atomic

energy levels

Page 36: GO Quantum Versi Indo

Energy Levels: Hydrogen Atom

eVeVeVEEE 89.1)4.3(51.112

Photon energy for the transition from E2 to E1:

nmeV

nmeV

E

chchE 3.656

89.1

239,1 1

Hydrogen C-line

Page 37: GO Quantum Versi Indo

Energy Levels: Hydrogen Atom

nmeV

nmeV

E

chchE

eVeVeVEEE

877,166.0

239,1

66.0)51.1(85.0

1

23

A single energy jump from a higher excited state

causes a smaller energy transition (e.g. from E3 to

E2):

Page 38: GO Quantum Versi Indo

Energy Levels: Hydrogen Atom

eVeVeVEEE 55.2)4.3(85.013

Multi-level energy transitions can also occur (e.g.

from E3 to E1):

The greater the energy transition as an electron jumps

to a lower energy level, the shorter the wavelength of

the emitted photon

nmeV

nmeV

E

chchE 486

55.2

239,1 1

Hydrogen F-line

Page 39: GO Quantum Versi Indo

Atomic Spectra: Hydrogen

All energy transitions (single-level and multi-level)

are possible for the hydrogen atom.

Photons corresponding to all possible transitions are

emitted:

gives rise to characteristic discrete spectral lines of

low pressure H2 gas

Page 40: GO Quantum Versi Indo

Atomic Spectra: Hydrogen

Discrete hydrogen spectral lines “fingerprint”

for hydrogen.

Discrete hydrogen spectra used extensively in

astronomy

Characteristic atomic spectra in a gas best seen at

low pressure - at higher pressures, spectra begin to

change

Page 41: GO Quantum Versi Indo

Atomic Spectra

Bunsen burned salts containing various elements in a

flame:

placed a series of slits in front of the flame

directed the light through a prism to disperse ’s

This allowed him to view the line spectra of elements

)1( glassnd

1n

Spectroscope

Page 42: GO Quantum Versi Indo

Absorption vs. Emission Spectra

Page 43: GO Quantum Versi Indo

Absorption Spectra

sample

sample

Page 44: GO Quantum Versi Indo

400 nm 500 nm 600 nm 700 nm

www.chem.uidaho.edu

Page 45: GO Quantum Versi Indo

Solar Spectrum

www.chem.uidaho.edu

Page 46: GO Quantum Versi Indo
Page 47: GO Quantum Versi Indo
Page 48: GO Quantum Versi Indo

Atomic Spectra

The colors of fireworks are created by atomic line spectra

Page 49: GO Quantum Versi Indo

Atomic Spectra: Hydrogen

Increasing gas temperature excites a greater

proportion of H atoms more atoms

spontaneously emitting photons

Explains why gas discharge lamps glow brighter as

they warm up

Page 50: GO Quantum Versi Indo

Atomic Spectra

Increasing gas pressure changes atomic spectra

collisions between molecules also cause energy

exchanges.

As pressure increases, collision frequency increases

discrete spectra gradually give way to a

continuous spectrum

Page 52: GO Quantum Versi Indo

QQ1. Which transition in the hydrogen atom would result in

emission of the shortest wavelength photon?

(A) E0 E1

(B) E3 E1

(C) E4 E1

(D) E5 E2

wrong direction

3.4 – 0.85 = 2.55 eV

3.4 – 0.54 = 2.86 eV

1.51 – 0.38 = 1.13 eV

Page 53: GO Quantum Versi Indo

QQ2. What type of atomic spectrum would most likely be seen

for a hydrogen gas cloud in space?

(A) Absorption spectrum

(B) Emission spectrum

(C) Continuous spectrum

(D) All of the above

Low pressure, cold gas

Page 54: GO Quantum Versi Indo

Page 129Fraunhofer Lines (Solar Absorption Spectrum

Page 55: GO Quantum Versi Indo

Page 129

Designation Element Wavelength (nm) Designation Element Wavelength (nm)

y O2 898.765 c Fe 495.761

Z O2 822.696 F H β 486.134

A O2 759.370 d Fe 466.814

B O2 686.719 e Fe 438.355

C H α 656.281 G' H γ 434.047

a O2 627.661 G Fe 430.790

D1 Na 589.594 G Ca 430.774

D2 Na 588.997 h H δ 410.175

D3 He 587.565 H Ca+

396.847

E2 Fe 527.039 K Ca+

393.368

b1 Mg 518.362 L Fe 382.044

b2 Mg 517.270 N Fe 358.121

b3 Fe 516.891 P Ti+

336.112

b4 Fe 516.751 T Fe 302.108

b4 Mg 516.733 t Ni 299.444

Major Fraunhofer Lines (Solar Spectrum)

Page 56: GO Quantum Versi Indo

Solar Spectrum Series of absorption lines produced when sunlight

emitted from the hotter solar chromosphere is

absorbed by the cooler outer solar photosphere

Hydrogen makes up 92.1% of the sun’s atoms,

helium 9.2%, and sodium, calcium, and iron 0.1%

Overall, several thousand solar Fraunhofer lines

representing 67 elements

Page 57: GO Quantum Versi Indo

Table 1 – Major Solar Fraunhofer Lines

Designation Wavelength (nm) Origin

A 759.4 terrestrial oxygen

B 686.7 terrestrial oxygen

C 656.3 hydrogen (Hα)

D1 589.6 neutral sodium (Na I)

D2 589.0 neutral sodium (Na I)

E 527.0 neutral iron (Fe I)

F 486.1 hydrogen (Hβ)

H 396.8 ionized calcium (Ca II)

K 393.4 ionized calcium (Ca II)

Page 58: GO Quantum Versi Indo

Fluorescence

Page 129

Page 59: GO Quantum Versi Indo

Fluorescence Fluorescence is an example of energy absorption

followed by spontaneous photon emission.

Many substances that can be raised by a stimulating

source from ground state to an excited state, then

spontaneously emit photons, will theoretically

fluoresce.

Page 129

Page 60: GO Quantum Versi Indo

Fluorescence

Typically a high frequency source (UV) is needed to

raise atoms from the ground state.

A fluorescent substance could undergo a single energy

level transition: E0 E1 for excitation, followed by

E1 E0 for spontaneous emission. This is rare.

Most fluorescent substances, after excitation, will

undergo a “non-radiative” transition (e.g. E2 E1)

followed by photon release (e.g. E1 E0)

Page 61: GO Quantum Versi Indo

Fluorescence (typical case) Fig 79, p 130

Page 62: GO Quantum Versi Indo

Fluorescence Most substances are not 100% efficient, emitting less

energy than they absorbed.

Thermal agitation (vibrational loss) is the most

common cause of the energy loss between absorption

and emission (non-radiative transition)

The emitted photon will therefore have lower energy

than the exciting photon

Page 63: GO Quantum Versi Indo

UV absorption

Fluorescence

emission

(photon)

Electron

elevated

to higher

energy

level

Electron spontaneously

returns to lower energy state

nanoseconds pass

Fluorescence & Stoke’s Reaction Electron energy

has decreased:

thermal loss

(< 1 nsec)

Page 64: GO Quantum Versi Indo

Fluorescence Thermal losses explain why fluorescent emission

usually has longer wavelength (different color) than the

excitation source.

e.g. blue light may be absorbed by a fluorescent

substance. Thermal agitation causes energy loss from

the excited atoms, leaving less energy for emission.

The emitted photon will have longer (e.g. green)

The difference in energy between the excited and

emitted photon is called Stoke’s shift

Page 65: GO Quantum Versi Indo

Explaining Stoke’s Shift

Molecules contain discrete electronic energy levels

(E0, E1, E2 , etc. …..).

Each energy level also consists of a series of

vibrational sub-levels (due to motion of the non-rigid

nucleus within the molecular “framework”)

Interaction with surrounding molecules causes rapid

loss of vibrational energy to the environment (this is

the “thermal agitation” loss; non-radiative transition)

The various types of atomic energy (electronic,

vibrational, spin angular momentum etc.) are

depicted in Jablonski diagrams

Page 66: GO Quantum Versi Indo

Jablonski Diagram for Fluorescence

Excited vibrational states

Vibrational relaxation

F

E0

E1

E2

En

Ground state

Ener

gy

Incident radiation excites the ground state

molecule (A)

The molecule is also excited to vibrational

levels of the excited state

Vibrational levels rapidly deactivate due to

collisions with the surrounding environment

until the molecule reaches its lowest excited

state (vibrational relaxation)

If the interaction between the excited molecule

and its surroundings is not enough to cause the

large energy transfer to return it to ground state,

the molecule fluoresces (F, radiative decay)

A

Page 67: GO Quantum Versi Indo

Ophthalmic Applications of

Fluorescence Page 131

Page 68: GO Quantum Versi Indo

Ophthalmic Applications of

Fluorescence

Sodium fluorescein has several

applications in ophthalmic practice:

tear film instillation to:

visualize ocular surface anomalies

evaluate tear film stability

Fluorescein angiography

Page 69: GO Quantum Versi Indo

Fluorescein A cobalt blue filter provides excitation energy (365 -

470 nm)

Thermal agitation decreases the energy available for

emission

522 nm green photons are emitted

Page 70: GO Quantum Versi Indo

Fluorescein: Ocular Surface Evaluation

Includes detection of corneal surface abrasions,

superficial punctate keratitis, foreign body tracks in

contact lens wearers etc.

Fluorescein is placed into the tear film and the green

emission pattern is viewed through a (stimulating)

cobalt blue filter (usually with a biomicroscope)

Page 71: GO Quantum Versi Indo

Superficial punctate keratitis

Page 72: GO Quantum Versi Indo

Cornea

Double AbrasionFluorescein

Page 73: GO Quantum Versi Indo

Fluorescein Angiography Fluorescein dye is injected into the blood (or may be

taken orally)

A retinal camera equipped with UV filter is used to

monitor the passage of fluorescein through the pre-

retinal vasculature

Any fresh hemorrhages, vascular leak etc. shows up as

fluorescent green patches outside the blood vessels

(which also fluoresce)

Page 132

Page 74: GO Quantum Versi Indo

Arterial Phase: NORMAL

Fluorescein Angiography: Eye

Page 75: GO Quantum Versi Indo

Early venous phase - Normal

Fluorescein Angiography: Eye

Page 76: GO Quantum Versi Indo

Complete Filling Arteries & Veins: NORMAL

Fluorescein Angiography: Eye

Page 77: GO Quantum Versi Indo

Late Phase - Fading of Dye: NORMAL

Fluorescein Angiography: Eye

Page 78: GO Quantum Versi Indo

Early Phase - Dye leakage: DIABETIC RETINOPATHY

Fluorescein Angiography: Eye

Page 79: GO Quantum Versi Indo

Fluorescein Angiography Fluorescein angiography is especially useful in diabetes

where microaneursyms, and “dot” and “blot”

hemorrhages show up.

Page 80: GO Quantum Versi Indo

Arterio-venous Phase - Neovascularization:

DIABETIC RETINOPATHY

Fluorescein Angiography: Eye

Page 81: GO Quantum Versi Indo

Late Phase - Hemorrhage from new vessels:

DIABETIC RETINOPATHY

Fluorescein Angiography: Eye

Page 82: GO Quantum Versi Indo

Fluorescein Angiography: Dot

Hemorrhages & Microaneurysms

Page 83: GO Quantum Versi Indo

Fluorescein Angiography: Dot

Hemorrhages & Microaneurysms

Page 84: GO Quantum Versi Indo

Fluorescence overlay antigen mapping (C) of a skin section using two

Mab’s.

A RITC-conjugate

B FITC-conjugate

C overlay image of A and B shows yellow fluorescence on sites

where both antigens are present (between arrows). (Bar, 50 microns)

From: Jonkman: J Clin Invest, Volume 95(3).March , 1995.1345-1352

Fluorescence Microscopy

Page 85: GO Quantum Versi Indo

PhosphorescencePage 132

Page 86: GO Quantum Versi Indo

Phosphorescence Same principle as fluorescence, but atoms of a

phosphorescent substance will remain in the excited

state for a much longer period of time.

This requires the existence of a metastable state - i.e. a

relatively stable excited state that the atom may remain

in from second to hours.

To understand the basis of a metastable state (also

applies to lasers) must look at sources of atomic energy

beyond electronic energy

Page 132

Page 87: GO Quantum Versi Indo

Most fluorescent substances emit a photon of different

wavelength than the absorbed photon. The reason for this is:

Practice Problem I

(A) spontaneous emission occurs in a random direction

with a random wavelength

(B) vibrational losses in the excited substance reduce the

energy available for emission

(C) thermal transfer increases the energy of the atom

resulting in an emitted photon of shorter wavelength

(D) metastable substances build up stored energy

resulting in emission of a higher energy photon

Page 88: GO Quantum Versi Indo

Fluorescence could be described as a process of:

Practice Problem II

(A) stimulated emission, where high energy photons cause an

atom to drop immediately to the ground state, emitting

photons of longer wavelength due to thermal loss

(B) thermal agitation of an atom from a metastable state to a

higher, unstable state, causing an immediate drop to ground

state, accompanied by photon emission

(C) spontaneous emission, where longer wavelength photons

are absorbed and shorter wavelength photons are emitted

due to thermal loss

(D) spontaneous emission, where higher energy photons are

absorbed, and lower energy photons are emitted

Page 89: GO Quantum Versi Indo

In the process of fluorescence, Stoke’s shift refers to:

Practice Problem III

(A) the almost immediate drop by an excited atom to a slightly lower

energy level prior to spontaneous emission of a fluorescent

photon of shorter wavelength than the exciting photon

(B) the increase in atomic energy level that occurs when the atom

absorbs a photon of sufficient energy to raise it to the required

state to allow subsequent fluorescent emission

(C) the difference in energy level between excitation and emission

energy that is responsible for the characteristic wavelength of the

emitted photon

(D) the tendency of atoms to vibrate and make translational

movements as they are raised to higher energy levels by exciting

photons

Page 90: GO Quantum Versi Indo

Compared with fluorescence, phosphorescence differs:

Practice Problem IV

(A) in that phosphorescent atoms must be raised to substantially

higher energy levels due to the much more significant thermal

losses that occur for the prolonged life of the excited state

(B) in that phosphorescence involves a combination of spontaneous

and stimulated emission, while fluorescence involves only

spontaneous emission

(C) only in the presence of a metastable state to maintain excited

phosphorescent atoms above ground state for prolonged time

periods

(D) only in the fact that phosphorescent atoms do not suffer any

vibrational (thermal) loss after initial excitation, so the

stimulating energy is equal to the transitional energy giving rise

to the emitted photon