Download - Astronomi 3

Transcript
Page 1: Astronomi 3

Sistem Magnitudo Bintang ( Tingkat Kecemerlangan Bintang )

Ketika kita melihat langit malam, akan kita dapati bermacam benda langit yang terangnya berbeda-beda. Bagaimana caranya agar kita dapat mengetahui perbandingan terang antara objek yang satu dengan yang lain? Di astronomi, kecerlangan benda langit dinyatakan dengan skala magnitudo. Dengan sistem ini juga, kita dapat menghitung perbandingan kecerlangan dua benda langit yang berbeda. Lalu bagaimana sistem magnitudo ini bekerja?

Jaman dahulu ketika belum ada listrik dan lampu, penduduk/perumahan belum banyak, lingkungan sekitar tidaklah seterang sekarang. Malam hari menjadi sangat gelap sehingga langit malam tampak lebih indah karena tidak ada polusi cahaya. Ketika cuaca cerah, orang dapat menikmati hiburan yang menakjubkan di layar lebar langit malam. Ribuan bintang, nebula dan gugus bintang yang terlihat sebagai awan kabut kecil, dan pita putih Bima Sakti, menghiasi angkasa. Sejarah ditemukannya sistem magnitudo untuk menentukan kecerlangan bintang dimulai dari kondisi seperti itu. Banyak yang bisa dilakukan dengan langit pada saat itu.

Sekitar tahun 150 SM, seorang astronom Yunani bernama Hipparchus membuat sistem klasifikasi kecerlangan bintang yang pertama. Saat itu, ia mengelompokkan kecerlangan bintang menjadi enam kategori dalam bentuk yang kurang lebih seperti ini: paling terang, terang, tidak begitu terang, tidak begitu redup, redup dan paling redup. Hal tersebut dilakukannya dengan membuat katalog bintang yang pertama. Sistem tersebut kemudian berkembang dengan penambahan angka sebagai penentu kecerlangan. Yang paling terang memiliki nilai 1, berikutnya 2, 3, hingga yang paling redup bernilai 6. Klasifikasi inilah yang kemudian dikenal sebagai sistem magnitudo. Skala dalam sistem magnitudo ini terbalik sejak pertama kali dibuat. Semakin terang sebuah bintang, magnitudonya semakin kecil. Dan sebaliknya semakin redup bintang, magnitudonya semakin besar.

Sistem tersebut kemudian semakin berkembang setelah Galileo dengan teleskopnya menemukan bahwa ternyata terdapat lebih banyak bintang lagi yang lebih redup daripada yang bermagnitudo 6. Skalanya pun berubah hingga muncul magnitudo 7, 8 dan seterusnya. Namun penilaian kecerlangan bintang ini belumlah dilakukan secara kuantitatif. Semuanya hanya berdasarkan penilaian visual dengan mata telanjang saja.

Pada tahun 1856 berkembanglah perhitungan matematis untuk sistem magnitudo. Norman Robert Pogson, seorang astronom Inggris, memberikan rumusan berbentuk logaritmis yang masih

Page 2: Astronomi 3

digunakan hingga sekarang dengan aturan seperti berikut. Secara umum, perbedaan sebesar 5 magnitudo menunjukkan perbandingan kecerlangan sebesar 100 kali. Jadi, bintang dengan magnitudo 1 lebih terang 100 kali daripada bintang dengan magnitudo 6, dan lebih terang 10000 kali daripada bintang bermagnitudo 11, begitu seterusnya. Dengan rumusan Pogson ini, perhitungan magnitudo bintang pun menjadi lebih teliti dan lebih dapat dipercaya.

Seiring dengan semakin majunya teknologi teleskop, magnitudo untuk bintang paling redup yang dapat kita amati semakin besar. Contohnya, Hubble Space Telescope memiliki kemampuan untuk mengamati objek dengan magnitudo 31. Tetapi walaupun bukan lagi nilai terbesar, magnitudo 6 tetap menjadi nilai penting hingga kini karena inilah batas magnitudo bintang yang paling redup yang dapat diamati dengan mata telanjang. Tentunya dengan syarat langit, lingkungan, dan mata yang masih bagus.

Sama seperti perkembangan yang terjadi pada magnitudo besar, magnitudo kecil juga mengalami ekspansi seiring dengan semakin majunya teknologi detektor. Dalam kelompok magnitudo 1 kemudian diketahui terdapat beberapa bintang tampak lebih terang dari yang lainnya sehingga muncullah magnitudo 0. Bahkan magnitudo negatif juga diperlukan untuk objek langit yang lebih terang lagi. Kini diketahui bahwa bintang paling terang di langit malam adalah Sirius, dengan magnitudo -1,47. Magnitudo Venus dapat mencapai -4,89, Bulan purnama -12,92, dan magnitudo Matahari mencapai -26,74.

Magnitudo yang kita bicarakan di atas disebut juga dengan magnitudo semu, karena menunjukkan kecerlangan bintang yang dilihat dari Bumi, tidak peduli seberapa jauh jaraknya. Jadi, sebuah bintang bisa terlihat terang karena jaraknya dekat atau jaraknya jauh tapi berukuran besar. Sebaliknya, sebuah bintang bisa terlihat redup karena jaraknya jauh atau jaraknya dekat tapi berukuran kecil. Sistem ini membuat kecerlangan bintang yang kita lihat bukan kecerlangan bintang yang sesungguhnya. Untuk mengoreksinya, faktor jarak itu harus dihilangkan. Maka muncullah sistem magnitudo mutlak.

Magnitudo mutlak adalah magnitudo bintang jika bintang tersebut berada pada jarak 10 parsek. Nilainya dapat ditentukan apabila magnitudo semu dan jarak bintang diketahui. Dengan “menempatkan” bintang-bintang pada jarak yang sama, kita bisa tahu bintang mana yang benar-benar terang. Sebagai perbandingan, Matahari, yang memiliki magnitudo semu -26,74, hanya memiliki magnitudo mutlak 4,75. Jauh lebih redup daripada Betelgeuse yang memiliki magnitudo semu 0,58 tetapi memiliki magnitudo mutlak -6,05 (135.000 kali lebih terang dari Matahari).

Magnitudo adalah tingkat kecemerlangan suatu bintang. Skala magnitudo berbanding terbalik dengan kecemerlangan bintang, artinya makin terang suatu bintang makin kecil skala magnitudonya. Pada zaman dulu, bintang yang paling terang diberikan magnitudo 1 dan yang

Page 3: Astronomi 3

cahayanya paling lemah yang masih dapat dilihat oleh mata diberi magnitudo 6. Sekarang diberikan ketentuan bintang dengan beda magnitudo satu memiliki beda kecerlangan 2,512 kali (selisih lima magnitudo berarti perbedaan kecerlangan seratus kali), jadi jika bintang A memiliki magnitudo 1 dan bintang B memiliki magnitudo 3 berarti bintang A 6,25 kali tampak lebih terang dari bintang B. Perbandingan magnitudo semu bintang dapat menggunakan rumus Pogson  berikut: 

Pengukuran magnitudo berdasarkan keadaan yang tampak dari Bumi seperti di atas disebut magnitudo semu, m. Magnitudo mutlak (M) adalah perbandingan nilai terang bintang yang sesungguhnya. Seperti yang Anda ketahui, jarak antara bintang yang satu dan bintang yang lain dengan Bumi tidaklah sama. Akibatnya, bintang terang sekalipun akan nampak redup bila jaraknya sangat jauh. Oleh karena itu, dibuatlah perhitungan magnitudo mutlak, yaitu tingkat kecerlangan bintang apabila bintang  itu diletakkan hingga berjarak 10 parsec dari Bumi. Dengan mengingat persamaan radiasi E = L /4πr2, dengan E energi radiasi,  L luminositas (daya) dan r jarak,  maka perhitungan jarak bintang, magnitudo semu dan magnitudo mutlak (absolut) adalah:

Perlu diingat jarak dalam persamaan modulus di atas (d) harus dinyatakan dalam satuan parsec. Satu parsec ialah jarak suatu bintang yang mempunyai sudut paralaks satu detik busur, yang sebanding dengan 3,26 tahun cahaya (ly) atau 206265 satuan astronomi (AU). Jika yang ditanyakan ialah jarak, maka rumus diatas dapat dibalik menjadi:

Jika magnitudo absolut dan magnitudo semunya diketahui, jaraknya dapat dihitung. Kuantitas m – M dikenal sebagai modulus jarak. Adapun hubungan antara magnitudo mutlak dan luminositas (daya) bintang, L dapat diterapkan berdasarkan rumus Pogson.

Misalkan magnitudo semu matahari tampak dari Bumi, m = -26,83, maka magnitudo mutlak matahari, M ialah: 

M = m + 5 - 5 log d.

Page 4: Astronomi 3

mengingat jarak Bumi-Matahari= 1 AU = 1/206265 parsec,maka M = -26,83 + 5 - 5 log (1/206265)M = 4,74

sumberhttp://duniaastronomi.com/2009/02/sistem-magnitudo/          http://paradoks77.blogspot.com/2010/06/sistem-magnitudo.html                http://id.wikipedia.org/wiki/Magnitudo_semu

CARA Mengukur Jarak Bintang menggunakan metode Paralaks dan dengan Bintang Cepheid

Bagaimanakah sebenarnya para astronom untuk dapat menghitung dan mengetahui jarak diantara benda-benda langit seperti Bintang, Planet, galaksi, dsb. dengan menggunakan metode penentuan jarak bintang dan objek benda langit lainnya para astronom dapat mengetahi jarak bintang dan benda langit lainnya.

1. Mengukur Jarak Bintang Menggunakan Metode Paralaks

Paralaks adalah perbedaan latar belakang yang tampak ketika sebuah benda yang diam dilihat dari dua tempat yang berbeda . Kita bisa mengamati bagaimana paralaks terjadi dengan cara yang sederhana. Acungkan jari telunjuk pada jarak tertentu (misal 30 cm) di depan mata kita. Kemudian amati jari tersebut dengan satu mata saja secara bergantian antara mata kanan dan mata kiri. Jari kita yang diam akan tampak berpindah tempat karena arah pandang dari mata kanan berbeda dengan mata kiri sehingga terjadi perubahan pemandangan latar belakangnya. “Perpindahan” itulah yang menunjukkan adanya paralaks. Paralaks juga terjadi pada bintang, setidaknya begitulah yang diharapkan oleh pemerhati dunia astronomi ketika model heliosentris dikemukakan pertama kali oleh Aristarchus (310-230 SM). Dalam model heliosentris itu, Bumi bergerak mengelilingi Matahari dalam orbit yang berbentuk

Page 5: Astronomi 3

lingkaran. Akibatnya, sebuah bintang akan diamati dari tempat-tempat yang berbeda selama Bumi mengorbit. Dan paralaks akan mencapai nilai maksimum apabila kita mengamati bintang pada dua waktu yang berselang 6 bulan (setengah periode revolusi Bumi). Namun saat itu tidak ada satu orangpun yang dapat mendeteksinya sehingga Bumi dianggap tidak bergerak (karena paralaks dianggap tidak ada). Model heliosentris kemudian ditinggalkan orang dan model geosentrislah yang lebih banyak digunakan untuk menjelaskan perilaku alam semesta.

Paralaks pada bintang baru bisa diamati untuk pertama kalinya pada tahun 1837 oleh Friedrich Bessel, seiring dengan teknologi teleskop untuk astronomi yang berkembang pesat (sejak Galileo menggunakan teleskopnya untuk mengamati benda langit pada tahun 1609). Bintang yang ia amati adalah 61 Cygni (sebuah bintang di rasi Cygnus/angsa) yang memiliki paralaks 0,29″. Ternyata paralaks pada bintang memang ada, namun dengan nilai yang sangat kecil. Hanya keterbatasan instrumenlah yang membuat orang-orang sebelum Bessel tidak mampu mengamatinya. Karena paralaks adalah salah satu bukti untuk model alam semesta heliosentris (yang dipopulerkan kembali oleh Copernicus pada tahun 1543), maka penemuan paralaks ini menjadikan model tersebut semakin kuat kedudukannya dibandingkan dengan model geosentris Ptolemy yang banyak dipakai masyarakat sejak tahun 100 SM.

Setelah paralaks bintang ditemukan, penghitungan jarak bintang pun dimulai. Lihat ilustrasi di bawah ini untuk memberikan gambaran bagaimana paralaks bintang terjadi. Di posisi A, kita melihat bintang X memiliki latar belakang XA. Sedangkan 6 bulan kemudian, yaitu ketika Bumi berada di posisi B, kita melihat bintang X memiliki latar belakang XB. Setengah dari jarak sudut kedua posisi bintang X itulah yang disebut dengan sudut paralaks. Dari sudut inilah kita bisa hitung jarak bintang asalkan kita mengetahui jarak Bumi-Matahari.

Dari geometri segitiga kita ketahui adanya hubungan antara sebuah sudut dan dua buah sisi. Inilah landasan kita dalam menghitung jarak bintang dari sudut paralaks (lihat gambar di bawah). Apabila jarak bintang adalah d, sudut paralaks adalah p, dan jarak Bumi-Matahari adalah 1 SA (Satuan Astronomi = 150 juta kilometer), maka kita dapatkan persamaan sederhana

tan p = 1/d

atau d = 1/p, karena p adalah sudut yang sangat kecil sehingga tan p ~ p.

Jarak d dihitung dalam SA dan sudut p dihitung dalam radian. Apabila kita gunakan detik busur sebagai satuan dari sudut paralaks (p), maka kita akan peroleh d adalah 206.265 SA atau 3,09 x 10^13 km. Jarak sebesar ini kemudian didefinisikan sebagai 1 pc (parsec, parsek), yaitu jarak bintang yang mempunyai paralaks 1 detik busur. Pada kenyataannya, paralaks bintang yang paling besar adalah 0,76″ yang dimiliki oleh bintang terdekat dari tata surya, yaitu bintang Proxima Centauri di rasi Centaurus yang berjarak 1,31 pc. Sudut sebesar ini akan sama dengan sebuah tongkat sepanjang 1 meter yang diamati dari jarak 270 kilometer. Sementara bintang 61 Cygni memiliki paralaks 0,29″ dan jarak 1,36 tahun cahaya (1 tahun cahaya = jarak yang ditempuh cahaya dalam waktu satu tahun = 9,5 trilyun kilometer) atau sama dengan 3,45 pc.

Page 6: Astronomi 3

Hingga tahun 1980-an, paralaks hanya bisa dideteksi dengan ketelitian 0,01″ atau setara dengan jarak maksimum 100 parsek. Jumlah bintangnya pun hanya ratusan buah. Peluncuran satelit Hipparcos pada tahun 1989 kemudian membawa perubahan. Satelit tersebut mampu mengukur paralaks hingga ketelitian 0,001″, yang berarti mengukur jarak 100.000 bintang hingga 1000 parsek. Sebuah katalog dibuat untuk mengumpulkan data bintang yang diamati oleh satelit Hipparcos ini. Katalog Hipparcos yang diterbitkan di akhir 1997 itu tentunya membawa pengaruh yang sangat besar terhadap semua bidang astronomi yang bergantung pada ketelitian jarak.

2. Mengukur Jarak Bintang Dengan Bintang Cipheid

Kita dapat menentukan jarak bintang dengan menghitung paralaksnya. Namun metode paralaks itu hanya dapat digunakan untuk bintang-bintang dekat saja karena teknologi yang kita miliki belum dapat menghitung paralaks dengan ketelitian tinggi. Jarak terjauh yang bisa diukur dengan metode paralaks hanya beberapa kiloparsek saja. Lalu bagaimana kita menghitung jarak bintang-bintang yang lebih jauh? Atau bahkan menghitung jarak galaksi-galaksi yang jauh? Salah satu caranya adalah dengan menggunakan hubungan periode-luminositas bintang variabel Cepheid.

Sejarah metode penghitungan jarak ini berawal dari sebuah penelitian tentang hasil pengamatan terhadap bintang variabel (bintang yang kecerlangannya berubah-ubah) yang ada di galaksi Awan Magellan Besar dan Awan Magellan Kecil (LMC dan SMC). Saat itu Henrietta Leavitt, astronom wanita asal Amerika Serikat, membuat katalog yang berisi 1777 bintang variabel dari penelitian tersebut. Dari katalog yang ia buat diketahui bahwa terdapat beberapa bintang yang menunjukkan hubungan antara kecerlangan dengan periode variabilitas. Bintang yang memiliki kecerlangan lebih besar ternyata memiliki periode varibilitas yang lebih lama dan begitu pula sebaliknya. Bentuk kurva cahaya bintang variabel jenis ini juga unik dan serupa, yang ditandai dengan naiknya kecerlangan bintang secara cepat dan kemudian turun secara perlahan.

Bentuk kurva cahaya seperti itu ternyata sama dengan kurva cahaya bintang delta Cephei yang diamati pada tahun 1784. Karena itulah bintang variabel jenis ini diberi nama bintang variabel Cepheid. Penamaan ini tidak berubah walaupun belakangan ditemukan juga kurva cahaya yang sama dari bintang Eta Aquilae yang diamati beberapa bulan sebelum pengamatan delta Cephei.

Hubungan sederhana antara periode dan luminositas bintang variabel Cepheid ini bisa digunakan dalam menentukan jarak karena astronom sudah mengetahui adanya hubungan antara luminositas dengan kecerlangan/magnitudo semu bintang yang bergantung pada jarak. Dari pengamatan bintang Cepheid kita bisa dapatkan periode variabilitas dan magnitudonya. Kemudian periode yang kita peroleh bisa digunakan untuk menghitung luminositas/magnitudo mutlak bintangnya dengan formula M = -2,81 log(P)-1,43. Karena luminositas/magnitudo mutlak dan magnitudo semu berhubungan erat dalam formula Pogson (modulus jarak), maka pada akhirnya kita bisa dapatkan nilai jarak untuk bintang tersebut.

Kunci penentu agar metode ini dapat digunakan adalah harus ada setidaknya satu bintang variabel Cepheid yang jaraknya bisa ditentukan dengan cara lain, misalnya dari metode paralaks trigonometri . Jarak bintang akan digunakan untuk menghitung luminositasnya dan selanjutnya bisa

Page 7: Astronomi 3

digunakan sebagai pembanding untuk semua bintang Cepheid. Oleh karena itu, astronom sampai sekarang masih terus berusaha agar proses kalibrasi ini dilakukan dengan ketelitian yang tinggi supaya metode penentuan jarak ini memberikan hasil dengan akurasi tinggi pula.

  Menghitung jarak bintang variabel Cepheid menjadi sangat penting karena kita jadi bisa menentukan jarak gugus bintang atau galaksi yang jauh asalkan di situ ada bintang Cepheid yang masih bisa kita deteksi kurva cahayanya. Di sinilah keunggulan metode ini dibandingkan dengan paralaks, yang hanya bisa digunakan untuk bintang-bintang dekat saja.

Lalu apa sebenarnya yang terjadi pada bintang Cepheid? Bintang ini mengalami perubahan luminositas karena radiusnya berubah membesar dan mengecil. Proses ini terjadi pada salah satu tahapan evolusi bintang, yaitu ketika sebuah bintang berada pada fase raksasa atau maharaksasa merah. Jadi dengan mempelajari bintang variabel Cepheid kita bisa menghitung jarak sekaligus mempelajari salah satu tahapan evolusi bintang.

Bintang dan Perubahan Bintang Luar Dalam

Bintang merupakan benda langit yang memancarkan cahaya. Terdapat bintang semu dan bintang nyata. Bintang semu adalah bintang yang tidak menghasilkan cahaya sendiri, tetapi memantulkan cahaya yang diterima dari bintang lain. Bintang nyata adalah bintang yang menghasilkan cahaya sendiri. Secara umum sebutan bintang adalah objek luar angkasa yang menghasilkan cahaya sendiri (bintang nyata).

Menurut ilmu astronomi, definisi bintang adalah:

Semua benda masif (bermassa antara 0,08 hingga 200 massa matahari) yang sedang dan pernah melangsungkan pembangkitan energi melalui reaksi fusi nuklir

Oleh sebab itu bintang katai putih dan bintang neutron yang sudah tidak memancarkan cahaya atau energi tetap disebut sebagai bintang. Bintang terdekat dengan Bumi adalah Matahari pada jarak sekitar 149,680,000 kilometer, diikuti oleh Proxima Centauri dalam rasi bintang Centaurus berjarak sekitar empat tahun cahaya.

Page 8: Astronomi 3

Sejarah Pengamatan

Bintang-bintang telah menjadi bagian dari setiap kebudayaan. Bintang-bintang digunakan dalam praktik-praktik keagamaan, dalam navigasi, dan bercocok tanam. Kalender Gregorian, yang digunakan hampir di semua bagian dunia, adalah kalender Matahari, mendasarkan diri pada posisi Bumi relatif terhadap bintang terdekat, Matahari.

Astronom-astronom awal seperti Tycho Brahe berhasil mengenali ‘bintang-bintang baru’ di langit (kemudian dinamakan novae) menunjukkan bahwa langit tidaklah kekal. Pada 1584 Giordano Bruno mengusulkan bahwa bintang-bintang sebenarnya adalah Matahari-matahari lain, dan mungkin saja memiliki planet-planet seperti Bumi di dalam orbitnya, ide yang telah diusulkan sebelumnya oleh filsuf-filsuf Yunani kuno seperti Democritus dan Epicurus. Pada abad berikutnya, ide bahwa bintang adalah Matahari yang jauh mencapai konsensus di antara para astronom. Untuk menjelaskan mengapa bintang-bintang ini tidak memberikan tarikan gravitasi pada tata surya, Isaac Newton mengusulkan bahwa bintang-bintang terdistribusi secara merata di seluruh langit, sebuah ide yang berasal dari teolog Richard Bentley.

Astronom Italia Geminiano Montanari merekam adanya perubahan luminositas pada bintang Algol pada 1667. Edmond Halley menerbitkan pengukuran pertama gerak diri dari sepasang bintang “tetap” dekat, memperlihatkan bahwa mereka berubah posisi dari sejak pengukuran yang dilakukan Ptolemaeus dan Hipparchus. Pengukuran langsung jarak bintang 61 Cygni dilakukan pada 1838 oleh Friedrich Bessel menggunakan teknik paralaks.

William Herschel adalah astronom pertama yang mencoba menentukan distribusi bintang di langit. Selama 1780an ia melakukan pencacahan di sekitar 600 daerah langit berbeda. Ia kemudian menyimpulkan bahwa jumlah bintang bertambah secara tetap ke suatu arah langit, yakni pusat galaksi Bima Sakti. Putranya John Herschel mengulangi pekerjaan yang sama di hemisfer langit sebelah selatan dan menemukan hasil yang sama. Selain itu William Herschel juga menemukan bahwa beberapa pasangan bintang bukanlah bintang-bintang yang secara kebetulan berada dalam satu arah garis pandang, melainkan mereka memang secara fisik berpasangan membentuk sistem bintang ganda.

Radiasi

Tenaga yang dihasilkan oleh bintang, sebagai hasil samping dari reaksi fusi nuklear, dipancarkan ke luar angkasa sebagai radiasi elektromagnetik dan radiasi partikel. Radiasi partikel yang dipancarkan bintang dimanifestasikan sebagai angin bintang (yang berwujud sebagai pancaran tetap partikel-partikel bermuatan listrik seperti proton bebas, partikel alpha dan partikel beta yang berasal dari bagian terluar bintang) dan pancaran tetap neutrino yang berasal dari inti bintang.

Hampir semua informasi yang kita miliki mengenai bintang yang lebih jauh dari Matahari diturunkan dari pengamatan radiasi elektromagnetiknya, yang terentang dari panjang gelombang radio hingga sinar gamma. Namun tidak semua rentang panjang gelombang tersebut dapat diterima oleh teleskop landas Bumi. Hanya gelombang radio dan gelombang cahaya yang dapat diteruskan oleh atmosfer Bumi dan menciptakan ‘jendela radio’ dan ‘jendela optik’. Teleskop-teleskop luar angkasa telah diluncurkan untuk mengamati bintang-bintang pada panjang gelombang lain.

Banyaknya radiasi elektromagnetik yang dipancarkan oleh bintang dipengaruhi terutama oleh luas permukaan, suhu dan komposisi kimia dari bagian luar (fotosfer) bintang tersebut. Pada akhirnya kita dapat menduga kondisi di bagian dalam bintang, karena apa yang terjadi di permukaan pastilah sangat dipengaruhi oleh bagian yang lebih dalam.

Dengan menelaah spektrum bintang, astronom dapat menentukan temperatur permukaan, gravitasi permukaan, metalisitas, dan kecepatan rotasi dari sebuah bintang. Jika jarak bisa ditentukan, misal dengan metode paralaks, maka luminositas bintang dapat diturunkan. Massa, radius, gravitasi permukaan, dan periode rotasi kemudian dapat diperkirakan dari pemodelan. Massa bintang dapat juga diukur secara

Page 9: Astronomi 3

langsung untuk bintang-bintang yang berada dalam sistem bintang ganda atau melalui metode mikrolensing. Pada akhirnya astronom dapat memperkirakan umur sebuah bintang dari parameter-parameter di atas.

Fluks pancaran

Kuantitas yang pertama kali langsung dapat ditentukan dari pengamatan sebuah bintang adalah fluks pancarannya, yaitu jumlah cahaya atau tenaga yang diterima permukaan kolektor (mata atau teleskop) per satuan luas per satuan waktu. Biasanya dinyatakan dalam satuan watt per cm2 (satuan internasional) atau erg per detik per cm2 (satuan cgs).

Luminositas

Di dalam astronomi, luminositas adalah jumlah cahaya atau energi yang dipancarkan oleh sebuah bintang ke segala arah per satuan waktu. Biasanya satuan luminositas dinyatakan dalam watt (satuan internasional), erg per detik (satuan cgs) atau luminositas Matahari. Dengan menganggap bahwa bintang adalah seuah benda hitam sempurna, maka luminositasnya adalah,

dimana L adalah luminositas, σ adalah tetapan Stefan-Boltzmann, R adalah jari-jari bintang dan Te adalah temperatur efektif bintang.

Jika jarak bintang dapat diketahui, misalnya dengan menggunakan metode paralaks, luminositas sebuah bintang dapat ditentukan melalui hubungan

dengan E adalah fluks pancaran, L adalah luminositas dan d adalah jarak bintang ke pengamat.

Magnitudo

Secara tradisi kecerahan bintang dinyatakan dalam satuan magnitudo. Kecerahan bintang yang kita amati, baik menggunakan mata bugil maupun teleskop, dinyatakan oleh magnitudo tampak (m) atau magnitudo semu. Secara tradisi magnitudo semu bintang yang dapat dilihat oleh mata bugil dibagi dari 1 hingga 6, di mana satu ialah bintang paling cerah, dan 6 sebagai bintang paling redup. Terdapat juga kecerahan yang diukur secara mutlak, yang menyatakan kecerahan bintang sebenarnya. Kecerahan ini dikenal sebagai magnitudo mutlak (M), dan terentang antara +26.0 sampai -26.5. Magnitudo adalah besaran lain dalam menyatakan fluks pancaran, yang terhubungkan melalui persamaan,

dimana m adalah magnitudo semu dan E adalah fluks pancaran.

Satuan Pengukuran

Kebanyakan parameter-parameter bintang dinyatakan dalam satuan SI, tetapi satuan cgs kadang-kadang digunakan (misalnya luminositas dinyatakan dalam satuan erg per detik). Penggunaan satuan cgs lebih bersifat tradisi daripada sebuah konvensi. Seringkali pula massa, luminositas dan jari-jari bintang dinyatakan dalam satuan Matahari, mengingat Matahari adalah bintang yang paling banyak dipelajari dan diketahui parameter-parameter fisisnya. Untuk Matahari, parameter-parameter berikut diketahui:

Page 10: Astronomi 3

Skala panjang seperti setengah sumbu besar dari sebuah orbit sistem bintang ganda seringkali dinyatakan dalam satuan astronomi (AU = astronomical unit), yaitu jarak rata-rata antara Bumi dan Matahari.

Klasifikasi

Berdasarkan spektrumnya, bintang dibagi ke dalam 7 kelas utama yang dinyatakan dengan huruf O, B, A, F, G, K, M yang juga menunjukkan urutan suhu, warna dan komposisi-kimianya. Klasifikasi ini dikembangkan oleh Observatorium Universitas Harvard dan Annie Jump Cannon pada tahun 1920an dan dikenal sebagai sistem klasifikasi Harvard. Untuk mengingat urutan penggolongan ini biasanya digunakan kalimat "Oh Be A Fine Girl Kiss Me". Dengan kualitas spektrogram yang lebih baik memungkinkan penggolongan ke dalam 10 sub-kelas yang diindikasikan oleh sebuah bilangan (0 hingga 9) yang mengikuti huruf. Sudah menjadi kebiasaan untuk menyebut bintang-bintang di awal urutan sebagai bintang tipe awal dan yang di akhir urutan sebagai bintang tipe akhir. Jadi, bintang A0 bertipe lebih awal daripada F5, dan K0 lebih awal daripada K5.

Pada tahun 1943, William Wilson Morgan, Phillip C. Keenan, dan Edith Kellman dari Observatorium Yerkes menambahkan sistem pengklasifikasian berdasarkan kuat cahaya atau luminositas, yang seringkali merujuk pada ukurannya. Pengklasifikasian tersebut dikenal sebagai sistem klasifikasi Yerkes dan membagi bintang ke dalam kelas-kelas berikut :

0 Maha maha raksasa I Maharaksasa II Raksasa-raksasa terang III Raksasa IV Sub-raksasa V deret utama (katai) VI sub-katai VII katai putih

Page 11: Astronomi 3

Umumnya kelas bintang dinyatakan dengan dua sistem pengklasifikasian di atas. Matahari kita misalnya, adalah sebuah bintang dengan kelas G2V, berwarna kuning, bersuhu dan berukuran sedang.Diagram Hertzsprung-Russell adalah diagram hubungan antara luminositas dan kelas spektrum (suhu permukaan) bintang. Diagram ini adalah diagram paling penting bagi para astronom dalam usaha mempelajari evolusi bintang.

Penampakan dan Distribusi

Karena jaraknya yang sangat jauh, semua bintang (kecuali Matahari) hanya tampak sebagai titik saja yang berkelap-kelip karena efek turbulensi atmosfer Bumi. Diameter sudut bintang bernilai sangat kecil ketika diamati menggunakan teleskop optik landas Bumi, hingga diperlukan teleskop interferometer untuk dapat memperoleh citranya. Bintang dengan ukuran diameter sudut terbesar setelah Matahari adalah R Doradus, dengan 0,057 detik busur.

Telah lama dikira bahwa kebanyakan bintang berada pada sistem bintang ganda atau sistem multi bintang. Kenyataan ini hanya benar untuk bintang-bintang masif kelas O dan B, dimana 80% populasinya dipercaya berada dalam suatu sistem bintang ganda atau pun multi bintang. Semakin redup bintang, semakin besar kemungkinannya dijumpai sebagai sistem tunggal. Dijumpai hanya 25% populasi katai merah yang berada dalam sebuah sistem bintang ganda atau sistem multi bintang. Karena 85% populasi bintang di galaksi Bimasakti adalah katai merah, maka tampaknya kebanyakan bintang di dalam Bimasakti berada pada sistem bintang tunggal.

Sistem yang lebih besar yang disebut gugus bintang juga dijumpai. Bintang-bintang tidak tersebar secara merata mengisi seluruh ruang alam semesta, tetapi terkelompokkan ke dalam galaksi-galaksi bersama-sama dengan gas antarbintang dan debu. Sebuah galasi tipikal mengandung ratusan miliar bintang, dan terdapat lebih dari 100 miliar galaksi di seluruh alam semesta teramati.

Astronom memperkirakan terdapat 70 sekstiliun (7×1022) bintang di seluruh alam semesta yang teramati. Ini berarti 70 000 000 000 000 000 000 000 bintang, atau 230 miliar kali banyaknya bintang di galaksi Bimasakti yang berjumlah sekitar 300 miliar.

Bintang terdekat dengan Matahari adalah Proxima Centauri, berjarak 39.9 triliun (1012) kilometer, atau 4.2 tahun cahaya. Cahaya dari Proxima Centauri memakan waktu 4.2 tahun untuk mencapai Bumi. Jarak ini adalah jarak antar bintang tipikal di dalam sebuah piringan galaksi. Bintang-bintang dapat berada pada jarak yang lebih dekat satu sama lain di daerah sekitar pusat galasi dan di dalam gugus bola, atau pada jarak yang lebih jauh di halo galaksi.

Karena kerapatan yang rendah di dalam sebuah galaksi, tumbukan antar bintang jarang terjadi. Namun di daerah yang sangat padat seperti di inti sebuah gugus bintang atau lingkungan sekitar pusat galaksi, tumbukan dapat sering terjadi . Tumbukan seperti ini dapat menghasilkan pengembara-pengembara biru yaitu sebuah bintang abnormal hasil penggabungan yang memiliki temperatur permukaan yang lebih tinggi dibandingkan bintang deret utama lainnya di sebuah gugus bintang dengan luminositas yang sama. Istilah pengembara merujuk pada jejak evolusi yang berbeda dengan bintang normal lainnya pada diagram Hertzsprung-Russel.

Evolusi

Struktur, evolusi, dan nasib akhir sebuah bintang sangat dipengaruhi oleh massanya. Selain itu, komposisi kimia juga ikut mengambil peran dalam skala yang lebih kecil.

Terbentuknya bintang

Page 12: Astronomi 3

Bintang terbentuk di dalam awan molekul; yaitu sebuah daerah medium antarbintang yang luas dengan kerapatan yang tinggi (meskipun masih kurang rapat jika dibandingkan dengan sebuah vacuum chamber yang ada di Bumi). Awan ini kebanyakan terdiri dari hidrogen dengan sekitar 23–28% helium dan beberapa persen elemen berat. Komposisi elemen dalam awan ini tidak banyak berubah sejak peristiwa nukleosintesis Big Bang pada saat awal alam semesta.

Gravitasi mengambil peranan sangat penting dalam proses pembentukan bintang. Pembentukan bintang dimulai dengan ketidakstabilan gravitasi di dalam awan molekul yang dapat memiliki massa ribuan kali Matahari. Ketidakstabilan ini seringkali dipicu oleh gelombang kejut dari supernova atau tumbukan antara dua galaksi. Sekali sebuah wilayah mencapai kerapatan materi yang cukup memenuhi syarat terjadinya instabilitas Jeans, awan tersebut mulai runtuh di bawah gaya gravitasinya sendiri.

Berdasarkan syarat instabilitas Jeans, bintang tidak terbentuk sendiri-sendiri, melainkan dalam kelompok yang berasal dari suatu keruntuhan di suatu awan molekul yang besar, kemudian terpecah menjadi konglomerasi individual. Hal ini didukung oleh pengamatan dimana banyak bintang berusia sama tergabung dalam gugus atau asosiasi bintang.

Begitu awan runtuh, akan terjadi konglomerasi individual dari debu dan gas yang padat yang disebut sebagai globula Bok. Globula Bok ini dapat memiliki massa hingga 50 kali Matahari. Runtuhnya globula membuat bertambahnya kerapatan. Pada proses ini energi gravitasi diubah menjadi energi panas sehingga temperatur meningkat. Ketika awan protobintang ini mencapai kesetimbangan hidrostatik, sebuah protobintang akan terbentuk di intinya. Bintang pra deret utama ini seringkali dikelilingi oleh piringan protoplanet. Pengerutan atau keruntuhan awan molekul ini memakan waktu hingga puluhan juta tahun. Ketika peningkatan temperatur di inti protobintang mencapai kisaran 10 juta kelvin, hidrogen di inti 'terbakar' menjadi helium dalam suatu reaksi termonuklir. Reaksi nuklir di dalam inti bintang menyuplai cukup energi untuk mempertahankan tekanan di pusat sehingga proses pengerutan berhenti. Protobintang kini memulai kehidupan baru sebagai bintang deret utama.

Deret Utama

Bintang menghabiskan sekitar 90% umurnya untuk membakar hidrogen dalam reaksi fusi yang menghasilkan helium dengan temperatur dan tekanan yang sangat tinggi di intinya. Pada fase ini bintang dikatakan berada dalam deret utama dan disebut sebagai bintang katai.

Akhir sebuah bintang

Ketika kandungan hidrogen di teras bintang habis, teras bintang mengecil dan membebaskan banyak panas dan memanaskan lapisan luar bintang. Lapisan luar bintang yang masih banyak hidrogen mengembang dan bertukar warna merah dan disebut bintang raksaksa merah yang dapat mencapai 100 kali ukuran Matahari sebelum membentuk bintang kerdil putih. Sekiranya bintang tersebut berukuran lebih besar dari matahari, bintang tersebut akan membentuk superraksaksa merah. Superraksaksa merah ini kemudiannya membentuk Nova atau Supernova dan kemudiannya membentuk bintang neutron atau Lubang hitam.

Perubahan Bintang Luar DalamFoto di bawah menunjukkan kondisi sebuah bintang sebelum dan sesudah ia mengalami perubahan radikal. Foto “sebelum” perubahan di bagian kiri merupakan ilustrasi artis yang menunjukkan bermacam-macam unsur yang dulunya ditemukan di dalam bintang masif. Unsur-unsur ini disebut sebagai elemen kimia. Pada foto di kanan, tampak kondisi bintang “sesudah” perubahan, yang merupakan foto yang diambil dari angkasa untuk bintang yang sama setelah terjadi ledakan raksasa yang melontarkan bagian terluar bintang.

Page 13: Astronomi 3

Cassiopeia A. kredit : Chandra x-ray.

Ledakan dasyat seperti ini, oleh para astronom disebut sebagai supernova. Materi yang tersisa setelah ledakan dasyat itu disebut juga reruntuhan supernova. Dalam foto sebelah kanan, tampak reruntuhan sepurnova yang dikenal dengan nama Cassiopeia A atau Cass A.

Dalam kedua foto, warna yang sama digunakan untuk menunjukkan perbedaan elemen kimia di dalam bintang. Sebelum ledakan, astronom menduga kalau bintang memiliki banyak elemen besi (warna biru), belerang dan silikon (warna hijau) di pusat. Tapi, setelah itu elemen-elemen kimia terlempar ke tepi luar bintang, seperti yang ditunjukkan oleh warna biru dan hijau di sekitar bagian terluar Cas A seperti tampak di foto kanan. Artinya, bintang mengalami perubahan luar dan dalam!

Fakta menarik : Kecuali obyek di Tata Surya, Cas A merupakan stasiun radio yang kuat di langit malam,memancarkan banyak sekali sinyal radio.

sumber : wikipedia.2012.Bintang.(online) http://id.wikipedia.org/wiki/Bintang diakses 17 oktober 2012

ivie.2012.Perubahan Bintang Luar Dalam. (online) http://langitselatan.com/2012/04/03/perubahan-bintang-luar-dalam/ diakses 17 oktober 2012

Planet Pengembara Tanpa Mengorbit Sebuah Bintang

21.59  DIAN IRAWAN  No comments

Astronom telah menemukan satu planet yang bergerak melintasi antariksa, namun tidak mengelilingi atau mengorbit bintang.

Page 14: Astronomi 3

Pengembara kosmik semacam itu diyakini umum terjadi di alam semesta. Tetapi dekatnya jarak planet yang baru ditemukan itu ke tata surya kita - hanya 100 tahun cahaya, atau 1000 triliun kilometer, dan tidak satupun bintang di dekatnya memungkinkan tim internasional Kanada dan Eropa mempelajari sifat planet secara lebih rinci daripada sebelumnya.

Karena planet ini tampaknya kemana-mana selalu bersama sekelompok 30 bintang muda, tim peneliti mampu memastikan planet itu berusia sama - antara 50 dan 120 juta tahun. Kemudian, dengan menggunakan komputer model evolusi planet, mereka melaporkan planet itu bersuhu sekitar 400 derajat celsius, dan massa empat sampai tujuh kali lebih besar dari Jupiter.

Benda-benda yang bergerak bebas itu bisa membantu astronom semakin memahami bagaimana planet dan bintang terbentuk dan berperilaku.

Planet-planet pengembara mungkin terbentuk dari debu dan puing-puing yang sama seperti planet-planet normal sebelum dikeluarkan dari sistem surya mereka, atau mereka mungkin bintang kerdil, yang tidak pernah tumbuh cukup besar untuk memicu reaksi yang menimbulkan cahaya bintang.

sumber : www.voaindonesia.com

Kenapa Permukaan Bulan Terlihat Sama di Bumi?

Pernahkah memperhatikan penampakkan bulan? Mengapa muka bulan yang dapat terlihat dari bumi adalah setengah bulatan yang sama saja? Mengapa belahan bulan  lainnya tidak pernah terlihat? Bagaimana pola pergerakan bulan dan hubungannnya dengan penampakkan wajahnya?

Sudah menjadi pengetahuan umum bahwa bulan dikenal sebagai satelit bumi. Satelit artinya pengikut, karena bulan selalu bergerak mengelilingi bumi. Sementara bumi yang merupakan induk di dalam waktu sama juga bergerak dalam orbitnya mengitari matahari.Bulan berbeda dengan matahari yang memancarkan cahaya kemilau dan panas, ia memancarkan cahaya sejuk dan dingin. Fakta ini menunjukkan bahwa apa yang dipancarkan oleh matahari dan bulan tidak sama. Ilmuwan Yunani bernama Aristarchus  (310-230 SM) adalah orang pertama yang berpendapat terkait dengan fakta tersebut mengatakan bahwa bulan tidak mengeluarkan cahaya sendiri seperti matahari. Bulan hanya menerima sinar matahari dan kemudian sinar itu dipantulkan oleh permukaan tanahnya. Dengan demikian bulan bukanlah sumber cahaya, dan cahaya yang kita lihat itu adalah hanya pantulan dari sinar matahari. Logika lain yang dibangun untuk sampai pada kesimpulan demikian adalah Aristarchus berangkat dari argumen bentuk bulan yang selalu berubah-ubah. Kalau bulan memancarkan cahaya sendiri, tidak mungkin kita melihatnya berubah bentuk. Sebab jika bulan merupakan sumber cahaya tentu seluruh permukaannya akan bersinar sehingga darimanapun melihatnya bentuknya akan tetap sama.

Sebenarnya bukanlah bulan yang berubah bentuk, tetapi pola hubungan yang terbentuk dari kedudukan bulan dari arah matahari yang dilihat dari bumi itulah yang bergeser dari waktu kewaktu. Akibat yang ditimbulkan adalah perubahan penampakan bulan dari bumi. Logika di atas dapat pula digunakan untuk membangun teori bahwa bulan bergerak mengitari bumi pada orbitnya. Dengan kata lain, bulan tidak akan berubah bentuknya kalau ia tidak bergerak mengitari bumi. Selanjutnya kita lebih fokus pada bahasan mengapa wajah bulan yang kelihatan dari bumi hanya separoh, sedangkan bagian lainnya tak pernah kita saksikan dari bumi. Apa yang menyebabkan penampakkan bulan seperti ini?

Penampakkan konstan bulan yang demikian disebabkan adanya keseimbangan pergerakan bumi dan dan bulan, yaitu lama peredaran bulan mengitari bumi sama dengan lamanya waktu bulan berotasi pada sumbunya. Jangka waktu yang diperlukan adalah 1 bulan. Akibatnya bagian bulan yang tampak dari bumi hanyalah sebelah muka yang sama saja. Sedangkan belahan bulan yang lain tidak pernah tampak. Untuk melihat wajah bulan yang sebelahnya manusia mesti pergi ke luar angkasa.

Sampai di sini mungkin kita bertanya, jika keseimbangan gerak terjadi antara evolusi bulan dan rotasinya berarti permukaan bulan yang mungkin dilihat dari bumi adalah satu belahan yakni 50% permukaan bulan. Oh tidak, ternyata tidaklah demikian. Pergerakan bulan yang tidak sederhana menimbulkan efek penampakan yang tidak sesuai dengan logika di atas.

Page 15: Astronomi 3

Ketika melakukan geraknya yang khas bulan tidak selalu terletak pada bidang yang sama. Baik bentuk atau posisinya yang relatif terhadap matahari dan bumi secara terus menerus berubah. Karena sebab-sebab inilah maka bagian bulan yang terlihat di bumi agak berbeda sehingga setelah satu periode waktu  (yakni 1 bulan) kita dapat melihat 59% permukaan bulan dari suatu tempat pengamatan di bumi. Perubahan-perubahan dalam orbit bulan terjadi dalam daur-daur. Karena hal inilah, permukaan bulan yang dapat dilihat mengalami librasi, sehingga daerah-daerah kecil di tepi cakramnya yang bisa diamati terlihat. Dengan kata lain titik tengah dari bulatan bulan yang nampak bukanlah titik yang sama saja, melainkan bergeser sedikit letaknya. Dengan demikian bagian bulan yang dapat disaksikan dari bumi lebih luas sedikit dari separoh. Sisi-sisi piringan pada kutub utara dan selatan serta bagian kanan kirinya dapat berganti-ganti terlihat.

Periode rotasi Bulan tidak sama denga periode rotasi Bumi. Periode rotasi Bumi adalah 24 jam (1 hari), sementara periode rotasi Bulan adalah 27.3 hari. Wajah bulan yang dilihat oleh seluruh manusia di Bumi, baik di Indonesia maupun di belahan Bumi lainnya selalu nampak sama.Mengapa demikian? Wajah Bulan selalu pada sisi yang sama menghadap Bumi karena periode rotasi Bulan sama dengan periode revolusinya (waktu yang dibutuhkan untuk mengitari Bumi). Kenapa kedua periode ini bisa sama, disebabkan oleh fenomena yang dinamakan tidal locking atau penguncian pasang/gravitasi.Fenomena penguncian gravitasi ini adalah fenomena umum dalam sistem gravitasi. Banyak satelit planet-planet lain juga terkunci gravitasi dengan planet induknya.Kenapa fenomena tidal locking terjadi adalah karena adanya torsi yang diberikan Bumi kepada Bulan, dan Bulan bereaksi dengan menyesuaikan periode rotasinya sehingga tercapai kesetimbangan yaitu saat periode rotasinya sama dengan periode revolusinya.

Sistem dan Tata Koordinat Benda Langit

Untuk menyatakan letak suatu benda langit diperlukan suatu tata koordinat yang dapat menyatakan secara pasti kedudukan benda langit tersebut. Tata koordinat tersebut terdiri dari tata koordinat horison, tata koordinat ekuator, tata koordinat ekliptika dan tata koordinat galaktik. Namun dalam pembahasan kali ini akan diperkenalkan tata koordinat horison dan tata koordinat ekuator, karena tata koordinat inilah yang paling sering digunakan dalam astronomi.

Tiap-tiap tata koordinat tentunya memiliki cara penggunaan sistem yang berbeda serta terdapatnya berbagai macam keuntungan dan kelemahan dalam penggunaan sistem tersebut. Dengan demikian penggunaan suatu sistem koordinat bergantung pada hasil yang kita inginkan, apakah hasil yang didapat ingin digunakan untuk waktu sesaat atau untuk waktu yang lama dan dapat dipakai secara universal.

Tata Koordinat Horison

Tata koordinat ini adalah tata koordinat yang paling sederhana dan paling mudah dipahami. Tetapi tata koordinat ini sangat terbatas, yaitu hanya dapat menyatakan posisi benda langit pada satu saat tertentu, untuk saat yang berbeda tata koordinat ini tidak dapat memberikan hubungan yang mudah dengan posisi benda langit sebelumnya. Karena itu menyatakan saat benda langit pada posisi itu sangat diperlukan dan tata koordinat lain diperlukan agar dapat memberikan hubungan dengan posisi sebelum dan sesudahnya.

Page 16: Astronomi 3

Bola langit dapat dibagi menjadi dua bagian sama besar oleh satu bidang yang melalui pusat bola itu, menjadi bagian atas dan bagian bawah. Bidang itu adalah bidang horisontal yang membentuk lingkaran HORISON pada permukaan bola, dan bagian atas adalah letak benda-benda langit yang tampak, dan bagian bawahnya adalah letak dari benda-benda langit yang tidak terlihat saat itu.

  Penjelasan gambar

UTSB : Bidang horison

UZS : Meridian langit

BZT : Ekuator langit

Disetiap tempat di permukaan Bumi mempunyai lingkaran meridian yang berbeda-beda tergantung bujur tempat itu (yang berbujur sama mempunyai lingkaran meridian yang sama)

Pada dasarnya garis Utara-Selatan adalah perpanjangan sumbu Bumi yang melalui kutub Utara dan kutub Selatan. Titik Utara di Kutub Utara sering disebut Titik Utara Sejati (True North), dan sebaliknya Titik Selatan Sejati (True South), yang mana letaknya berbeda dengan Kutub Utara Magnetik dan Kutub Selatan Magnetik. Apabila dilihat dari zenith maka dengan putaran searah jarum jam akan mendapatkan arah Utara, Timur, Selatan dan Barat dengan besar perbedaan sudutnya sebesar 90o.

Dengan mengenal istilah tersebut akan memudahkan kita dalam memahami tata koordinat horison dengan ordinatnya yaitu, Azimuth dan Tinggi (A,h).

Tinggi benda langit dapat digambarkan pada bola langit dengan membuat lingkaran besar yang melalui zenith, benda langit itu dan tegak lurus pada horison (lingkaran vertikal), diukur dari horison dengan nilainya 0o-90o.

Untuk menyatakan Azimuth terdapat 2 versi:

Versi pertama menggunakan titik Selatan sebagai acuan. Versi kedua yang dianut secara internasional, diantaranya dipakai pada astronomi dan

navigasi menggunakan titik Utara sebagai acuan, berupa busur UTSB.

Kedua versi tersebut menggunakan arah yang sama, yaitu jika dilihat dari zenith arahnya searah perputaran jarum jam yang nilainya 0o-360o.

Pada tata koordinat horizon, letak bintang ditentukan hanya berdasarkan pandangan pengamat saja. Tata koordinat horizon tidak dapat menggambarkan lintasan peredaran semu bintang, dan letak bintang selalu berubah sejalan dengan waktu. Namun, tata koordinat horizon penting dalam hal pengukuran adsorbsi cahaya bintang. 

Page 17: Astronomi 3

Ordinat-ordinat dalam tata koordinat horizon adalah:

1.      Bujur suatu bintang dinyatakan dengan azimut (Az). Azimut umumnya diukur dari selatan ke arah barat sampai pada proyeksi bintang itu di horizon, seperti pada gambar azimut bintang adalak 220°. Namun ada pula azimut yang diukur dari Utara ke arah timur, oleh karena itu sebaiknya Anda menuliskan keterangan tentang ketentuan mana yang Anda gunakan.

2.      Lintang suatu bintang dinyatakan dengan tinggi bintang (a), yang diukur dari proyeksi bintang di horizon ke arah bintang itu menuju ke zenit. Tinggi bintang diukur 0° – 90° jika arahnya ke atas (menuju zenit) dan 0° – -90° jika arahnya ke bawah.

Letak bintang dinyatakan dalam (Az, a). Setelah menentukan letak bintang, lukislah lingkaran almukantaratnya, yaitu lingkaran kecil yang dilalui bintang yang sejajar dengan horizon (lingkaran PQRS).

Keuntungan dalam penggunaan sistem koordinat horison yaitu pada penggunaannya yang praktis, Sistem koordinat yang sederhana dan secara langsung dapat dibayangkan letak objek pada bola langit. Namun tedapat juga beberapa kelemahan pada Sistem koordinat ini, yaitu pada tempat yang berbeda maka horisonnya pun berbeda serta terpengaruh oleh waktu dan gerak harian benda langit.

Tata Koordinat Ekuator

Tata koordinat ini merupakan salah satu tata koordinat yang sering digunakan dalam astronomi. Sistem koordinat ini dapat menyatakan letak benda langit dalam skala waktu relatif panjang. Sekalipun perubahan unsur-unsur koordinatnya relatif kecil terhadap waktu.Dalam setiap pembahasan sistem koordinat benda langit, setiap benda langit selalu dipandang terproyeksi pada suatu bidang bola khayal yang digambarkan sebagai bola langit. Bola yang memuat bidang khayal tersebut disebut bola langit. Ukuran bola Bumi diabaikan terhadap bola langit sehingga setiap pengamat di muka Bumi dianggap berada di pusat bola langit.Seperti halnya pada pembahasan mengenai bola pada umumnya, setiap lingkaran pada bola langit yang berpusat di pusat bola dan membagi bola menjadi dua bagian yang sama besar disebut lingkaran besar, sedangkan lingkaran lainnya disebut lingkaran kecil.

Page 18: Astronomi 3

Di bawah ini diberikan deskripsi istilah-istilah yang dipakai pada bola langit:

Titik kardinal: empat titik utama arah kompas pada lingkaran horison, yaitu Utara, Timur, Selatan dan Barat.Lingkaran kutub, lingkaran jam atau bujur langit: lingkaran besar melalui kutub-kutub langit.Lingkaran ekliptika: lingkaran tempat kedudukan gerak semu tahunan Matahari. Perpotongan bidang orbit Bumi (ekliptika) dengan bola langit. Kutub-kutub langit: titik-titik pada bola langit tempat bola langit berotasi. Perpotongan bola langit dengan sumbu Bumi. Kutub langit di belahan langit Selatan disebut Kutub Langit Selatan (KLS) dan di belahan langit Utara disebut Kutub Langit Utara (KLU).Pada sistem koordinat ekuator, koordinat yang digunakan adalah koordinat Aksensiorekta (?) dan Deklinasi (d). Aksensiorekta adalah panjang busur yang dihitung dari titik Aries atau disebut juga dengan titik gamma (g) pada lingkaran ekuator langit sampai ke titik kaki dengan arah penelusuran ke arah timur, dengan rentang antara 0 s.d. 24 jam atau 00 s.d. 3600. 

Sedangkan deklinasi adalah panjang busur dari titik kaki pada lingkaran ekuator langit ke arah kutub langit sampai ke letak benda pada bola langit. Deklinasi bernilai positif jika ke arah KLU dan bernilai negatif jika ke arah KLS, dengan rentang antara 00 s.d. 900 atau 00 s.d. -900.Dalam penggunaan sistem koordinat ekuator, terdapat hubungan antara waktu matahari dengan waktu bintang (waktu sideris). Dimana Waktu Menengah Matahari (WMM) = sudut jam Matahari + 12 jam. Hubungan ini tentunya berkaitan juga dengan tanggal-tanggal istimewa titik Aries terhadap Matahari. Tanggal-tanggal istimewa tersebut adalah :Sekitar tanggal 21 Maret (TMS), Matahari berimpit dengan Titik Aries. Jam 0 WMM = jam 12 waktu bintang.Sekitar tanggal 22 Juni (TMP), saat Matahari di kulminasi bawah, titik Aries berhimpit dengan titik Timur. Jam 0 WMM = jam 18 waktu bintang.Sekitar tanggal 23 September (TMG), saat Matahari di kulminasi bawah, titik Aries berada di titik kulminasi atas. Jam 0 WMM = jam 0 waktu bintang.Sekitar tanggal 22 Desember (TMD), saat Matahari di kulminasi bawah, titik Aries berhimpit dengan titik Barat. Jam 0 WMM = jam 06 waktu bintang.Tata koordinat ekuator merupakan sistem koordinat yang paling penting dalam astronomi. Letak bintang-bintang, nebula, galaksi dan lainnya umumnya dinyatakan dalam tata koordinat ekuator. Pada tata koordinat ekuator, lintasan  bintang di langit dapat ditentukan dengan tepat karena faktor lintang geografis pengamat (φ) diperhitungkan, sehingga lintasan edar bintang-bintang di langit (ekuator Bumi) dapat dikoreksi terhadap pengamat. Sebelum menentukan letak bintang pada tata koordinat ekuator, sebaiknya kita mempelajari terlebih dahulu sikap bola langit, yaitu posisi bola langit menurut pengamat pada lintang tertentu.

Page 19: Astronomi 3

Sudut antara kutub Bumi (poros rotasi Bumi) dan horizon disebut tinggi kutub (φ) . Jika diperhatikan lebih lanjut, ternyata nilai φ = ϕ, dengan φ diukur dari Selatan ke KLS jika pengamat berada di lintang selatan dan φ diukur dari Utara ke KLU jika pengamat berada di lintang utara. Jadi untuk pengamat pada ϕ = 90° LU lingkaran ekliptika akan berimpit dengan lingkaran horizon,  dan kutub lintang utara berimpit dengan zenit, sedangkan pada ϕ = 90° LS lingkaran ekliptika akan berimpit dengan lingkaran horizon,  dan kutub lintang selatan berimpit dengan zenit

Ordinat-ordinat dalam tata koordinat ekuator adalah:

1.      Bujur suatu bintang dinyatakan dengan sudut jam atau Hour Angle (HA). Sudut jam menunjukkan letak suatu bintang dari titik kulminasinya, yang diukur dengan satuan jam (ingat,1h = 15°). Sudut jam diukur dari titik kulminasi atas bintang (A) ke arah barat (positif, yang berarti bintang telah lewat kulminasi sekian jam) ataupun ke arah timur (negatif, yang berarti tinggal sekian jam lagi bintang akan berkulminasi). Dapat juga diukur dari 0° – 360° dari titik A ke arah barat.2.      Lintang suatu bintang dinyatakan dengan deklinasi (δ), yang diukur dari proyeksi bintang di ekuator ke arah bintang itu menuju ke kutub Bumi. Tinggi bintang diukur 0° – 90° jika arahnya menuju KLU dan 0° – -90° jika arahnya  menuju KLS.

Dapat kita lihat bahwa deklinasi suatu bintang nyaris tidak berubah dalam kurun waktu yang panjang, walaupun variasi dalam skala kecil tetap terjadi akibat presesi orbit Bumi. Namun sudut jam suatu bintang tentunya berubah tiap jam akibat rotasi Bumi dan tiap hari akibat revolusi Bumi. Oleh karena itu, ditentukanlah suatu ordinat baku yang bersifat tetap yang menunjukkan bujur suatu bintang pada tanggal 23 September pukul 00.00, yaitu ketika titik Aries ^ tepat berkulminasi atas pada pukul 00.00 waktu lokal (vernal equinox). Ordinat inilah yang disebut asensiorekta (ascencio recta) atau kenaikan lurus, yang umumnya dinyatakan dalam jam. Faktor gerak semu harian bintang dikoreksi terhadap waktu lokal (t) dan faktor gerak semu tahunan bintang dikoreksi terhadap Local Siderial Time (LST) atau waktu bintang, yaitu letak titik Aries pada hari itu. Pada tanggal 23 September LST-nya adalah pukul 00h, dan kembali ke pukul 00h pada 23 September berikutnya sehingga pada tanggal 21 Maret, 21 Juni, dan 22 Desember LST-nya berturut-turut adalah 12h, 18h, dan 06h. Jadi LST dapat dicari dengan rumus :

Adapun hubungan LST, HA00 dan asensiorekta (α)

LST = α + HA00                                                                                                 

Dengan t adalah waktu lokal. Misal jika HA00 = +3h, maka sudut jam bintang pada pukul 03.00 adalah +6h (sedang terbenam). Ingat, saat kulminasi atas maka HA = 00h. Dengan demikian didapatkan hubungan komplit bujur pada tata koordinat ekuator

LST + t = α + HAt

Page 20: Astronomi 3

Patut diingat bahwa HA00 ialah posisi bintang pada pukul 00.00 waktu lokal, sehingga posisi bintang pada sembarang waktu ialah:

HAt = HA00 + t

Dengan α ordinat tetap, HAt ordinat tampak, LST koreksi tahunan, dan t koreksi waktu harian. Contoh pada gambar di bawah. Pada tanggal 21 Maret, LST-nya adalah 12h. Jadi letak bintang R dengan koordinat (α, δ) sebesar (16h,-50º)akan nampak di titik R pada pukul 00.00 waktu lokal. Perhatikan bahwa LST diukur dari titik A kearah barat sampai pada titik Aries ^. Tampak bintang R berada pada bujur (HA00) -60° atau -4 jam. Jadi, bintang R akan berkulminasi atas di titik Ka pada pukul 04.00 dan terbenam di horizon pada pukul 10.00. Asensiorekta diukur dari titik Aries berlawanan pengukuran LST sampai pada proyeksi bintang di ekuator. Jadi telah jelas bahwa.HA = LST – α Dengan -xh = 24h - xh

Lingkaran kecil KaKb merupakan lintasan gerak bintang, yang sifatnya nyaris tetap. Untuk bintang R, yang diamati dari ϕ = 40° LS akan lebih sering berada pada di atas horizon daripada di bawah horizon. Pembahasan lebih lanjut pada bagian bintang sirkumpolar.

Tinggi bintang atau altitude, yaitu sudut kedudukan suatu bintang dari horizon dapat dicari dengan aturan cosinus segitiga bola. Tinggi bintang, a, yaitu

a = 90° - ζ

Dimana jarak zenit (ζ) dirumuskan dengan

cos ζ = cos(90° – δ) cos(90° – ϕ) + sin(90° – δ) sin(90° – ϕ) cosHA

Gerak Harian Benda LangitBola langit melakukan gerak semu harian akibat gerak rotasi Bumi. Pengamatan permukaan Bumi dapat mengamati benda langit bergerak berlawanan arah dengan arah gerak rotasi Bumi. Rotasi Bumi arahnya dari barat ke timur, inilah yang menyebabkan seolah-olah benda langit bergerak dari timur ke barat.Oleh karena gerak harian bola langit terjadi akibat gerak rotasi Bumi, maka periode gerak harian benda langit sama dengan periode rotasi Bumi yaitu satu hari, yang umum dianggap satu hari adalah 24 jam, sehingga dalam selang waktu itu Bumi telah berotasi sebesar 360o. Berikut ini diberikan hubungan waktu dan panjang busur yang ditempuh benda langit dalam melakukan gerak harian:24j = 36001j = 150

Page 21: Astronomi 3

4m = 104d = 1Lintasan gerak benda langit sejajar dengan ekuator langit dengan kemiringan tergantung pada lintang pengamat (?) di permukaan Bumi. Besarnya sudut kemiringan menunjukkan besarnya jarak kutub (90o- ?) tempat pengamat berada. Lintasan gerak harian benda langit di ekuator langit berbentuk lingkaran besar sedangkan di tempat lainnya lingkaran kecil.Kedua kutub langit itu yaitu KLU dan KLS yang memiliki lintasan gerak harian berbentuk titik, sehingga tampak diam diputari oleh seluruh benda-benda langit. Benda di belahan langit Utara tampak mengedari KLU dan di belahan langit selatan tampak mengedari KLS. Kedua kutub itu memiliki ketinggian yang berbeda di permukaan Bumi, tergantung lintang pengamat dipermukaan Bumi. Tempat di belahan Bumi Utara, letak KLU berada di atas horison dengan ketinggian sama dengan besarnya lintang pengamat dan KLS berada di bawah horison. Sebaliknya tempat di belahan Bumi Selatan, letak KLS berada di atas horison dengan ketinggian sama dengan besarnya lintang pengamat dan KLU berada di bawah horison.Penentuan Waktu SiderisWaktu sideris atau waktu bintang didasarkan kepada kala rotasi bumi terhadap acuan bintang. Seperti halnya pada hari matahari, satu hari sideris dibagi menjadi 24 jam, tetapi panjang harinya sendiri lebih pendek sekitar 4 menit dibandingkan hari matahari. Adanya perbedaan panjang hari sideris dengan hari matahari menyebabkan bintang-bintang termasuk titik gamma setiap hari mencapai meridian pengamat lebih cepat sekitar 4 menit dari hari sebelumnya. Dengan lain perkataan, titik gamma bergerak sepanjang lingkaran ekuator ke arah barat sekitar 1 derajat busur setiap harinya.Adapun cara menentukan waktu sideris adalah sebagai berikut :1. Tentukan selisih hari terhadap salah satu dari 4 tanggal patokan terdekat yakni: 21 Maret, 22 Juni, 23 September atau 22 Desember.2. Tentukan perbedaan waktu titik Aries dengan Matahari selama selisih waktu no.1 di atas dengan mengalikan setiap beda 1 hari sebesar 4 menit.3. Tentukan jam 0 WMM waktu setempat yang bersesuaian dengan waktu sideris pada tanggal yang bersangkutan dengan menambahkan (jika melewati salah satu tanggal patokan di atas) atau mengurangkan (jika mendahului) dengan selisih waktu no. 2 di atas yang paling dekat dengan tanggal patokan terdekat yang dipakai.4. Patokan tanggal hubungan Waktu Sideris (Siderial Time) dengan Waktu Matahari Menengah (Mean Sun):21 Maret Jam 0 WMM = Jam 12 Waktu Sideris22 Juni Jam 0 WMM = Jam 18 Waktu Sideris23 September Jam 0 WMM = Jam 0 Waktu Sideris22 Desember Jam 0 WMM = Jam 6 Waktu Sideris5. Tentukan waktu sideris jam yang diinginkan dengan menambahkan dengan WMM pada jam yang ditentukan.

Contoh: Tentukan Waktu Sideris yang bersesuaian dengan Jam 10 tanggal 26 Maret 2007.Jawab:1. Sesilih tanggal 26 Maret dengan 21 Maret adalah = 26 - 21 = 5 hari.2. Perbedaan waktu Aries dengan Matahari selama 5 hari = 5 x 4 menit = 20 menit.3. Jam 0 WIB tanggal 26 Maret = Jam 12 + 20 menit = Jam 12.20 Waktu Sideris.4. Jam 10 WIB tanggal 26 Maret = Jam 10 + 12.20 Waktu Sideris = Jam 22.20 Waktu Sideris.

Contoh soal aplikasi posisi benda langit:Dimanakah posisi rasi Sagittarius( AR 19jam, Dekl. -250 ) pada bola langit jam 12 WIB tanggal 14 Maret 2007 ?Jawab:Selisih tgl 14 Maret dengan 21 Maret = 7 hariBeda Aries dengan Matahari = 7 x 4 menit = 28 menitJam 0 WIB tgl 14 Maret = Jam 12 - 28 menit = Jam 11. 32 Waktu Sideris.Jam 12 WIB tgl. 14 Maret = 11.32 + 12 WIB = Jam 23.32 Waktu Sideris.Sudut Jam rasi Sagittarius saat itu = Waktu Sideris - AR Sagittarius = 23.32 - 19 = 4 jam 32 menit.Posisi Sagittarius saat itu : (4 32/60x 150)= 680 di sebelah barat meridian dan 250 di selatan equator langit.

Page 22: Astronomi 3

TEORI PENEMUAN DARK MATTER ( MATERI GELAP) ADALAH

Pada mulanya, astronom berpikiran bahwa kurva rotasi galaksi kita bersifat keplerian, yaitu semakin

jauh dari pusat galaksi kecepatan rotasi komponan galaksi semakin kecil. Tetapi kenyataannya tidak

demikian, kecepatan rotasi pada jarak dari pusat galaksi yang besar masih tetap besar sampai pada

jarak 16.000 pc dari pusat galaksi. Pengamatan kurva rotasi galaksi pada jarak yang jauh dari pusat

galaksi menyarankan adanya kumpulan materi gelap (dark matter) yang membentuk halo dan

korona dengan massa yang cukup besar dan menyelubungi galaksi.

Pengamatan pancaran sinar X pada gas yang terletak di antara gugusan galaksi menunjukkan bahwa

kelimapahan massa materi gelap mencapai 10 kali massa materi terang. Setelah para astronom yakin

bahwa materi gelap itu memang ada dan merupakan bahan yang cukup banyak di alam semesta,

mereka berupaya terus mencarinya, baik secara pengamatan maupun secara teori. Dalam hal ini,

mereka ingin mendapatkan pemahaman tersusun dari apa saja materi gelap itu, dan bagaimana

pengaruh yang diberikannya pada evolusi setiap komponen alam semesta secara keseluruhan.

Dari berbagai pengamatan yang dilakukan oleh para astronom seperti pada pengamatan kurva rotasi

galaksi, pergerakan gugusan galaksi dan pelensaan gravitasi, disimpulkan bahwa secara garis besar

materi gelap itu terdiri dari dua jenis, yaitu materi gelap barionik dan materi gelap non barionik.

Yang dimaksud dengan materi gelap barionik adalah materi gelap yang tersusun dari bahan bahan

dasar yang sudah dikenal seperti proton, neutron, dan elektron. Materi gelap barionik ini diduga

yang menyusun objek objek, seperti bintang katai gelap, bintang netron, bintang-bintang yang

menghuni halo galaksi, serta planet-planet seukuran yupiter yang mengorbit bintang bintang. Selain

itu, salah satu golongan yang dimasukkan kedalam materi gelap barionik diberi nama MACHO

( massive astronomical compact halo objects), sejinis objek yang karena tidak memancarkan cahaya

tidak dapat didefinisikan.

Materi gelap non barionik adalah materi gelap yang belum pernah dideteksi secara langsung, tetapi

eksistensinya diramalkan dalam fisika partikel dan kosmologi. Materi gelap non barionik ini terbagi

Page 23: Astronomi 3

menjadi tiga jenis,yaitu hot dark matter , cold dark matter, dan warm dark matter. Hot dark matter

adalah materi gerak yang bergerak dengan kecepatan mendekati kecepatan cahaya. Yang termasuk

kedalam golongan ini adalah neutrino yang bisa berinteraksi dengan partikel partikel lain melalui

interaksi lemah dan gravitasi walaupun sangat lemah sehingga sulit sekali dideteksi.  Cold dark

matter adalah golongan materi gelap yang bergerak dengan kecepatan jauh dibawah kecepatan

cahaya, dimana yang termasuk golongan ini adalah partikel partikel yang disebut sebagai WIPM

( weakly inteacting massive particle) atau partikel partikel yang sulit sekali berinteraksi dengan

partikel lain. Eksitensi warm dark matter masih berupa hipothesis dan menjadi perdebatan astronom.

Salah satu calon warm dark matter adalh neutrino steril, yaitu neutrino yang interaksinya dengan

partikel lain hanya melalui gravitasi, tetapi mendeteksi materi jenis ini juga sangat sulit karena

massanya yang sangat kecil.

Dalam hubungan ini, materi gelap barionik tidak dapat menjelaskan gejala gejala yang diamati

dalam kurva  rotasi galaksi, pergelakan galaksi didalam gugusan galaksi, serta adanya pelensaan

gravitasi.

Dalam model big bang para ahli berhasi menghitung unsur unsur helium dan hidrogen yang

terbentuk saat alam semesta terbentuk. Mereka mendapatkan bahwa semua barion (proton, neutron,

elektron) hanya sejumlah 4% dari massa yang ada diseluruh alam semesta, dan agar alam semesta

bisa mencapai keaddan yang sekarang ini, seharusnya jumlah materi yang ada adalah sejumlah 30%

dari seluruh materi yang ada dialam semesta( ini berarti ada 26 % massa yang belum diketahui, dan

26 % ini adalah materi non barionik).