Download - Biokimia Karbohidrat, Metabolisme Energi, Dan Ketegenesis

Transcript

Carbohydrate Metabolism

Department of Biochemistry

An Overview of Metabolism

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Figure 22-2

Summary of Metabolism

CarbohydratesFats

Free fatty acids + glycerol

Fatstores

Glucose

Excess glucoseGlycogen

stores

Aminoacids

Proteins

DIET

Lipogenesis

Brainmetabolism

Range of normalplasma glucose

Gluconeogenesis

Bodyprotein

Glycogenolysis

GlycogenesisProtein

synthesis

Metabolism inmost tissues

Free fattyacid pool

Urine

Excess nutrients

Lipo

gene

sis

Lipolysis

Glucose pool

Amino acidpool

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Figure 22-2 (1 of 4)

Summary of Metabolism

Carbohydrates

Fatstores

Glucose

Excess glucoseGlycogen

stores

DIET

Lipogenesis

Brainmetabolism

Range of normalplasma glucose

Glycogenolysis

Glycogenesis

Metabolism inmost tissues

Urine

Glucose pool

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Figure 22-3

Metabolism

Summary of biochemical pathways for energy production

Glucose

Someaminoacids

Someaminoacids

Lactate

Glycogen

Glucose 6–phosphateLiver only

Fattyacids

Electron transportsystem

CO2

NH3

O2

CoA Ketonebodies

(in liver)

Glycerol

2 ATP

ATP + H2O

GLYCOLYSIS

Pyruvate

Pyruvate

Acetyl CoA

NH3

Cytoplasm

Mitochondria

Citricacidcycle

2 ATP

Anaerobic conditions

Aerobic conditions

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Figure 22-4

Metabolism

Push-pull control of metabolism

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings

Metabolism

Carbohydrate Metabolism Primarily glucose

Fruktosa dan galaktosa memasuki jalur-jalur pada berbagai titik

Semua sel dapat memanfaatkan glukosa untuk produksi energi Glukosa serapan dari darah ke sel-sel

biasanya dimediasi oleh insulin dan transporter

Liver is central site for carbohydrate metabolism Glucose uptake independent of insulin The only exporter of glucose

Blood Glucose Homeostasis Beberapa jenis sel lebih memilih

glukosa sebagai sumber energi (ex., CNS) 80-126 mg/dl is normal range of blood

glucose in fasted state < 200 mg/dl is normal range of blood glucose in post prandial

Uses of glucose: Energy source for cells Muscle glycogen Fat synthesis if in excess of needs

Fates of Glucose Fed state

Storage as glycogen Liver Skeletal muscle

Storage as lipids Adipose tissue

Fasted state Metabolized for energy New glucose synthesized

Synthesis and breakdown occur at

all times regardless of state...

The relative rates of synthesis and

breakdown change

High Blood Glucose

Glucose absorbed

Insulin: Glucagon

Pancreas

Muscle

Adipose Cells

Glycogen

Glucose absorbed

Glucose absorbed

immediately after eating a meal…

Glucose Metabolism Four major metabolic pathways:

Energy status of body regulates which pathway gets energy

Immediate source of energy Pentophosphate pathway Glycogen synthesis in liver/muscle Precursor for triacylglycerol synthesis

Fate of Absorbed Glucose 1st Priority: glycogen storage

Stored in muscle and liver 2nd Priority: provide energy

Oxidized to ATP 3rd Priority: stored as fat

Only excess glucose Stored as triglycerides in adipose

Glucose Utilization

Glucose

PyruvateRibose-5-phosphate

GlycogenEnergy Stores

Pentose Phosphate Pathway

Glycolysis

Adipose

Glucose Utilization

Glucose

PyruvateRibose-5-phosphate

GlycogenEnergy Stores

Pentose Phosphate Pathway

Glycolysis

Adipose

Liver 7–10% of wet weight Use glycogen to export glucose to the

bloodstream when blood sugar is low Glycogen stores are depleted after

approximately 24 hrs of fasting (in humans) De novo synthesis of glucose for glycogen

Glycogenesis

Glycogenesis Skeletal muscle

1% of wet weight More muscle than liver, therefore more

glycogen in muscle, overall Use glycogen (i.e., glucose) for energy only

(no export of glucose to blood) Use already-made glucose for synthesis of

glycogen

Glucose Utilization

Glucose

PyruvateRibose-5-phosphate

GlycogenEnergy Stores

Pentose Phosphate Pathway

Glycolysis

Adipose

Glycolysis Urutan reaksi yang mengubah glukosa

menjadi piruvat Jumlah energi yang dihasilkan relatif kecil Reaksi glikolisis terjadi dalam sitoplasmaTidak memerlukan oksigen

Glucose → Pyruvate →Lactate (animals)

Acetyl-CoA (TCA cycle)Ethanol (yeast)

Glycolysis

Glucose + 2 ADP + 2 Pi 2 Lactate + 2 ATP + 2 H2O

First Reaction of Glycolysis

Perangkap glukosa dalam sel (ireversibel dalam sel otot)

Heksokinase digunakan oleh sebagian besar tanaman, hewan,dan mikroba untuk memfosforilasi glukosa

Glukokinase dalam jaringan hati

Glycolysis - SummaryGlucose

2 Pyruvate

2 ATP

2 ADP4 ADP

4 ATP

2 NAD

2 NADH + H

carb

ohyd

rate

met

abol

ism

Pyruvate Metabolism Three fates of pyruvate:

Conversion to lactate (anaerobic) Conversion to alanine (amino acid) Entry into the TCA cycle via pyruvate dehydrogenase pathway

Anaerobic Metabolism of Pyruvate

Problem: Selama glikolisis, NADH terbentuk dari NAD + Tanpa O2, NADH tidak dapat dioksidasi menjadi

NAD + Tidak ada lagi NAD +

Semua dikonversi menjadi NADH Tanpa NAD +, glikolisis berhenti ...

Anaerobic Metabolism of Pyruvate

Solution: Hidupkan NADH kembali ke NAD + dengan membuat laktat

(asam laktat)

COO–

C O

CH3

COO–

HC OH

CH3

LactatePyruvate

Lactate dehydrogenase

NADH + H+ NAD+

(oxidized) (reduced)

(oxidized)(reduced)

Anaerobic Metabolism of Pyruvate

ATP yield Two ATPs (net) are produced

in the anaerobic breakdown of one glucose The 2 NADHs are used to reduce 2 pyruvate

to 2 lactate Reaction is fast and doesn’t require oxygen

Pyruvate Metabolism - Anaerobic

Pyruvate LactateNADH NAD+

Lactate Dehydrogenase

Laktat dapat diangkut oleh darah ke hati dan    digunakan dalam glukoneogenesis

Cori Cycle

Laktat diubah menjadi piruvat di hati

Pyruvate Metabolism Three fates of pyruvate:

Conversion to lactate (anaerobic) Conversion to alanine (amino acid) Entry into the TCA cycle via pyruvate dehydrogenase pathway

Pyruvate metabolism Convert to alanine and export to blood

COO–

C O

CH3

COO–

HC NH3+

CH3Alanine amino transferase

(AAT)AlaninePyruvate

Glutamate -Ketoglutarate

Keto acid Amino acid

Pyruvate Metabolism Three fates of pyruvate:

Conversion to lactate (anaerobic) Conversion to alanine (amino acid) Entry into the TCA cycle via pyruvate dehydrogenase pathway

Glycolysis

Pyruvate Dehydrogenase Complex (PDH) Prepares pyruvate to enter the TCA cycle

Electron Transport Chain

TCA CycleAerobic Conditions

PDH - SummaryPyruvate

Acetyl CoA

2 NAD

2 NADH + HCO2

TCA Cycle Dalam kondisi aerobik Link siklus TCA piruvat

untuk fosforilasi oksidatif Terjadi pada mitokondria Menghasilkan 90% dari energi yang

dilepaskan dari makanan

Strateginya adalah untuk mengoksidasi asetil-KoA menjadi CO2 dan menangkap energi NADH (FADH2) dan ATP

Metabolizes carbohydrate, protein, and fat

TCA Cycle - SummaryAcetyl CoA

3 NAD

3 NADH + H

1 FAD1 FADH2

1 ADP

1 ATP

Oxidative Phosphorylation

Membutuhkan koenzim sebagai pembawa H+ dan mengkonsumsi oksigen

Key reactions take place in the electron transport system (ETS) Sitokrom dari ETS melewati elektron ke

oksigen, membentuk air The basic chemical reaction is:

2 H2 + O2 2 H2O

Oxidative Phosphorylation and the Electron Transport System

Oxidation and Electron Transport Oksidasi nutrisi melepaskan energi

yang tersimpan mendonorkan elektron disertai dengan H + Electrons transferred to co-substrate

NAD+ + 2H+ + 2e- NADH + H+ FAD + 2H+ + 2e- FADH2

So, What Goes to the ETS???

From each molecule of glucose entering glycolysis:1. From glycolysis: 2 NADH2. From the TCA preparation step (pyruvate to acetyl-CoA): 2 NADH3. From TCA cycle (TCA) : 6 NADH and 2 FADH2

TOTAL: 10 NADH + 2 FADH2

Electron Transport Chain NADH + H+ and FADH2 enter ETC

Perjalanan melalui kompleks I - IV H + mengalir melalui ETC dan akhirnya

menempel pada O2 membentuk airNADH + H+ 3 ATPFADH2 2 ATP

Electron Transport Chain

Glucose Utilization

Glucose

PyruvateRibose-5-phosphate

GlycogenEnergy Stores

Pentose Phosphate Pathway

Glycolysis

Adipose

Pentose Phosphate Pathway Secondary metabolism of glucose

Produces NADPH Similar to NADH Required for fatty acid synthesis

Generates essential pentoses Ribose Used for synthesis of nucleic acids

Pentose Phosphate PathwayGlucose-6-phosphate

6-Phospho- glucono-lactone

6-Phospho- gluconate

D-Ribulose-5-phosphate

D-Ribose- 5-phosphateRNA or DNA

Glucose Utilization

Glucose

PyruvateRibose-5-phosphate

GlycogenEnergy Stores

Pentose Phosphate Pathway

Glycolysis

Adipose

Energy Storage Energi dari kelebihan karbohidrat (glukosa)

disimpan sebagai lemak dalam jaringan adiposa

Asetil-KoA (dari siklus TCA) didorong ke sintesis asam lemak pada saat kelebihan energi Ditentukan oleh rasio ATP: ADP

High ATP, acetyl-CoA goes to fatty acid synthesis Low ATP, acetyl CoA enters TCA cycle to generate

MORE ATP

Fates of Glucose Fed state

Storage as glycogen Liver Skeletal muscle

Storage as lipids Adipose tissue

Fasted state Metabolized for energy New glucose synthesized

Synthesis and breakdown occur at

all times regardless of state...

The relative rates of synthesis and

breakdown change

Gluconeogenesis Necessary process

Glucose is an important fuel Central nervous system Red blood cells

Not simply a reversal of glycolysis Insulin and glucagon are primary

regulators

Fasting Situation Where does required glucose come from?

Glycogenolysis

Lipolysis

Proteolysis

Kerusakan atau mobilisasi glikogen yang disimpan oleh glukagonGlukagon - hormon yang disekresi oleh pankreas selama masa puasa

Mobilization of fat stores stimulated by glucagon and epinephrine Triglyceride = glycerol + 3 free fatty acids Glycerol can be used as a glucose precursor

Pemecahan protein otot dengan pelepasan asam aminoAlanin dapat digunakan sebagai prekursor glukosa

Low Blood Glucose

Proteins Broken Down

Insulin: Glucagon

Pancreas

Muscle

Adipose Cells

Glycogen

Glycerol, fatty acids released

Glucose released

Dalam keadaan berpuasa, substrat untuk sintesis glukosa (glukoneogenesis) dilepaskan dari "penyimpanan" ...

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Figure 22-7 (2 of 5)

Fasted-State Metabolism

FASTED-STATE METABOLISM

Liverglycogen

stores

Energyproduction

Energy production

Glucose

Liver glycogen becomes glucose.

or

Glycogen

Pyruvate

Lactate

Energy production

Glucose

Glycogenolysis

Gluconeogenesis

Gluconeogenesis Synthesis of glucose from non-carbohydrate

precursors during fasting in monogastrics

Terjadi terutama dalam hati, tetapi juga dapat terjadi pada ginjal dan usus halus

Glycerol Amino acids Lactate Pyruvate Propionate There is no glucose synthesis from fatty acids

Supply carbon skeleton

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Figure 22-7

Fasted-State Metabolism

FASTED-STATE METABOLISM

Liverglycogen

stores

Energyproduction

Energy production

Free fattyacids Free fatty

acids Glycerol

Aminoacids

KetonebodiesGlucose

Adipose lipidsbecome freefatty acids andglycerol thatenter blood.

Muscle glycogen can be used for energy.Muscles also use fatty acids and break down their proteins to amino acids that enter the blood.

Liver glycogen becomes glucose.

Brain can use only glucose and ketones for energy.

or

Triglyceride stores

Glycogen

Pyruvate

Lactate

Energy production

Glucose

Proteins

Ketonebodies

b-oxidationGlycogenolysis

Gluconeogenesis

Gluconeogenesis

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Figure 22-7 (1 of 5)

Fasted-State Metabolism

FASTED-STATE METABOLISM

Liverglycogen

stores

Energyproduction

Energy production

Glucose

Liver glycogen becomes glucose.

Glucose

Glycogenolysis

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Figure 22-7 (3 of 5)

Fasted-State Metabolism

FASTED-STATE METABOLISM

Liverglycogen

stores

Energyproduction

Energy production

Aminoacids

Glucose

Liver glycogen becomes glucose.

or

Glycogen

Pyruvate

Lactate

Energy production

Glucose

Proteins

Glycogenolysis

Gluconeogenesis

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Figure 22-7 (4 of 5)

Fasted-State Metabolism

FASTED-STATE METABOLISM

Liverglycogen

stores

Energyproduction

Energy production

Free fattyacids Free fatty

acids Glycerol

Aminoacids

Glucose

Adipose lipidsbecome freefatty acids andglycerol thatenter blood.

Muscle glycogen can be used for energy.Muscles also use fatty acids and break down their proteins to amino acids that enter the blood.

Liver glycogen becomes glucose.

or

Triglyceride stores

Glycogen

Pyruvate

Lactate

Energy production

Glucose

Proteins

Glycogenolysis

Gluconeogenesis

Gluconeogenesis

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Figure 22-7 (5 of 5)

Fasted-State Metabolism

FASTED-STATE METABOLISM

Liverglycogen

stores

Energyproduction

Energy production

Free fattyacids Free fatty

acids Glycerol

Aminoacids

KetonebodiesGlucose

Adipose lipidsbecome freefatty acids andglycerol thatenter blood.

Muscle glycogen can be used for energy.Muscles also use fatty acids and break down their proteins to amino acids that enter the blood.

Liver glycogen becomes glucose.

Brain can use only glucose and ketones for energy.

or

Triglyceride stores

Glycogen

Pyruvate

Lactate

Energy production

Glucose

Proteins

Ketonebodies

b-oxidationGlycogenolysis

Gluconeogenesis

Gluconeogenesis

Ketogenesis

KETOGENESIS

Ketogenesis adalah proses dimana BADAN KETON atau senyawa yang dihasilkan dari molekul asetil CoA sebagai hasil dari degradasi asam lemak.

72

Ketogenesis and Ketone BodiesIn ketogenesis:

Lemak tubuh terurai untuk memenuhi kebutuhan energi.

Senyawa Keto yang disebut bentuk badan keton.

73

Ketogenesis and Ketone BodiesIn ketogenesis: Sejumlah besar asetil KoA menumpuk. Dua molekul asetil KoA bergabung membentuk

asetoasetil KoA Asetoasetil KoA menghidrolisis untuk asetoasetat, tubuh

keton. Asetoasetat tereduksi menjadi b-hydroxybutyrate atau

kehilangan CO2 untuk membentuk aseton, kedua badan keton.

74

Reactions of Ketogenesis

Ketone bodies

KETOGENESIS Badan keton diproduksi terutama di

mitokondria hepatosit. Sintesis terjadi sebagai respons terhadap

kadar glukosa rendah dalam darah, dan setelah kehabisan simpanan karbohidrat seluler, seperti glikogen.

Produksi badan keton kemudian berinisiatif untuk membuat energi tersedia yang disimpan sebagai asam lemak.

KETOGENESIS

Namun, jika jumlah asetil-KoA yang dihasilkan dalam fatty-acid β-oxidation menentang kapasitas pengolahan dari siklus TCA atau jika aktivitas dalam siklus TCA rendah karena jumlah rendah intermediet seperti oksaloasetat, acetyl-CoA kemudian digunakan sebagai pengganti dalam biosintesis badan keton melalui acetoacyl-CoA and β-hydroxy-β-methylglutaryl-CoA (HMG-CoA).

KETOGENESISREVIEW! Asam lemak menjalani

β-oxidation to form acetyl-CoA.

Biasanya, asetil-CoA selanjutnya teroksidasi dan energinya ditransfer sebagai elektron untuk NADH, FADH2, dan GTP dalam siklus Krebs.

KETOGENESIS

KETOGENESIS The three ketone bodies are:

Acetoacetate - if not oxidized to form usable energy, it is the source of the two other ketone bodies below.

Acetone - is not used as an energy source, but is instead exhaled or excreted as waste.

β-hydroxybutyrate - it is not technically a ketone according to IUPAC nomenclature.

Each of these compounds are synthesized from acetyl-CoA molecules.

KETOGENESIS Ketogenesis mungkin atau tidak mungkin

terjadi, tergantung pada tingkat karbohidrat yang tersedia di sel atau tubuh. When the body has ample carbohydrates

available as energy source, glucose is completely oxidized to CO2.

When the body has excess carbohydrates available, some glucose is fully metabolized, and some of it is stored by using acetyl-CoA to create fatty acids.

KETOGENESIS

Ketika tubuh tidak memiliki karbohidrat bebas yang tersedia, lemak harus dipecah menjadi asetil-KoA untuk mendapatkan energi. Asetil-KoA tidak didaur ulang melalui siklus asam sitrat karena intermediet siklus asam sitrat (terutama oksaloasetat) telah habis untuk memberi makan jalur glukoneogenesis, dan akumulasi dihasilkan asetil-CoA mengaktifkan ketogenesis.

Ketogenesis menyediakan energi untuk fungsi-fungsi organ vital 'selama kelaparan yang berkepanjangan

KETOGENESIS

KETOGENESIS

KETOGENESIS

Badan keton dibuat pada tingkat moderat dalam tubuh kita, seperti saat tidur dan waktu lain bila tidak ada karbohidrat yang tersedia.

Namun, ketika ketogenesis yang terjadi lebih tinggi dari tingkat normal, tubuh dikatakan dalam keadaan ketosis. Badan keton terakumulasi dalam tubuh dapat menyebabkan efek negatif jangka panjang.

KETOGENESIS

Konsentrasi tinggi abnormal badan keton pada tubuh menghasilkan penurunan tingkat pH darah. kondisi ini disebut ketoasidosis.

Ketoasidosis sangat jarang terjadi. Hal ini, bagaimanapun, lebih terlihat pada orang yang menderita Diabetes mellitus (DM) dan pada mereka pecandu alkohol setelah pesta minuman keras dan kelaparan berikutnya.

Diabetes and Ketoacidosis Bila tidak ada cukup insulin dalam darah,

glukosa tidak digunakan secara efisien untuk menghasilkan energi. Dengan demikian, tubuh harus memecah lipid untuk energi.

Degradasi lipid menyebabkan keton menambah dalam darah. Keton kemudian meluas ke urin sehingga tubuh bisa menyingkirkan mereka. Aseton dapat dihembuskan melalui paru-paru. Keton yang membangun di dalam tubuh untuk waktu yang lama menyebabkan penyakit serius dan koma. (Ketoasidosis diabetik)

87

KetosisKetosis occurs: In diabetes, diets high in

fat, and starvation. As ketone bodies

accumulate. When acidic ketone

bodies lowers blood pH below 7.4 (acidosis).

88

Ketone Bodies and Diabetes The blood glucose is elevated within

30 min following a meal containing carbohydrates

The elevated level of glucose stimulates the secretion of insulin, which increases the flow of glucose into muscle and adipose tissue for synthesis of glycogen (+ stimulates glycolysis)

As blood glucose levels drop, the secretion of glucagon increases, which stimulates the breakdown of glycogen in the liver to yield glucose

89

Ketone Bodies and DiabetesIn diabetes: Insulin does not function properly. Glucose levels in muscle, liver, and adipose

tissue are insufficient for energy needs. As a result, liver cells synthesize

glucose from non-carbohydrate sources (gluconeogenesis) and fats are broken down to acetyl CoA.

The level of acetyl CoA is elevated. Excess acetyl CoA undergoes ketogenesis. Ketogenesis produces ketone bodies. Ketone bodies accumulate in the blood.