The Origin and Evolution of the Mesa Projectile Point

108
1 THE ORIGIN AND EVOLUTION OF THE MESA PROJECTILE POINT BY: MARJOLEIN ADMIRAAL S1716794 V2.0 AUGUST 14, 2013

Transcript of The Origin and Evolution of the Mesa Projectile Point

  1  

 

THE  OR IG IN  AND  EVOLUT ION  

OF  THE  

MESA  PROJECT ILE  PO INT    

 

 

B Y :  MAR JOLE IN  ADMIRAAL  

S 1716794  

 

 

V 2 . 0               AUGUST   14 ,   2 013  

  2  

 University  of  Groningen,  the  Netherlands  

         

“The  Origin  and  Evolution  of  the  Mesa  Projectile  Point”                          

A  thesis  submitted  in  partial  fulfilment  of  the    requirements  for  the  degree  of  Master  of  Arts  in    

Archaeology              

By    

Marjolein  Admiraal            

Supervisors:  Prof.  Dr.  Louwrens  Hacquebord  

Dr.  Dennis  Stanford  Dr.  Hans  Peeters  

       

     

  3  

ACKNOWLEDGEMENTS  

I  owe   thanks   to  many  people   for   supporting  and  guiding  me  during   the  process  of  writing  this  thesis.  First  of  all,  many  thanks  to  my  three  supervisors:  prof.dr.  Louwrens  Hacquebord,  Dr.  Dennis   Stanford   and  Dr.  Hans  Peeters.   Louwrens,   as  my  professor   at   the  University   of  Groningen   has   been   my   mentor   for   four   years   and   has   inspired   me   to   choose   an   Arctic  specialization   during  my   study  Archaeology.  He  has   been   a   great   support   and   a   source   of  motivation.  Many   thanks   to   Dr.   Dennis   Stanford   of   the   Smithsonian   National  Museum   of  Natural  History  where   I  did  my   internship  during  the  summer  of  2012.  Dennis   inspired  me  with  his  inexhaustible  enthusiasm  and  has  been  a  great  help  in  discussing  the  thesis  subject,  which   he   handed   to  me   in   the   first   place.   And   thanks   to   Dr.   Hans   Peeters   for   spiking  my  interest  in  the  subject  of  the  Peopling  of  the  Americas  and  stone  tool  technology  as  well  as  guiding  me  through  the  process  of  writing  my  thesis.      I  owe  an  amazing  experience  of  great  educational  value  to  Mike  Kunz,  now  retired  from  the  Bureau  of   Land  Management   in  Fairbanks,  Alaska  who  has  also   reviewed   this   thesis.  Mike  took  me  along  for  a  five-­‐day  trip  along  the  Northern  Brooks  Range  where  I  learned  first  hand  about   the  Mesa   projectile   point   complex.   I   want   to   thank   the  Western   Cultural   Resource  Management   Inc.   in  Reno   for   inviting  me   to   come   to   the  Great  Basin   area  and   letting  me  study  the  Fire  Creek  assemblage  of  Cougar  Mountain  points.  Many  thanks  to  Tom  Lennon,  Chuck  Wheeler,  Ed  Stoner,  Geoff  Cunnar  and  Mark  Estes  for  taking  me  along  on  a  survey  and  trip   to   the  Nevada   State  Museum   in   Carson   City   as  well   as   sharing   ideas   and   knowledge.  Thanks  to  Eugene  Hattori  for  allowing  us  access  to  the  museum  collection.      I   want   to   thank   Bill   Fitzhugh   of   the   Smithsonian   Arctic   Center   for   introducing   me   at   the  Smithsonian  as  an  intern.  Thanks  to  the  late  amateur  archaeologist  Tony  Baker  who  showed  great  interest  in  my  thesis  subject  which  we  discussed  multiple  times  on  the  phone.  Sadly  I  did  not  get  the  chance  to  meet  him  in  person  before  he  passed  away  in  spring,  2012.  Many  thanks  to  Frances  Seay  for  believing  in  me  and  supporting  me.  Thanks  to  Marcia  Bakry  of  the  Smithsonian   for   providing  me  with   the  map   used   in   this   thesis   and   offering   assistance   in  putting  in  site  locations.  Thanks  to  Jeff  Rasic  for  discussing  my  thesis  subject  with  me  during  my  stay  in  Fairbanks.      

INDEX  

 

Acknowledgements  ...........................................................................................................  3  

List  of  figures  and  tables  .................................................................................................  6  

Abstract  .................................................................................................................................  8  

1.  Introduction  ....................................................................................................................  8  

2.  Theory,  Material  and  Methods  ..............................................................................  10  2.1.  Problem  definition  ...........................................................................................................  10  2.2  Working  Hypothesis  and  Research  Questions  .........................................................  15  2.3.  Material  and  approach  ........................................................................................................  18  

3.  Thick-­‐bodied  Lanceolate  Projectile  Point  Types  ............................................  21  3.1.  Mesa  and  Sluiceway  .........................................................................................................  21  3.1.1.  Distribution  ..................................................................................................................................  22  3.1.2.  Environment  ................................................................................................................................  24  3.1.3.  Dating  ..............................................................................................................................................  27  3.1.4.  Lithic  Technology  .......................................................................................................................  29  3.1.5.  Associated  Lithic  Assemblages  ............................................................................................  34  3.1.6.  Site  Characteristics  and  inferred  activities  .....................................................................  35  3.1.7.  Mesa  and  Sluiceway:  the  differences  .................................................................................  36  

3.2.  Agate  Basin  .........................................................................................................................  38  3.2.1.  Distribution  ..................................................................................................................................  39  3.2.2.  Environment  ................................................................................................................................  41  3.2.3.  Dating  ..............................................................................................................................................  43  3.2.4.  Lithic  technology  ........................................................................................................................  44  3.2.5.  Associated  lithic  assemblages  ..............................................................................................  47  3.2.6.  Site  characteristics  and  inferred  activities  .....................................................................  48  3.2.7.  Developed  out  of  Agate  Basin:  Hell  Gap  ...........................................................................  49  

3.3  Haskett  ..................................................................................................................................  51  3.3.1.  Distribution  ..................................................................................................................................  52  3.3.2.  Environment  ................................................................................................................................  55  3.3.3.  Dating  ..............................................................................................................................................  57  3.3.4.  Lithic  technology  ........................................................................................................................  58  3.3.5.  Associated  lithic  assemblages  ..............................................................................................  62  3.3.6.  Site  characteristics  and  inferred  activities  .....................................................................  63  3.3.7.  Cougar  Mountain  ........................................................................................................................  64  

3.4.  El  Jobo  ...................................................................................................................................  65  3.4.1.  Distribution  ..................................................................................................................................  66  3.4.2.  Environment  ................................................................................................................................  67  3.4.3.  Dating  ..............................................................................................................................................  69  3.4.4.  Lithic  technology  ........................................................................................................................  71  3.4.5.  Associated  lithic  assemblages  ..............................................................................................  73  3.4.6.  Site  characteristics  and  inferred  activities  .....................................................................  74  3.4.7.  Monte  Verde:  an  El  Jobo  site?  ...............................................................................................  75  

  5  

4.  Comparison  ..................................................................................................................  76  4.1  Distribution  ............................................................................................................................................  77  4.2  Environment  ..........................................................................................................................................  81  4.3  Dating  ........................................................................................................................................................  82  4.4  Lithic  technology  .................................................................................................................................  84  4.5  Associated  lithic  assemblages  ........................................................................................................  87  4.6  Site  characteristisc  and  inferred  activities  ...............................................................................  87  

5.  Discussion  and  Conclusions  ...................................................................................  89  5.1  Aspects  of  technology  ...................................................................................................................  89  5.2  Chronology  and  Succession  ........................................................................................................  92  5.3  Tracking  the  movement  of  a  technological  tradition  ......................................................  93  5.4  Conclusions  .......................................................................................................................................  97  

References  ......................................................................................................................  102      

LIST  OF  FIGURES  AND  TABLES  

 FIGURE  1:  FLAKING  PATTERNS  (WCRM,  2012:  MODIFIED  FROM  BECK  AND  JONES,  2009)  ......................................  13  FIGURE  2:  THE  FOUR  STUDIED  PROJECTILE  POINT  TYPES  AS  PROPOSED  BY  KUNZ  AND  BAKER  (2011)  ....................  14  FIGURE  3:  VARIATIONS  IN  RADIOCARBON  CALIBRATION  (INTCAL09)  DURING  THE  YOUNGER  DRYAS  (BRONK  

RAMSEY,  2009).  ...........................................................................................................................................................  16  FIGURE  4:  THE  MESA  RIGHT  OF  ITERIAK  CREEK  (VIEW  FROM  THE  SOUTH)  (PHOTO:  M.  ADMIRAAL)  ........................  21  FIGURE  5:  DISTRIBUTION  OF  SIGNIFICANT  MESA-­‐  AND  SLUICEWAY  ARCHAEOLOGICAL  SITES                                              (NUMBERS  

CORRESPOND  TO  TABLE  1)  ..........................................................................................................................................  22  FIGURE  6:  ARCTIC  FOOTHILLS  (PHOTO:  M.  ADMIRAAL)  ....................................................................................................  24  FIGURE  7:  COASTAL  PLAIN  (PHOTO:  M.  ADMIRAAL)  ..........................................................................................................  25  FIGURE  8:  CALIBRATION  CURVE  FOR  THE  AMS  DATES  OF  THE  MESA  TYPE-­‐SITE.  AS  THE  CALIBRATED  DATA  IS  NOT  

USED  IN  THIS  THESIS  PLEASE  PAY  ATTENTION  TO  THE  RADIOCARBON  DETERMINATIONS  ON  THE  Y-­‐AXIS  OF  THE  GRAPH  (BRONK  RAMSAY,  2009)  .......................................................................................................................  27  

FIGURE  10:  MESA  TYPE-­‐SITE  POINTS  (KUNZ  ET  AL,  2003:  P.  28)  .................................................................................  30  FIGURE  11:  DAMAGED  MESA  BASE  FROM  THE  TUPIK  SITE  (PHOTO:  M.  ADMIRAAL)  ...................................................  31  FIGURE  12:  MESA  WIDTH/THICKNESS  RATIO'S  (DATA  WAS  COLLECTED  BY  THE  AUTHOR  FROM  A  SELECTION  OF  

MESA  PROJECTILE  POINTS  FROM  VARIOUS  SITES,  ALL  SPECIMENS  WERE  COMPLETE  AND  MEASURED  AT  THE  WIDEST  PART  OF  THE  POINT)  ......................................................................................................................................  32  

FIGURE  13:  GRAVERS  FROM  THE  MESA  TYPE-­‐SITE  (PHOTO:  WWW.LITHICCASTINGLAB.COM)  ...................................  34  FIGURE  14:  MESA  (22  SPECIMENS)  AND  SLUICEWAY  (17  SPECIMENS)  WIDTH/THICKNESS  RATIO'S  (DATA  WAS  

COLLECTED  FROM  A  SELECTION  OF  POINTS  FROM  THE  COLLECTION  OF  THE  BLM,  SOME  SLUICEWAY  SPECIMENS  WERE  DAMAGED)  ......................................................................................................................................  36  

FIGURE  15:  THE  AGATE  BASIN  SITE  AREA  (ARROW  INDICATES  SITE  LOCATION)  (FRISON,  1978  P.151)  .........................................................................................................................................................................................  38  

FIGURE  16:  DISTRIBUTION  OF  AGATE  BASIN  AND  HELL  GAP  ARCHAEOLOGICAL  SITES  USED  IN  THIS  STUDY  (NUMBERS  CORRESPOND  TO  TABLE  2)  .................................................................................................  39  

FIGURE  17:  BISON  HERD  ON  THE  GREAT  PLAINS  (PHOTO:  MARK  THIESSEN  FOR  NATIONAL  GEOGRAPHIC  MAGAZINE  D.O.A.  24-­‐02-­‐2013)  ...............................................................................................  42  

FIGURE  18:  CALIBRATION  CURVE  OF  VARIOUS  DATES  OF  SITES  YIELDING  AGATE  BASIN  PROJECTILE  POINTS.  AS  THE  CALIBRATED  DATA  IS  NOT  USED  IN  THIS  THESIS  PLEASE  PAY  ATTENTION  TO  THE  RADIOCARBON  DETERMINATIONS  ON  THE  Y-­‐AXIS  OF  THE  GRAPH  (BRONK  RAMSAY,  2009).  ........  43  

FIGURE  19:  AGATE  BASIN  POINTS  FROM  THE  TYPE  SITE  (TAYLOR,  2006).  ..................................................  44  FIGURE  20:  AGATE  BASIN  WIDTH/THICKNESS  RATIOS  (DATA  WAS  COLLECTED  FROM  BAKER,  2009)  ...................  45  FIGURE  21:  FLAKE  TOOLS  OF  THE  AGATE  BASIN  SITE  (FRISON,  1978,  P.  163)  ...........................................  47  FIGURE  22:  AGATE  BASIN  TYPE-­‐SITE  BONE  BED  (FRISON,  1978  P.155)  ......................................................  48  FIGURE  23:  HELL  GAP  PROJECTILE  POINT  FROM  THE  CASPER  SITE  (FRISON,  1978:  P.  175)  ...................................  50  FIGURE  24:  HASKETT  TYPE-­‐SITE  LOCATION  (BUTLER,  1978)  P.16  ................................................................  51  FIGURE  25:  HASKETT  (AND  SOME  COUGAR  MOUNTAIN  (WCRM))  ESTIMATED  SITE  LOCATIONS  ...........  52  FIGURE  26:  PROPOSED  HASKETT  POINTS  FROM  THE  COOPERS  FERRY  SITE  (BUTLER,  1969)  .................  53  FIGURE  27:  HASKETT  POINT  FROM  THE  TYPE-­‐SITE  (BUTLER,  1964)  ..............................................................  53  FIGURE  28:  STEMMED  POINTS  FROM  THE  PAISLEY  CAVES  SITE  (BRON)  ..........................................................  55  FIGURE  29:  PYRAMID  LAKE  (NEVADA)  IN  THE  GREAT  BASIN  (PHOTO:  M.  ADMIRAAL)  ...............................  55  FIGURE  30:  FALCON  HILL/COLEMAN  LOCALITY  NEXT  TO  DRAINED  WINNEMUCCA  LAKE  IN  THE  GREAT  

BASIN  (PHOTO:  M.  ADMIRAAL)  .............................................................................................................................  56  FIGURE  31:  CALIBRATION  CURVE  OF  THE  VARIOUS  HASKETT  COMPLEX  DATES.  AS  THE  CALIBRATED  

DATA  IS  NOT  USED  IN  THIS  THESIS  PLEASE  PAY  ATTENTION  TO  THE  RADIOCARBON  DETERMINATIONS  ON  THE  Y-­‐AXIS  OF  THE  GRAPH  (BRONK  RAMSEY,  2009)  .......................................  57  

FIGURE  32:  HASKETT  POINTS  FROM  THE  TYPE-­‐SITE  (BUTLER,  1965  P.19).  THE  HASKETT  POINT  ON  THE  LEFT  (H)  PROBABLY  HAS  BEEN  ERRONEOUSLY  REFITTED  (JEFF  RASIC  PERSONAL  COMMUNICATION,  2012)  .......................................................................................................................................  59  

FIGURE  33:  HASKETT  WIDTH/THICKNESS  RATIO'S.  DATA  WAS  COLLECTED  FROM:  (BUTLER,  1965;  BUTLER,  1967)  AND  ORIGINATES  FROM  THE  HASKETT  TYPE-­‐SITE.  .....................................................................................  60  

  7  

FIGURE  34:  SCRAPERS  (A-­‐C),  FLAKE  KNIFE  (D)  AND  UTILIZED  FLAKE  (E)  FROM  THE  RUNNING  ANTELOPE  SITE  (RUSSELL,  1993)  ......................................................................................................................  62  

 FIGURE  35:  COUGAR  MOUNTAIN  POINTS  FROM  COUGAR  MOUNTAIN  CAVE  (LAFAYETTE,  2006:  P.51)  .........................................................................................................................................................................................  64  

FIGURE  36:  TAIMA-­‐TAIMA  SITE  (OLIVER,  2013)  .............................................................................................................  65  FIGURE  37:  DISTRIBUTION  OF  EL  JOBO  ARCHAEOLOGICAL  SITES  (NUMBERS  CORRESPOND  TO  TABLE  4)  .................  66  FIGURE  38:  TAIMA-­‐TAIMA  SITE  SETTING  (KUNZ  AND  BAKER,  2011)  ...........................................................................  68  FIGURE  39:  CALIBRATION  CURVE  FOR  THE  RADIOCARBON  DATES  OF  THE  EL  JOBO  COMPLEX.  AS  THE  CALIBRATED  

DATA  IS  NOT  USED  IN  THIS  THESIS  PLEASE  PAY  ATTENTION  TO  THE  RADIOCARBON  DETERMINATION  ON  THE  Y-­‐AXIS  OF  THE  GRAPH.  DATA  COMES  FROM  THE  MUACO,  TAIMA-­‐TAIMA  AND  EL  VANO  SITES  (BRONK  RAMSAY,  2009).  ............................................................................................................................................................................  70  

FIGURE  40:  EL  JOBO  WIDTH/THICKNESS  RATIOS.  DATA  WAS  COLLECTED  FROM  THE  EL  JOBO  TYPE-­‐SITE  (NAMI,  1994)  AND  FROM  THE  TAIMA-­‐TAIMA  SITE  (CRUXENT,  1979)  ...........................................................................  71  

FIGURE  41:  EL  JOBO  PROJECTILE  POINTS  (KUNZ  AND  BAKER,  2011)  .............................................................................  72  FIGURE  42:  EL  JOBO  MIDSECTION  WITH  SERRATED  EDGES  (PHOTO:  MOJAVE,  WWW.ARROWHEADOLOGY.COM)  ...  73  FIGURE  43:  TOOLS  ASSOCIATED  WITH  EL  JOBO  POINTS  (PERFORATING  TOOL,  PLANO-­‐CONVEX  SCRAPER,  BLADE,  

HAND  AXE)  (OLIVER,  2013)  .......................................................................................................................................  74  FIGURE  44:  POINTED  TOOL  FROM  THE  MONTE  VERDE  SITE,  CHILE  (WWW.ELE.NET)  ..................................................  75  FIGURE  45:  DISTRIBUTION  OF  SITES  CONTAINING  THE  FOUR  PROJECTILE  POINT  TYPES  ...........................  77  FIGURE  46:  SANTA  ISABEL  IZTAPAN  BIFACES  (AVELEYRA  A.  DE  ANDA,  1956)  ..........................................................  78    FIGURE  47:  BIFACE  FROM  UNIT  E,  HUEYATLACO  SITE  IN  PUABLA,  MEXICO  (PHOTO:  JOE  GINGERICH)  ...................  78  FIGURE  48:  SITE  DISTRIBUTION  AND  MOVEMENT  FROM  RAW  MATERIAL  SOURCES.  RED  ARROWS  SHOW  

THE  MOVEMENT  OF  THE  RAW  MATERIAL  SOURCE  LOCATION  TO  THE  SITE  WHERE  THE  MATERIAL  WAS  EXCAVATED.  (LOCATIONS  ARE  ESTIMATED  WITH  LITTLE  CONSEQUENCE  FOR  SCALE).  ..........  80  

FIGURE  49:  RADIOCARBON  DATES  OF  THE  FOUR  PROJECTILE  POINT  COMPLEXES  COMBINED  (MESA:  RED;  AGATE  BASIN:  GREEN;  HASKETT:  YELLOW;  EL  JOBO:  BLUE)  ..........................................................  82  

FIGURE  50:  OLDEST  TWO  DATES  OF  EACH  PROJECTILE  POINT  COMPLEX  COMBINED  (MESA:  RED;  AGATE  BASIN:  GREEN;  HASKETT:  YELLOW;  EL  JOBO:  BLUE)  ....................................................................................  83  

FIGURE  51:  WIDTH/THICKNESS  RATIOS  OF  ALL  FOUR  PROJECTILE  POINT  COMPLEXES  ..............................................  85  FIGURE  52:  SOCKETED  SHAFT  HAFTING  (DIXON,  1999)  ..................................................................................................  90  FIGURE  53:  PROPOSED  ROUTES  OF  THE  THICK-­‐BODIED  LANCEOLATE  PROJECTILE  POINT  TECHNOLOGY  ..................  94    

T A B L E S  

 TABLE  1:  MESA  AND  SLUICEWAY  SITES,  LOCATIONS  AND  14C  DATES  ............................................................................  23  TABLE  2:  BASAL  CONDITIONS  FOR  66  EXAMINED  MESA  PROJECTILE  POINTS  ................................................................  31  TABLE  3:  AGATE  BASIN  (AND  HELL  GAP)  SITES,  LOCATIONS  AND  14C  DATES  .............................................  40  TABLE  4:  HASKETT  (AND  SOME  COUGAR  MOUNTAIN)  SITES,  LOCATIONS  AND  14C  DATES  .......................  54  TABLE  5:  EL  JOBO  SITES,  LOCATIONS  AND  14C  DATES  ......................................................................................................  67  TABLE  6:  TAIMA-­‐TAIMA  RADIOCARBON  DATES  (BRYAN,  ET  AL.,  1978)  ........................................................................  69  TABLE  7:  CALIBRATED  AGES  OF  THE  FOUR  COMPLEXES  ....................................................................................................  84  TABLE  8:  MANUFACTURING  TRAITS  OF  THE  FOUR  PROJECTILE  POINT  TYPES  .................................................  85  TABLE  9:  AVERAGE  WIDTH/THICKNESS  RATIOS  FOR  ALL  FOUR  PROJECTILE  POINT  COMPLEXES  ...............................  86  TABLE  10:  FINAL  STAGES  OF  PROJECTILE  POINT  MANUFACTURE  ......................................................................  86  TABLE  11:  PRESENCE  OF  TOOL  TYPES  OF  THE  FOUR  PROJECTILE  POINT  TYPE  COMPLEXES  ......................  87  TABLE  12:  PROJECTILE  POINT  COMPLEX  CHARACTERISTICS  ............................................................................................  97      

  8  

ABSTRACT  

Approximately  10.500  14C  years  ago  a  people  lived  in  Arctic  Alaska  that  made  a  typical  kind  of  projectile  points.  These  points  were  tipped  on  atlatl  darts  and  used  to  hunt  animals  such  as  horse  and  bison.  We  refer  to  these  points  as  Mesa  points.  These  bifacial  projectile  points  represent   the   Paleoindian   type   that   is   found   south   of   the   continental   ice-­‐sheets   covering  North  America  during  the  last  ice  age.  No  other  bifacial  technologies  are  known  north  of  the  ice-­‐sheets.  So  the  question  is:  where  lies  the  origin  of  this  technological  tradition?    Three  projectile  point  complexes   in  the  Americas  show  close  similarities  to  the  Mesa  type:  Agate  Basin  from  the  Great  Plains,  Haskett  from  the  Great  Basin  and  El  Jobo  from  Venezuela.  The   points   are   lanceolate   in   shape,   relatively   thick   with   respect   to   their   width   and   have  many   technological   traits   in   common.   Could   these   complexes   be   connected   to   the  Mesa  complex?  The  dating  of  these  four  complexes  has  shown  a  succession   in  time.  From  old  to  young:   El   Jobo   -­‐>   Haskett   -­‐>   Agate   Basin   -­‐>   Mesa.   This   is   an   indication   for   a   possible  migration   or   transmission   of   technological   knowledge   through   contact   from  Venezuela   all  the  way  to  the  Arctic.  Or  could  this  similarity  be  the  result  of  independent  innovation?  The  reason  why  these  projectile  points  are  so  similar  is  most  probably  found  in  the  employment  of  socketed  shaft  hafting.  This   technique  required  a  specific  kind  of  projectile  point  shape.  However,   flaking   patterns   are   also   generally   the   same  with   the   exception   of   Agate   Basin,  which  has  more  parallel  flake  scars  opposed  to  the  collateral  flaking  of  the  other  three  types.    El  Jobo  (13.000  –  11.000  14C  BP)  might  have  migrated  towards  the  north  because  megafauna  was   becoming   extinct   in   Venezuela   and   they   were   looking   for   new   hunting   grounds.  However,  there  is  little  evidence  for  such  a  migration.  The  area  between  El  Jobo  and  Haskett  encompasses  some  6000  km  without  any  sites  similar  to  El  Jobo  and  thus  this  idea  has  been  rejected.  Haskett   (10.800  –  9.800   14C  BP)  might  very  well  have  been   in  contact  with  Agate  Basin   (10.500  -­‐9.700  14C  BP)  as   the  Great  Basin  and  Great  Plains  areas  are  bordering.  Both  hunting   traditions  probably  hunted  bison.  At  10.500   14C  BP  Bison  antiquus   from   the  Great  Plains  migrated   northward   and   is   found   in   the   ice-­‐free   corridor.   Agate   Basin   is   known   to  have  moved  northward  during   this  period.  They  may  have   followed  their  prey  species  and  ended  up  in  the  Arctic  where  they  adapted  their  way  of  projectile  point  manufacture  due  to  environmental  differences,  and  become  what  we  refer  to  as  Mesa  (10.300  –  9.700  14C  BP).    

1.  INTRODUCTION  

10.500  (14C)  years  ago  a  people  lived  on  the  Northern  slope  of  the  Brooks  Range  in  the  Arctic  part  of  Alaska.  It  was  a  period  of  climatic  change.  Summers  began  to  get  warmer  as  the  last  ice  age  came  to  an  end.  These  people   left  behind   traces  of   their  existence  on  hilltops  and  other  localities  on  higher  ground.  On  these  high  spots  they  were  able  to  see  far  and  wide  in  most  directions.  They  were  scouting  for  migrating  herds  of  big-­‐game  animals  on  which  they  depended  as  a  means  of  subsistence.  In  1978  Michael  Kunz,  archaeologist  at  the  Bureau  of  Land  Management   in   Alaska   started   excavations   on   a  mesa   (a   flat-­‐topped   elevation   with  steep  sides)  situated  at  the  foothills  of  the  Northern  Brooks  Range.  In  the  preserved  deposits  of   the   site   he   found   projectile   points   made   in   a   certain,   to   American   archaeologists,  recognizable  fashion.  The  points  were  thick-­‐bodied,  lanceolate  shaped  and  bifacial  (worked  on  both  sides).  They  bear  the  name  of  their  type-­‐site:  Mesa  (Kunz  et  al,  2003).      

  9  

When  and  from  where  humans  first  migrated  to  the  American  continent  has  been  a  topic  of  extensive  research  for  decades.  The  general  belief  is  that  the  Arctic  functioned  as  a  gateway  to   the  New  World.   During   the   last   ice   age   sea-­‐levels  were   lowered   due   to   the   storage   of  water   in   land   ice  and   the  Bering  Land  Bridge  was  exposed   for  an  extensive  period  of   time  (Goebel   et   al,   2008;   Stanford,   2006;  Waguespack,   2007;   Yesner,   2001).   People  may   have  crossed   the   Bering   Land   Bridge   and   ended   up   in   Alaska   where   they   met   two   great  continental  ice-­‐sheets  blocking  their  way.  The  earliest  possible  terrestrial  migration  into  the  Americas   is   through   the   ice-­‐free  corridor  and  not  before  11.500   14C  BP.  Because   there  are  various  sites  south  of  the   ice-­‐sheets  that  are  dated  beyond  11.500  14C  BP  another  possible  migration  route  has  been  suggested:  the  Coastal  Route.  This  route,  along  the  western  coast  of  the  American  continent,  was  passable  already  by  14.000  14C  BP  (Dixon,  2011;  Mandryk  et  al,  2001).    As   organic  material   is   often  poorly   preserved,   even   in   the  Arctic,   the   evidence   consists   of  lithic  artefacts.  Studies  of  stone  tools  of  the  period  of  the  proposed  entry  into  America  have  shown  a  significant  difference  between   the  stone   tool   industries  of  Northeastern  Asia  and  those  of  the  Americas  south  of  the  ice-­‐sheets  (Dumond,  2001;  Slobodin,  2001).  In  Asia  and  north   of   the   North   American   ice-­‐sheets   microblade   technologies   prevail   while   in   the  Americas  biface  technologies  with  large  projectile  points  of  the  Paleoindian  type,  such  as  the  famous  Clovis  and  Folsom  traditions,  predominate.      The  discovery  of  the  Mesa  site  and  associated  projectile  points  that  closely  resemble  those  of  the  Paleoindian  type  of  the  mid-­‐latitudes  was  big  news  among  New  World  archaeologists.  It   was   reason   for   the   renewal   of   old   discussions   about   the   origin   and   timing   of   the   first  migration.  Some  believe  that  the  origin  of  the  Mesa  points  is  to  be  found  in  Asia  among  the  microblade   industries.   Others   look   to   the   south   for   ancestral   traces   of   this   northern  archaeological  complex.   In  2011,  Kunz  and  Tony  Baker  compared  the  Mesa  points  to  other  thick-­‐bodied  lanceolate  shaped  projectile  points  of  the  continent  (Agate  Basin,  Haskett  and  El  Jobo)  and  suggested  a  possible  technological  and  chronological  connection  between  these  point   types   (Kunz   and   Baker,   2011).   A   Paleoindian   complex   north   of   the   ice-­‐sheets   could  indicate   many   things.   The   Mesa   complex   could   be   the   link   between   the   Paleoindian  complexes  of  the  south  and  their,  up  to  this  day  still  undiscovered,  Asian  counterpart.  Then  there  is  also  the  possibility  of  a  migration  from  the  south  to  the  north.  This  is  an  interesting  notion  that  deserves  further  investigation.  In  this  thesis  the  ideas  of  Kunz  and  Baker  will  be  further  examined  and  the  four  projectile  point  complexes  will  be  discussed  in  detail.      The  background  to  this  research  as  well  as  methods  and  material  will  be  discussed  in  chapter  two.   Chapter   three   is   a   descriptive   chapter   of   the   four   point   complexes.   The   comparison  between   the   four   complexes  will   be  made   in   chapter   four.   In   the   discussion   the   relevant  data  will  be  discussed  with  a  focus  on  the  meaning  of  similarities  and  differences  between  the  projectile  points.  A  possible  scenario  will  be  drawn  on  the  basis  of  the  comparison  of  the  point  types  in  hopes  of  answering  the  main  research  question:  “What  can  be  said  about  the  origin  and  migration  patterns  of   the  Palaeolithic  people  of   the  Mesa  archaeological  site  by  examining  the  various  thick-­‐bodied  lanceolate  projectile  points  of  the  Americas?”    

  10  

2.  THEORY,  MATERIAL  AND  METHODS    

2.1.  PROBLEM  DEFINITION  

 In  this  thesis  four  different  projectile  point  types  from  different  regions  in  the  Americas  are  studied   by   looking   at   several   characteristics.   The  main   aspect   that   is   studied   is   the   lithic  technology   that  was   employed   to  manufacture   these  projectile   points.   The   four   projectile  point   types   occur   during   a   period   between   approximately   12.000   and   10.000   14C   BP  (uncalibrated   radiocarbon   years   before   present).   It   seems   that   these   four   projectile   point  complexes  are  occurring  more  or  less  as  successors  through  time  in  the  following  order:    El  Jobo  –>  Haskett  –>  Agate  Basin  –>  Mesa  (Kunz  and  Baker,  2011).      Based   on   similar   technological   traits   Kunz   and   Baker   (2011)   suggested   that   a   relationship  between  these  projectile  point  complexes  might  exist.  If  these  lithics  complexes  are  related  then   the   question   is   what   may   be   the  mechanism   behind   the   spread   of   this   technology.  Three  possible  explanations  are  given:    1)  Diffusion  of  technological  knowledge  through  social  contact  2)  Dispersal  of  material  culture  through  migration  3)  Convergence  of  the  technological  trait  through  independent  innovation    In  this  context  it  should  be  kept  in  mind  that  a  certain  projectile  type  (such  as  Mesa,  Agate  Basin,   Haskett   and   El   Jobo   but   also,   for   example,   Clovis   and   Folsom)   differs   from   a  technological  tradition.  Usually  certain  projectile  point  types  are  confined  to  a  specific  area  and  time  frame.  It  is  assumed  that  this  pattern  reflects  the  use  of  a  point  type  by  a  specific  group  of  people.  A  technological  tradition  can  reach  further   in  both  time  and  space  than  a  specific   tool   type.  Multiple   groups   of   hunters  may   have   used   different   types   of   projectile  points  made  with  the  same  manufacturing  techniques  during  the  same  time  (Bryan,  1980).        Terminology  and  background  It   is   important   to   distinguish   between   cultural,   stylistic   and   technological   traditions.   One  cannot  be  sure  that  one  cultural  group  did  not  use  multiple  types  of  projectile  points  with  different   styles   and/or   technologies   for   different   purposes.   Moreover,   often   a   ‘cultural  group’   cannot   be   distinguished   in   the   archaeological   record   (even   though   many   have  attempted  to  do  so  anyway).  Often  it  cannot  be  determined  whether  different  kinds  of  sites  (kill-­‐   vs.   base   camps,   ect.)   are   the   product   of   the   same   group   of   people   because   these  different   activity   sites   often   yield   different   kinds   of   archaeological   remains.   Binford   and  Bordes   discussed   this   topic   extensively   with   reference   to   explaining   the   variability   in  Mousterian   assemblages   (Binford,   1972;   Binford   and   Binford,   1966;   Bordes   and  deSonneville-­‐Bordes,  1970).   Similar   stylistic  assemblages  can  be  defined  as   cultural  groups  (Bordes   and   deSonneville-­‐Bordes,   1970)   while   functional   similarities   represent   different  activity  areas  (Binford,  1972;  Binford  and  Binford,  1966).  However,  distinguishing  a  cultural  group  in  the  archaeological  record  remains  problematic.   It  can  be  stated  that  the  artefacts  central   to   this   study   (projectile  points)   represent  a   specific   activity:  hunting.   I  will   refer   to  the  proposed   group  of   people   as   hunters   that   use   the   specific   projectile   point   (e.g.  Agate  Basin  hunters,  Mesa  hunters,   etc).   But   can   you  define   a   hunting   culture  by   looking   at   the  lithic   technology?   This   question  will   be   discussed   in   chapter   5.   The  Haskett   (Butler,   1965)  

  11  

and  Mesa   (Kunz   et   al,   2003)   complexes   lack   evidence   of   the   proposed   hunted   animals.   If  there  are  no  bones  the  function  of  the  projectile  points  becomes  less  evident.      The   lithic   technology   of   different   projectile   point   types   is   an   interesting   subject   to   study,  assuming  that  one  can  link  these  different  types  as  one  technological  tradition.  However,  a  question  arises  here:  the  question  of  independent  innovation.  Can  two  completely  unrelated  people  invent  something  without  having  any  contact?  This  is  possible  to  a  certain  degree  as  is   seen   in   the   use   of   various   tool   types   (for   example:   projectile   points,   microblade  technologies,   the   innovation   of   bow   and   arrow,   and   atlatl)   all   around   the   world.   For  example:   spear-­‐throwers   (atlatls)   were   used   by   the   Solutrean   in   France   but   also   by   the  Australian  Aborigines  as  well  as  Americas  Paleoindians  (Butler,  1975;  McClellan  III  and  Dorn,  2006).  Microblade  technology  was  employed  from  China  to  Europe,  as  well  as  in  Siberia  and  later  on  also  in  North  America.  Some  of  the  spread  of  these  technologies  can  be  explained  by   dispersal   or   diffusion.   However,   the   widespread   occurrence   of   these   technologies  indicates   that   it   was   innovated   separately   in   different   areas   (Owen,   1988).   Independent  innovation  becomes   less   likely  when   stylistic   and   technological   traits   are   strikingly   similar.  For   example   the   connection   between   the   Solutrean   and   Clovis   traditions   based   on   lithic  technology  as  was  argued  by  Stanford  and  Bradley  (2012).  When  stylistic  and  technological  traits   are   very   similar   it   is   interesting   to   explore   possible   explanations   for   contact   or  migration.    Care  should  be  practiced  when  talking  about  a  cultural  complex.  Material  culture  does  not  necessarily   define   a   culture,   as   a   culture   encompasses   behaviour,   beliefs,   and   other  practices   of   a   specific   group   of   people   in   a   specific   period   in   time.   Similarities   in  material  culture   are   no   substantial   evidence   for   an   actual   cultural   connection.   Many   different  cultures  could  have  made  use  of   the  same  projectile  point   technology.  For  example:  many  people   in   the   world   nowadays   use   knives   and   forks,   that   does   not  mean   that   everybody  belongs  to  the  same  culture.  The  studied  areas  are  much  too  big  and  geographically  distant  from  each  other  to  be  compared  without  keeping  in  mind  the  environment  and  its  impact  on  human  adaptations.  Swanson  (Swanson,  1962)  argues  for  the  importance  of  environmental  studies   in   the   archaeological   discipline.   He   describes   the   occurrence   of   clear   cultural  continuums   in   the  centre  of  an  environmentally  distinct  area.  The   further  one  approaches  the  border  of  an  environment  the  more  cultural  overlap  and  adaptations  one  observes  while  in  the  centre  of  a  specific  environmental  area  the  culture  is  less  subject  to  other  influences  and  does  not  need  to  adapt  to  different  kinds  of  environments  (Bryan,  1980).        The  environment  has  great   influence  on  many  different   things   for  a  people  dependent  on  hunting  and  gathering  as  a  means  of  subsistence.    First  of  all,  the  animal  and  plant  species  as  well  as  other  resources  occurring  in  a  region  are  the  means  of  subsistence  for  human  groups  but  certain  species  only   thrive   in  certain  environments  and  climatic   zones.  This   is   seen   for  example  in  the  Great  Basin  region.  When  compared  to  the  Great  Plains  region,  big  game  was  much   less   abundant   in   the   Great   Basin   at   the   end   of   the   Pleistocene.   As   a   result   smaller  game   was   a   more   important   means   of   subsistence   here   than   it   was   on   the   Great   Plains  (Jenkins  et  al,  2004).  If  the  hunted  species  differ,  so  will  the  hunters  toolkit.  Meltzer,  (1981)  states  that  style  is  independent  of  its  environment  while  function  is  more  closely  related  to  environmental   aspects.   However,   Buchanan   and   Hamilton,   (2009)   tested   the   origin   of  variability  in  projectile  point  shape  and  found  no  correlation  to  environment  in  this  context.  Seasonality   is  of   importance  here   too.   In  Venezuela   the  season  are  much   less  pronounced  while  in  the  north  seasonal  differences  are  much  more  noticeable  (mainly  in  temperature).  As  a  result  northern  big-­‐game  hunting  might  have  been  seasonal  and  larger  in  scale,  in  order  to   secure  enough   food   for   the  winter  period,  while   in   the   south   the  hunted  animals  were  

  12  

present   throughout   the   year.   Technological   traits   are   subject   to   the   environment   to   the  degree   that   certain  materials   needed   to  be   available   for   certain   technologies   to  be  useful  (for   example   hafting   using   wood   or   hollow   reed   cane).   Lithic   technology   is   adapted   to  specific   prey-­‐species   as   well   as   hunting   strategies,   both   largely   dependent   on   the  environment.  For  example:  in  order  to  pierce  the  thick  hide  of  a  mastodon  a  projectile  point  needs   to   be   considerably   resistant   to   breakage;   in   open   terrain   it   is   expected   to   pay   if   a  projectile  design  has  good  aerodynamic  properties  (Buchanan  and  Hamilton,  2009).  Binford,  (1980)  states  that  hunter-­‐gatherer  variation  is  the  result  of  strategies  of  organization  around  environmental   resources.   The   diversity   among   hunter-­‐gatherers   has   been   extensively  discussed   by   Kelly,   (1995)   He   states   that   hunter-­‐gatherers   are   much   more   diverse   and  complicated   than   was   previously   believed.   This   diversity   can   often   be   explained   by  environmental  circumstances.   In  my  view  environments  can  be  distinguished  by   looking  at  climate,  fauna,  flora  and  physiographical  features.  The  four  discussed  environments  differ  in  some  of  these  aspects,  this  will  further  be  discussed  in  the  subsequent  chapters.    The  use  of  the  term  ‘migration’  as  an  explanation  for  variability  in  the  archaeological  record  has  been  widely  employed  by  archaeologists  but  often  without  providing  a  clear  definition  of  what  is  meant  by  that  term  and  what  invokes  the  process.  Clark,  (1994)  has  discussed  the  matter   thoroughly   and   approaches   the   concept   of   migration   from   the   view   of   various  disciplines   (biology,   genetics,   anthropology,   archaeology).   In   recent   times   ‘migration’   is  mainly   a   density-­‐dependent   phenomenon.   It   is   questionable   if   this   played   a  major   role   in  hunter-­‐gatherer   societies   of   the   late   Pleistocene   (Clark,   1994).   I   assign   the   following  meaning  to  the  term  ‘migration’:  “a  movement  of  people  from  a  familiar  region  to  another  ‘unknown’   region,   carrying   with   them   genes,   beliefs,   material   culture   and   other   specific  cultural   traits”.   (Clark,   1994)   states   that   “Migration   does   not   ‘just   happen’”   (p.335),  migration  is  an  adaptive  strategy  and  it  needs  a  trigger  described  as  ‘push’  and  ‘pull’  factors.  Push   factors  might   include:  population  growth,   resource  depletion  but  also  social   stress.  A  pull  factor  depends  on  the  attractiveness  of  the  recipient  region,  for  example:  desirable  prey  species,   no   hostile   inhabitants,   etc.   The   process   of   the   spread   of   people   in   prehistory   is  usually  gradual  unless  replacement  is  forced  by  these  push  and  pull  factors  (Clark,  1994).    The  different  kinds  of  sites  discussed  in  this  thesis  are  determined  by  the  excavated  content.  Kill-­‐sites  are   characterized  by   the  presence  of   animal   remains  with  marks  of  butchering   in  combination  with   the   presence   of  weapons   such   as   projectile   points.   These   kinds   of   sites  often  lack  the  presence  of  tools  that  were  used  for  other  purposes  such  as  scrapers,  gravers,  etc.   Sites   containing   these   kinds   of   artefacts   and   lacking   the   chaotic   deposition   of   animal  bones  are  often  described  as  camp-­‐sites.  In  many  cases  the  remains  of  hunted  animals  were  brought  back  to  the  camp  and  were  further  processed  there.  This  results  in  a  combination  of  a  camp-­‐site  and  a  processing  site  yielding  the  butchered  remains  of  hunted  animals,  in  this  case  these  are  regarded  as  separate  use-­‐areas  in  one  site.      A   bias   can   occur   when   the   time   of   excavation,   and   the   excavation   techniques   that   were  employed  at  the  time,  differs.  Additionally,  the  sampling  of  radiocarbon  datable  material  at  sites  can  have  a  large  impact  on  the  results.  Contamination  can  happen  easily  and  produce  radiocarbon   dates   that   are   unreliable   in   their   context.   Therefore   sites   that   have   been  extensively   dated   (such   as   the   Mesa   site)   with   many   radiocarbon   dates   are   much   more  reliable   than   sites   that   have   been   dated   with   only   a   few   radiocarbon   dates.   Outliers   are  much  more  visible  in  a  big  group  of  dates.  Moreover,  the  difference  between  the  standard  radiocarbon  dating  and  Accelerator  Mass  Spectometry  AMS  dating   can  make   it  difficult   to  compare  results  of  dates  produced  by  both  two  methods.      

  13  

Lithic  Technology  Some  focus  should  be  on  the  technique  of  hafting,  as  this  mostly  determines  the  shape  of  the  projectile  point.  With  hafting  the  placement  of  the  projectile  point  into  the  foreshaft  of  an  atlatl  dart  or  spear   is  meant.  While  the  main  focus   in  this   thesis   is  on   lithic   technology,  morphology   is   also   of   importance  because  of   the   above  mentioned.   The  morphology  of   a  point   type  also   indicates  something  about   technology   in   this  case.  Shape   is   the  product  of  function   but   also   stylistic   tradition.   Bryan   (1980)   argues   that   if   the   two   are   often   found  together   a   hypothesis   that   they   are   part   of   one   cultural   tradition   is   easier   defendable.   In  Wiessner’s  (1983)  article  about  style  and  social  information  in  Kalahari  San  projectile  points  she   emphasizes   the   earlier   statement   of   (Binford,   1965)   that   when   looking   for   stylistic  aspects   the   analyst   is   often   looking   for   characteristics   that   are   non-­‐functional.   She   also  stresses  a  statement  of  (Sackett,  1972)  that  in  fact  social  information  might  be  contained  in  attributes   that  are  not   recognized  by   the  analyst.  These  attributes  might  be  shape,   flaking  methods,  etc  beside  obvious  decorations  of  the  shaft  (when  preserved).      In   exploring   the   stylistic   traits  of   San  projectile  points  Wiessner,   (1983)   showed   that  most  stylistic  features,  containing  social  information  or  not,  were  incorporated  on  the  shaft  of  the  arrows   that   were   studied.   Of   the   materials   studied   in   this   thesis   no   shafts   have   been  preserved   and   thus   this   information   is   lost   to   us.   It   is   interesting   how   the   San   people  recognize   different   shapes   of   projectile   points   as   belonging   to   either   their   own   people   or  unknown,  and  thus  unpredictable,  people.  Discovering  an  unknown  projectile  point  on  their  territory   is   seen   as   a   threat   from  unknown  people.   In   this   sense   the   shape  of   a   projectile  point   can  hold  another  purpose:   recognition  of   information  about  groups  and  boundaries.  The  options  for  stylistic  features  other  than  general  shape  on  the  here-­‐discussed  projectile  points  are  limited.  A  possible  stylistic  feature  on  lithic  projectile  points  can  be  various  types  of   flaking   as   is   displayed   on   figure   1.   Projectile   point   morphology   is   however   mainly  functional.   Shape   and   function   was   probably   determined   by   experiment   and   successful  designs  were  kept  in  use  (Meltzer,  1981;  Mesoudi  and  O'Brien,  2008).    The   four   projectile   point   types   have   a   similar  morphology,   including   thickness/width   ratio  and  flaking  patterns.  This  is  the  main  reason  that  they  stood  out  and  were  linked  together  by  Kunz  and  Baker   (2011),   that  and  their   thickness.  They  are  all  made  by  a  bifacial   thickening  technology  which  leaves  the  point  narrow  and  thick   in  opposition  to  wide  and  thin  as  with  thinning  strategies  applied  by  Clovis  and  Folsom  toolmakers  (Stanford,  2006).    

 FIGURE  1:  FLAKING  PATTERNS  (WCRM,  2012:  MODIFIED  FROM  BECK  AND  JONES,  2009)  

What   stands   out   most   about   the   lithic   technology   of   these   projectile   point   types   is   the  collateral   flaking   technique   (fig.1)   that   is   nicely   visible   on   all   the   projectile   points   with  exception  of  most  Agate  Basin  points.  Collateral   flaking   is  defined  as   the  removal  of   flakes  that   meet   on   the   midline   of   the   core   (in   this   case   the   projectile   point).   As   a   result   a  

  14  

symmetric   pattern   dominates   the   projectile   points.   The   flake   scars   are   regular,   relatively  wide  and  feather  out  to  the  midline.  

 FIGURE  2:  THE  FOUR  STUDIED  PROJECTILE  POINT  TYPES  AS  PROPOSED  BY  KUNZ  AND  BAKER  (2011)  

Flaking   can   be   done   in   different   ways:   direct,   hard   percussion;   direct,   soft   percussion;  indirect  percussion;  and  pressure  flaking.  Direct  percussion  flaking  can  be  done  in  a  hard  or  soft  manner,  with  a  hard  hammer  stone  or  a  softer  piece  of  bone,  wood  or  antler.  The  bases  of  antlers  are  known  to  have  been  used  as  hammers   for  percussion   flaking.  Hard  hammer  percussion  leaves  a  clearly  visible  bulb  on  point  of  impact  on  the  flake  and  the  impression  of  that  bulb  on   the  negative  of   that   flake   in   the   core.   Soft,  direct  percussion   leaves   less  of   a  distinctive  bulb  and  shows  a  small  lip  on  the  proximal  side  of  the  flake  (Beuker,  2010).    The   quality   of   the   raw   material   has   great   influence   on   the   control   over   the   outcome   of  flaking   as   is   skill   of   the   flint   knapper.   However,   the   different   kinds   of   flint   knapping   have  some  influence  over  the  outcome  and  are,  in  this  case,  used  for  different  stages  of  projectile  point  manufacture.  Direct,  hard  percussion  can  be  very  effective  in  reducing  the  volume  of  a  piece  of  flint.  It  provides  less  control  on  how  the  flakes  and  scars  will  turn  out,  as  would  soft  direct  percussion  or  indirect  percussion.  Most  control  over  the  outcome  of  flake  removal  can  be  gained  by  using  pressure   flaking.   Instead  of  using   the   force  of   impact   to   remove   flakes  pressure   can   be   applied   on   the   sides   of   the   point   in   order   to   remove   small   flakes   in   a  controllable   fashion.  Pressure   flaking  provides   the  most   control  over   the  outcome  of  ones  actions,  more  than  direct  percussion  or  even  indirect  percussion  (Beuker,  2010)  although  the  toolmakers’  skill  and  the  quality  of  the  raw  material  remain  the  greatest  influencing  factors  of  outcome  (Peeters,  personal  communication,  2013).    

  15  

Another  important  part  of  projectile  point  manufacture  is  the  base  shape  and  basal  grinding  of   the   lateral  margins.  Grinding   is  presumably  done  by  rubbing  a  stone  along  the  edges  of  the   projectile   point.   Edge   grinding   is   the   last   stage   of   the   process   of   manufacturing   a  projectile   point,   after   which   it   is   hafted   onto   a   spear.   These   characteristics   probably   also  have   a   lot   to   do   with   hafting.   It   is   argued   by   various   authors   that   these   thick-­‐bodied  stemmed  points  were  hafted  in  socketed  shafts  (Beck  and  Jones,  1997;  Bryan,  1980;  Frison,  1978).  Three  hafting  techniques  were  employed  during  the  late-­‐Pleistocene/early-­‐Holocene  period   in   the   Americas:   hafting   of   basally   thinned   points   on   a   spit   stick   or   bevelled   shaft  (Clovis,  Folsom),  socketed  shaft  hafting  (as  with  stemmed  points)  and  hafting  with  the  use  of  side  notched  points  using  wraparound  ties  (during  the  later  Archaic  period)  (Bryan,  1980).      Many   studies   of   projectile   point   types,   especially   in   the   Great   Basin   and   Plains   regions  (Haskett  and  Agate  Basin)  have  been  based  on  morphological   traits.  Projectile  points  were  grouped  based  on  their  shape  and  typologies  were   formed.  This   focus  on  morphology  and  typology  has  somewhat  shifted  during  the  last  20  years  towards  a  focus  on  technology  (Beck  and   Jones,   1997).   However,   few   comparative   technological   studies   have   been   conducted.  Especially  the  Great  Basin  /  Desert  West  area  is  in  need  of  a  review  of  previously  assembled  typologies  of  projectile  points,  e.g.  The  Western  Stemmed  Tradition,  Great  Basin  Stemmed  Points,  etc.).    

2.2  WORKING  HYPOTHESIS  AND  RESEARCH  QUESTIONS  

The   similarities   between   the   Mesa,   Agate   Basin,   Haskett   and   El   Jobo   complexes   are   the  product  of  cultural  transmission  of  technological  knowledge  either  by  dispersal  or  diffusion.  The  complexes  are  dated:    1)  Mesa  (Alaska):           10.300  –  9.70014C  BP  2)  Agate  Basin  (Great  Plains):       10.500  –  10.250  14C  BP  3)  Haskett  (Northern  Great  Basin):     11.200  –  7.240  14C  BP  4)  El  Jobo  (Venezuela):         13.000  –  9.600  14C  BP    This   pattern  of   dates   suggests   a   succession  of   the  different   projectile   point   types.   El   Jobo  was  first,  followed  by  Haskett,  Agate  Basin  and  finally  Mesa.  This  suggests  a  movement  of  a  technological   tradition   from   south   to   north.   Some   of   the   projectile   point   types   persisted  longer  than  others  and  coexisted  in  time.  Could  this  be  the  result  of  a  migration?  Does  the  origin  of  the  Mesa  projectile  points  in  the  High  North  of  Alaska  lie  in  Venezuela  with  the  El  Jobo  projectile  points?      An  aspect  that  needs  consideration  is  the  Younger  Dryas  climatic  event.  This  period  ranges  from  11.000  to  10.000  14C  BP  (12.900  –  11.600  cal  BP)  and  is  described  as  a  period  of  climatic  cooling.  Full  glacial  conditions   terminated  after   the  Last  Glacial  Maximum  (LGM)  and  were  succeeded   by   a   period   of   climatic  warming.   The   Younger   Dryas   period   characterized   by   a  general  cooling  lasted  approximately  one  thousand  years  and  was  triggered  by  the  discharge  of   enormous   amounts   of   fresh   water,   melted   from   the   continental   ice-­‐sheets   of   North  America,   into   the   North   Atlantic   Ocean.   As   a   result   the   North   Atlantic   thermohaline  circulation,   that   transfers   heat   to   the   north,   was   disrupted   and   the   climate   thus   became  cooler   as  well   as   dryer   (Kokorowski   et   al,   2008).     There  has   been  much  discussion  on   the  global  scale  of  the  Younger  Dryas  climatic  cooling.  The  data  differs  geographically  and  will  be  discussed   in   the  different   subchapters   on   environment   for   the   four   projectile   point   types.  The  end  of  the  Younger  Dryas  (10.000  –  9.700  14C  BP)  initiated  a  global  warming.      

  16  

The  Younger  Dryas  is  a  period  of  uncertainty  on  the  radiocarbon  timescale.  14C  levels  in  the  atmosphere  fluctuated  during  the  period  of  11.000  to  10.000  14C  years  BP.  The  implication  of  these   fluctuations   for   the   calibration   of   radiocarbon   dates   becomes   apparent   in   figure   3.  When   attempting   to   calibrate   dates   from   this   period   uncertainties   of   500   years   are   no  exception.  This  is  called  the  Younger  Dryas  effect.  For  these  reasons  it  has  been  decided  not  to  use  calibrated  radiocarbon  dates   in   this   thesis.  However,   this  might  have  consequences  on   the   outcomes   of   this   research   because   the   actual   calendar   dates   might   vary   and  succession  might  not  be  as  evident  when  using  calibrated  dates.      

 FIGURE   3:   VARIATIONS   IN   RADIOCARBON   CALIBRATION   (INTCAL09)   DURING   THE   YOUNGER   DRYAS  (BRONK  RAMSEY,  2009).    

As  mentioned   in  the   introduction,   the  research  question  of   this   thesis   is  as   follows:  “What  can  be  said  about  the  origin  and  migration  patterns  of  the  Palaeolithic  people  of  the  Mesa  archaeological  site  by  examining  the  various  thick-­‐bodied  lanceolate  projectile  points  of  the  Americas?”  This  question  is  a  broad  one  and  should  be  divided  in  smaller  sections  in  order  to  define  the  aspects  that  will  be   investigated  such  as  environment  and  dating.  The  following  sub  questions  will  be  covered  in  the  descriptive  chapters  of  the  four  type  complexes.    Sub  Questions  1)   In  what  kind  of  geomorphologicall  setting  are  the  archaeological  sites  located?  By  answering  this  question  I  hope  to  be  able  to  tell  whether  there  are  similarities  between  the   four   type   complexes   in   site   locations.   For   example:   on   top   of   hills,   on   flat   terrain,   in  

  17  

gully’s,  near  water,  etc.  What  does  the  location  of  the  site  say  about  the  on-­‐site  activities?  And,   if  these  site  activities  differ,  to  what  extent  can  a  comparison  be  made  between  type  complexes?      2)   What  was  the  environment  like  in  the  different  regions  during  the  late  Pleistocene?  The  environment  is  of  great  importance  when  trying  to  understand  a  prehistoric  people  and  their  way  of  life.  The  environment  has  a  great  influence  on  adaptations  and  possibly  shows  in   the  material   record   of   these   four   different   hunting   peoples.   Of   importance   are   factors  such   as:   temperature,   precipitation,   topography,   glaciations,   water   availability,   vegetation  and  fauna.      3)   To  which  specific  period  were  the  four  type  complexes  dated?  In  order  to  investigate  the  possibility  of  a  cultural  transmission  of  technological  knowledge  it  is  of  great   importance  to  know  the  timeframe  in  which  this  phenomenon  occurred.  All   the  four   complexes   are   dated   by   radiocarbon,   however,   Agate   Basin   and   Mesa   were   more  thoroughly  dated  than  Haskett  and  El  Jobo.  The  method  of  dating  is  important  here,  as  is  the  period  of  time  when  the  dating  was  done.  During  the  early  years  of  radiocarbon  dating  large  uncertainties  were   common.  With   the   advent  of  AMS  dating  dates  became  more   reliable.  This  is  for  example  seen  in  dating  the  Mesa  complex  where  the  standard  radiocarbon  dates  were   discarded   because   they  were   too   divergent   from   the   AMS   dates   (Kunz   et   al,   2003).  When   clear   periods   of   projectile   point   manufacture   and   use   can   be   established   one   can  suggest  a  possible  order  of  succession.      4)   How  were  the  four  projectile  point  types  manufactured?     This  question  refers  to  the  lithic  technology  of  the  type  complexes.  Could  it  be  that  these   four   type   complexes   can   be   put   together   in   one   technological   tradition?  Manufacturing  methods  are  passed  on  to  new  generations  and  will   change  due  to  contact  with   new   people   or   environmental   change.   Contact   between   groups   can   lead   to   the  exchange  of  technological  knowledge,  which  makes  the  distinction  between  point  types  less  visible.        5)   Where  are  raw  material  sources  located  and  what  does  this  say  about  the  mobility  of  the  people  who  made  the  various  projectile  points?            If  these  people  were  getting  their  raw  materials  from  extra-­‐local  sources  this  could  indicate  a  high  mobility,  travel,  trade  network  or  migration.      6)   What   associated   lithic   assemblages   were   found   in   connection   to   the   different  projectile  point  types?     Lithic  artefacts  other  than  projectile  points,  or  the  lack  of  specific  tool  types,  might  tell  us  about  site  activities  beyond  hunting  activities.  This  is  an  interesting  aspect  to  compare  between  the  type  complexes.  These  people  were  most  probably  not  solely  hunters  and  the  other  aspects  of  their  lives  are  important  when  one  wants  to  make  a  complete  and  thorough  comparison.      7)   Is   a   proposed   regional   predecessor   or   successor   of   the   projectile   point   types  present?       In  order  to  understand  the  process  of  projectile  point  type  evolution  it  is  interesting  to  investigate  the  possible  regional  variants  of  the  studied  complexes.  This  may  shed  more  light  on  the  process  of  change  in  typology  and  technology  and  can  possibly  be  applied  to  the  comparison  of  the  four  projectile  point  types  that  are  discussed  in  this  thesis.  hard  evidence.    

  18  

2.3.  MATERIAL  AND  APPROACH  

Because   of   the   large   geographical   area   that   is   of   interest   to   this   study   it   has   not   been  possible   to   study   all   the   point   types   and   associated   environments   directly.   Therefore   a  substantial  part  of  the  information  originates  from  the  abundant  literature  that  is  available  on   the   four   point   types   and   associated   environments.  During   a   10-­‐week   internship   at   the  Smithsonian  National  Museum  of  Natural  History  in  Washington  DC,  USA  I  had  access  to  the  extensive   library  of   this   grand   institution.   The   supply  of   literature   is   endless.  More   than   a  hundred  literary  sources  have  been  incorporated  in  this  thesis.      For   the  descriptive  Mesa  –   Sluiceway   chapter   (3.1)   literature  was   studied   that  was  mainly  written  by  Mike  Kunz.  Environmental  studies  of  the  area  were  used  to  describe  the  climate  and   environment.   Beuker   (2010)  was   used   to   understand  more   about   lithic   technology   in  general.  Beside  literature  a  lot  of  information  came  from  personal  communication  with  Kunz  and  Connie  Adkins  whom  I  visited  in  Alaska  during  the  summer  of  2012.   I  visited  the  Mesa  site  and  various  surface  sites  (Tupik,  Lisburne,  Spike  Creek,  and  several  other  surface  sites)  in  the   Northern   Brooks   Range   area.   Trips   were   made   by   helicopter   and   provided   a   good  understanding  of  the  environment.  It  also  made  me  aware  of  the  abundance  of  sites  in  this  area,  most  of  which  have  not  been  excavated.   In  Alaska   I   studied  a  selection  of  Mesa  and  Sluiceway  points  of  the  various  visited  sites.   In  Fairbanks   I  also  spoke  with  Dr.   Jeff  Rasic  of  the  University  of  Alaska  Museum  of  the  North,  an  expert  in  Sluiceway  projectile  points.      The  Agate  Basin  complex  has  been  extensively  studied  since  its  discovery  in  the  late  1950s.  George  C.  Frison  who  excavated  the  site  in  the  early  1970s  wrote  much  of  the  literature.  Dr.  Stanford  was  also  involved  in  these  excavations  and  is  co-­‐author  of  the  book  covering  these  excavations  (Frison  and  Stanford,  1982).  Discussions  with  Stanford  at  the  Smithsonian   lead  to  a  greater  understanding  of  the  subject.      The  Haskett  complex  has  not  been  well  studied  and  some  literature  is  hard,  or  impossible  to  come  by.  Most   of   the   literature  was  written  by  Butler   (1965)  who  excavated   the   site   and  studied   the   projectile   points.   In   later   years   a   few  masters   thesis   were   written   about   the  subject   (Lafayette,   2006)   of   which   some   proved   difficult   to   come   by   (Sargeant,   1973).  Because   the   Haskett   complex   has   been   integrated   into   concepts   such   as   the   Great   Basin  Stemmed  Points   I  have  also   studied  general   literature  about   the  archaeology  of   the  Great  Basin   area.   Sometimes   it   is   problematic   to   extract   the   desired   information   from   these  general  articles  because  the  point  types  are  often  not  distinguished  from  one  another  while  they  are,  in  my  opinion,  quite  different  in  some  aspects.  In  the  summer  of  2012  I  visited  the  Western  Cultural  Resource  Management  Inc.  (WCRM)  in  Reno,  Nevada.  I  learned  first  hand  about  the  environment  and  research  methods  of  the  WCRM.    I  discussed  my  research  with  the  WCRM  employees,  among  others  Mark  Estes  and  Geoff  Cunnar.  I  discussed  the  subject  with  Dr.  Eugene  Hattori  at  the  Nevada  State  Museum  in  Carson  City.  At  the  WCRM  I  studied  projectile   points   similar   to   the  Haskett   type   (presumably   Cougar  Mountain)   from   the   Fire  Creek  site  in  Nevada.    The  Smithsonian  had  a  very  small  sample  of  El  Jobo  points  that  I  could  study  (two  bases).  I  discussed   the   El   Jobo   type   with   Dr.   Hugo   Nami   from   Argentina   and   Dr.   Jeff   Wilkerson,  Director   for   the   Institute   for   Cultural   Ecology  of   the   Tropics   in  Mexico.  Beside   the   literary  sources   there   is   a   useful   website   on   the   Taima-­‐Taima   site   published   by   the   Bradshaw  Foundation  (Oliver,  2013).  For  all   the  four  projectile  point   types  graphs  of   the  radiocarbon  dates  were  made  using  the  computer  program  OxCal  (Bronk  Ramsay,  2009).      

  19  

I  made  an  Excel   file   in  which   I   included  all   the   sites   that   I   came  across   in   the   literature.  A  simplified  version   (only   showing  dates,   lab.nr.   and   literature  of   the  discussed   sites)  of   this  database   is   attached   (appendix  1).   I   described   the  various   sites  according   to   the   following  characteristics    

1. Site  name  2. Coordinates  (if  available)  3. State  (within  the  United  States)  4. Radiocarbon  date  5. Sigma   (uncertainty   of   the  

radiocarbon  date)  6. Lab.no.  (of  the  radiocarbon  date)  7. Projectile  point  type  name  

8. Faunal  remains  9. Inferred  site  activities  10. Raw  material  11. Lithic  technology  12. Time  of  discovery  13. References  14. Reminiscent  of…  15. Comments  

 In   total   I  described  308   sites   in   this  database.  These   sites  are  not   just   sites   containing   the  projectile  point  types  discussed  in  this  thesis  but  also  other  types  of  the  different  regions.  As  to  keep  an  overview  of  potential  connections  between  all  these  point  types.  Because  of  my  projects  extensive  nature  I  decided  that  I  would  not  analyse  the  individual  projectile  points  in  detail  because  I  did  not  have  access  to  all  projectile  point  types  in  the  same  quantity.  I  got  a  general   idea  of  the  projectile  point  types  by  looking  at  flaking  technology  and  comparing  this   to   the   available   literature.   The   main   information   comes   from   the   literature.   I   have  learned  about  lithic  technology  in  general  from  Dr.  Peeters  and  Dr.  Stanford  in  person.    Study  trips  and  Fieldwork  During  my  stay  at  the  WCRM  in  Reno,  Mark  Estes  introduced  me  to  the  analysis  guidelines  of  the  WCRM  (Estes,  2012)   (appendix  no.  5).   I   studied   the  projectile  point   fragments  of   their  recently   excavated   site   Fire  Creek  using   these   guidelines.   The  data  was   stored   in   an   Excel  data  sheet  and  the  following  characteristics  were  described:      

1. Point  type  2. Flaking  pattern  3. Flaking  

technology  4. Cross-­‐section  5. Base  6. Base  condition  7. Edge  ground  

8. Edge  retouch  9. Material  10. Colour  11. Thermal  alteration  12. Condition  13. Fragment  14. Measurements  of  the  width,  length  and  thickness  of  the  

entire  point,  the  blade  and  the  stem      

Fieldtrips   were   undertaken   in   order   to   gain   a   better   understanding   of   the   Great   Basin  environment.  During  the  fieldtrip  the  Coleman  Locality  site  was  visited  in  the  area  of  the  old  Winnemucca   Lake   and   a   survey   was   done   in   the   surrounding   area.   Pyramid   Lake   in   the  Washoe   Indian   Reservation   was   visited.   Ancient   shorelines   are   still   visible   on   the  mountainsides  and  assist  the  imagination.          I   spent  a  week  at  a  BLM  camp   in   the  Northern  Brooks  Range   in  Alaska   (Inigok).  The  Mesa  type-­‐site  was  visited  along  with  many  surface  sites  (a.o.  the  Kuna  Bluff,  Lisburne  and  Tupik  sites).   At   the   BLM   camp   all   the   available  Mesa   and   Sluiceway   points  were   analysed   using  WCRM  guidelines.  Dr.  Kunz  was  there  to  teach  me  about  his  understanding  of  the  sites  and  lithic  technology.    

  20  

Reporting  In   the   process   of   writing  my   thesis   I   tried   to   answer   different   sub   questions   for   the   four  projectile   point   types   in   order   to   compare   the   results.   I   used  Google  Maps   to   gather   site  locations,  which  I  could  later  insert  into  a  map  (http://goo.gl/maps/EdWif).  I  was  allowed  to  use  one  of  Dr.  Stanford’s  (made  by  Marcia  Bakry)  images  of  the  American  continent  during  the  end  of  the  last  ice  age.  I  adjusted  this  map  working  with  Adobe  Illustrator  and  Photoshop  CS5.        A   general   knowledge  of   the   environments   of  Alaska   and   the  Great   Basin   in   present   times  was  gained  through  my  travels.  My  stay  on  Spitsbergen  in  2011  has  also  contributed  to  my  understanding   of   arctic   environments.   Other   information   comes   from   the   literature.   I  gathered   as  many   radiocarbon   dates   as   possible   for   all   the   discussed   sites.   This   data  was  then  put   into  the  computer  program  OxCal   (Bronk  Ramsay,  2009),  which   is  mainly  used  to  calibrate  dates.   I  do  not   intend  to  use  calibrated  radiocarbon  dates,  however,  the  program  also  provides  nice  graphs  to  insert  your  data  in.  I  did  this  for  all  four  point  types  and  later  I  made  a  graph  including  the  four  types  together  so  a  succession  can  become  more  visible.      In   order   to   substantiate   the   relationship   of   the   width   and   thickness   of   the   different  complexes  I  calculated  ratios  of  the  width/thickness  after  the  idea  of  Baker  (2009).  The  data  I  used  for  this  came  partly  from  my  own  observations  (Mesa/Sluiceway)  and  partly  from  the  literature   (Agate   Basin,   Haskett,   El   Jobo).   The   number   of   available   measured   specimens  differs   and   therefore   the   reliability   of   the   sample   varies   (Mesa:   22,   Sluiceway:   17,   Agate  Basin:  56,  Haskett:  11,  El  Jobo:  15).      I  analysed  some  of   the  projectile  points  myself.  However,   I  was  not  able  to  analyse  all   the  different   projectile   point   types,   I   did   not   have   access   to   El   Jobo   and   Haskett   points   in  quantities   that   would   have   provided   ground   for   statistical   comparisons.   Therefore   the  analysis   I   conducted   functioned   more   as   a   method   of   becoming   aware   of   differences  between   point   types   and   recognizing   these   differences.   Most   information   about   lithic  technology  of  the  four  types  is  available  in  the  literature.  Where  there  was  mention  of  raw  material  sources  in  the  literature  I  picked  up  on  it  and  inserted  the  information  in  a  map  that  could  ultimately  show  me  a  movement  pattern  from  source  to  site  location.      

3.  THICK-­‐BODIED  LANCEOLATE  PROJECTILE  POINT  TYPES  

Four   projectile   point   types   are   discussed   in   this   thesis:  Mesa   and   Sluiceway,   Agate   Basin,  Haskett  and  El  Jobo.  These  four  point  types  stand  out  among  the  other  projectile  point  types  of   the   Americas   because   they   are   all   lanceolate   shaped   and   have   relatively   thick   cross-­‐sections.  The  term  ‘projectile  point’   is  commonly  used,   it  generally  refers  to  a  point  that   is  attached   to   a   shaft   that   as   a   whole   is   referred   to   as   a   projectile.   A   projectile   can   be  interpreted   to   be   an   atlatl   dart,   arrow   or   a   spear.   The   thick-­‐bodied   projectile   points  discussed  here  might  have  been  hafted  onto  a  spear  or  functioned  as  atlatl  dart  points.  They  are  certainly   too  big   to  have  been  arrowheads  and  were  most  probably  hafted  onto  atlatl  darts  (throwing  spears).  Mesa  is  found  on  the  Northern  Brooks  Range  in  Arctic  Alaska  and  so  is   Sluiceway  which   virtually   the   same   as  Mesa   except   that   these   points   are  much   bigger.  Agate  Basin  points  are  found  on  the  Great  Plains.  Haskett  occurs  in  the  Northern  Great  basin  area  and  El  Jobo  is  found  in  Northern  Venezuela.      

3.1.  MESA  AND  SLUICEWAY  

The  Mesa  projectile  point,  which  is  of  main  interest  in  this  thesis,  was  named  after  the  place  where  it  was  first  recognized  as  a  projectile  point  type.  The  Mesa  site  was  first  discovered  by  Mike   Kunz   in   1978   and   is   located   on   a   mesa   at   the   North   Slope   of   the   Brooks   Range   in  Northern  Alaska,  USA  (5.1).  The  site  was  tested  in  1978-­‐1980  and  1989  excavated  from  1991  to  1999  (Kunz,  personal  communication,  2013).      

 FIGURE  4:  THE  MESA  RIGHT  OF  ITERIAK  CREEK  (VIEW  FROM  THE  SOUTH)  (PHOTO:  M.  ADMIRAAL)  

After  years  of  surveys  and  research  in  the  area  Kunz  recognized  that  the  Mesa  site  was  part  of  a   larger  complex  of   the  same   lithic   technology.  The  type-­‐site  Mesa  projectile  point  as   it  was  described  in  the  literature  (Kunz  et  al,  2003)  turned  out  to  be  the  product  of  extensive  resharpening   and   damaging   in   the   haft   during   use.   What   Kunz   now   views   as   true   Mesa  points   deviates   from   the   earlier   descriptions   in   the   literature.  On   the   basis   of   research   at  

  22  

various   Northern   Brooks   Range   sites   is   has   become   apparent   that   true   Mesa   projectile  points   are   relatively   long   and   thick   with   initially   straight   to   convex   bases   (Kunz,   personal  communication,  2012).  In  order  to  avoid  any  ambiguities:  the  above  mentioned  “true  Mesa  points”  are  the  Mesa  points  discussed   in   this   thesis,   they  are  described   in   further  detail   in  chapter  3.1.4.        Sluiceway  points  are  remarkably  similar  to  Mesa  points.  They  are  however  bigger,  wider  and  as   a   result   they   seem   to   be   thinner,   while   in   fact   they   are   as   thick   as   Mesa   points,   the  width/thickness  ratio   just  differs  slightly.  The  points  carry  the  name  of  the  site  where  they  were  first  recognized  as  a  type,  the  Irwin  Sluiceway  site,  investigated  by  Bob  Gal  and  Dennis  Stanford  in  1992,  1994  and  1998  (Kunz  et  al,  2003).  

3.1.1.  DISTRIBUTION  

Mesa   and   Sluiceway   points   are   almost   exclusively   found   along   the   northern   slope   of   the  east-­‐west   oriented   Brooks   Range.   Figure   5   shows   the   location   of   the  main   sites   in   Arctic  Alaska.  The  Mesa  type-­‐site  (fig.5:  1)  is  located  in  the  upper  Colville  River  drainage  system  on  top  of  a  small  plateau  with  steep  sides,  also  known  as  a  Mesa.  Almost  all  the  identified  Mesa  and   Sluiceway   sites   are   located   on   higher   ground:   hilltops,   bluffs,  mesas,   etc.   These   high  places  probably  functioned  as  observation  posts  to  spot  migratory  herds  of  animals.  The  tool  assemblages   found   on   these   high   locations   also   indicate   that   they   were   indeed   small  observation   sites   (chapter   3.1.5).   Both  Mesa   and   Sluiceway   sites   are   generally   associated  with  the  nearby  presence  of  water  such  as  streams  (Kunz,  2013;  Kunz  et  al,  2003;  Kunz  and  Reanier,  1995).              

 FIGURE   5:   DISTRIBUTION   OF   SIGNIFICANT   MESA-­‐   AND   SLUICEWAY   ARCHAEOLOGICAL   SITES                                              (NUMBERS  CORRESPOND  TO  TABLE  1)  

Many  surface  sites  containing  Mesa  or  Sluiceway  points  are  present  in  the  Northern  Brooks  Range   area.   It   is   striking   that  Mesa   and   Sluiceway,   although   very   similar   types,   are  hardly  ever   found   in   the   same   context.   The   Tupik   site  was   excavated   in   2004-­‐2006   and   2012   by  Kunz.  The  two  point  types  were  found  in  the  same  context  there.  However,  Kunz  did  not  find  

  23  

any  datable  materials   at   the   site  but  he   is   convinced   that   the   radiocarbon  dates   available  from  other  sites  (table  1)  provide  a  reliable  time  frame  for  both  the  Mesa  and  the  Sluiceway  complexes  and  thus  also  for  the  Tupik  site  though  the  use  of  typological  cross-­‐dating  (Kunz,  personal  communication,  2012).          In  the  East  of  the  Brooks  Range  the  density  of  Mesa  sites  is  higher  while  Sluiceway  is  more  confined  to  the  West  (Kunz,  2013;  Kunz  and  Baker,  2011;  Rasic,  2008)  (see  also  appendix  2-­‐3).  Up  to  now  at  least  20  Mesa  and  20  Sluiceway  sites  have  been  discovered  in  the  area  with  probably  more  still  undiscovered.  Teshekpuk  Lake  (6)  is  an  exception  that  is  located  near  the  coast  of   the  Beaufort   Sea,  and  Spein  Mountain   (10)   is   located   in  Southwestern  Alaska,   far  away  from  the  other  Mesa  sites.        The   occurrence   of   the  Mesa   and   Sluiceway   sites   confined   to   the   Northern   Brooks   Range  does   not   necessarily  mean   that   these   people   did   not   explore   other   parts   of   the   available  surrounding   landscape.   The   occurrence   of   a   few   pieces   of   obsidian   from   the   Batza   Tena  source  that  is  located  some  320  km  to  the  south  suggests  otherwise  but  could  also  indicate  contact  with  other,  more  southern,  groups  (Kunz  et  al,  2003).      TABLE  1:  MESA  AND  SLUICEWAY  SITES,  LOCATIONS  AND  14C  DATES  

     

3.1.2.  ENVIRONMENT  

The  Mesa  and  Sluiceway  complexes  are  confined  to  the  Arctic  area  of  Alaska  (fig.5),  an  area  that  was  uninhabited  before  the  arrival  of  people  manufacturing  Mesa  and  Sluiceway  points.  The   sites  occur  mostly   between   the   latitudes  of   68-­‐70°N.  At   these   latitudes   the   climate   is  characteristically  Arctic:  winters  are  cold  and  dark  while  summers  are  wet  and  cloudy  with  24   hours   of   sunshine.   Nowadays   temperatures   in   February   can   drop   to   -­‐38   °C.   Average  precipitation  is  31,8  cm,  half  of  which  comes  down  in  the  form  of  snow  that  remains  on  the  ground  for  eight  months  a  year.  For  the  length  of  two  months  the  sun  does  not  rise  above  the  horizon  and  twilight  and  darkness  prevail  the  windy  and  cold  tundra.  July  is  the  warmest  month  in  summer  with  a  mean  temperature  of  10-­‐12°C  though  it  can  get  much  warmer  on  some   days.   The   area   can   get   quite   moist   during   summer,   a   great   environment   for  mosquitoes   to   thrive   in.   Strong  winds   prevail   the   areas   of   scarce   topography   (Kunz   et   al,  2003).      

 FIGURE  6:  ARCTIC  FOOTHILLS  (PHOTO:  M.  ADMIRAAL)  

During   the   Late   Pleistocene   there   was   less   precipitation,   this   was   the   main   reason   why  Alaska  was  not  glaciated  during   the   last   ice  age.  As  a   result  of   this  dry  climate  the  surface  was  firmer  and  thus  fit  for  dryland,  grazing  species  such  as  bison,  horse  and  mammoth  but  also   for   human   travel   (Mann   et   al,   2013).   Because   of   the   decreased   presence   of   clouds,  more   sun   could   reach   the   sparsely   vegetated   surface   and   this   thickened   the   seasonally  thawed  layer  (active   layer)  on  top  of  the  permanently  frozen  ground  (permafrost)  (Kunz  et  al,  2003).      In  order  to  study  the  environment  of  the  Mesa  territory  one  must  be  aware  of  the  presence  of  two  major  distinctive  physiographic  regions.  Most  important  for  this  study  are  the  Arctic  Foothills  (fig.6):  the  North  Slope  of  the  Brook  Range.  North  of  the  Brooks  Range  permafrost  is  continuous  (>95%  of  the  area  contains  permafrost)  and  can  reach  depths  up  to  hundreds  of  meters.   The   area  was   last   glaciated   during   the   early   Pleistocene   and   remained   ice-­‐free  during  the  LGM.  Glaciers  terminated  at   the  northern  boundary  of   the  Brooks  Range,  some  

  25  

11  km  south  of  the  Mesa  type-­‐site.  Active   layer  thickness  varies  from  only  25  cm  in  poorly  drained  areas  to  one  meter  in  well  drained  areas  (Mann  et  al,  2013;  Mann  et  al,  2001).    

 FIGURE  7:  COASTAL  PLAIN  (PHOTO:  M.  ADMIRAAL)  

The   Mesa   area   in   the   foothills   can   nowadays   be   described   as   a   ‘moist   acidic   tundra’  environment.  This  tundra  covers  the  entire  North  Slope  and   is  underlain  by  a  thick  organic  layer   that   was   formed   after   the   LGM.   In   summer   the   area   becomes  waterlogged,   among  other   reasons   due   to   the   presence   of   permafrost   that   prevents   drainage.   Thick   organic  layers   and   absorbing   vegetation   such   as   sphagnum   species   also   contributes   to   the  waterlogging.  The  vegetation  is  nowadays  dominated  by  dwarf  shrubs  (Betula  nana,  Ledum  palustre,  Salix  planifoila  pluchra),  Tussock  sedges  (Eriophorum  vaginatum),  and  Acidophilous  mosses   (Sphagnum)   (Mann  et  al,  2001)   (p.120-­‐121)  and   is  difficult   to  walk  on.  The  Coastal  Plain   (fig.7)   reaches   from  the  Chukchi  and  Bering  seas  to  the  Arctic  Foothills.  The  region   is  very  different   from   the  Arctic   Foothills.  At   first   sight   the  change   in,  or   lack  of,   topography  stands   out.   The   Coastal   Plain   is   a   large   flat   area   nowadays   covered   by   thousands   of  thermokarst  lakes,  sandy  river  channels  and  deltas.  During  the  LGM  the  Ikpikpuk  sand  dunes  formed  a  12.000  km2  sand  sea.  Nowadays,  the  vegetation  is  a  moist,  non-­‐acidic  tundra  and  is  dominated   by   non-­‐tussock   sedge,   prostrate   shrubs   and   minerothrophic   mosses  characteristic  of  a  circumpolar  vegetation  (Mann  et  al,  2001).          An   event   that   had   a   tremendous   influence   on   changes   in   climate   during   the   end   of   the  Pleistocene   is   the   flooding   of   the   Bering   Land   Bridge.   With   the   Bering   Land   Bridge   in  existence  the  entity  of  Beringia  (the  landmass  that  ranged  from  the  Yenisei  in  Siberia  to  the  Mackenzie   river   in   Canada)   experienced   a   continental   climate.  Winters   were   a   bit   colder  than   at   present   but   summers   were   sunny   and   warm.   The   inundation   of   the   land   bridge  introduced  more  maritime  influences  to  the  area  and  had  significant  impacts  on  climate  and  vegetation  (Kunz  et  al,  2003;  Mann  et  al,  2013).            During   the   Younger   Dryas   glacial   conditions   returned   after   a   brief   period   of   post-­‐glacial  warming.   The   vegetation   was   dominated   by   grasses   and   forbs   and   the   dry   environment  

  26  

provided  a  more  stable  surface  (Mann  et  al,  2013).  Kokorowski  et  al  (2008)  have  reviewed  published  pollen  data  from  Beringia.  In  Northern  Alaska  there  are  two  records  that  indicate  a   climatic   cooling   and   dryer   period   during   the   Younger   Dryas.   In   the   Arctic   Foothills   this  cooling  is  recorded  between  10.900  and  10.200  14C  BP.  As  a  result  Populus  and  Poplar  pollen  disappear   from   the   record   for   a   while.   After   10.000   14C   BP   the   climate   warms   again   and  precipitation   increases.   Cooling   is   also   recorded   in   the   northwestern   part   of   the   Arctic  Foothills.   Further   inland   the   climate   seems   to   be   warmer   and  moister   (Kokorowski   et   al,  2008;  Yesner,  2001).  The  end  of  the  Younger  Dryas  (10.000  –  9.700  14C  BP)  initiated  a  global  warming.  As  a  result  the  area  was  subject  to  extensive  solifluction.  Thickening  active  layers  probably  caused  landslides  and  increased  thermokarst  activity.  With  the  end  of  the  Younger  Dryas   tussock-­‐tundra   replaced   the   grass-­‐rich  Mammoth-­‐steppe   and   species   such   as   horse  and  bison  vanished  from  the  archaeological  record  and  with  them  disappears  the  presence  of  humans  in  this  part  of  the  Alaskan  Arctic  (Kunz  et  al,  2003;  Mann  et  al,  2010).      Wildlife  reacted  to  these  climatic  changes.  The  Mesa  and  Sluiceway  complexes  have  yielded  little  to  no  animal  remains,  just  a  few  bison  and  sheep  teeth  as  well  as  a  caribou  association  (Hedman  and  Rasic,  unpublished  data  mentioned  in:  (Mann  et  al,  2013)).  Therefore  we  can  only  make  an  educated  guess  which  animal  species  these  people  hunted.  Mann  et  al  (2013)  have   shown   the   distribution   of   megafauna   species   during   the   late   Pleistocene   in   the  Northern   Brooks   Range.  Most   numerous   was   horse   with   6.7   individuals   per   km2,   next   to  horse  came  bison  with  3.7  individuals/km2.  Caribou  was  at  least  as  numerous  as  the  species  is   today   (2.6   individuals/km2).   Muskox   was   less   numerous   as   was   mammoth   before   it  vanished   from   the   archaeological   record   at   approximately   11.800   14C  BP.  Horse   and  bison  seem   to   be   the   most   likely   prey   for   the  Mesa   Paleoindians   because   of   their   abundance.  Bison   priscus  was   the   bison   species   present   in   Alaska   during   the   LGM.   At   the   end   of   the  Pleistocene  Bison  antiquus  from  the  Great  Plains  is  found  to  have  migrated  northward  as  the  presence  of  both  species  at  the  Charlie  Lake  Cave  site  in  the  ice-­‐free  corridor  shows  (Driver  and  Vallières,  2008)  (Kunz,  personal  communication,  2013).  A  proposed  difference  between  the  bison  from  the  Plains  and  the  bison  in  Alaska  is  their  manner  of  foraging  and  migration.  On  the  Great  Plains  bison  migrate  along  with  the  green  wave  of  spring.  In  Alaska  this  green  wave   is   influenced  by   topography   and  not   so  much  by   a   south   to   north   ‘green  up’.   Bison  could   have   foraged   in   small   geographical   areas   benefiting   from   the   fresh   greens   on   the  south  side  of  hills  and  later  on  in  the  season  the  green  would  spread  (Kunz  et  al,  2003).    During   the   last   ice   age   the   overall   biomass  was  much   greater   than   at   present.   Carnivores  such  as  lions,  short-­‐faced  bears,  wolves  and  grizzly  bears  were  present  along  with  the  above-­‐mentioned   herbivores.   Many   of   these   species   became   extinct   during   the   end   of   the  Pleistocene.   Life  became  more  difficult   for   the   species   that  depend  on  a  dry   environment  with  short  grass  vegetation  during  the  end  of  the  ice  age.  As  conditions  became  wetter  their  habitat  shifted  and  they  disappear  from  the  scene  (Mann  et  al,  2013).          

3.1.3.  DATING  

The  Mesa   type-­‐site  was  extensively  dated  by  AMS  as  well   as   standard   radiometric   assays.  The   first   standard  date  contained  a   laboratory  error  and   later  standard  dates  were  run  on  the   same  material   that  was   AMS   dated.   These   standard   dates  were   inconsistent  with   the  AMS  dates  and  thus   it  was  decided  to  discard  the  standard  dates.  The  site  yielded  44  AMS  dates  from  28  of  the  40  hearth  features.      

 FIGURE   8:   CALIBRATION   CURVE   FOR   THE   AMS   DATES   OF   THE  MESA   TYPE-­‐SITE.   AS   THE   CALIBRATED  DATA  IS  NOT  USED  IN  THIS  THESIS  PLEASE  PAY  ATTENTION  TO  THE  RADIOCARBON  DETERMINATIONS  ON  THE  Y-­‐AXIS  OF  THE  GRAPH  (BRONK  RAMSAY,  2009)  

The  dates  show  two  clusters,  the  major  cluster  ranges  from  10.300  to  9.700  14C  BP.  Figure  8  shows   the   Mesa   type-­‐site   radiocarbon   dates   in   a   calibration   curve   made   in   the   OxCal  program  v4  (Bronk  Ramsay,  2012).  The  major  cluster  of  dates   is  clearly  visible   in  the   lower  part  of  the  curve.  It  also  becomes  very  apparent  that  there  are  two  obvious  outliers  among  the  dates.    These  two  dates,  11.660  ±  80  14C  BP  and  11.190  ±  70  14C  BP  are  much  older  than  the  other  Mesa  dates.  According  to  Kunz  (2003);  (personal  communication,  2013)  these  dates  cannot  be   rejected.   Explanations   given   for   the   old   dates   are   contamination   by   old   carbon.  Freeze/thaw  movements   of   the   active   layer   could   have   induced   the   introduction   of   older  

  28  

carbon  to  the  surface.  Kunz  et  al  (2003)  reports  that  there  was  a  frost  crack  near  the  hearth  where  these  dates  came  from,  this  enhances  the  chances  of  contamination.      It  has  been  suggested  that  the  inhabitants  of  the  region  used  old  wood  to  burn.  However,  as  Kunz  and  Reanier  (1995)  have  argued,  it  seems  unlikely  that  old  wood  would  have  survived  on  the  surface  for  a  thousand  years.  Old  wood  can  be  preserved  in  Arctic  climates  because  of  a   lack  of  bacterial  activity.  However,  the  degree  of  moisture   in  the  area  during  the  time  might   have  made   preservation   less   likely,   especially  when   considering   the  warmer   period  preceding   the  Younger  Dryas   (Kunz   et  al,   2003).  Additionally,  permafrost   is  not  present  at  the   Mesa.   Just   the   active   layer   freezes   and   thaws   seasonally.   This   greatly   decreases   the  chances  of  the  preservation  of  old  wood  at  the  site  (Kunz,  2013).  Aditionally,  sites  in  this  part  of  Alaska  are  located  close  to  the  surface,  which  also  prevents  preservation.      The  Sluiceway  site  ‘Tuluaq  Hill’  has  also  been  dated  to  11.200  14C  BP  (Rasic,  2008).  The  dates  come  from  Stratum  II,  in  this  stratum  three  Sluiceway  projectile  points  were  found  while  the  majority   of   cultural   material   (including   Sluiceway   points)   comes   from   Stratum   IV,   much  closer   to   the   surface   and   above   a   7950±40   14C   BP   date.   Rasic,   (2008)   argues   that   the  artefacts   were   redistributed   due   to   the   process   of   frost-­‐heaving.   However,   freeze-­‐thaw  movements  might  redistribute  artefacts  in  various  directions  (French,  2007).  The  Tuluaq  Hill  date  remains  an  exception  to  a  clear  timeframe  of  around  10.500  14C  BP  of  both  Mesa  and  Sluiceway.   It   is   clear   that   the   major   cluster   of   Mesa   dates   falls   within   the   timeframe   of  10.300  –  9.700  14C  BP.    

3.1.4.  LITHIC  TECHNOLOGY  

Projectile  points  dominate  the  lithic  assemblages  of  the  Mesa  and  Sluiceway  complex  (fig.9).  Projectile   points   were   manufactured   through   bifacial   reduction,   that   is,   worked   on   both  sides  to  shape  a  projectile  point.  Kunz  et  al  (2003,  p.27)  defined  bifacial  tools  as  following:  “pieces   which   are   wider   than   they   are   thick   and   have   two   readily   recognizable   flaked  surfaces”.   Mesa   points   were   probably   hafted   onto   atlatl   darts   while   the   much   bigger  Sluiceway  points  were  probably  hafted  on  thrusting  spears  (Kunz,  personal  communication,  2012).              

The  Mesa  site  yielded  154  complete  and  broken  Mesa  projectile  points.  As  was  mentioned  before,  these  points  were  slightly  different  from  what  later  was  characterized  as  ‘true’  Mesa  points   by   Kunz.   Figure   10   shows   the   Mesa   type-­‐site   points.   Points   are   characterized   as  finished  when  there  is  evidence  of  collateral  flaking,  base  shaping,  tip  shaping,  edge  grinding  

FIGURE  9:  MESA  PROJECTILE  POINT  (LEFT)  AND  SLUICEWAY  BASE  FRAGMENT  (PHOTO:  M.  ADMIRAAL)  

  30  

and  edge  retouch.  Edge  retouch  is  visible  on  most  of  the  Mesa  points  and  can  be  described  as  small  pressure  flakes  all  around  the  point  to  straighten  and  even  the  outline  (Kunz  et  al,  2003).    Final  shaping  is  done  using  pressure  flaking.    

 FIGURE  10:  MESA  TYPE-­‐SITE  POINTS  (KUNZ  ET  AL,  2003:  P.  28)  

After  more  Mesa  complex  sites  had  been  discovered  in  the  area  it  became  apparent  that  the  Mesa  type-­‐site  points  were  the  product  of  extensive  resharpening  and  damaging.  True  Mesa  points  are  larger  (Kunz,  personal  communication,  2012).  True  Mesa  points  are  lanceolate  in  form.  The  cross-­‐section  is  usually  diamond  shaped  as   is  shown  in  figure  10,  sometimes  the  cross-­‐section  can  also  be  lenticular  (more  rounded).  Sluiceway  points  are  lenticular  in  cross-­‐section.  The  points  shown  in  figure  10  show  concave  bases,  these  bases  have  been  regarded  as   typical   for   the  Mesa  complex.  However,  upon  further   investigation  other  kinds  of  bases  were   discovered   to   be   common   (convex   to   straight).   Upon   further   investigation   of   the  concave  Mesa  bases   it  was   found   that  many   showed   signs  of  damaging.  Kunz   suggest   the  bases  might  have  been  damaged  during  use  and  got  their  concave  form  as  a  result  of  that  

  31  

damage  (Kunz,  2013).  After  examining  the  bases  of  a  selection  of  140  Mesa  and  Sluiceway  points   more   closely   I   also   concluded   that   many   bases   are   indeed   damaged:   of   the   66  examined  Mesa   specimens   that  were  basally   complete,   41   specimens  were   clearly   basally  damaged   (see   table   2).   I   examined   only   seven   Sluiceway   points   with   complete   bases.   Of  these  seven  bases  one  was  damaged  but  remained  convex  as  were  the  intact  bases.  This  lack  of  damage  may  be  the  result  of  the  more  robust  character  of  the  Sluiceway  points.  Another  possibility  is  that  Sluiceway  points  were  hafted  in  a  different  manner  than  Mesa  points.  This  suggestion   is   strengthened   by   the   idea   that   Sluiceway   and   Mesa   points   were   used   for  different  purposes  (spears  and  atlatl  darts).    On  the  Mesa  points  there  is  hardly  any  evidence  of   intentional   flaking   scars.   Most   of   the   bases   show   numerous   tiny   step-­‐fractures,   these  scars  that  end  abruptly  might  have  been  the  result  of  pressure  within  the  haft  (fig.11).  Could  it   be  possible   that   damaging  within   the  haft   transformed  a   straight   or   convex  base   into   a  concave  base?  Not  all  concave  bases  are  the  result  of  damaging  although  the  majority  (61%)  is.  This  indicates  that  Mesa  has  a  wide  variety  of  bases,  from  concave  to  convex.  Most  of  the  convex  bases  that  show  damage  are  not  as  extensively  damaged  as  the  concave  specimens  are.  Experimental  studies  shed  more   light  on  the  origin  of   the  damage  to   the  Mesa  bases.  Stanford  (personal  communication,  2013)  believes  that  it  is  not  possible  for  a  convex  base  to  transform  into  a  concave  shape  as  clearly  as  is  displayed  on  figure  10.    TABLE  2:  BASAL  CONDITIONS  FOR  66  EXAMINED  MESA  PROJECTILE  POINTS  

Base  condition   nr.   %   of  which  Convex   of  which  Concave   of  which  Straight  

Damaged   41   62%   8  (19,5%)   25  (61%)   8  (19,5%)  Intact   15   23%   9  (60%)   4  (27%)   2  (13%)  Indet   10   15%   3  (30%)   4  (40%)   3  (30%)  Total:   66   100      

 FIGURE  11:  DAMAGED  MESA  BASE  FROM  THE  TUPIK  SITE  (PHOTO:  M.  ADMIRAAL)  

  32  

Most  of  the  Mesa  and  Sluiceway  points  are  made  of  grey  or  black  chert  from  local  sources.  Although  scarce,  obsidian  has  been   found  at   the  Mesa  site   that  can  be   traced  back   to   the  Batza  Tena  source  some  320  km  further  south,  the  only  obsidian  source  in  Alaska  (Houlette  et   al).   Colourful   chert   is   rare   but   a   few   specimens   are   present:   orange,   red,   yellow   and  white.  The  quality  of  the  local  chert  is  reasonable  while  it  shows  some  inclusions.  Grain  size  varies  from  relatively  fine  to  coarse.      

 FIGURE   12:   MESA   WIDTH/THICKNESS   RATIO'S   (DATA   WAS   COLLECTED   BY   THE   AUTHOR   FROM   A  SELECTION   OF   MESA   PROJECTILE   POINTS   FROM   VARIOUS   SITES,   ALL   SPECIMENS   WERE   COMPLETE  AND  MEASURED  AT  THE  WIDEST  PART  OF  THE  POINT)  

Mesa  projectile  points  are  relatively  thick  in  comparison  to  their  width.  The  average  ratio  of  the   22   complete  Mesa   projectile   points   that  were  measured   is   2.7.   Baker,   (2009)  made   a  division  between  thick-­‐bodied  and  thin-­‐bodied  points.  He  suggests  that  thick-­‐bodied  points  have  a  width/thickness  ratio  between  1  and  3  and  thin-­‐bodied  points  have  a  ratio  of  at  least  4  and  greater.  The  Mesa  type  falls  mostly   in   the  thick-­‐bodied  category,  however  there  are  some  specimens  that  have  greater  ratios  than  3,  although  I  did  not  find  any  specimens  that  were   greater   than   3.8.   Baker   (2009)   describes   ratios   between   3   and   4   as   a   grey   area.  Average   measurements   of   Mesa   points   are:   63x25x9   (length   x   width   x   thickness   in  millimetres).          The  first  stage  of  projectile  point  manufacture  was  the  reduction  of  a  cobble,  core  or  large  flake  using  direct,  hard  percussion  flaking  to  obtain  a  biface  that  could  then  be  shaped  into  a  projectile   point.   The   next   flaking   sequence   was   done   by   soft   hammer   percussion.   The  shaping   of   the   projectile   point  was   done   by   a   very   robust   kind   of   pressure   flaking   that   in  some   cases   can   be  mistaken   for   percussion   flaking.   Large   flakes   are   removed   by   pressure  flaking  leaving  a  defined  ridge  in  the  middle  of  the  point  where  the  flake  scars  meet  (Kunz,  2013).   These   flake   scars   are   usually   collateral   but   sometimes   approach   a   parallel   pattern  (fig.1).  Because  of  the  multiple  reduction  sequences  evidence  of  the  earlier  reduction  stages  is  often  hard  to  find.  However,  sometimes  remnants  of  the  flaking  scars  of  earlier  reduction  sequences   are   still   visible.   This   indicates   only   one   or   perhaps   two   finishing   sequences   of  

  33  

pressure  flaking  (Rasic,  2008;  Rasic,  2011).  This  problem  can  also  be  solved  by  employment  of  the  lengthy  process  of  refitting.    The  stem  (the  lower  half  of  the  point)  edges  are  heavily  ground,  which  leaves  them  smooth  and  fit  for  hafting.  Some  points  of  the  Mesa  type-­‐site  lacked  edge  grinding  but  showed  use  wear.   This   indicates   that   these   specimens   were   used   even   though   they   were   not   edge  ground,  or  it  might  indicate  that  these  points  were  used  for  another  purpose,  perhaps  as  a  unhafted   knife   since   edge   grinding   seems   to   be   related   to   the   hafting   of   tools   (Kunz,  personal  communication,  2012).      This  complicates  things  when  it  comes  to  the  question  of  the  bases.  Most  of  the  specimens  show  edge  grinding  which  could  indicate  that  they  are  finished.  The  damage  to  the  bases  has  likely   occurred   after   the   points   were   finished,   perhaps   during   use   (Kunz,   personal  communication,   2012).   When   we   accept   that   the   Mesa   bases   were   damaged   in   some  manner   during   use   we  might   say   that   the  majority   of  Mesa   bases   were   not   concave   but  straight  or  even  convex  in  form.  There  are  a  few  examples  of  straight  or  convex  bases  in  the  Mesa  material.   These  bases   show   little,  or  no  damage  at   all.  Another   interesting  aspect   is  that  75%  of  the  Mesa  type-­‐site  projectile  points  were  reworked  while  in  the  haft,   leaving  a  small  but  distinct  shoulder  that  formed  due  to  this  process  (Kunz  et  al,  2003).  These  points  would   not   have   been   reworked   if   they   had   not   been   finished,   hafted,   used   and   damaged  during  those  processes.      The   points   were   probably   hafted   in   a   foreshaft  made   out   of   antler,   bone,   ivory   or   (most  unlikely)  wood.  The  wood  that  was  available  for  use  was  willow  and  to  a  lesser  extent  poplar  (cottonwood).  These  woods  would  not  have  been  strong  enough  to  be  used  as  a  foreshaft,  they   would   however   function   fine   as   atlatl   dart   shafts   (Kunz,   personal   communication,  2013).   The   foreshaft   would   then   have   been   attached   to   a   atlatl   dart-­‐   or   spear   shaft.   The  hardness  of   the   foreshaft   could  have  damaged   the  bases  of   the  points.  There   is  abundant  evidence  for  hafting  on  the  projectile  points.  Analyses  were  done  looking  for  use-­‐wear  and  residues   and   these   were   identified.   Possible   traces   of   mastic   (a   binding   material   such   as  resin)  were  found  that  might  have  functioned  to   fix   the  projectile  point   into  the  foreshaft.  Edge   grinding   aided   in   hafting   because   it   removed   sharp   extensions   that   might   cause  breakage  of  either  the  sinew,  the  point  or  the  haft  and  moreover  it  made  the  point  fit  better  into  the  foreshaft.  At  least  one  third  to  half  of  the  proximal  part  of  the  point  was  hafted.  This  is   the   area   where   residues   and   use   wear   typical   of   hafting   were   discovered   (Kunz   et   al,  2003).    

3.1.5.  ASSOCIATED  LITHIC  ASSEMBLAGES  

Besides   finished  projectile  points   the  Mesa   complex   sites   also   yield   large  bifaces,  unifacial  tools  such  as  scrapers  and  gravers  as  well  as  a  few  flake  burins  and  many  retouched  flakes.  Especially   the   gravers   seem   to   have   been   an   important   implement   of   Mesa   sites.   It   has  become  apparent  that  Mesa  projectile  points  are  often  found  together  with  gravers  (Kunz,  personal   communication,   2012).   The   gravers   (fig.13)   are   flakes  with   a   delicate,   retouched  spur  used  for  incising,  scribing,  drilling/boring  and/or  perforating.  There  were  70  specimens  found  at  the  Mesa  type-­‐site,  some  of  which  might  have  been  hafted.  These  must  have  been  important   tools   to  the  Mesa  people.   It  has  been  suggested  that   the  gravers  were  used  for  the  repair  of  hunting  equipment  but  also  for  making  grooves  in  shafts,  which  was  necessary  to  insert  feathers  into  the  atlatl  darts.  Another  use  of  gravers  could  be  the  untying  of  knots,  the   tools  were  possibly  used   for   repairing  hafted  projectile  points   (Kunz,  2013;  Kunz   et  al,  2003).      

 FIGURE  13:  GRAVERS  FROM  THE  MESA  TYPE-­‐SITE  (PHOTO:  WWW.LITHICCASTINGLAB.COM)  

Another  tool  type  that  was  found  at  the  Mesa  type-­‐site  were  scrapers.  These  scrapers  were  quite   large.   Scrapers   are   used   for   the   cleaning   of   hides   but   also   to   scrape   bone   or  wood  (Beuker,  2010).   It  seems  that  the  blanks  used  to  transform  into  scrapers  were  purposefully  produced   and   well   made.   Most   scrapers   were   symmetrical   and   ovate,   some   were   even  bifacially  worked.  Other  than  scrapers  and  gravers  a  few  flake  burins  were  found  and  many  retouched  flakes  useful  for  various  purposes  (Kunz  et  al,  2003).      

3.1.6.  SITE  CHARACTERISTICS  AND  INFERRED  ACTIVITIES  

The  typical  location  of  the  Mesa  complex  sites  is  an  indicator  of  the  function  of  these  sites.  The  sites  occur  on  high  places  with  wide  views,  that  is:  hilltops,  mesa’s,  bluffs  or  ridges.  It  is  proposed  that  these  places  functioned  as  observation  spots  to  scout  for  migratory  herds  of  animals.   The  Mesa   type-­‐site  offers  a  360°   view   that  allows  one   to   see  up   to  65  km   in   the  distance,  the  same  widespread  view  is  experienced  at  the  Spein  Mountain  site  and  others.    While   the  hunters  were  game-­‐spotting   they  probably  passed  the  time  repairing   their   tools  while   sitting  around  a   fire   to  keep  warm.  The  areas  of  activity  at   the  Mesa   type-­‐site  were  relatively   small  and  usually   included  a  hearth  as  a  central  point.  These  small  activity  areas  together   form   larger   use   areas.   40   hearths  were  discovered  on   the  mesa.   The  mesa   itself  yielded  four  of  these   larger  use  areas  of  which  one  provided  a   little  more  shelter  from  the  wind  but  less  wide  views  of  the  surroundings  (locality  Saddle)  (Kunz  et  al,  2003).  The  same  goes  for  the  Spein  Mountain  site  where  there  are  presumably  three  observation  areas  and  one   temporary   campsite.   The   number   of   bases   at   the   Spein   Mountain   site   clearly  outnumbers  the  point  tips,   indicating  that  the  hunters  returned  to  this  spot  to  repair  their  hunting  kit  after  a  hunt  (Ackerman,  2001).      The  analysis  of  the  lithic  materials  of  the  site  clearly  shows  that  the  main  activity  was  that  of  the  manufacture  and  repair  of  bifaces  and/or  projectile  points.  Many  flakes  were  found  at  the  Mesa  type-­‐site  and  most  of  these  have  been  determined  to  be  the  by-­‐product  of  bifacial  reduction   processes.  Moreover   the   presence   of   other   types   of   tools  was   scarce,  with   the  exclusion  of  the  70  gravers  that  were  found  at  the  Mesa  site.  These  tools  might  have  been  necessary  for  the  manufacture  and  repair  of  hunting  equipment  (Kunz  et  al,  2003).        The   low  number  of   scrapers  at   the  Mesa   type-­‐site   indicates   that   the  working  of  hides  and  bones  occurred  elsewhere.  Scrapers  are  usually  found  in  large  numbers  in  prehistoric    camp  sites.   No   base   camp   of   the  Mesa   complex   has   been   found   yet.   It   does   seem   plausible   to  assume  that  there  might  have  been  a  camp  close  to  the  mesa  at  lower  elevation  near  Iteriak  Creek.  The  area  around   the  creek  would  have  provided   fuel   and  construction  materials  as  well   as   fresh  water   and   shelter   from   the  harsh  winds.   Sites   that  were   located  near  water  might  very  well  have  been  destroyed  by  the  changing  path  of  the  creeks  and  rivers  (fig.  4).      

  36  

3.1.7.  MESA  AND  SLUICEWAY:  THE  DIFFERENCES  

The  Mesa  and  Sluiceway  projectile  points  are  essentially  the  same.  The  major  difference   is  that   Sluiceway  points   are   larger   than  Mesa  points.   A   Sluiceway  point   from   the  Utukok   35  sites   measures:   110x37x11   mm   while   the   average   measurements   for   Mesa   points   are  63x25x9  mm.  As  a  result  the  cross  section  also  differs.  While  both  point  types  have  largely  the   same   thickness,   Sluiceway   points   are   broader   than  Mesa   points.   Because   of   this   the  shape   of   the   cross   section   in   Sluiceway   points   is   more   lenticular   (more   stretched)   than  diamond  shaped,  as  is  the  case  with  Mesa  points  (Kunz,  personal  communication,  2012).  The  width/thickness   ratios   of  Mesa   and   Sluiceway   differs   slightly.   Sluiceway   is   tending   to   the  right  of   the  graph  (fig.14)  while  Mesa  tends  more  to  the   left.  This  means  that  Sluiceway   is  slightly  thinner  in  comparison  to  its  width  than  Mesa.  The  average  width/thickness  ratio  of  Mesa   is  2.7  while  the  average  of  Sluiceway   is  3.5.  The   lithic   technology  differs  slightly   too.  Mesa  points  are   finished  by  only  one  or  perhaps   two  sequences  of  pressure   flaking,  often  leaving  behind  the  remnant  scars  of  percussion  flaking  of  the  shaping  sequences.  Sluiceway  points  on  the  other  hand  do  not  show  any  remnant  scars  of  this  shaping  stage.  This  indicates  that   Sluiceway  points  were   finished  with  multiple   sequences   of   pressure   flaking.   This   also  accounts   for   the   regularity   that   these   points   show   and   might   have   further   reduced   the  thickness  (Rasic,  2008;  2011).      

 FIGURE   14:   MESA   (22   SPECIMENS)   AND   SLUICEWAY   (17   SPECIMENS)   WIDTH/THICKNESS   RATIO'S  (DATA  WAS  COLLECTED   FROM  A   SELECTION  OF   POINTS   FROM  THE  COLLECTION  OF   THE  BLM,   SOME  SLUICEWAY  SPECIMENS  WERE  DAMAGED)  

It  has  been  suggested  that  Mesa  points  might  have  been  reshaped  Sluiceway  points  (Rasic,  personal   communication,   2012).   However,   Rasic   (personal   communication,   2012)   argues  that   this   is   not   a   possibility.   Reshaping   of   a   Sluiceway   point   would   not   leave   remnant  percussion  scars.  I  would  like  to  argue  that  it  still  might  be  a  possibility  if  reshaping  was  done  with  percussion   flaking.  However,   I   acknowledge   that   the  difference   in   thickness  between  Mesa  and  Sluiceway  is  so  small  that  it  seems  unlikely  that  the  thickness  of  the  points  hardly  

  37  

changed   after   a   sequence   of   percussion   flaking   and   a   sequence   of   pressure   flaking.  Additionally,  remnant  scars  of  the  pressure  flaking  would  remain  visible  if  the  point  was  not  extensively  reworked  with  multiple  sequences  of  percussion  flaking,  reducing  the  thickness  of   the  point  dramatically.  Additionally,   the  occurrence  of  Sluiceway  and  Mesa  at   the  same  site  is  rare.      If  one  can  attribute  a   function  to  a  point  type  by   looking  at  the  size  and  sturdiness  then   it  can  be  concluded  that  Mesa  and  Sluiceway  points  were  used  for  different  purposes.  Perhaps  Mesa  points  were  used  on  atlatl  darts  (throwing  spears)  and  Sluiceway  points  were  used  on  thrusting  spears  (Kunz  et  al,  2003).  This  is  mainly  based  on  the  difference  in  size.  However,  Ackerman   (2001)   argues   that   the   Mesa   points   of   Spein   Mountain   with   their   “…narrow,  lanceolate   form   and   sturdy   diamond-­‐shaped   cross   sections…”   indicate   the   use   on   heavy  thrusting  spears  and  not  light  throwing  spears.  Use  of  thrusting  spears  would  however  only  have  been  efficient  for  finishing  off  an  already  wounded  animal.  Otherwise  the  hunter  would  have  had  to  approach  the  animals  closely  and  chances  of  failure  would  be  bigger  then  when  using   an   atlatl   dart.   Both   point   types   show   hafting   damage,   though   Mesa   more   than  Sluiceway.   The   difference   in   size   also   suggests   a   different   hafting   method.   It   seems   that  Sluiceway  points  are  too  big  and  have  too  wide  cross-­‐sections  of   the  base  (35x11)  to  have  been  hafted  in  a  socketed  shaft.  Possibly  Sluiceway  was  hafted  in  split-­‐shaft  hafts.  This  might  also   explain   the   lack   of   gravers   in   the   Sluiceway   complex.   If   gravers   were   used   to   make  grooves   for   the   insertion   of   feathers   and   to   untie   knots   these   actions   might   have   been  restricted  to  Mesa  projectile  manufacture  (Kunz,  2013).        It   is   interesting  that  Mesa  and  Sluiceway  points  have  rarely  ever  been  found  together.  This  also   indicates  a  difference   in  use  of   the  points,  possibly  a  different  prey  species.  However,  when   looking   at   the   site   distribution  map   (fig.5)   it   is   evident   that  Mesa   complex   is  more  confined  to  the  east  while  the  Sluiceway  complex  clusters  in  the  Western  Brooks  Range.  In  the  western  third  of  the  Brooks  Range  the  geomorphology  permits  easier  travel  on  foot  than  elsewhere  in  the  Brooks  Range.  Kunz  (2013)  suggests  that  the  Western  Brooks  Range  might  have   been   a   different   zone   of   exploitation   than   the   east   and   that   it   required   a   different  toolkit.    

3.2.  AGATE  BASIN  

 The  Agate  Basin  projectile  point  was  named  after   its  type-­‐site,   the  Agate  Basin  site  (fig.15,  nr.  1  on  figure  16)   in  Moss  Agate  Arroyo   in  Eastern  Wyoming,  USA.  Agate  Basin  points  are  found  on  the  northern  part  of  Americas  Great  Plains.  The  Agate  Basin  site  was  discovered  by  William   Spencer   and   was   first   excavated   by   Frank   H.H.   Roberts   in   1959   and   later   years.  During   the   end   of   the   1970s   the   site   was   more   thoroughly   studied   by   George   C.   Frison  (Frison,  1978;  Frison  and  Stanford,  1982;  Shelley,  1983).      

 FIGURE  15:  THE  AGATE  BASIN  SITE  AREA  (ARROW  INDICATES  SITE  LOCATION)  (FRISON,  1978  P.151)  

Another  important  Agate  Basin  site  is  the  Hell  Gap  site  that  has  been  of  great  importance  to  the  development  of  a  projectile  point  chronology  on  the  High  Plains.  The  site  showed  a  clear  and   undisturbed   stratigraphy   and   contained   several   types   of   projectile   points   in  chronological  order.  Before  the  era  of  radiocarbon  dating  the  main  method  of  establishing  the   age   of   an   archaeological   cultural   level   was   Geoarchaeology,   based   on   stratigraphic  evidence.  The  best  example  of  this   is  the  Folsom  site  where   it  was  first  demonstrated  that  humans  had  been   in   the  Americas   since   the   late   Pleistocene  by   linking   the   archaeological  artefacts  to  the  remains  of  extinct  bison  (Holliday,  2000).        

3.2.1.  DISTRIBUTION  

Agate  Basin  points  as  defined  by  Roberts  (Roberts,  1943)  are  largely  confined  to  the  North-­‐western   Great   Plains.   The   main   Agate   Basin   sites   are   found   in   the   state   of   Wyoming.  However,  Agate  Basin  points  have  been   reported   found   from  New  Mexico   in   the  south  all  the  way  to  the  Grant  Lake  region  in  Canadian  Artic.    The  occurrence  of  Agate  Basin  has  also  been   reported   in   the   Eastern   states   of   Ontario,   Minnesota,   Wisconsin,   Illinois,   Indiana,  Missouri  and  Ohio  (Justice,  1987).  Overall  surface  finds  are  rare.  The  main  Agate  Basin  sites  are  the  Agate  Basin  type-­‐site  (including  the  Brewster  site,  which  was  later  acknowledged  to  be   part   of   the   Agate   Basin   site),   the   Hell   Gap   site,   the   Carter/Kerr-­‐McGee   site,   all   in  Wyoming,   the  Frazier   site   in  Colorado,   the  Blackwater  Draw   site   (the  Clovis   type-­‐site)   and  the  Kendall  site  in  New  Mexico  (Stanford,  1999).    The   Agate   Basin   type-­‐site   is   located   on   a,   usually   dry,   tributary   of   the   Cheyenne   River   in  Eastern  Wyoming.   Close   to   the  Black  Hills   (Frison,   1978).   The   geomorphological   setting   of  Agate  Basin  sites  in  the  landscape  indicate  the  use  of  topographical  features  for  the  hunt  of  large  animals.  Most  of  the  Agate  Basin  sites  are  kill/butchering  sites  that  are  located  at  the  head  of   topographic   depressions   such   as   an   arroyo   (a   deep  but   dry   gully).   These   types   of  landform   can   function   as   a   trap   to   chase   a   herd   of   animals   into   (Frison,   1984;   Frison   and  Stanford,   1982).   The   Agate   Basin   type-­‐site   consists   of   a   kill   site   and   a   close   by  camp/processing  site.      

 FIGURE  16:  DISTRIBUTION  OF  AGATE  BASIN  AND  HELL  GAP  ARCHAEOLOGICAL  SITES  USED  IN  THIS  STUDY  (NUMBERS  CORRESPOND  TO  TABLE  2)  

There   are   several   projectile   points   that   resemble   Agate   Basin   points   and   have   sometimes  been   falsely   called   Agate   Basin.   Stanford   (1999)   recognizes   three   complexes   of   similar  points.   The   first   are   the  Agate   Basin-­‐like   points   in   the   Rocky  Mountains   and   foothills   that  date   to   approximately   9000   14C   BP.   Second   is   the   Packard   complex   on   the   Eastern   Great  Plains.  This  complex  dates  to  9400  14C  BP.  In  Canada  there  is  a  projectile  point  complex  that  is   referred   to   as   Northern   Plano.   The   points   are   very   similar   to   Agate   Basin   but   much  

  40  

younger:   8500   –   7500   14C   BP   (Stanford,   1999).   The   main   difference   between   these  complexes  is  the  age.  It  might  very  well  be  that  these  complexes  all  are  descendant  from  the  original  Agate  Basin  from  the  Great  Plains  as  the   lithic  technology   is  very  similar,  however,  by  the  time  the  Agate  Basin-­‐like  complexes  occur  in  the  Rocky  Mountains  and  Canada,  Agate  Basin   was   no   longer   present   at   the   Great   Plains.   Although   the   lithic   technology   and  morphology  is  similar,  it  is  not  identical  to  the  Agate  Basin  of  the  Great  Plains.    

TABLE  3:  AGATE  BASIN  (AND  HELL  GAP)  SITES,  LOCATIONS  AND  14C  DATES  

Nr.   Site  name   Point  type   Coordinates   14C  Date  1   Agate  Basin     Agate  Basin   43.413029,-­‐104.07074   10.430  -­‐  9350  

1   Brewster   Agate  Basin   43.413029,-­‐104.07074   9990  -­‐  9440  

2   Hell  Gap   Agate  Basin   42.244785,-­‐104.298706   10.850  3     Frazier   Agate  Basin   40.241799,-­‐104.578857   9650  -­‐  9000  

4   Allen   Agate  Basin   41.05036,-­‐106.24054   10600  -­‐  10260  

5   Mangus   Agate  Basin   45.151053,-­‐108.182373     8690  6   Kendall   Agate  Basin   34.741612,-­‐106.391602     not  dated  

7   Pine  Spring   Agate  Basin   41.302571,-­‐109.846802   11830  

8   Carter/Kerr-­‐McGee  

Agate  Basin   44.52001,-­‐105.732422   not  dated  

9   Blackwater  Draw   Agate  Basin   34.283319,-­‐103.318176   not  dated  

10   Jim  Pitts   Agate  Basin   43.77506,-­‐104.002075   11100-­‐  10160  

11   Milnesand   Agate  Basin   33.83392,-­‐103.710937     not  dated?  

12   Park  Hill   ±  Agate  Basin   50.255766,-­‐105.527458   not  dated?  

13   Grant  Lake   ±  Agate  Basin   63⁰43'20  100⁰26'10   7222±850  

2   Hell  Gap   Hell  Gap   42.244785,-­‐104.298706   10240  

1   Agate  Basin   Hell  Gap   43.413029,-­‐104.07074   10445  

14   Sister’s  Hill   Hell  Gap   44.331707,-­‐106.798096   9620  

15   Casper   Hell  Gap   -­‐   10060  –  9830  

16   Jones-­‐Miller   Hell  Gap   -­‐   10020  

   

3.2.2.  ENVIRONMENT  

The  Northern  Great  Plains  is  the  northwestern  part  of  the  North  American  Interior  Plains.  It  is  an  area  of  flat,  broad  prairie,  steppe  and  grasslands.  In  the  northwest  the  plains  extent  as  far   as   the   foot   of   the   Rocky  Mountains.   Nowadays   the   environment   of   the   plains   differs  significantly  over  short  distances.  Although  the  prehistoric  environment  differs  greatly  from  that   of   today   it   is   likely   that   these   differences   observed   over   small   distances   were   also  present  in  the  period  that  is  discussed  in  this  thesis  whereas  the  topography  of  the  area  has  not   changed  much.   The   continental   divide   runs   through   the   Great   Plains   and   as   a   result  rivers  flow  both  to  the  Pacific  Ocean  as  well  as  to  the  Gulf  of  Mexico  (Frison,  1999).      During   the   Last   Glacial  Maximum   (LGM)   (20.000   -­‐   18.000   14C   BP)   two   ice-­‐sheets   covered  large  parts  of  North  America.  The  Laurentide  Ice  Sheet  was  the  largest  of  the  two,  covering  over  8  million  square  kilometres  to  the  east.  To  the  west   the  smaller  Cordilleran   Ice  Sheet  closed  of  the  southern  part  of  the  continent  from  the  north  during  the  height  of  the  ice  age.  Both  ice-­‐sheets  had  an  enormous  impact  on  the  environment  and  climate  of  the  bordering  regions  (Booth  et  al,  2003).  During  the  LGM  megafauna  roamed  the  Northern  Great  Plains.  The   biggest   land   animal   was   the   mammoth,   the   biggest   of   its   kind:   the   Columbian  mammoth.   Other   species   were   bison   (B.   antiquus),   muskox,   camel,   horse,   pronghorn,  mountain  sheep,  shortfaced  bear,  grizzly  bear,  wolverine,  dire  wolf,  grey  wolf,  cheetah  and  lion.   Of   these   species   only   pronghorn,   mountain   sheep,   grizzly   bear   and   the   grey   wolf  survived   the   climatic   changes   of   the   Younger   Dryas.   By   11.000   14C   BP   many   species   had  disappeared  from  the  area  (Frison,  1993).      From  13,500   14C   BP   the   environment   shifted   from  a   steppe-­‐tundra,   similar   to   the  Alaskan  Pleistocene,  to  a  steppe  community  with  tundra  elements.  Around  10.500  14C  BP  the  climate  shifted  again.  Summers  were  not  as  hot  as  they  are  today,  however,  the  winters  were  not  as  cold  either.  The  seasons  were   less  pronounced  (Frison,  1993;  Frison,  1999).  At   the  time  of  the  occurrence  of  Agate  Basin  sites  the  ice-­‐sheets  had  already  started  thawing.  The  LGM  ice-­‐sheets  never   covered   the  Great  Plains,   the  area  however  was  affected  by   the  presence  of  these  giant  masses  of  ice.  For  example,  in  Wyoming  ancient  casts  of  Ice  Wedges  have  been  found   (Frison,   1999).   This   indicates   the   presence   of   permafrost   and   a   periglacial  environment.   Ice  wedges   form  when   the   ground   cracks   due   to   frost   action.  Water   in   the  crack   expands   as   it   freezes   and   thus   the   crack   grows   into   a  wedge   form.   Ice  wedges   and  permafrost   conditions   are   nowadays   mostly   confined   to   high   northern   periglacial  environments  (French,  2007).    The   Agate   Basin   site   yielded   some   environmental   information,   especially   for   the   Folsom  (older)  and  Hell  Gap  (younger)  levels.  There  is  a  big  difference  between  the  two.  The  Folsom  level   shows   evidence   of   coniferous   forest   vegetation   while   the   Hell   Gap   level   contained  traces   of   an   environment   that   compares   more   to   southern   areas   with   coniferous   forest  stands,  sagebrush  and  grassland  (Frison,  1999).  The  Agate  Basin  level  is  located  in  between  these  two  levels  and  this  period  must  have  been  heavily  subject  to  climatic  change.      Precipitation  determines  the  differences  in  vegetation.  To  the  east  of  the  mountains  there  is  more   precipitation   than   to   the   west.   The   mountains   operate   as   a   barrier   and   thus  differences  in  environment  can  occur  over  short  geographical  distances.  Precipitation  rates  in   the   Great   Plains  make   the   difference   between   desert   and   short-­‐grass   ecosystems.   The  amount  of  precipitation  can  make  a  big  difference  over  very  short  periods  of  time  and  thus  control  the  numbers  and  species  of  animals  that  can  thrive  in  the  area  (Frison,  1999).    

  42  

 FIGURE   17:   BISON   HERD   ON   THE   GREAT   PLAINS   (PHOTO:   MARK   THIESSEN   FOR   NATIONAL  GEOGRAPHIC  MAGAZINE  D.O.A.  24-­‐02-­‐2013)  

One   would   say   that   the   difference   between   the   physiographic   regions   of   the   Rocky  Mountains  and  the  Northern  Great  Plains   is  easy  to  determine.  This   is  however  not  always  the  case.  Along  the  rivers   that   flow  out  of   the  Rocky  Mountains  environments  are  present  that  are  very  much  like  the  Great  Plains  (Frison,  1999).  However,  I  can  imagine  that  at  higher  altitudes  the  influence  of  the  ice  age  was  more  present.  During  the  Agate  Basin  period  valley  glaciers  were  still  present  in  the  northern  region,  especially  in  the  mountains  and  this  must  have  had  its  impact  on  the  vegetation  and  thus  the  presence  of  animal  species.    

3.2.3.  DATING  

Various   sites   containing   an   Agate   Basin   level   have   been   dated   by   radiocarbon   dating.  However,   most   of   these   dates   have   large   standard   deviations.   The   dates   that   are   shown  below   in   the   OxCal   graph   are   taken   from   the   sites   that   are  mentioned   in   table   3   (Agate  Basin,  Brewster,  Hell  Gap,  Frazier,  Mangus,  Allen,  Pine  Spring,  Carter/Kerr-­‐McGee)  and  most  of  these  dates  have  standard  deviations  ranging  from  ±130  to  ±620  years.  In  figure  18  these  deviations  are  visible.      Much   of   the   conclusions   about   Agate   Basins   place   in   Plains   chronology   have   been  determined  by  looking  at  the  stratigraphy  of  sites.  At  multicomponent  sites  such  as  Hell  Gap  the   stratigraphy   showed  a   clear   sequence  of   projectile   point   types   through   time.   This   has  shown  us   that  Agate  Basin   is   positioned  above  or   slightly   contemporary  with   Folsom.   The  Agate  Basin  level  is  followed  by  the  younger  Hell  Gap  complex.  Folsom  has  been  extensively  dated   and   this   provides   the  means   to   date   Agate   Basin   at   the   Hell   Gap   site   to   10.500   –  10.000   14C   BP.   The   date   has   been   confirmed   by   a   radiocarbon   date   from   the  Agate   Basin  level   of   10.850±550   and   dates   of   other   sites   (Holliday,   2000).   The   primary   time   of   Agate  Basin  point  production  seems  to  occur  between  10.500  and  10.250  14C  BP  (Stanford,  1999).      

 

FIGURE   18:   CALIBRATION   CURVE   OF   VARIOUS   DATES   OF   SITES   YIELDING   AGATE   BASIN   PROJECTILE  POINTS.   AS   THE   CALIBRATED   DATA   IS   NOT   USED   IN   THIS   THESIS   PLEASE   PAY   ATTENTION   TO   THE  RADIOCARBON  DETERMINATIONS  ON  THE  Y-­‐AXIS  OF  THE  GRAPH  (BRONK  RAMSAY,  2009).    

  44  

Hell  Gap  is  usually  found  just  above  Agate  Basin.  Estimations  of  the  age  of  these  projectile  points   were   10.000   –   9.500   14C   BP.   These   dates  were   confirmed   by   radiocarbon   dates   of  9.600   14C   BP   at   the   Sister’s   Hill   site.   Overall   Agate   Basin   is   not   particularly   well   dated  (Holliday,   2000).   However,   the   combination   of   stratigraphic   information   and   radiocarbon  dates  provides  a  reasonably  reliable  timeframe  for  the  projectile  point  technology.      

3.2.4.  LITHIC  TECHNOLOGY  

Agate   Basin   points   are   generally   described   as   long,   narrow   and   neatly   flaked   lanceolate  projectile  points.  The  points  usually  show  no  tapering  stem.  Although  Agate  Basin  points  are  relatively   thick   they   are   still   lenticular   in   cross   section.   The   points   have   very   straight   and  even  margins   and  are  highly   symmetrical.   These   features   result   in   easy  penetration   and  a  deadly  weapon  for  the  Agate  Basin  hunters.  169  complete  and  broken  points  were  found  at  the  Agate  Basin  type-­‐site  (Frison,  1978;  Frison,  1993;  Frison  and  Stanford,  1982).        

 FIGURE  19:  AGATE  BASIN  POINTS  FROM  THE  TYPE  SITE  (TAYLOR,  2006).  

Agate  Basin  points  have  a  wide  variation  in  thickness  and  overall  size.  There  seems  to  have  been  a  wide  range  of  acceptance  regarding  the  projectile  points.  Some  points  are  very  large.  It  might  be   that   these  points  were  made   this   large   in  order   to  be   able   to   reuse   the  point  after   breakage   (Frison,   1978).   Frison   (1999)   describes   Agate   Basin   points   as   “…the   most  lethal  weaponry  seen  in  any  of  the  Paleoindian  complexes”  (p.276).    

  45  

The   average  width/thickness   ratio  of  Agate  Basin  projectile   points   is   3.3   (fig.20).   The  data  used  in  this  graph  comes  from  (Baker,  2009)  who  collected  the  measurements  of  56  Agate  Basin  points  from  the  type-­‐site.  As  is  seen  in  the  graph  (fig.  20)  the  majority  of  Agate  Basin  points  have  a  ratio  between  3  and  4.  This  suggests  that  Agate  Basin  points  are   in  between  thick-­‐bodied  and  thin-­‐bodied  projectile  point  types  as  described  by  Baker  (2009).    

 FIGURE  20:  AGATE  BASIN  WIDTH/THICKNESS  RATIOS  (DATA  WAS  COLLECTED  FROM  BAKER,  2009)  

The  process  of  manufacture  started  with  a  percussion  flaked  biface.  Agate  Basin  points  were  most   probably   first   roughly   shaped   and   regularized.   After   these   initial   shaping   stages   the  point  was  thinned.  There  are  few  Agate  Basin  points  that  still  show  evidence  of  these  early  stages   of   manufacture   because   of   the   many   sequences   of   finishing   pressure   flaking.  However,   some   points   show   remnant   flake   scars   from   the   thinning   process   that   might  indicate  the  use  of  overshot  flaking.  Preforms  at  the  Agate  Basin  site  have  also  indicated  the  use  of  overshot  flaking  (Bradley,  1993;  Bradley,  2009).  Overshot  flaking   is  a  method  where  flakes  are  removed  that  extent  over  the  entire  face  of  the  point,  removing  a  small  portion  of  the  opposite  edge.   It   is  a  difficult  technique,  one  small  mistake  can  ruin  the  entire  project.  However,   when   correctly   practiced,   overshot   flaking   can   be   a   very   useful   technique   to  extensively  thin  bifaces.  The  best  known  example  of  overshot  flaking  in  the  Americas  is  the  Clovis  projectile  point  complex  (Stanford  and  Bradley,  2012).      The  regularity  of  Agate  Basin  points  was  seemingly  of  great  importance.  This  highly  regular  longitudinal   section   was   probably   already   established   during   the   thinning   stage.   The  thickness   of   Agate   Basin   points   was   maintained   by   regularly   reducing   the   width   with  percussion  flaking.  Finishing  was  done  by  pressure  retouch.  With  the  pressure  retouch  the  desired  forms  and  regularity  was  established.  The  distance  between  pressure  flakes  is  highly  variable   and   can   vary   between  moderate   and  wide   spacing.  As   a   result   some  Agate  Basin  points  show  parallel  flaking  and  some  collateral  flaking.  The  margins  were  retouched  where  needed.  When   ridges   stood  out  between   flake   scars   these  would  be   removed  by   retouch.  

  46  

This   is   what   gave   the   Agate   Basin   points   such   straight   margins   (Bradley,   1993;   Bradley,  2009).      The  points  seem  to  have  been  designed  to  sustain  extensive  damage.  Fragments  of  broken  points  were  easily  reworked  into  new  but  smaller  points.  It  is  striking,  in  comparison  to  the  effort  that  was  put  into  the  initial  point  manufacture,  that  reworking  almost  never  happens  with   the   precision   and   regularity   of   the   initial   point  manufacture.   It   seems   as   though   the  reshaping  was   done  without   any   concern   for   the   beauty   of   the   initial   point.   The   focus   of  reworking  a  point  was  just  on  the  functionality  of  the  point  (Bradley,  2009;  Frison,  1993).        Basal  grinding  extends  to  two-­‐thirds  of  the  point.  This  indicates  that  the  points  were  hafted  for   two-­‐thirds.   The   bases   are   convex,   though   in   some   cases   straight   or   concave   bases   do  occur  on  Agate  Basin  points.  This  is  possibly  the  result  of  the  reworking  of  damaged  points  (Stanford,  1999).  Frison  (1978)  experimented  with  the  hafting  of  Agate  Basin  points.  He  tried  both  a  socketed  haft  as  well  as  a  split  end.  Both  techniques  were  quite  functional.  A  socket  into  which  the  projectile  point  was  inserted  was  a  bit  harder  to  make.  Frison  argues  however  that   this   approach   to   hafting   has   better   results   when   the   spear   is   thrusted   at   an   angle.  However,   split   end  hafting  might  as  well  have  been  employed  as   the   results   are  nearly  as  good  as  with  a  socketed  haft  and  is  easier  to  achieve.        Most  of  the  lithic  material  found  at  Agate  Basin  sites  is  of  extra  local  origin.  There  is  hardly  any  evidence  of  the  use  of   local  raw  material.  Many  of  the  lithics  found  at  the  Agate  Basin  type-­‐site  originate  in  North  Dakota  (Knife  River  flint),  several  hundred  kilometres  away,  and  the  Hartville   uplift,   some   80   km   southwest   of   the   site   (Frison,   1978;   Frison   and   Stanford,  1982).  At  the  Frazier  site,  Alibates  dolomite  from  Texas  dominates  the  lithic  material.  Here  no   local  chert  was  used  (Stanford,  1999).  At  the  Carter/Kerr-­‐McGee  site   local  porcellanites  and   silicified  wood  were  used.  However,   quartzites   and   cherts  originating   in   the   Southern  Black  Hills   and   the  Hartville  Uplift  were   also   among   the  material   (Frison,   1984).   This   is   an  indication   that   the  Agate  Basin  hunters  were  possibly  not  home   in   the  Great  Plains   region  but  organized  occasional  hunting  expeditions  because  of  the  abundance  of  bison.    

  47  

3.2.5.  ASSOCIATED  LITHIC  ASSEMBLAGES  

 The   Agate   Basin   toolkit   is   very   similar   to   other   Paleoindian   lithic   assemblages   (Stanford,  1999).   The   Agate   Basin   site   yielded   a   variety   of   large   cutting   and   scraping   tools:   end  scrapers,   side  scrapers,  denticulates,  gravers,  an  a-­‐symmetric   leaf   shaped  biface  and  some  retouched  flake  and  knives.  Possibly  tools  were  also  made  of  bone.  One  bone  artefact  was  found  at  the  Agate  Basin  site.  It  is  possible  that  the  working  edges  of  these  proposed  bone  tools  were  eroded  and  are  now  difficult  to  recognize  (Ebell,  1980;  Frison,  1978).    

 FIGURE  21:  FLAKE  TOOLS  OF  THE  AGATE  BASIN  SITE  (FRISON,  1978,  P.  163)  

Flake  and  blade  tools  are  quite  simple  in  design  and  manufacture  in  contrast  to  the  perfectly  shaped   Agate   Basin   points.   Large   percussion   flakes   are   common.   These   flakes   have   only  undergone  edge  preparation.  Most  flake  tools  were  made  on  biface  thinning  flakes  (Bradley,  1993;  Frison  and  Stanford,  1982).    

  48  

3.2.6.  SITE  CHARACTERISTICS  AND  INFERRED  ACTIVITIES  

Both   the   Agate   Basin   and   the   Hell   Gap   complexes   have   been   of   great   importance   to   the  archaeological   knowledge   of   late   Pleistocene   bison   hunting   in   the   Great   Plains   region  (Frison,  1978).  The  Agate  Basin  site  is  a  bison  kill  site  with  an  associated  campsite  where  the  bison  remains  were  processed.  At  least  75  individual  bison  were  killed  here  (fig.22).  Most  of  the  butchering  and  dismembering  of  the  animals  happened  at  the  kill  site.  Stanford  (1999)  describes  the  site  as  a  ‘knickpoint  arroyo  trap’  (p.312)  (see  fig.15).  This  topographical  feature  would   have   been   an   excellent   trap   into   which   the   bison   were   driven.   Once   they   were  trapped   in   the  dry   gully   the  hunters   could   get   close  enough   to   kill   the   animals.   The  bison  were   dismembered   on   site   and   later   transported   to   the   campsite   where   the   butchering  process  continued.  Depositional  levels  indicate  that  the  Agate  Basin  hunters  remained  at  the  campsite  throughout  the  winter.  There  have  not  been  found  any  hearths.  However,  there  is  evidence  of  the  use  of  fire  in  fire  fractured  stones  present  at  the  site  (Frison,  1978;  Stanford,  1999).    The  Hell  Gap  site   is   located   in  a  sheltered  valley.  The  area   is  rich   in  chert  and  so  quarrying  activities  might   have   been   carried   out   here.   Faunal   remains  were   dominated   by   bison   (at  least  350   individual  bison)  but  also  deer,   felid  and  various  undefined  small  mammals  were  found  (Stanford,  1999).  The  Frazier  site  was  also  a  butchering  and  processing  site  of  a  bison  kill.  Even  though  the  site  was  badly  eroded,  the  remains  of  at  least  43  bison  were  found  here  (Stanford,  1999).    

 FIGURE  22:  AGATE  BASIN  TYPE-­‐SITE  BONE  BED  (FRISON,  1978  P.155)  

The  Carter/Kerr-­‐McGee   site   location   is   also   at   the  head  of   a   ‘knickpoint   arroyo’   and  most  probably  also  functioned  as  a  trap  for  hunters  to  drive  bison  into.  This  multicomponent  site  yielded   scattered   bison   bone   at   the   Agate   Basin   and   Hell   Gap   levels.   Here   there   is   no  stratigraphic   separation   between   the   two   point   types.   The   site   was   probably   only   a  

  49  

kill/butchering  site  as  no  evidence  of  a  campsite  was  found.  The  campsite  might  have  been  located  on  higher  ground  where  it  was  not  preserved.  Almost  1300  flakes  were  found  at  the  Carter/Kerr-­‐McGee   site.   Only   a   few   result   from   biface   reduction,   the   rest   results   from  pressure  flaking  of  tool  and  projectile  point  manufacture.  It  seems  thus  that  the  early  stages  of  projectile  point  manufacture  are  not  as  much  represented  at  the  site  (Frison,  1984).  That  could   indicate   that   the   flakes   are   mostly   originating   from   projectile   point   reworking   and  finishing.        The  large  number  of  killed  animals  indicates  a  large  group  of  hunters.  It  is  possible  that  these  sites  are  the  product  of  collective  hunting  parties  of  multiple  groups  of  Agate  Basin  hunters  joining   their   forces   to   ensure   a   successful   hunt   (Stanford,   1999).   Frison   (1984)   suggests   a  number  of  75  to  100  people  to  be  involved  in  a  hunt  the  size  of  the  Carter/Kerr-­‐McGee  site.  He  also  states  that  it  should  be  possible  for  15  to  20  grown  males  to  carry  out  the  hunt  itself.  The  other  individuals  would  assist  in  the  butchering  process.        It  seems  that  these  practices  of  communal  bison  hunting  were  a  seasonal  affair  in  order  to  stack   enough   resources   to   survive   the   scarcity   of   winter   (Frison,   1984).   Analysis   of   the  butchered  animals  at   the  Agate  Basin   site   show   that   the  kill   probably  occurred  during   the  cold  period   in   February  or  March.   The  meat  was  probably   stacked   in   frozen  meat   caches.  Although  there  is  not  much  evidence  for  this  at  the  site  location  it  seems  logical.  Drying  the  meat  would  not  have  been  possible  during   the  cold  season  and   to  prevent   the  meat   from  spoiling  and  attracting  scavengers  it  was  probably  buried  or  covered  with  stones.  If  the  meat  was  stacked  in  a  cache  that  would  mean  that  the  meat  was  not  as  portable  as  it  would  have  been  when  dried.  Agate  Basin  hunters  might  have  remained  in  the  area  of  the  kill  site  for  a  longer  period  of  time  (Frison,  1993).      Frison  (1993)  argues  for  a  better  understanding  of  hunting  strategies  among  archaeologists.  All   animal   species   vary   in   behaviour.   This   behaviour   must   have   been   known   to   the  prehistoric  hunter  in  order  to  ensure  a  successful  hunt.  Behaviour  can  also  vary  with  age,  sex  and  condition  of  the  animal.  The  season,  weather  conditions,  time  of  day,  vegetation  cover  and  terrain  can  also  be  important  factors  that  influence  the  behaviour  of  an  animal  (Frison,  1993).  Impact  breaks  on  the  projectile  points  indicate  use  of  throwing  and  thrusting  spears  (Frison  and  Stanford,  1982).  Ritual  and  religion  might  very  well  have  been  a  part  of  the  hunt  at  sites  such  as  Agate  Basin,  Hell  Gap  en  Carter/Kerr-­‐McGee.  There  have  been  however  little  clues  to  prove  this  idea.  At  the  Hell  Gap  Jones  Miller  site  a  structure  was  discovered  on  the  kill   site.   It   has   been   argued   that   this   structure   might   have   been   of   shamanistic   nature  (Frison,  1993).      

3.2.7.  DEVELOPED  OUT  OF  AGATE  BASIN:  HELL  GAP  

Hell  Gap  points  are  sometimes   found  at   the  same  sites  as  Agate  Basin  points.  Usually  Hell  Gap   is  situated   just  above  Agate  Basin   in   the  stratigraphy.  The  Hell  Gap  complex  has  been  dated  to  approximately  10.250  –  9.600  14C  BP.  Hell  Gap  technology  is  very  similar  to  Agate  Basin  but  differs   in  a  few  aspects.  Hell  Gap  points  are  shouldered.  The  strange  thing  about  this  change  in  design  is  that  the  Hell  Gap  point  proves  to  be  less  deadly  weaponry  than  the  Agate  Basin  point  after  experimental  studies  (Frison,  1993).  Stanford  believes  that  there  is  a  better  connection  between  the  Windust  (Great  Basin)  and  Hell  Gap  types.  And  that  Hell  Gap  is   actually   Windust   people   hunting   on   the   Great   Plains   during   bison   population   peaks  (personal  communication,  2013).  Hell  Gap  site  distribution  is  more  confined  to  the  Western  

  50  

Plains   bordering   the   Great   Basin   area.   Sites   on   the   Plains   are   usually   connected   to   bison  procurement.    

 FIGURE  23:  HELL  GAP  PROJECTILE  POINT  FROM  THE  CASPER  SITE  (FRISON,  1978:  P.  175)  

Hell  Gap  was  thinned  and  shaped  by  percussion  flaking.  Pressure  flakes  of  the  finishing  stage  occur  over  the  entire  face  of  the  Hell  Gap  point  but  in  some  cases  it  is  only  visible  on  the  tip  and  stem.  Finishing  of  the  points  was  done  with  great  care  as  with  Agate  Basin  points.  Hall  Gap  points  are  more  often  finished  by  collateral  flaking  than  with  parallel  flaking,  as  is  often  the  case  with  Agate  basin.  The  points  are  edge  ground  on  the  stem  and  basal  margins.  The  flake   tools   associated   with   Hell   Gap   points   are   essentially   the   same   as   with   Agate   Basin  points  and  most  of  the  other  Paleoindian  complexes  (Bradley,  1993).    The   Jones-­‐Miller   site   lacks   a   geomorphic   feature   that   could   have   functioned   as   a   trap.  Several  hundred  bison  were  killed  at  the  site,  probably  in  multiple  events  during  one  winter.  It  might  be  possible  that  these  hunters  had  made  an  artificial  trap  to  drive  the  animals  into.  At  the  Caspar  site  the  kill  location  was  in  a  parabolic  sand  dune  (Frison,  1978).  It  is  obvious  that   Hell   Gap   hunters   used   the   same   kind   of   natural   features   to   hunt   bison   as   the   Agate  Basin  hunters  did.  Possibly  we  should  not  separate  these  two  complexes  too  much.  At  the  Carter/Kerr-­‐McGee  site  there  was  no  stratigraphic  differentiation  between  the  Agate  Basin  and  Hell  Gap  levels.  This  suggests  a  very  small  time  window  in  between  the  two  complexes  and  possibly  even  simultaneity.  Bradley  (2009)  views  the  occurrence  of  Agate  Basin  and  Hell  Gap  as  a  continuum.  

  51  

3.3  HASKETT  

Haskett  points  were   first  described  by  Butler   (1964;  1965)  after   the  discovery  of   the   type-­‐site  in  Idaho  by  an  amateur  archaeologist  by  the  name  of  Mr.  Haskett.  Excavations  followed  at   the  Haskett   site   in   Idaho,  USA   (fig.24).   Excavations  were   carried  out  during   a   couple  of  weekends  and  days  with  volunteers,  students  and  a  museum  crew.  Even  though  the  site  did  not  yield  many  archaeological  features  and  remains  several  Haskett  points  were  unearthed  (Butler,  1965).  Ever  since  the  discovery  of  the  Haskett  type-­‐site,  Haskett  points  have  turned  up   either   in-­‐situ   or   in   collections   of   amateur   archaeologists.   The   beautiful   points   are  favourite  among  collectors  (www.arrowheadology.com).  Haskett  points  are  mostly  found  in  Idaho  and  Oregon.  A  few  have  been  found  in  Washington  State  and  on  the  border  of  Nevada  and  Utah.    

 FIGURE  24:  HASKETT  TYPE-­‐SITE  LOCATION  (BUTLER,  1978)  P.16  

Something   that   is   often   unclear   in   the   literature   about   the   stemmed   points   of   the   Great  Basin  and  adjacent  areas   is   the  classification  of  projectile  point  types.  Beside  the  apparent  lack  of  a  clear  set  of  characteristics  for  point  types,  over  the  years  names  have  changed.  For  example:   before   a   meeting   in   Santa   Fe   in   1951   all   non-­‐fluted   points   were   called   Yuma  (Stanford,   personal   communication,   2013).   This   complicates   things   when   using   older  literature.   Additionally,   many   point   types   were   put   together   under   the   term   Plano.   This  makes   it   very   confusing   and   difficult   to   collect   the   necessary   information   about   a   specific  projectile  point  type  from  the  region.    Haskett  points  are  often   included   in  the  broader  term  Western  Stemmed  Points.  This   term  includes   most   of   the   stemmed   point   types   of   the  Western   United   States   during   the   late  Palaeolithic.    For  the  sake  of  this  study  the  term  Western  Stemmed  Points  will  not  be  actively  used.  A  distinction  is  made  between  the  Haskett  points  and  the  other  point  types  included  in  the  Western  Stemmed  Point  tradition  (Beck  and  Jones,  1997).  This  distinction  is  made  on  the  basis  of  the  typical  stem  of  the  Haskett  type.  This  stem  without  shoulders,  notches  or  other  hafting   attributes  makes   it   comparable   to   the   other   types   described   in   this   thesis.  While  most  other  types  do  show  attributes  such  as  shoulders,  others  that  do  not,  also  do  not  show  the  lanceolate  form  that  is  another  typical  trait  of  the  point  types  central  to  this  thesis.    

  52  

3.3.1.  DISTRIBUTION  

Most  Haskett  points  are  found  in  Idaho  and  Oregon  in  the  Northern  Great  Basin  region  and  Columbia  Plateau  of   the  Western  United  States.  A   region  with  many  Haskett   finds   (among  which   the   Haskett   type-­‐site)   is   the   Snake   River   Plain,   part   of   the   Columbia   Plateau.   The  Haskett  site  was  located  in  a  dune  field  that  accumulated  during  the  late  Pleistocene  (Beck  and  Jones,  1997;  Butler,  1965).      

 FIGURE  25:  HASKETT  (AND  SOME  COUGAR  MOUNTAIN  (WCRM))  ESTIMATED  SITE  LOCATIONS  

For   the   sake  of   clarity   I  will   shortly   discuss   the  different   sites   and   the  Haskett   points   that  were   discovered   at   these   sites.  Often   the   name  Haskett  was   assigned   to   projectile   points  that  in  my  opinion  actually  not  clearly  belong  to  the  Haskett  type  (fig.  27).  In  a  cache  at  the  Cooper’s  Ferry  site  (Davis  and  Schweger,  2004)  various  points  were  found  among  which  Lind  Coulee  points  and  according  to  (Butler,  1969)  one  complete  and  one  midsection  of  a  Haskett  point  (fig.26).  Even  though  Butler,  who  first  discovered  Haskett  points,  assigned  the  name  to  these  points,  I  have  my  doubts  about  this  determination.  The  one  similarity  with  Haskett  is  the   flaking   pattern   on   the   midsection   (m)   and   possibly   the   width/thickness   ratio,   this   is  difficult  to  say  from  a  picture.  The  shape  of  the  small  fragment  could  also  fit  a  Haskett  point.  However,   the  complete  point  does  not   look   like  a  Haskett  point.  The  thickness/width  ratio  does  not  seem  to  fit,  although  this  is  not  well  seen  from  a  picture  it  seems  that  there  is  no  well-­‐defined  mid-­‐ridge.  The  flaking  pattern  seems  to  be  diagonally  instead  of  horizontal  and  the  shape  does  not  fit  the  Haskett  type-­‐site  points  (fig.27).  In  my  opinion  it  is  premature  to  call  these  specimens  Haskett  points.      Ames  et  al  (1981)  mentions  the  presence  of  Haskett  points  at  the  Hatwai  site  !  component.  Strangely   in   his   publication   from   2010   (Ames   et   al,   2010)   he   describes   the   component   I  assemblage  to  be  of  the  Windust  type  and  he  does  not  mention  Haskett  as  found  at  the  site.  This  is  just  one  example  of  the  confusing  literary  sources  for  the  American  West.  The  same  goes  for  Danger  Cave.  In  my  opinion  the  points  found  at  Danger  Cave  more  closely  resemble  the   Cougar   Mountain   type   than   Haskett   in   morphology   (Fry   and   Adovasio,   1970).   The  

  53  

Haskett-­‐like   points   from   Owl   Cave/Wasden   site   also   do   not   entirely   fit   the   general  description  of  a  Haskett  point.  The  bases  of  these  points  are  almost  concave  and  the  shape  often  does  not  fit  Haskett.  The  points  are  wider  and  too  short.  There  is  one  midsection  that  might  represent  a  Haskett  point  (specimen  76305)  (ISU.edu,  2013?).     It   is,  however,  always  difficult  to  determine  a  type  from  just  a  midsection  and  taking  into  account  that  most  of  the  Owl  Cave/Wasden  assemblage  does  not   look   like  Haskett   I  have  my  doubts  about   treating  this  site  as  a  Haskett  site.  The  Sentinal  Gap  site  is  also  mentioned  in  the  literature  to  contain  ‘Haskett-­‐like’   points   (Galm   et   al,   2011;   Litzkow,   2011).   These   points   are   definitely   very  similar   to  Haskett   except   that   they   lack   the   finesse  with  which   ‘true’  Haskett   points  were  made  (fig.27,  32).  The  characteristics  of  ‘true’  Haskett  points  will  be  given  in  chapter  3.3.4.    

 FIGURE   26:   PROPOSED   HASKETT   POINTS  FROM   THE   COOPERS   FERRY   SITE   (BUTLER,  1969)  

 FIGURE   27:   HASKETT   POINT   FROM   THE   TYPE-­‐SITE  (BUTLER,  1964)  

 Unfortunately,   I   have   not   been   able   to   find   pictures   or   drawings   of   all   the  Haskett   points  found   at   the   different   sites  mentioned   in   the   literature.   At   a   high   altitude   site   (the  Helen  Lookingbill  site)  in  the  Rocky  Mountains  this  is  the  case.  10.405  14C  year  old  projectile  points  were  uncovered   that   could  be  either  Haskett  or  Hell  Gap   (Kornfeld   et  al,   2001).  However,  there   are   some   sites   that   seem   to   be   generally   accepted   as   Haskett.   These   sites   are   the  Redfish  Overhang  site  (Sargeant,  1973)  and  Bison  and  Veratic  Rockshelters  (Swanson,  1972).  Of  the  following  sites  I  am  quite  sure  they  contain  Haskett:  Connley  Cave  5B  (Bryan,  1980),  Running   Antelope   (Russell,   1993),   Cougar   Mountain   Cave   (Bedwell   and   Cressman,   1971;  Butler,  1961)  and  of  course  the  Haskett  type-­‐site  (Butler,  1964;  1965;  1967).        

  54  

TABLE  4:  HASKETT  (AND  SOME  COUGAR  MOUNTAIN)  SITES,  LOCATIONS  AND  14C  DATES  

Nr.   Site  name   Point  type   Coordinates   14C  Date  1   Haskett     Haskett   42.688997-­‐113.061676   not  dated  2   Redfish  Overhang   Haskett   44.119142-­‐114.938965   9860/10100  3     Bison   &   Veratic  

Rockshelters  Haskett   44.138856-­‐112.846069   8800/10340  

4   Hatwai  I   Windust   46.431232-­‐117.03392   10675±95  5   Connley  Cave  (5B)   Haskett   43.278205-­‐121.032085   9670/10600  6   Sentinal  Gap   Haskett-­‐like   46.745507-­‐119.988556   10160  7   Owl  Cave  (Wasden)   Haskett-­‐like   43.602273-­‐112.447815   10470  8   Cougar   Mountain  

Cave  Haskett-­‐like   43.376107-­‐120.80987   8510±250  

9   Danger  Cave   Haskett   39.320952-­‐111.09375   9789-­‐8960  10   Coopers  Ferry   Haskett   45.868019-­‐116.295776   11.370/12.020  11   Yamhill  River   Haskett   45.202724-­‐123.041725   not  dated?  12   Bonneville   Estates  

Rockshelter  Haskett   40.333983-­‐114.061432   11000  

13   Wilson  Butte  Cave   Haskett   42.793889-­‐114.211807   not  dated?  14   Fire  Creek   Cougar  

Mountain  40.45792-­‐116.630559   not  dated  

15   Locus  158   Cougar  Mountain  

39.551045-­‐116.933842   not  dated  

16   Locus  39  &  154   Cougar  Mountain  

39.578769,-­‐116.900282   not  dated  

  Helen  Lookingbill   Haskett/   Hell  Gap  

-­‐   10.405  

 From   2002   to   2010   the   Paisley   Caves,   first   tested   by   Luther   Cressman   in   1938,   were   re-­‐excavated  by   the  University  of  Oregon.  The   results  of   the   fieldwork  were  very   interesting.  The  caves  contained  human  coprolites  that  yielded  DNA  and  Western  Stemmed  Points  were  found   in   association   with   dated   material   of   11.070   –   11.340   14C   BP   (Gilbert   et   al,   2008;  Jenkins   et   al,   2012).   Stanford   brought   these  Western   Stemmed   Points   to  my   attention   as  possibly  being  of  the  Haskett  type  (fig.28).  The  location  of  the  Paisley  Caves  is  near  Cougar  Mountain   Cave   and   Connley   Caves   and   thus   falls   within   Haskett   and   Cougar   Mountain  territory.   The   problem   with   determining   types   on   the   basis   of   a   fragment   is   the   large  uncertainty.   In   my   opinion   these   fragments   could   belong   both   to   Haskett   and   Cougar  Mountain  and  perhaps   to  other   stemmed  point   types   that   I  have  not   studied  as  well.   The  collateral   flaking   pattern   seems   similar   to   Haskett   and   Cougar   Mountain   points   and   the  shape  of  both   the   left  and  right  points   fit   the   typology.  However,   the  shape  of   the  middle  fragment  does  not  seem  to  fit  Haskett  but  possibly  Cougar  Mountain.  If  this  is  a  base  it  is  too  wide  to  be  either  Haskett  or  Cougar  Mountain,  which  have  tapering  bases  as   is  seen  in  fig.  27.  Another  possibility  is  that  this  specimen  has  not  been  finished.  Regarding  the  age  of  the  site   it   is  more   likely   that   the   points   do   represent   the   Haskett   type   and   not   the,   younger,  Cougar  Mountain  type.  However,  because  of  the  large  uncertainties  in  determining  the  point  type  I  will  not  draw  conclusions  from  the  data  of  the  Paisley  Caves  site.        

  55  

 FIGURE  28:  STEMMED  POINTS  FROM  THE  PAISLEY  CAVES  SITE  (BRON)  

3.3.2.  ENVIRONMENT  

The   Great   Basin   is   not   so   much   one   great   basin,   as   the   name   implies,   but   an   area   with  multiple  smaller  basins  (fig.29).  During  the  late  Pleistocene  many  of  these  basins  held  lakes  that  in  some  cases  overflowed  and  connected  with  other  lakes.  Two  famous  examples  of  this  phenomenon  are   the  great  prehistoric   Lake  Lahontan  and  Lake  Bonneville.  Around  15.000  14C  BP  the   lakes  reached  a  high  stand  and  Lake  Lahontan  covered  a  surface  area  of  22.000  km2.  Nowadays  great  aridity  and  high   topographic   relief   characterize   the   region   (Beck  and  Jones,  1997;  Cressman,  1986).  Haskett  points  are  confined  to  the  Northern  part  of  the  Great  Basin.   There   are   no   large   basins   here   but   multiple   small   ones.   The   area   is   made   up   of  highlands  and  valleys.  To  the  north  the  Northern  Great  Basin  borders  the  Columbia  Plateau  (Cressman,  1986).      

 FIGURE  29:  PYRAMID  LAKE  (NEVADA)  IN  THE  GREAT  BASIN  (PHOTO:  M.  ADMIRAAL)  

  56  

The   Snake   and   Salmon  River   area   is   the   region  where  Haskett   site   density   is   highest.   This  region   can   be   described   as   a   “natural   corridor   linking   the   Northwestern   Plains   with   the  Intermontane  area”  (Butler,  1986  p.  127).  This  transitional  character  of  the  area  is  reflected  in  a  diverse  cultural  record  (Butler,  1986).  During  the  late  Pleistocene  the  region  was  subject  to  change,  as  was  most  of  North  America.  Between  12.000  and  11.000  14C  BP  there  was  a  dry  interval  and  lower  temperatures.  Stream  discharge  was  greater  and  marches  were  more  common.   After   11.000   14C   BP   precipitation   increased   probably   due   to   the   cooler  temperatures   of   the   Younger   Dryas   influence.   The   lakes   rose   again.   At   9800   14C   BP  precipitation   amounts   dropped   significantly   and   lakes   started   drying   out   (Beck   and   Jones,  1997).  As  the  lakes  dried  out  bison  territory  was  reduced  and  shifted  to  the  Snake  River  Plain  where  water  was  abundant  (Bryan  and  Tuohy,  2005).    The   vegetation   at   the   time  was   characterized   by   a  migration   of   high   elevation   species   to  lower  elevations.  Subalpine  and  montane  tree  species  were  found  1000  meters  below  their  modern  limits.  This   is  also  seen  in  the  use  of  pine  tree  as  fuel  at  a  fireplace  at  the  Connley  Caves   (Cressman,   1986).   The   more   modern   sagebrush   steppe   mixed   with   these   higher  elevation  species  leading  to  a  biota  of  which  there  is  no  modern  counterpart.  From  11.000  14C   BP   onwards   the   species   started   moving   towards   modern   positions   in   the   landscape.  Trees   started   migrating   to   higher   elevations.   Lakes   started   drying   out   and   salt-­‐tolerant  species   colonized   the   dried   out   lake   bottoms.   Gradually   the   environment   started  approaching  modern-­‐day  conditions  (fig.30)  (Beck  and  Jones,  1997).      

 FIGURE  30:   FALCON  HILL/COLEMAN  LOCALITY  NEXT  TO  DRAINED  WINNEMUCCA  LAKE   IN  THE  GREAT  BASIN  (PHOTO:  M.  ADMIRAAL)  

Haskett   points   have   never   been   associated   with   faunal   remains   except   for   the   possible  association  with   bison   tooth   enamel   at   the   type-­‐site.   The  Great   Basin   supported   herds   of  bison,   camel   and   horse   at   the   same   time   as   when   humans  were   present   here   (Beck   and  Jones,   1997;   Cressman,   1986).   Additionally   mountain   sheep,   elk   and   deer   were   present.  Mammoth  persisted  in  the  area  of  the  Eastern  Snake  River  Plain  until  approximately  11.000  BP  and  the  now  extinct  Bison  antiquus  until  8.000  BP  (Butler,  1986).  

  57  

 3.3.3.  DATING  

The  Haskett  type-­‐site  was  never  dated  as  no  datable  material  was  found  at  the  site.  Butler  (1965)   initially  estimated  the  age  of  the  Haskett  complex  to  6500-­‐5000  B.C.   (Butler,  1978).  Later   this  estimation  turned  out   to  be  wrong  after  other  Haskett  sites  were  dated.  On  the  basis   of   typological   cross   dating   and   stratigraphy   the   undated   Haskett   sites   have   been  assigned   the   proposed   timeframe   based   on   the   dated   sites.   Beck   and   Jones   (1997)   have  suggested  a  time  frame  based  on  radiocarbon  dates  from  various  sites  for  Haskett  spanning  from  7.240  to  11.200  14C  BP.  This  time  frame  corresponds  well  to  the  dates  collected  in  this  thesis   (fig.31).   A   clear   cluster   is   visible   between   approximately   10.800   and   9.800   14C   BP.  Most  dates  come  from  hearth  contexts  in  association  with  Haskett  points.  In  some  cases  it  is  not  entirely  clear  whether  there  is  an  evident  association  with  the  projectile  points  or  there  might  be  discussion  on  whether  the  proposed  Haskett  points  actually  belong  to  the  complex.        

 FIGURE   31:   CALIBRATION   CURVE   OF   THE   VARIOUS   HASKETT   COMPLEX   DATES.   AS   THE   CALIBRATED  DATA  IS  NOT  USED  IN  THIS  THESIS  PLEASE  PAY  ATTENTION  TO  THE  RADIOCARBON  DETERMINATIONS  ON  THE  Y-­‐AXIS  OF  THE  GRAPH  (BRONK  RAMSEY,  2009)  

The   dates   used   in   the   above   graph   come   from   the   following   sites:   Bison   and   Veratic  Rockshelters,   Redfish   Overhang,   Connley   Cave   no.5B   and   Cougar   Mountain   Cave.   The  available  dates  from  Owl  Cave,  Hatwai  I,  Sentinal  Gap,  Danger  Cave  and  Coopers  Ferry  have  been   omitted   from   the   graph   because   of   doubtful   projectile   point   determinations.   These  dates  are  available  in  table  4.    

  58  

3.3.4.  LITHIC  TECHNOLOGY  

ln  his  report  about  the  Haskett  site  in  Tebiwa  (8-­‐2),  Butler  (1965)  distinguishes  between  two  different   Haskett   type   projectile   points   that   were   found   at   the   site:   type   1   and   type   2  (fig.32).  The  Haskett  type  1  point  (e)  is  described  as  widest  and  thickest  at  the  top  end  with  a  long  tapering  basal  section  that  is  usually  edge  ground.  The  Haskett  type  2  point  (h)  is  longer  and   heavier   that   the   Haskett   type   1.   The   widest   point   is   located   in   the   middle   of   the  projectile  point  (Butler,  1978).  The  distinction  of  the  two  Haskett  types  has  to  be  revised  in  my  opinion.  The  distinctive  design  of  the  Haskett  type  1  points  seems  to  be  the  product  of  extensive   resharpening   of   Haskett   type   2   points   (Stanford;   Baker;   Estes;   Rasic,   personal  communication,  2012).      The  Haskett  type  2  points  are  very  long  and  therefore,  more  than  a  shorter  point,  subject  to  breakage.  It  seems  logical  that  these  type  2  points  were  resharpened  after  breakage  as  there  was   probably   more   than   enough   blade   of   the   projectile   point   left   after   breakage.   This  process   is  also   seen   in  Agate  Basin  points,  which  are  also   initially  made  very   long   in   some  cases  and   later   resharpened  after  breakage.  Because  of   this   I  will  not  distinguish  between  type  1  and  type  2,  unless  to   illustrate  specific   features  that  can  only  be  seen   in  one  of  the  two  stages  of  use.  However,  most  of  the  determined  Haskett  points  are  heavily  resharpened  specimens  such  as  the  one  in  figure  27.      Paleoindians  are  perceived   to  have  been  highly  mobile  big  game  hunters  and  gatherers  of  plant  resources.  This  view  has  also  been  applied  in  the  Great  Basin  region,  although  there  is  not  much  evidence  for  either  the  connection  of  humans  and  megafauna  or  the  use  of  plant  resources   in   the   area.   If   these   people   were   highly  mobile,   a   portable   and   flexible   toolkit  would  have  been  essential  to  their  existence.  The  tools  must  have  had  multiple  uses,  e.g.  as  projectile  points  but  also  knives  etc.  The  choice   in  raw  material  must  have  been  important  because   the   tools   might   have   been   used   for   a   long   time   having   to   undergo   reworking  multiple   times.   The  use  of  bifaces  would  have  been  a  good  way   to   transport   good  quality  stone.  From  these  bifaces  various  tools  could  be  manufactured  such  as  projectile  points.  The  raw   material   might   have   been   pre-­‐worked   on   a   quarry   site   and   then   transported   and  finished  when  tools  were  needed.  These  were  bifacial  preforms  rather  than  the   larger  and  more  heavy  bifacial  cores  (Beck  and  Jones,  1997).    There   is  not  much  evidence  of  earlier   flaking  sequences  on  Haskett  points.  At   the  Running  Antelope  site   in  Northern  Utah  over  200  obsidian   flakes  were  recovered  that  might   tell  us  something   about   the   production   stages   of   Haskett   point   manufacture.   It   seems   however  that   this   has   not   been   studied   or   published   yet   (Russell,   1993).   A   refitting   study   of   this  material   could   yield   interesting   results.   The   final   flaking   sequence   destroyed  most   of   the  evidence  of  earlier  flaking  sequences.  Butler  (1964)  describes  the  points  to  be  manufactured  by  pressure   flaking.   In   the   final   stages   the  edges  of   the  point  were   retouched  by  pressure  flaking.   These   pressure   flaking   scars   are   very   tiny.   Finally   the   basal   edges  were   ground   to  facilitate  hafting.  The  flakes  of  the  Haskett  type-­‐site  are  mostly  derived  from  the  process  of  point  manufacturing.  A  few  larger  flakes  might  have  been  utilized  as  cutting  tools.  There  also  seems   to   be   evidence   for   the   use   of   heat   treatment   of   the   raw  material.   This   is   however  based  on  only  one  large  flake  that  has  been  struck  from  a  heat-­‐treated  core  (Butler,  1965).      

  59  

 FIGURE  32:  HASKETT  POINTS  FROM  THE  TYPE-­‐SITE  (BUTLER,  1965  P.19).  THE  HASKETT  POINT  ON  THE  LEFT   (H)   PROBABLY   HAS   BEEN   ERRONEOUSLY   REFITTED   (JEFF   RASIC   PERSONAL   COMMUNICATION,  2012)      At   the   Bonneville   Estates   Rockshelter   site   the   obsidian   and   basalt   used   to   manufacture  Haskett   or   similar   looking   points   came   from   sources   ranging   from   30   to   125   miles   away  (Repansbek,  2007).  The  raw  material  of  the  obsidian  Haskett  points  of  the  Running  Antelope  site  in  Northern  Utah  have  been  traced  back  to  Southern  Utah’s  Mineral  Mountain.  Some  of  the  material  of  the  site  comes  from  Southern   Idaho,  to  the  north  of  the  Running  Antelope  site   and   closer   to   the   Haskett   site   (Dairy   Creek,   Wright   Creek,   Malad   and   Wildcat   Hills).  Russell  (2003)  concludes  from  these  raw  material  source  locations  that  the  Haskett  hunters  most  probably  moved  in  a  north-­‐south/south-­‐north  line.      

  60  

 FIGURE   33:   HASKETT   WIDTH/THICKNESS   RATIO'S.   DATA   WAS   COLLECTED   FROM:   (BUTLER,   1965;  BUTLER,  1967)  AND  ORIGINATES  FROM  THE  HASKETT  TYPE-­‐SITE.  

Haskett   points   are   typically   lenticular   in   cross-­‐section.   However,   they   can   sometimes   be  diamond   shaped   in   cross-­‐section  depending  on   thickness,  width   and  presence  of   a   clearly  defined  midridge.   The  average  width/thickness   ratio  of   the  11  Haskett  projectile  points  of  which  measurements  were  available  is  2.9.  According  to  Stanford  (personal  communication,  2013)   the   projectile   points   probably   started   out   diamond   shaped   in   cross-­‐section.   As   the  points  were  reworked  the  ridges  in  between  the  former  flake  scars  might  have  functioned  as  platforms   for   new   flaking.   As   the   point   is   reworked   it   becomes   thinner   and   thus   more  lenticular   in   cross-­‐section.   At   the   Haskett   site   only   22   specimens   of   Haskett   points   were  found   of   which   8   were   complete.   The   points   have   a   well-­‐defined   and   recognizable   basal  section  that  tapers  into  a  convex  base.  Most  of  the  bases  are  edge  ground  from  the  widest  part  of  the  point  down  to  the  base  (Butler,  1978).      An  important  question  was  asked  in  the  thesis  of  Lafayette  (2006).  What  was  the  function  of  Haskett  points?  We  are  assuming  that  these  points  were  used  as  projectile  points  on  either  spears  or  atlatl  darts,  while   they  are   too  big   to  have  been  used  as  arrow  points.   Lafayette  (2006)  conducted  an  experimental  study  in  which  she  employed  use-­‐wear  analysis  on  freshly  made  points   that  were  used  as  projectile  points   to   stab  a  deer   carcass.   The   results  of  her  research  showed  that  Haskett  points  are  quite  inefficient  projectiles.  They  bounce  of  as  they  hit  the  target  and  many  of  the  prehistoric  samples  she  examined  did  not  show  the  expected  use-­‐wear  after  use  as  a  projectile  point.  However,   Lafayette  acknowledges   that   the  points  were  perhaps  differently  hafted  from  her  split-­‐shaft  technique.  A  socketed  shaft  haft  might  have  changed   the   results.  Haskett  points  were  probably  better  hafted   in  a   socketed  shaft.  The  shape  of  the  basal  section  of  the  point  is  essential  here.  Haskett  is  too  thick  and  narrow  to  be  hafted  in  a  split-­‐shaft.  Additionally  the  experimental  specimens  were  much  wider  than  the  Haskett   type-­‐site  specimens.  This  might  also  have   influenced  the  efficiency  of  use  as  a  projectile.  Lafayette  also  concluded  that  Haskett  points  were  inefficient  as  knives  because  of  

  61  

the  short  blade.  Perhaps  this  is  true  for  the  heavily  resharpened  Haskett  points  (type  1),  the  longer,   less   extensively   resharpened   specimens   do   have   long   enough   blades   and   were  perhaps  also  more  efficient  as  projectile  points.      Beck  and  Jones  (1997)  cite  Musil’s  (1988)  four  criteria  for  an  efficient  projectile  points:  1)  a  sharp   point,   2)   sharp   blade   edges,   3)   a   haft   element   that  will   absorb   the   force   caused  by  impact   while   doing   minimal   damage   to   the   shaft,   and   4)   an   overall   haft   design   that  minimizes  point  damage  that  allows  for  the  reworking  of  the  point  after  breakage.  (Beck  and  Jones,  1997  p.202;  Musil,  1988  p.374).  This  emphasizes  the   importance  of  hafting,  this   is  a  subject  that  is  not  well  analysed.  Haskett  points  do  have  sharp  tips,  although  the  extensively  resharpened  specimens  might  be  a  little  more  blunt,  and  the  points  have  sharp  blades,  again  with  the  exclusion  of  the  resharpened  ones  which  have  very  short,  but  still  relatively  sharp  blade   edges.   Stanford   (personal   communication,   2013)   also   disagrees   with   Lafayette’s  conclusions  and  states  that  Haskett  projectile  points  will  go  right  through  a   live  deer  when  thrusted  appropriately.  Beck  and  Jones  (1997)  acknowledge  that  Haskett  is  the  only  type  of  the  Great  Basin  stemmed  series  that  meets  the  criteria  of  an  efficient  projectile  point.  They  also  argue   that   the  Haskett   technology  might  be  quite  distinct   from  the  other  Great  Basin  stemmed  points  (e.g.  Cougar  Mountain,  Parman,  Lake  Mohave,  Silver  Lake  types,  etc).        Hafting  in  the  case  of  Haskett  points  would  be  most  efficient  in  a  socketed  shaft.  The  shape  of   the   stem   is  more   appropriate   for   this   kind  of   hafting.   This   technique  would  have   given  most  stability  and  resist  breakage  on  impact.  Because  of  the  large  portion  that  is  hafted  into  the  socketed  shaft  this  entire  section  can  absorb  force  while  protecting  the  haft   (Beck  and  Jones,   1997;   Mussil,   1988).   I   adopt   the   notion   of   socketed   hafting   for   Haskett   points,  especially  because  of  Lafayette’s  (2006)  unsuccessful  experiments  with  hafting  Haskett  in  a  split-­‐shaft.   It   should   however   be   kept   in  mind   that   there   is   no   available   evidence   for   the  hafting   of   Haskett   points   and   so   conclusions   are   drawn   from   the   projectile   point  morphology.  

  62  

3.3.5.  ASSOCIATED  LITHIC  ASSEMBLAGES  

At  the  Running  Antelope  site  in  Northern  Utah  scrapers,  utilized  flakes  and  a  flake  knife  were  found  in  association  with  Haskett  points  (Russell,  1993)  (fig.  34).    

 FIGURE   34:   SCRAPERS   (A-­‐C),   FLAKE   KNIFE   (D)   AND   UTILIZED   FLAKE   (E)   FROM   THE   RUNNING  ANTELOPE  SITE  (RUSSELL,  1993)  

There  is  not  much  published  about  the  associated  toolkit  of  Haskett  points.  Beck  and  Jones  (1997)   discuss   the   general   toolkit   of   Great   Basin   stemmed   points   and   name   various   tools  such  as:  knives,  gravers,  scrapers  and  spokeshaves  but  also  crescents,  manos  and  matates.  It  is  unclear  however  whether  these  tools  were  found  associated  with  Haskett  points  or  if  they  are   referring   to   other   types.   Especially   crescents,  manos   and  matates   seem   to   have   been  tools   of   archaic   age,   e.g.   after   9.000   14C   BP,   and   are   thus   of   less   interest   to   this   thesis.  Basketry   has   been   recovered   from   various   sites   in   the   Great   Basin   area.   Even   though  basketry  was  never  associated  with  Haskett  points  in  context  the  first  appearance  of  woven  material  was  dated  to  11.25014C  BP  at  the  Winnemucca  Lake  basin  (fig.30).      

  63  

3.3.6.  SITE  CHARACTERISTICS  AND  INFERRED  ACTIVITIES  

Most  of   the  sites  containing  Haskett  points  are   located   in  caves  or   rockshelters.  The   type-­‐site  seems  to  be  an  exception  to  this  ‘rule’  as  it  was  located  in  a  Pleistocene  dune  field.  Most  of   the   sites   seem   to  be   campsites.  At   the  Haskett   type-­‐site   very   few   faunal   remains  were  discovered.  A  few  pieces  of  tooth  enamel  that  Butler  (1965)  believed  might  have  belonged  to  bison  were  found.  There  were  also  no  cultural  features  preserved  at  the  type-­‐site.  Luckily  some  of  these  other  sites  have  provided  some  clues  about  the  life  of  Haskett  hunters.      Russell,   (1993)   states   that   the   Running   Antelope   site   in   Northern   Utah   was   a   prehistoric  camp  site  on  a  low  beach  terrace  of  ancient  Lake  Bonneville.  The  amount  of  broken  Haskett  bases,  flakes,  scrapers  and  utilized  flakes  might  also  indicate  that  this  was  a  processing  camp  with  a  kill  site  nearby.  No  mention  was  made  of  faunal  remains  at  the  site  though.  At  Redfish  Overhang   a   cache   was   found   with   Haskett   points   associated   with   hearths   that   were  radiocarbon   dated.   Here   too,   faunal   remains   were   lacking   (Russell,   1993;   Troll   and  Hackenberger,  1998).      At   the   Bonneville   Estates   Rockshelter   various   hearths   and   associated   remains   were  discovered.  It  is  possible  that  a  couple  of  the  recovered  projectile  point  fragments  represent  Haskett.  This  cannot  be  said  for  sure  however  as  no  complete  points  were  found.  This  site  provides   a   nice   peek   into   Paleoindian   subsistence   strategies.   In   stead   of   the   large   extinct  megafauna,   that   is   usually   expected   at   Paleoindian   sites,   at   this   site   a   variety   of   smaller  mammal  remains  was  found  amongst  which:  bighorn  sheep,  pronghorn,  mule,  deer  and  sage  grouse.   It   has   even   been   suggested   that   the   prehistoric   inhabitants   of   this   site   ate  grasshoppers.  Surprisingly  no  waterfowl  remains  were  found,  which  is  very  common  in  the  Great  Basin  area  (Repansbek,  2007).    There   is   not   much   evidence   for   big   game   hunting   in   the   Great   Basin   area   but   because  projectile  points  were   found  here   the   connection   to  big   game  hunting  was   assumed   from  the  Great  Plains  where  these  two  go  hand  in  hand  (Bryan  and  Tuohy,  2005).  At  the  Running  Antelope  site  studies  have  been  done  on  the  fractures  on  the  Haskett  points.  Many  of  the  observed   fractures  were   due   to   impact   of   hafted   points.   Some  of   the   fractures  were   also  caused  by  faulty  percussion  flaking  (Russell,  2004).  These  results  emphasize  the  use  of  these  tools  as  projectile  points.    

  64  

3.3.7.  COUGAR  MOUNTAIN  

Haskett   and   Cougar   Mountain   points   have   strong   similarities   and   are   sometimes   found  together,  as  at  the  Cougar  Mountain  Cave  site.  Both  point  types  are  lanceolate  in  form  and  have   contracting   stems.   Flaking   is   the   same   (Beck,   1988).   The   biggest   difference   between  the  two  types  is  that  Cougar  Mountain  has  shoulders  and  Haskett  does  not.  As  a  result  the  stem  of  both  points  is  very  similar  (though  Cougar  Mountain  bases  are  more  rounded  than  the  usually  more  straight  Haskett  bases.  The  blade  of  Cougar  Mountain  points  is  much  wider  than  Haskett  blades  (fig.35).      

 FIGURE  35:  COUGAR  MOUNTAIN  POINTS   FROM  COUGAR  MOUNTAIN  CAVE  (LAFAYETTE,  2006:  P.51)    

While   Haskett   points   seem   to   be  confined  to  the  Northern  Great  Basin  and  Columbia  Plateau  region,  Cougar  Mountain   points   also   occur   in   the  Western  and  central  Great  Basin  area  as   well   as   in   the   north   where   the  density   is   highest   (Beck   and   Jones,  1997).   In   other   words,   Cougar  Mountain   points   were   more  widespread   and   numerous   than  Haskett  points.    Cougar   Mountain   points   were   dated  to   9.920   –   7.080   14C   BP   (Beck   and  Jones,   1997).   This   indicates   that  Haskett   and   Cougar   Mountain   were  contemporary  for  at   least  1500  years  but   Haskett   is   older   than   Cougar  Mountain.   However,   this  contemporaneity   may   reflect   “…the  beginning   of   a   new   technology   and  the  waning  of  an  old  one”   (Beck  and  Jones,  1997)  (p.197).  

Cougar  Mountain  points  are  younger  than  Haskett  and  persisted  longer  in  time.  The  stem  of  these   points   is   sometimes   hard   to   separate   from   Haskett   bases,   especially   when   the  shoulders  of  the  Cougar  Mountain  point  are  lacking.  This  can  lead  to  faulty  determinations.  I  have   experienced   this   during   my   analysis   of   the   Fire   Creek   site   projectile   points   at   the  WCRM  Inc.  in  Reno,  NV.  The  differences  between  the  two  types  are  small   in  the  stems  but  the  adding  of  a  shoulder  gives  the  projectile  point  a  distinctive  appearance.  Perhaps  even  a  bit  similar  to  Hell  Gap  points  of  the  Great  Plains.    

  65  

3.4.  EL  JOBO  

 The   El   Jobo   projectile   point   type  was   named   after   the   village   in  which   vicinity   the   points  were  first  discovered  by  Dr.  José  M.  Cruxent  of  the  Universidad  Central  de  Venezuela  in  1956  (Cruxent,  1956).  What   is   referred   to  as   the  El   Jobo   type-­‐site   is  actually  a  number  of   seven  sites  in  the  area  of  the  village  of  El  Jobo  in  Northern  Venezuela.  These  sites  yielded  surface  finds  and  have  not  been  extensively  excavated.    

 FIGURE  36:  TAIMA-­‐TAIMA  SITE  (OLIVER,  2013)  

The  El   Jobo  projectile  point  discovery  was   important  because   it  was   the   first   find   in  South  America  that  could  be  compared  to  the  Paleoindian  complexes  of  North  America  and  it  was  suggested  that  the  El  Jobo  complex  descended  from  the  north  (1962a;  Cruxent,  1956;  Rouse  and  Cruxent,  1957).  In  the  very  first  publication  where  the  find  of  the  points  was  announced  (Cruxent,  1956)  comments  were  made  on  the  find  by  Irving  Rouse,  H.  Marie  Wormington,  E.  Mott  Davis  and  Alex  D.  Krieger.  These  respected  archaeologists   immediately  compared  the  El  Jobo  points  to  projectile  point  types  of  North  America.  E.  Mott  Davis  even  compared  the  El   Jobo   points   to   Agate   Basin   points   and   compared   the   associated   tool   kit   to   that   of   the  Basin  and  Plateau  area  where  Haskett  occurs.      In   1962   Jose   Cruxent   presented   the   find   of   a   complex   of   crude   tools,   the   Manzanillo  complex.   Though   lacking   any   projectile   points   he   linked   the   find   to   the   El   Jobo   complex  because   the   crude   tools   were   similar   (Cruxent,   1962b).   In   1963   Cruxent   announced   the  discovery  of   the  Muaco   site   some  80  km   from  El   Jobo.  An  El   Jobo  point  was   found   in   situ  associated   with   mastodon   bones   that   dated   16.000   to   14.000   14C   BP.   However,   the  association  of  the  point  and  the  bone  of  the  extinct  animal  was  questioned  because  of  the  nature  of  the  site,  a  water-­‐hole  and  the  might  have  been  disturbed  by  spring  action  (Rouse  and  Cruxent,  1963a).        

  66  

In  1962  excavations  started  at  Taima-­‐Taima  (fig.36).  The  critics  were  very  skeptical  about  the  results  of  the  previous  mentioned  sites  and  this  continued  with  the  Taima-­‐Taima  site  (Gruhn  and  Bryan,  1991;  Lynch,  1974).  The  presence  of  humans  in  association  with  a  Mastodon  kill  seemed  evident  to  the  excavators  but  it  was  not  until  1976  that  the  undisputable  evidence  was  unearthed.  A  fragment  of  an  El  Jobo  projectile  point  was  discovered  within  the  cavity  of  the   right   pubis   of   a   juvenile   mastodon   that   was   evidently   butchered   there   (Bryan   et   al,  1978).   This  made   the  Taima-­‐Taima   site  one  of   the  most   important  discoveries  of   the  mid-­‐twentieth   century.   Cruxent   called   the   results   conclusive,   a   mastodon   was   butchered   at  Taima-­‐Taima  by  humans  some  13.000  14C  BP.  The  Taima-­‐Taima  site  was  of  major  importance  because   at   the   time   it  was   the   first   definite  mastodon   kill-­‐site   as  well   as   the   earliest   and  most  securely  dated  proboscidean  kill-­‐site  in  the  Americas  (Bryan,  1979).  In  later  years  a  few  other  sites  containing  El  Jobo  points  were  discovered.    

3.4.1.  DISTRIBUTION  

El   Jobo   points   are   found   exclusively   in   Northern   Venezuela   in   the   vicinity   of   the   coast   or  major  waterways,  an  area  that  is  believed  to  have  been  uninhabited  before  the  arrival  of  El  Jobo.  Figure  37  shows  the  location  of  the  few  sites  that  yielded  this  point  type.  The  El  Jobo  type-­‐site   (1)   is   located   in   the   State   of   Falcón   and   consists   of   7   small   find   locations   on  different  topographic  levels.  Many  sites  (45)  were  located  on  the  uppermost,  upper  middle,  lower   middle,   and   lower   terraces   of   the   Rio   Pedregal   river   (Cruxent,   1956;   Rouse   and  Cruxent,   1963b).   The  Manzanillo   site   (6),   that   yielded  no  projectile  points,  was   located  on  the  west  side  of  Lake  Maracaibo  and  Cruxent  believed  that   the  El   Jobo  hunters  must  have  passed  this  way  while  they  were  moving  eastward  (Cruxent,  1962b).      

 FIGURE  37:  DISTRIBUTION  OF  EL  JOBO  ARCHAEOLOGICAL  SITES  (NUMBERS  CORRESPOND  TO  TABLE  4)  

The  Muaco  site  (2)  is  located  some  80  km  from  the  El  Jobo  type-­‐site.  The  site  is  situated  at  a  spring   that   attracted   both   animals   and   humans.   The   Taima-­‐Taima   site   (2)   is   located   3   km  north  of  the  Muaco  site  and  is  similar  to  Muaco  in  that  it  is  also  a  water  hole  site  (Bryan  et  

  67  

al,  1978;  Cruxent,  1979).  The  El  Vano  site   (5)   is   located  at   the   feet  of   the  Andes  mountain  range   in   Western   Venezuela   (Quero,   2005)   and   is   set   in   a   aquatic   depositional   setting  (Quero,  1998).  The  Cucuruchu  site   (4)   is   located   in  a  side  canyon,   in  an  arroyo   like   feature  near  the  sea  and  close  to  Taima-­‐Taima.  Beside  these  sites  there  are  several  surface  sites  on  the   terraces   along   the  Rio   Pedregal.   The   Taima-­‐Taima,  Muaco   and  Cucuruchu   sites   are   all  located  in  hilly  terrain  (Gruhn  and  Bryan).      A  total  of  7  sites  (not  counting  any  unpublished  surface  sites)  is  not  a  lot.  Luckily  the  Taima-­‐Taima  site  has  yielded  information  about  the  El  Jobo  hunters  and  so  do  later  studies  of  the  projectile  point  technology.  The  question  whether  the  projectile  points  of  the  Monte  Verde  site   in   Chile   belong   to   the   El   Jobo   complex   is   difficult   to   answer   and  will   be   discussed   in  chapter  3.4.7.      TABLE  5:  EL  JOBO  SITES,  LOCATIONS  AND  14C  DATES  

Nr.   Site  name   Point  type   Coordinates   14C  Date  1   El  Jobo   El  Jobo   9.698905,-­‐69.86721   not  dated  2   Taima-­‐Taima   El  Jobo   11.499249,-­‐69.522219   13.000  2   Muaco   El  Jobo   11.481749,-­‐69.544959   16.000-­‐14.000  3   Sanjon  Malo   El  Jobo   11.057125,-­‐70.094147     not  dated  4   Cucuruchu   El  Jobo   10.359502,-­‐69.257812   not  dated  5   El  Vano   El  Jobo   9.62783,-­‐67.044067   10710-­‐7400  6   Manzanillo   Crude  tools   estimated  location   not  dated        

3.4.2.  ENVIRONMENT  

Information   about   the   late   Pleistocene   environment   and   climate   of   Venezuela   is   not  abundant.  At  present  Venezuela  has  a  tropical  climate  with  a  mean  annual  temperature  of  24.7  °C.  The  temperature  remains  more  or  less  constant  throughout  the  year  with  variations  no   larger   than   2°C.   Daily   temperature   variations   are   10°C   (Rull   et   al,   2009).   Precipitation  varies  as  Venezuela  has  a  typical  biseasonal  climate;  general  precipitation  in  a  year   is  1046  mm.  The  rainy  season  occurs  from  approximately  April  to  October,  during  the  other  months  it  can  get  very  arid  with  precipitation  levels  of  approximately  10mm  a  month.  Precipitation  can  also  vary  on  an  interannual  scale  due  to  the  influence  of  El  Niño  and  La  Niña  events.  The  vegetation  varies  but  for  the  area  of  interest  here  it  can  best  be  described  as  an  herbaceous  savannah  with  different  species  of  cacti  and  shrubs  (Rull,  1996).      The  northern  part  of  the  Andes  extends  into  Venezuela  and  this  causes  the  country  to  have  different   climate   regions   and   vegetation   zones.   At   lower   levels   savannahs   are   found  with  semi-­‐deciduous   forests.   At   higher   elevation   a   fringe   of   transitional   forest   is   present.   Even  higher  the  famous  Cloud  Forests  are  found  with  many  species  of  plants  and  animals.  At  the  highest  elevation  shrubs  dominate  the  vegetation.  Along  the  Northern  coast  mangroves  are  present  with   an   evergreen   forest   fringe   along   the   coastline.   In   the  west   thorn  woodlands  dominate   the   environment   with   xerophytic   communities   such   as   cacti   species   (Rull   et   al,  2009).  The  area  of  interest  here  is  located  north  of  the  Andes  and  close  to  the  coastline  and  has  many  low  elevation  ridges  and  gorges  (Oliver,  2013).    

  68  

 FIGURE  38:  TAIMA-­‐TAIMA  SITE  SETTING  (KUNZ  AND  BAKER,  2011)  

The  LGM  in  Venezuela  occurred  from  approximately  21.000  to  18.000  14C  BP,  temperatures  dropped  7°C  compared  to  the  present.  During  the  Last  Glacial,  glaciation  was  present  in  the  Andes   of   Venezuela   until   approximately   13.000   14C   BP.   This   period   is   referred   to   as   the  Mérida  Glaciation  and  is  characterized  in  Venezuela  by  high  aridity.  This  aridity   lasted  until  10.500   14C   BP   at   Lake   Valencia   where   studies   of   the   environment   and   climate   were  conducted.  Lake  Valencia  lies  approximately  200  km  east  of  the  Taima-­‐Taima  site,  however  the  present  environment  seems  similar  (Rull,  1996).  In  the  direct  proximity  of  the  lake  tree  pollen  are  low  and  it  is  indicated  that  sparse  grasslands  and  saline  marsh  vegetation  covered  the  area.  In  the  area  of  El  Jobo  occurrence  there  is  evidence  of  a  more  humid  climate  than  at  present  with  expanses  of  forests  separated  by  grasslands.  Ideal  conditions  for  large  grazers  such  as  mastodon   (Rouse  and  Cruxent,  1963b).  The  existence  of  a  Younger  Dryas  event   in  Venezuela  remains  under  discussion  although  evidence  of  such  an  event  has  been  found  at  the  Cariaco  Basin  with  temperatures  3-­‐4  °C  lower  than  at  present  and  much  dryer  conditions  (Rull  et  al,  2009).          The  Late  Glacial  started  at  13.000  14C  BP  and  shows  a  general  deglaciation  trend  with  small  stadial  and  interstadial  oscillations.  From  12.600  to  12.200  14C  BP  there  was  a  cold   interval  with  a  decrease  of  3°C  in  temperature.  Then  the  temperature  increased  with  5°C  until  circa  11.900  14C  BP  after  which  temperatures  dropped  again  with  2/3  °C  until  11.100  14C  BP.  From  10.000  14C  BP  onwards  the  dry  climate  became  wetter  and  started  resembling  the  present  climate   and   environment   (Rull,   1996).   During   the   early   Holocene   (10.000   –   8.200   14C   BP)  precipitation  increased  and  as  a  result  tree  and  grass  pollen  become  more  abundant.      Whereas   the   fauna   of   Venezuela   nowadays   mainly   consists   of   goats   introduced   by   the  Spaniards,   during   the   late   Pleistocene   various   extinct   species   roamed   the   area   such   as:  mastodon,   megathere,   glyptodont,   horse,   tortoise   and   macrauchenia   (Gruhn   and   Bryan).  There   is  mention  of   the  presence  of  bison  as  southern  as   the  Valsequillo   region   in  Mexico  but  not  in  Venezuela  (Gonzalez  et  al,  2006).  In  contrast  to  North  America  there  is  not  much  known  about  the  extinction  of  megafauna  in  Northern  South  America.  Overall  there  are  few  

  69  

young  dates  for  mastodon  in  South  America.  Possibly  the  youngest  is  the  one  related  to  the  El   Jobo   projectile   points   at   Taima-­‐Taima.   Barnosky   and   Lindsey   (2010)   discard   the   Taima-­‐Taima  dates  and  suggest  that  mastodon  was  already  extinct  before  the  arrival  of  humans  to  the   continent.   However,   the   association   of   the   El   Jobo   tools   at   the   Taima-­‐Taima   site,  together  with  the  radiocarbon  dates  and  marks  of  butchering  on  the  bones  proves  that  this  was  not  the  case.  The  megafauna  extinction  in  South  America  coincides  with  climatic  change  but  it  took  much  longer  than  in  North  America.  Only  at  the  beginning  of  the  Holocene  much  of   the  megafauna  had  died  out.   Some  species   lasted   longer   than  others  among  which   the  megathere,   (Barnosky  and  Lindsey,  2010)  which  was  also  found   in  association  with  El   Jobo  points  at   the  Muaco  and  El  Vano  site   (Quero,  1998;  Rouse  and  Cruxent,  1963a).   It   is   likely  that  megafauna  such  as  mastodon  were  already  at  the  verge  of  extinction  during  the  El  Jobo  occupation.  Mastodon  did   not   thrive  well   in   arid   environments   (Ficcarelli   et   al,   1997)   and  perhaps   during   the   El   Jobo  occupation   they   became  extinct   in   the   region   due   to   the   high  aridity  in  combination  with  predation  by  the  El  Jobo  hunters.  

3.4.3.  DATING  

The  first  dated  El   Jobo  site  was  the  waterhole  of  Muaco  where  burned  bone  was  dated  to  16.375±400  and  14.300±500  14C  BP.  These  dates  were  dismissed  by  critics  as  being  way  too  old.  The  site  was  also  questioned  because  of  contextual  and  stratigraphic  issues  (Rouse  and  Cruxent,  1963a)  but  also  because  such  an  early  South  American  date  was  highly  unexpected.  As   a   result,   more   proof   was   needed   of   the   antiquity   of   El   Jobo   projectile   points.   The  radiocarbon  dates  of  the  earlier  excavations  at  Taima-­‐Taima  were  fiercely  debated  by  New  World   archaeologists.   It   was   said   that   there   might   have   been   old   carbon   in   the   ground  water,  however  this  would  have  yielded  several  dates  of  approximately  the  same  age,  which  was  not  the  case  (Bryan,  1975;  Haynes,  1974).  After  the  1976  excavations  of  the  site,  Taima-­‐Taima  site  was  described  by  Bryan  and  Gruhn  (1979)  as  “the  best  dated  kill-­‐site  in  America”  (p.53).   The   association   of   the   mastodon   and   the   projectile   points   was   dated   on   wooden  twigs  that  were  probably  from  the  content  of  the  animals’  stomach.  The  layer  in  which  the  mastodon   remains   were   found   has   been   continuously   waterlogged   since   deposition   and  therefore  preservation  was  good.  These  twigs  yielded  4  radiocarbon  dates  (table  2)  ranging  from  12,980±85  to  14.200±300  14C  BP  (Bryan  et  al,  1978;  Gruhn  and  Bryan).      These   dates   are   not   the   only   dates   from   the   site   but   they   are   the   dates   that   are   closely  associated  with  the  butchered  mastodon  remains.  Additionally  eleven  dates  were  obtained  from   the   various   stratigraphic   layers   that   showed   a   consistent   range   of   dates.   The   layer  overlying   the   mastodon   carcass   was   securely   dated   to   10.200   –   9.800   14C   BP   and   thus  provided  a  minimum  age  for  the  kill  site  (Bryan  and  Gruhn,  1979;  Dillehay,  2000).  In  total  27  radiocarbon   dates   were   obtained   from   the   Taima-­‐Taima   site   of   which   only   three   were  inconsistent  (Bryan  and  Gruhn,  1979).  It  was  not  just  the  radiocarbon  dates  that  proved  the  antiquity  of  the  site.  The  association  of  the  El  Jobo  projectile  point  with  the  skeleton  of  an  extinct  animal,  which  additionally  showed  signs  of  butchering,  was  an  important  indicator  of  the  age  of  the  site.      TABLE  6:  TAIMA-­‐TAIMA  RADIOCARBON  DATES  (BRYAN,  ET  AL.,  1978)  

Lab.  number   Radiocarbon  date  SI-­‐3316   12.980±85  Birm-­‐802   13.000±200  USGS-­‐247   13.880±120  UCLA-­‐2133   14.200±300  

  70  

 

 FIGURE  39:  CALIBRATION  CURVE  FOR  THE  RADIOCARBON  DATES  OF  THE  EL  JOBO  COMPLEX.  AS  THE  CALIBRATED  DATA  IS  NOT  USED  IN  THIS  THESIS  PLEASE  PAY  ATTENTION  TO  THE  RADIOCARBON  DETERMINATION  ON  THE  Y-­‐AXIS  OF  THE  GRAPH.  DATA  COMES  FROM  THE  MUACO,  TAIMA-­‐TAIMA  AND  EL  VANO  SITES  (BRONK  RAMSAY,  2009).  

The  only  other  radiocarbon  dated  El   Jobo  site   is  the  El  Vano  site.  Here  also,  the  butchered  bones  of  an  extinct  animal   (megathere:  giant  ground  sloth)  were  found   in  association  with  tools.   The   bones   were   dated   by   AMS   but   the   results   were   dismissed   as   not   trustworthy  because  of  the  low  collagen  levels  left  in  the  bones.  The  most  reliable  date  was  the  oldest:  10.710±60  14C  BP  but  it  was  considered  a  minimum  age  because  all  other  signs  pointed  to  a  greater  antiquity.  Results  correspond  well  with  other  El  Jobo  sites  and  so  the  age  of  this  site  has  been  assumed  to  be  similar  to  that  of  Taima-­‐Taima  (Quero,  1998).        

  71  

3.4.4.  LITHIC  TECHNOLOGY  

During  the  period  of  discovery  of  the  El  Jobo  complex  it  was  compared  to  other  Paleoindian  bifacial   projectile   point   technologies   amongst   which   Clovis.   The   main   thing   that   was  strikingly  different  between  the  two  technologies  was  that  Clovis  was  made  to  be  as  thin  as  possible   while   El   Jobo   seemed   to   have   been   desired   as   thick   as   possible.   Sometimes   the  points   are   almost   as   thick   as   they   are   wide   (fig.40).   This   feature,   together   with   the  lanceolate/leaf-­‐like   shape   of   the   projectile   points   makes   them   comparable   to   Mesa/  Sluiceway,   Agate   Basin   and   Haskett   points.   El   Jobo   is   relatively   the   thickest   of   the   points  discussed   in   this   thesis   (Bryan,   1979).   The  average  width/thickness   ratio  of   the  15  El   Jobo  points  that  were  measured  is  2.4.  Only  a  few  of  the  measured  specimens  have  ratios  greater  than  3.  Bryan   (1979)   suggests   that   the   thickness  of   the  points  makes   them  much  stronger  but   he   indicates   that   the  main   reason   of   the   great   thickness   is   because   the   points   were  hafted  in  a  socketed  shaft.      

 FIGURE   40:   EL   JOBO   WIDTH/THICKNESS   RATIOS.   DATA   WAS   COLLECTED   FROM   THE   EL   JOBO   TYPE-­‐SITE  (NAMI,  1994)  AND  FROM  THE  TAIMA-­‐TAIMA  SITE  (CRUXENT,  1979)  

Ethnographic  studies  in  South  America  show  that  most  indigenous  peoples  do  not  use  stone  for  their  projectile  points.  Most  projectile  points  are  made  out  of  wood  and/or  bone.  These  points   are   generally   hafted   in   socketed   shafts   and   it   is   possible   that   El   Jobo   hunters  maintained   the   same   strategy   when  working   with   stone   (Bryan,   1979).   Four   phases   of   El  Jobo   point   manufacture   are   described   by   Cruxent   (1979).   First   a   long   flake   is   struck   by  percussion   to   be   used   as   a   preform.   The   preform   is   then   roughly   trimmed   by   percussion  flaking.  Shaping  of  the  point  is  done  by  percussion  retouch  and  finally  the  edges  are  shaped  by  a  more  delicate  edge  retouch.      

  72  

 

 FIGURE  41:  EL  JOBO  PROJECTILE  POINTS  (KUNZ  AND  BAKER,  2011)  

Cruxent   (1979)  describes  El   Jobo  as  made  on   long,  narrow  flakes.  The  points  are  generally  made  of  quartzite  sandstone.  A  material   that   is  difficult   to   flake.  The  medium  size  of  an  El  Jobo  point  is:  105  mm  length,  20  mm  width  and  10  mm  thick.  Depending  on  the  thickness  of  the   point   the   cross-­‐section   is   lenticular   (with   thinner   points)   or   diamond   shaped   (with  thicker  points).  A  moderate  midridge  is  often  visible  (Cruxent,  1979).  The  tip  of  the  projectile  point  is  sharp  and  pointed  while  the  base  is  relatively  blunt.  This  differs  among  points;  some  have   straight   and   sometimes   even   concave   bases   while   others   are   nearly   bipointed.   The  blunt   bases   of   the   projectile   points   are   explained   by   Cruxent   as   the   result   of   a   striking  platform  of  the  flake  that  was  used  as  a  preform  for  the  point,  the  base  of  the  point  is  this  platform  (Cruxent,  1979;  Cruxent,  1956).      Flaking  of   the  point  was  done  by  percussion   flaking,  probably  direct  with  a  hammerstone.  Surfaces   are   chipped   coarsely.   The  edges   are   straightened  by   fine  percussion   retouch  and  even  finer  micro  retouch  that  was  done  by  pressure  flaking.  While  this  technique  can  lead  to  very  straight  and  neat  edges  with  El   Jobo  points  the  edges  are  sometimes  slightly  serrated  (Rouse  and  Cruxent,  1963b).  This   fine   retouch  of   the  edges  does  not  necessarily  make  the  edges   sharper   but   it   is   necessary   to   obtain   good   symmetry   in   the   tool   which   gives   the  projectile   a   more   direct   flight   and   easier   penetration   (Cruxent,   1979).   Beside   these  functional   aspects   I   also   believe   that   symmetry   adds   to   the   beauty   of   the   point,   which   I  believe  is  an  aspect  that  also  prehistoric  people  were  not  indifferent  about.  The  variety  seen  in   El   Jobo  projectile   points   is,   according   to   Cruxent   (1979),   due   to   the   individuality   of   the  different  flint  knappers.      

  73  

 FIGURE  42:  EL  JOBO  MIDSECTION  WITH  SERRATED  EDGES  (PHOTO:  MOJAVE,  WWW.ARROWHEADOLOGY.COM)  

3.4.5.  ASSOCIATED  LITHIC  ASSEMBLAGES  

The  flake  tools  at  the  Taima-­‐Taima  site,  primarily  cutting  tools  and  scrapers,  were  made  on  chert   flakes.   According   to   Cruxent   (1979)   the   tools   look   like   they   were   meant   for   wood  working  or  the  manufacture  of  basketry,  not  cutting  meat.  These  tools  could  however  have  been  used  for  the  cutting  of  nerve  cords  or  tendons  as  well  as  skinning  and  other  butchering  tasks.  The  knife  found  at  the  Taima-­‐Taima  site  might  very  well  have  been  hafted  which  the  proximal  end  facilitated  (Cruxent,  1979).    Beside   these   tools   there  were   tools   that  Cruxent   (1979)   refers   to  as   ‘tools  of  expediency’.  These   tools   were   probably   manufactured   on-­‐site.   They   were   probably   improvised   in   the  moment  because  of  a   lack  of   tools.  These   tools  are   slightly  modified   rocks  and  are  mainly  primitive   and   crude.   One   might   not   expect   to   find   these   kinds   of   tools   associated   with  bifacial  projectile  points  however,  according  to  Cruxtent  (1979)  they  are  connected.  Most  of  these   tools  were  probably   used   as   axes.   There  were   also   two  possibly   hafted   implements  that  might  have  been  used   for   cutting  meat,   as  weapons  or  as  bone  cleavers.   These   tools  show  light  to  heavy  retouching  and  the  use  of  notches  to  tie  the  rope  to  the  haft  (Cruxent,  1979).   The   use   of   side   notches   is   very   interesting   because   this   shows   that   the   El   Jobo  hunters  knew  the  advantages  of  a  hafting  technique  using  side  notches,  by  many  referred  to  as   a   superior   hafting   technique.   However,   they   chose   not   to   use   this   technique   on   their  projectile  points.    

  74  

 

 FIGURE   43:   TOOLS   ASSOCIATED   WITH   EL   JOBO   POINTS   (PERFORATING   TOOL,   PLANO-­‐CONVEX  SCRAPER,  BLADE,  HAND  AXE)  (OLIVER,  2013)  

The  Taima-­‐Taima  site  also  yielded  bone  artefacts.  A  long  bone  fragment  was  worked  on  two  edges  and  might  have  functioned  to  skin  the  animal  and  cut  meat.  Two  pointed  bones  were  found,   possibly   used   for   butchering   as   well   as   a   bone   knife   suitable   for   cutting   meat.  Another  interesting  find  at  the  Taima-­‐Taima  site  was  an  anvil  (Cruxent,  1979).  At  the  El  Vano  site  two  utilized  flakes  were  found  together  with  a  chopper,  rounded  pebble  and  a  scraper.  Interestingly  ‘bone  retouchers’  were  found  made  out  of  long  dental  roots  (Quero,  1998).      At  the  Manzanillo  site  at  the  Western  coast  of  Lake  Maracaibo  crude  tools  were  discovered  that  resemble  the  tools  that  are  found  associated  with  El  Jobo  projectile  points.  These  tools  are  mainly  choppers  and  scrapers  made  of  silicified  wood.  The  tools  are  so  crude  that  they  are  hard  to  distinguish.  There  were  unifacial  ‘turtle  back  scrapers’  and  side  scrapers  as  well  as  bifacial  choppers,  hand  axes,  knives  and  handplanes.  Additionally  there  are  indications  for  the   use   of   anvils   because   of   the   presence   of   a   opposed   percussion   bulb   on   some   flakes  (Cruxent,  1962a).  

3.4.6.  SITE  CHARACTERISTICS  AND  INFERRED  ACTIVITIES  

It   is  notable  that  at   least  two  El  Jobo  sites  are  waterholes  or  spring  localities  that  probably  attracted   both   animals   and   humans.   It  might   be   that   these  were   the   localities  where   the  animals   were   ambushed.   It   could   however   also   mean   that   the   animal   was   wounded  elsewhere  and  then  tracked  as  it   lost  strength.  A  wounded  animal  can  be  expected  to  look  for   water   (Gruhn   and   Bryan,   1989).   Either   way,   El   Jobo   sites   seem   to   be   associated  with  aquatic  settings.      El   Jobo  projectile  points  are  actually  quite   rare  at   the  Taima-­‐Taima  site,  as   they  are  at   the  other  excavated  sites.  Most  El  Jobo  points  come  from  the  surface  sites  of  the  Rio  Pedregal  terraces  (Oliver,  2013).  In  some  cases  one  edge  of  the  projectile  point  has  been  worked  with  more  detail  than  the  other  edge.  This  has  led  Cruxent  (1979)  to  believe  that  these  specimens  might  have  also,  or  exclusively,  been  used  as  knives.    

  75  

 El   Jobo   sites   can   generally   be   described   as   kill-­‐sites.   At   the   kill-­‐site   some   butchering   also  occurred  before  the  chosen  remains  of  the  animal  were  transported  to  a  base  or  camp  site  nearby.   This   is   proven   by   the   presence   of   animal   remains   with   cut   marks   and   other  butchering  traits  (Rouse  and  Cruxent,  1963a).  At  the  El  Vano  site  different  areas  were  used  to  butcher  the  different  parts  of  the  carcass  of  the  giant  ground  sloth  (Quero,  1998).    

3.4.7.  MONTE  VERDE:  AN  EL  JOBO  SITE?  

The   Monte   Verde   site   was   discovered   in   1976   and   excavations   were   started   by   Tom   D.  Dillehay   in   1977.   The   site   was   special   because   of   the   astoundingly   good   preservation   of  organic   remains.   The   site   yielded  various   interesting   finds   that  had  not  been  preserved  as  well  anywhere  in  the  Americas.  Among  the  finds  were  stakes  and  poles  of  a  tent  structure,  hearths,   mortars   and   grinding   stones,   meat   and   mastodon   bones,   footprints   in   the   clay,  crude  stone  tools  and  bifacial  projectile  points.  The  site  was  firmly  dated  to  12.800  –  11.800  14C  BP  (Dillehay,  1997;  Dillehay  et  al,  2008).  

 FIGURE  44:  POINTED  TOOL  FROM  THE  MONTE  VERDE  SITE,  CHILE  (WWW.ELE.NET)  

Monte   Verde’s   projectile   points   have   been   connected   to   El   Jobo   with   caution   (Dillehay,  1999;  Kunz  and  Baker,  2011).  Projectile  points  were  very  rare  at  the  Monte  Verde  site,  only  two   fragments   were   found.   Dillehay   has   not   paid   much   attention   to   them   because   they  seemed  of   lesser   importance  when  compared  to   the  other   finds  at   the  site   (Dillehay  et  al,  1999).  In  the  first  volume  of  Dillehay’s  book  about  the  site:  Monte  Verde,  a  Late  Pleistocene  Settlement  in  Chile  (Dillehay,  1989)  he  only  mentions  the  proposed  projectile  points  shortly  and  defines  them  as:  “…   large  bifaces  made  of  exotic  basalt  and  quartzite”   (p.15).  Dillehay  (1989)   describes   the   lithic   technology   with   which   these   points   were   made   as   “pecked-­‐ground   stone   technology”   (p.15)   and   in   another   publication   (Dillehay,   1999)   he   describes  this  as:  “The  piece  has  been  pecked  and  ground  into  a  perforating-­‐type  tool”  (p.212).  With  only  these  descriptions  to  work  with  I  will  draw  my  own  conclusions  from  the  available  data.    The  shape  of  the  Monte  Verde  projectile  point  could  fit  the  El  Jobo  type  although  it  is  more  pointed  than  El  Jobo  (fig.  44).  Conclusions  about  the  width/thickness  ratio  are  impossible  to  draw   from   this   photograph.   Because   of   the   nature   of   the   raw   material   it   is   hard   to   see  flaking  on  this  picture.  Because  Dillehay  (1989)  describes  the  point  as  being  worked  with  a  pecked-­‐ground  technology  I  believe  there  are  very  few  characteristics  that  these  point  types  have   in   common.  On   top  of   that   the  distance  between   the   El   Jobo   region   and   the  Monte  Verde  site   location   is  very   large   (approximately  6000  km)  and  has  yielded  no  similar  stone  tool  technologies.  Additionally  the  El  Jobo  complex  dates  to  approximately  the  same  age  as  Monte  Verde,  which  makes  the  chances  of  a  connection  through  migration  even  less  likely.  Therefore   I   reject   the  connection  between  Monte  Verde  and  El   Jobo  based  on   the   limited  evidence  presented  here.      

  76  

4.  COMPARISON  

When  comparing  the  four  projectile  point  complexes  it  is  important  to  keep  possible  biases  in  mind.  Biases  can  occur  because  of  different  methods  of  excavation  and  research,  different  times  of  excavation  and  differences   in  paradigmatic  background  of   the  different  scientists.  The  Mesa   site   was   tested   in   the   years   following   its   discovery   in   1978,  major   excavations  were  conducted  from  1991  to  1999  (Kunz  and  Reanier,  1994).  The  Agate  Basin  site  was  first  discovered  and  excavated  in  1959  but  was  more  thoroughly  studied  in  the  end  of  the  1970s  (Frison  and  Stanford,  1982).  The  Haskett  site  was  excavated  in  the  1960s.  Descriptions  of  the  Haskett  points  were  first  published  in  1964  (Butler,  1964).  The  El  Jobo  assemblage  was  first  described  in  1956  (Cruxent,  1956).  Excavations  at  the  Taima-­‐Taima  site  started  in  1962  and  were  under  discussion  until  the  mastodon  find  in  1976  (Bryan  et  al,  1978).      After  these  initial  discoveries  of  the  different  complexes  several  other  sites  containing  these  projectile  point   types  were  discovered  and   studied.  Does  a  bias   exist   in   research   intensity  between  the   four  complexes?  The  Haskett  site  was  excavated   in   the  1960s  and  no   further  research  was  done   in   later   years.  All  other   type-­‐sites  have  undergone   research  during   the  late   1970s,   the  Mesa   site  was   thoroughly   studied   in   the   1990s.   During   the   1970s   a   lot   of  focus  was  on  the  typology  of  projectile  point  complexes  and  stratigraphy   (Beck  and  Jones,  1997;   Bryan,   1980;   Bryan   and  Gruhn,   2003).   Later   studies   have   yielded  more   information  about   lithic   technology,  environment  and  site   functions.  New  sites  were  discovered  during  the  years  and  new  information  became  available,  this  also  goes  for  Haskett,  where  initially  relatively  little  information  was  obtained  from  the  type-­‐site.      Generally   all   these   complexes   have   been   studied   continuously   during   different   periods   of  time.   The   Mesa   and   Agate   Basin   complexes   have   been   extensively   studied   and   much  information   is   available   on   the   lithic   technology,   environment   and   other   aspects   that   are  discussed  in  this  study.  Haskett  as  a  single  type  has  not  been  studied  as  well.  As  mentioned  before,   the   point   type   was   categorized   under   the   name   Great   Basin   Stemmed   Points,  together  with  other  point  types.  Although  there   is  quite  a   lot  of   literature  available  on  the  subject  this  literature  is  often  very  general  in  orientation  and  lacks  detailed  studies  of  lithic  technology.  The  El  Jobo  point  type  has  not  been  as  extensively  studied  as  Mesa  and  Agate  Basin.  This  is  mainly  because  of  the  scarcity  of  sites  and  relatively  small  amount  of  projectile  points  that  were  found  at  these  sites.    So  when  comparing  the  four  complexes  it  is  important  to  keep  in  mind  the  reliability  of  the  sample,  which  in  this  case  is  biased  to  some  degree.  The  Mesa  and  Agate  Basin  complexes  have  yielded  hundreds  of  projectile  points  while   there  are  only   tens  of  Haskett  and   the  El  Jobo  type.  This  creates  a  bias  especially  with  respect  to  El  Jobo  of  which  the  lithic  technology  was  not  well   studied.  Additionally  not  all   the  El   Jobo   literature   is   available   to  non-­‐Spanish  readers.   General   remarks   are   available   concerning   the   lithic   technology   but   because   the  sample  is  relatively  small  these  characteristics  might  vary  and  are  thus  not  as  reliable  as  with  Mesa  and  Agate  Basin.        

  77  

4.1  DISTRIBUTION  

The  four  projectile  point  complexes  that  were  described  in  the  previous  chapter  have  a  wide  distribution   across   the   Americas.  Mesa   is   found   on   the  Northern   Brooks   Range   of   Alaska.  Agate   Basin   is   distributed   on   the  Northern  Great   Plains,   Haskett   is   found   in   the  Northern  Great  Basin  area  and  El  Jobo  is  found  in  Northern  Venezuela.  All  these  complexes  are  found  over  relatively  large  areas  that  have  distinguishable  environmental  traits.      

 FIGURE  45:  DISTRIBUTION  OF  SITES  CONTAINING  THE  FOUR  PROJECTILE  POINT  TYPES  

  78  

When   looking  at   the  distribution  map   (fig.  45)   two   large  geographical   gaps   stand  out.  The  first  area  where  no  comparable  projectile  points  were  found  is  the  land  that  was  covered  by  the   Cordilleran   and   Laurentide   ice-­‐sheets   during   the   last  Glacial.   The   presence   of   the   ice-­‐sheets  easily  explains  the  lack  of  sites   in  this  region.  Sites  could  be  expected  in  the  area  of  the  ice-­‐free  corridor.  However,  sites  dating  to  our  period  of  interest  (13.000  –  10.000  14C  BP)  are  hardly  ever  found  in  the  ice-­‐free  corridor.  An  obvious  explanation  for  this  lack  of  sites  is  the   extensive   erosion   and   deposition   of   sediments   that   the   melting   of   the   ice-­‐sheets  induced.  Sites  may  have  been  lost  entirely  or  are  buried  under  extensive  layers  of  sediment  and  are  thus  almost  impossible  to  locate  (Dixon,  2011).      The  other  area  that  lacks  sites  is  Mesoamerica.  When  envisioning  a  migration  of  people  or  a  diffusion  of    technological  knowledge,  one  would  expect  to  find  comparable  sites  in  Mexico  and   the   Isthmus  of  Panama.  When   the  El   Jobo  complex  of  Venezuela  was   just  discovered,  the  El  Jobo  projectile  points  were  compared  by  Marie  Wormington  (Cruxent,  1956)  to  points  found  at   the  Santa   Isabel   Iztapan  site   in  the  Valley  of  Mexico   (Aveleyra  A.  de  Anda,  1956).  However,   judging   from   the   photograph   displayed   in   figure   46   the   width/thickness   ratio  deviates   considerably   from   the   thick-­‐bodied   lanceolate   projectile   points   discussed   here.  According  to  Dr.  Jeff  Wilkerson,  director  of  the  Institute  for  Cultural  Ecology  of  the  Tropics  in  Mexico,   no   similar   projectile   point   types   of   this   age   exist   in   Mexico   to   his   knowledge  (personal   communication,   2012).   Stanford   (2006)  mentions   the  Hueyatlaco   site   in   Puebla,  Mexico  containing  11.000  14C  BP  dated  artefacts  with  similar  flaking  (fig.47)  (Irwin-­‐Williams,  1967).   The   biface   displayed   here   does   show   collateral   flaking   but   judging   from   the  photograph  it  shows  no  clear  similarity  in  shape  to  El  Jobo,  Haskett  or  Agate  Basin.        

 FIGURE   46:   SANTA   ISABEL   IZTAPAN  BIFACES  (AVELEYRA  A.  DE  ANDA,  1956)    

 

 FIGURE  47:  BIFACE  FROM  UNIT  E,  HUEYATLACO  SITE  IN  PUABLA,  MEXICO  (PHOTO:  JOE  GINGERICH)  

  79  

In  shape  it  is  most  comparable  to  Sluiceway  although  it  still  lacks  a  finished  projectile  point  shape.   It   is  possible   that   this  biface   is  a  preform  for  a  projectile  point  but   it   is  hard   to  say  what   kind   of   projectile   point   it   might   have   become   when   finished.   Without   finished  projectile   point   finds   I   cannot   use   this   site   as   a   connection   between   El   Jobo   and  Haskett.  Both  Bryan  (1979)  and  Barton  (2004)  suggest  the  presence  of  projectile  points  similar  to  the  Paleoindian  type  and  El  Jobo  on  the  Isthmus  of  Panama.  Pearson  and  Cooke  (2002)  describe  two   fragments   of   typical   El   Jobo   points   from   the   La   Yeguada   Lake   site   in   Panama.   I   have  however  not  been  able  to   find  photographs  or  drawings  of   these  proposed  El   Jobo  points.  Further  research  is  necessary  in  this  area.  

The   regional   geographical   type   of   sites   of   the   four   discussed   complexes   differs   but   has  similar   purposes.   Mesa   sites   are   found   on   high   places.   These   sites   were   probably  observation   spots   where   hunters   could   scan   the   environment   for   migratory   herds   of  animals.  Agate  Basin   sites   are   generally   located   in   geographical   trap   features  where  bison  would   be   enclosed   and   killed,   another   part   of   the   process   of   hunting.   Haskett   points   are  found   in   several  different   settings  but  mostly   in   rockshelters  and  caves.  El   Jobo  points  are  found  in  water-­‐rich  environments  such  as  springs  and  are  generally  associated  with  extinct  faunal  remains  that  show  butchering  marks.  Mesa,  Agate  Basin  and  El  Jobo  have  in  common  that  all  their  sites  are  somehow  associated  with  the  act  of  hunting.  For  Haskett  this  has  not  been  proven.  Site  functions  will  be  discussed  in  chapter  4.6.      The   question   whether   this   pattern   of   site   distribution   provides   a   reliable   insight   into   the  activities  of  these  prehistoric  people  is  of  interest  here.  I  suggest  that  for  all  four  complexes  this  is  not  the  case.  For  the  Mesa  complex  we  are  missing  basecamp  sites  as  well  as  kill  sites  (Kunz   et   al,   2003).   Of   Agate   Basin   short   term   camping   and   processing   sites   have   been  discovered  close  to  the  actual  kill  site.  However,  no  basecamp  sites  or  observatory  sites  have  been  discovered  (Frison  and  Stanford,  1982).  For  Haskett  we  are  missing  kill-­‐  and  processing  sites   that   are   to   be   expected   considering   the   use   of   large   projectile   points.   There   are   no  campsites  of  El  Jobo  described  in  the  literature.  The  animals  seem  to  have  been  butchered  and  processed  on  the  kill  site  at  different  use  areas  (Bryan  et  al,  1978;  Cruxent,  1979).      The  density  of  sites  as  well  as  the  location  of  raw  material  sources  is  also  of  importance.  The  highest   density   of  Mesa   sites   is   in   the   Northeastern   Brooks   Range.   The   presence   of   sites  seems   to   feather   out   from   there   to   the   east,   north   and   south.   At   the  Mesa   site   a   scarce  amount  of  raw  material  from  the  Batza  Tena  source  some  320  km  further  to  the  south  was  found  indicating  that  these  people  were  either  traveling  as  far  south  or  were  in  contact  with  other   people   from   the   south.   Agate   Basin   sites   are   concentrated   in   the   Northern   Great  Plains  region,  also  referred  to  as  the  High  Plains.  Agate  Basin  is  also  found  further  south  and  in  lower  numbers  in  the  Rocky  Mountains  and  the  Canadian  Arctic.  Raw  material  is  generally  extra-­‐local.   Sources   are  mostly   found   further   to   the   south  with   the   exception   of  material  from  North   Dakota   at   the   Agate   Basin   type-­‐site.   Haskett   is  mostly   found   in   the   Northern  Great  Basin  and  Columbia  Plateau  area.  Raw  material   from  the  Running  Antelope  site  was  traced   back   to   both   southern   and   northern   locations.   The   occurrence   of   sites   seems   to  feather  out  towards  the  Northwest.  El  Jobo  sites  are  evenly  distributed  throughout  Northern  Venezuela.  There  does  not  seem  to  be  a  pattern  here  as  there  is  with  the  other  complexes  where  one  can  see  a  high  and  lower  density  of  sites   in  a  specific  region.  El  Jobo  points  are  made  of  local  raw  material  and  seem  to  be  confined  to  Northwestern  Venezuela.  It  has  been  proposed  that  this  area  was  where  El  Jobo  developed  and  remained  independent  from  other  contemporary   populations   producing   different   archaeological   assemblages   such   as   fishtail  points  (Oliver,  2013).    

  80  

   

 FIGURE   48:   SITE   DISTRIBUTION   AND   MOVEMENT   FROM   RAW   MATERIAL   SOURCES.   RED   ARROWS  SHOW   THE   MOVEMENT   OF   THE   RAW   MATERIAL   SOURCE   LOCATION   TO   THE   SITE   WHERE   THE  MATERIAL  WAS  EXCAVATED.  (LOCATIONS  ARE  ESTIMATED  WITH  LITTLE  CONSEQUENCE  FOR  SCALE).  

Of  all   the  complexes   the  El   Jobo  complex  has  yielded  the   lowest  number  of  sites  and  thus  the   least   comparable   information.   Information   collected   on   the   different   complexes  becomes  more  reliable  if  patterns  are  repeated  at  several  different  sites.  This  is  not  as  much  the  case  with  El  Jobo.  There  are  only  a  few  published  sites.  Therefore  I  will  be  more  cautious  when  drawing  conclusions  on  the  basis  of  this  sparse  information  about  El  Jobo.        

  81  

4.2  ENVIRONMENT  

One  thing  all  these  complexes  have  in  common  is  that  they  exist  during  a  period  of  climatic  change.  The  Younger  Dryas  event  (11.000  –  10.000  14C  BP)  was  generally  a  cooler  and  drier  period.  This  is  however  not  the  same  for  all  areas.  On  the  Great  Plains  summers  got  colder  but  winter  got  warmer  (Frison,  1999).  In  the  Great  Basin  the  interval  of  lower  temperatures  and   drier   conditions   occurred   between   12.000   and   11.000   14C   BP.   After   this   conditions  changed  and  precipitation  rates  go  up  (Beck  and  Jones,  1997).    

In   Venezuela   overall   conditions   were   different   from   North   America.   The   North   American  point  complexes  were  subject  to  the   influence  of  the  continental   ice-­‐sheets.  This   influence  was  not  present  in  Venezuela.  During  the  LGM  glaciers  in  the  Andes  Mountains  existed  and  influenced  the  surrounding  environment.  However,  during  the  period  of  El  Jobo  occupation  glaciers  were  already  retreating.  Additionally,  the  climate  of  Venezuela  is  generally  different  from  that  of  the  previously  discussed  northern  latitudes.  Temperatures  stay  more  or  less  the  same  during  the  entire  year  and  seasons  are  mostly  defined  by  higher  or  lower  precipitation  (Rull,   1996;   Rull   et   al,   2009).   Overall   mean   annual   temperatures   are   higher   in   Venezuela  than  in  the  other  discussed  areas  in  North  America.      Beside  climate  the  four  areas  have  similarities   in  environment.  The  three  complexes   in  the  north   are   located   in   areas   where   bison   was   abundant   during   the   late   Pleistocene.   Both  Agate   Basin   and   Haskett   are   found   in   plains-­‐like   environments.   Although   the   area   where  Haskett  is  found  is  generally  described  as  the  northern  section  of  the  Great  Basin,  the  area  of  highest  occurrence  of  sites  is  the  Snake  River  Plain.  This  area  has  often  been  described  as  an  extension  of  the  Great  Plains.  During  the  period  of  climatic  change  bison  migrated  away  from   the   true  Great  Basin  area  and   into   the  Snake  River  Plain   (Butler,   1986;   Frison,  1999;  Mann  et  al,  2013).      Mesa   sites   are   found   in   the  Northern   foothills   of   the  Brooks  Range.   The   area  borders   the  coastal   plain   of   Northern   Alaska.   In   this   transitional   area   bison   was   abundant.   Plains-­‐like  conditions   were   present   with   short   grass   ecosystems.   After   the   Younger   Dryas   the   area  became  moister   and  as  a   result   the   surface  became   less   firm  and   less   suitable   for   grazers  such   as   bison,   horse   and   mammoth   (Mann   et   al,   2010).   The   environment   of   Venezuela,  though   very   different   in   climate   can   also   be   compared   to   some   level   to   a   plains-­‐like  environment.  It  can  be  described  as  an  herbaceous  savannah  with  cacti  and  shrubs.  Sparse  grasslands,   separated   by   patches   of   forest  were   present   and   provided   a   good   habitat   for  megafauna  such  as  mastodon  (Rull,  1996).      Mesa       steppe-­‐prairie,  mainly  grasslands  Agate  Basin     steppe  community  with  tundra  elements    Haskett     high  altitude  vegetation  mixed  with  sagebrush  steppe  El  Jobo     herbaceous  savannah,  grassland    Of  interest  here  is  the  opening  of  the  ice-­‐free  corridor.  The  opening  of  the  corridor  between  the  two  ice-­‐sheets  could  have  facilitated  a  migration  between  Alaska  and  the  Great  plains.  Bison  species  (B.  antiquus  and  B.  priscus)  from  the  Great  Plains  and  Alaska  were  present  at  Charlie  Lake  Cave  at  10.500  14C  BP  (Driver,  1996;  Driver  and  Vallières,  2008;  Fladmark  et  al,  1988;  Kunz  et  al,  2003;  Wilson  et  al,  2008).  As  the  ice-­‐sheets  started  retreating  the  ice-­‐free  corridor   came   into   existence   in   between   the   Cordilleran   and   Laurentide   ice-­‐sheets.   This  initial   opening  might   have   occurred   as   early   as   18.000   14C   BP.   However,   palaeoecological  

  82  

research  has  shown  that  major  parts  of  the  corridor  were  blocked  and  not  viable  to  sustain  either   animals   or   humans.   Mandryk   et   al   (2001)   propose   that   the   corridor   was   only  ecologically   viable   for   human   migration   from   11.500   14C   BP   onwards.   Later   research   by,  amongst  others,  Dixon   (2013)   indicates   that   the   ice-­‐free  corridor   (or  deglaciation  corridor)  “may  have  been   suitable   for   human   subsistence  by   about   11.500  –   11.000   14C  BP”   (p.61).  The  northern  part  of  the  corridor  was  covered  by  a  continuous  steppe-­‐like  vegetation  in  the  period  of  10.500  –  10.000  14C  BP,  ideal  for  migrating  species  such  as  bison.  From  10.000  14C  BP  onwards  the  corridor  was  blocked  by  spruce  forests,  impassable  for  big  grazers  (Wilson,  1996).  

4.3  DATING  

The  four  different  complexes  have  been  dated  by  radiocarbon  dating.  Some  sites  have  been  more  extensively  dated  (Mesa)  than  others  (El  Jobo).  The  available  radiocarbon  dates  of  the  four  complexes  show  a  trend  that   is  visible   in  the  figures  49  and  50.  Figure  49  contains  all  radiocarbon  dates   used   in   this   thesis,   figure   50   is   a   simplified   version  of   figure   49.   In   this  simpler  graph  only   the   two  oldest  dates  of  every  complex  are   shown.   It   should  be  kept   in  mind   that   the   oldest   date   known   to   archaeologists   likely   does   not   represent   the   actual  oldest  trace  of  a  complex  as  the  chances  of  finding  the  oldest  site  are  statistically  small.    

 

FIGURE  49:  RADIOCARBON  DATES  OF  THE  FOUR  PROJECTILE  POINT  COMPLEXES  COMBINED  (MESA:  RED;  AGATE  BASIN:  GREEN;  HASKETT:  YELLOW;  EL  JOBO:  BLUE)  

  83  

It  becomes  very  apparent  that  El  Jobo  is  the  oldest  of  the  four  complexes.  The  most  reliable  El  Jobo  dates  are  within  the  timeframe  of  13.000  –  11.000  14C  BP.  The  oldest  date  for  El  Jobo  that  is  reasonably  reliable  is  14.440  14C  BP.  Following  El  Jobo  is  Haskett  with  maximum  dates  of  11.200  14C  BP.  Most  dates  are  within  the  timeframe  of  10.800  –  9.800  14C  BP.  Agate  Basin  falls  in  between  Haskett  and  Mesa.  The  oldest  reliable  date  for  Agate  Basin  is  10.850  14C  BP  from  the  Hell  Gap  site.  Overall  the  Agate  Basin  dates  cluster  within  the  10.500  –  9.700  14C  BP  timeframe.  Mesa  has  been  extensively  dated  and  most  of  the  dates  fall  within  the  10.300  –  9.700   14C   BP.   As   was   discussed   previously   there   are   two   older   dates   that   are   viewed   as  outliers  in  this  thesis.      

 

FIGURE  50:  OLDEST  TWO  DATES  OF  EACH  PROJECTILE  POINT  COMPLEX  COMBINED  (MESA:  RED;  AGATE  BASIN:  GREEN;  HASKETT:  YELLOW;  EL  JOBO:  BLUE)  

Projectile  point  complex   Radiocarbon  dates  cluster   Oldest  dates  Mesa   10.300  –  9.700     11.660±80  Agate  Basin   10.500  –  9.700   10.850±500  Haskett   10.800  –  9.800   11.200±200  El  Jobo   13.000  –  11.000   14.440±435    Whether   we   are   looking   at   the   general   clusters   of   dates   or   the   oldest   dates   of   the   four  complexes   the   results   are   generally   the   same.   The   succession   of   complexes   in   time   is:   El  Jobo  -­‐>  Haskett  -­‐>  Agate  Basin  -­‐>  Mesa.  However,  everything  hinges  on  the  reliability  of  the  

  84  

two  outlying  dates  of  the  Mesa  complex.  If  these  dates  cannot  be  rejected  the  hypothesis  of  succession  of  these  complexes  cannot  be  supported,  at  least  when  including  Mesa.      The  projectile  point   complexes  persist   in   time   for  varying  periods  and   thus  also  overlap   in  most   cases.  Mesa,  Agate  Basin  and  Haskett   all   existed  at   the   same   time  at   some  point.   El  Jobo  has  been  dated  as  young  as  10.710  –  7.400  14C  BP  at  El  Vano  (Quero,  1998).  Whether  these  dates  are  reliable  remains  under  discussion  as  with  most  El  Jobo  dates.  However,  it  is  probable  that  also  El  Jobo  existed  for  a   longer  period   in  time.  The  trend  with  the  northern  point  complexes  seems  to  be  that  the  occurrence  of  points  ends  around  9.750  14C  BP,   this  coincides   with   the   end   of   the   Younger   Dryas   period,   after   which   the   climate   became  warmer.      It  is  interesting  to  see  what  happens  to  the  chronological  order  when  the  radiocarbon  dates  are   calibrated.   The   14C   dates   were   calibrated   using   OxCal   (Bronk   Ramsay,   2009)   and   the  calibration  curve  IntCal09.      TABLE  7:  CALIBRATED  AGES  OF  THE  FOUR  COMPLEXES  

Projectile  point  complex   Calibrated  dates   Oldest  cal.  dates  (ranges)  Mesa   ~  12.400  –  11.200   13.728  -­‐  13.326  Agate  Basin   ~  13.800  –  9.600   13.770  -­‐  11.275  Haskett   ~  13.000  –  10.250   13.426  -­‐  12.661  El  Jobo   ~  18.500  –  15.000   18.576  -­‐  16.815    The   Younger   Dryas   effect   is   present   in   larger   uncertainties,   extending   the   ranges   of   the  projectile  point  types.  Calibrating  El  Jobo  poses  problems  because  this  complex  is  located  in  the   Southern   hemisphere.   The   IntCal09   curve   is   used   for   the   Northern   hemisphere  while  SHCal04   is   used   for   the   Southern   hemisphere.   SHCal04   unfortunately   does   not   extent  beyond  10.000  radiocarbon  years  and  so  El  Jobo  cannot  be  calibrated  using  this  curve  (Bronk  Ramsay,  2009).   The  use  of   IntCal09   for  El   Jobo  might  produce  erroneous   calibrated  dates.  Differences   in  chronological  order  are  not  as  pronounced  when  the  dates  are  calibrated.   It  becomes  more  visible  however  that  the  northern  three  complexes  exist  simultaneously.    

4.4  LITHIC  TECHNOLOGY  

What  are  the  actual  typological  and  technological  traits  that  these  projectile  points  have  in  common?  When   we   focus   on   morphology   the   projectile   point   types   are   very   similar.   All  types   are   lanceolate   (or   leaf-­‐shaped)   in   outline.   They   are   all   thick   in   comparison   to   their  width   (fig.51).  Why  was   this  shape  desired  by   these  different   toolmakers?  This   is  probably  related  to  the  technology  of  hafting.  As  was  explained  in  chapter  2,  different  kinds  of  hafting  require  different  kinds  of  projectile  point  shapes.  The  Mesa,  Haskett  and  El  Jobo  types  have  tapering  stems  and  were  most  probably  hafted  in  a  socketed  shaft.  Agate  Basin  however  is  thinner  and  lacks  a  tapering  stem,  this  is  a  suggestion  that  the  point  type  might  have  been  hafted   in   a   split-­‐shaft   (Dixon,   1999;  Musil,   1988).   The   technology  with   which   these   point  types   were  manufactured   is   important.   These   specific   projectile   point   appearances   could  have   been   acquired   by   different   techniques.   Therefore   it   is   interesting   to   see   if   there   are  similarities   in   the  production  stages  of   the  various  points.   In   the  table   (8)  below,   the  main  characteristics  of  the  production  sequences  are  summed  up.      

  85  

TABLE  8:  MANUFACTURING  TRAITS  OF  THE  FOUR  PROJECTILE  POINT  TYPES  

Point  type  

Cross-­‐section   Flaking  pattern  

Shaping  #1   Shaping  #2   Finishing  

Mesa   diamond  to  lenticular  

collateral   hard,  direct  percussion  

soft,  direct  percussion  

pressure  flaking  

Agate  Basin  

lenticular  to  diamond  

parallel  to  collateral  

hard,  direct  percussion  

possibly    overshot  flaking  

pressure  flaking  

Haskett   lenticular  to  diamond  

collateral   hard,  direct  percussion  

direct  percussion  /  pressure  

pressure  flaking  

El  Jobo   diamond  to  lenticular  

collateral   hard,  direct  percussion  

 unknown  

pressure  flaking  

 Evidently  the  desired  projectile  point  shape  was  very  similar  with  all  four  types.  But  how  was  this   result   achieved?   What   were   the   methods   and   techniques   applied   during   the  manufacture?   All   the   types   have   in   common   that   they   were   first   shaped   by   direct,   hard  percussion   flaking.   A   biface   was   created   which   was   then   further   shaped   to   become   the  desired   point   type   during  multiple   flaking   sequences.   The   cross-­‐section   that   all   the   types  have   in   common   varies   from   diamond   shaped   to   lenticular.   This   is   a   result   of   the  width/thickness  ratio  (fig.51),  which  in  turn  is  controlled  by  the  method  of  flaking.      

 FIGURE  51:  WIDTH/THICKNESS  RATIOS  OF  ALL  FOUR  PROJECTILE  POINT  COMPLEXES  

In  order  to  substantiate  the  width/thickness  relations  of  the  four  projectile  point  complexes  I   collected  measurements.   The   sample  of   available  measurements  differs.  While   for  Agate  Basin   there  were  56  specimen  measurements  available   (Baker,  2009)   for  El   Jobo   (Cruxent,  1979;  Nami,  1994)  were  only  15  specimen  measurements  available  and  only  11  for  Haskett  (Butler,  1965;  Butler,  1967).  During  my  visit  to  the  Northern  Brooks  Range  I  was  able  to  take  measurements   of   the   available  Mesa   and   Sluiceway  points.   For   the  Mesa   ratios   I   used  22  complete  specimens.  The  ratios  show  that  all  complexes  conform  to  the  definition  of  thick-­‐bodied  points  as  suggested  by  Baker   (2009),   the  majority  of   ratios  are   lower  than  3.0.  The  exception   to   this   is   the   Agate   Basin   type   of   which   a   considerable   amount   (37   of   the   56  specimens)  has  a  ratio  of  3.2  or  greater.  This  means  that  Agate  Basin  is  thinner  with  respect  to   its   width   than   the   other   types.   El   Jobo   is   the   thickest   with   respect   to   width   of   the  complexes,   followed   by  Haskett   and  Mesa  with   the   exception   of   outliers.   For   the   sake   of  comparison  it  is  interesting  to  note  here  that  Clovis  for  example  has  a  width/thickness  ratio  

  86  

ranging   from   3.0   to   5.4   (Baker,   2009).   This   shows   that   these   point   types   are   generally  thinner  with  respect  to  width  than  the  point  types  described  in  this  study.    TABLE  9:  AVERAGE  WIDTH/THICKNESS  RATIOS  FOR  ALL  FOUR  PROJECTILE  POINT  COMPLEXES  

  Mesa   Agate  Basin   Haskett   El  Jobo  Average  w/t  ratio   2.7   3.3   2.9   2.4  Measured  specimens   22   56   11   15    Mesa,   Haskett   and   El   Jobo   have   collateral   flaking   in   common.   Collateral   flakes   end   in   the  middle  of  the  point  creating  a  defined  midridge.  With  Agate  Basin,   in  contrast  to  the  other  three   types,   the   flakes   can   sometimes   better   be   described   as   parallel   than   collateral   (see  chapter  2,  fig.1).  These  smaller,  more  evenly  arranged  flakes  also  meet  in  the  middle  but  do  not  create  a  midridge  as  distinctive  as  collateral  flaking  does.  Therefore  Agate  Basin  points  are  often  lenticular  in  cross-­‐section  instead  of  diamond  shaped  and  thinner  with  respect  to  width.  Beside  the  different  method  of  flaking  the  reworking  of  points  might  result  in  a  more  lenticular  cross-­‐section  as  more  layers  of  flaked  are  removed.    Evidence  of  the  initial  stage  of  production  is  often  lacking.  Only  when  unfinished  specimens  are  found,  or  when  refit  studies  have  been  conducted,  this   information  becomes  available.    The   second   sequence   of   shaping   differs   somewhat   between   the   point   types.  Mesa   points  were   worked   with   soft,   direct   percussion.   On   Agate   Basin   points   there   is   evidence   of  possible   overshot   flaking.   This   is   not   seen   in   any   of   the   other   complexes   and  might   also  explain  that  Agate  Basin  points  are  relatively  thinner  than  the  other  types  and  lenticular   in  cross-­‐section.   This   difference   might   be   related   to   a   possible   contact   of   Agate   Basin   with  biface  thinning  technologies  such  as  Folsom  which  were  present  in  the  same  area  and  during  a  short  simultaneous  period  of  time.  Haskett  was  further  shaped  by  pressure  flaking.  For  El  Jobo  this  information  is  unfortunately  absent  in  the  literature.    The   finishing   flaking   sequence  was  done  by  pressure   flaking.   The   final   stages   (table.10)   of  the   projectile   point  manufacture  were   base   and   tip   shaping   and   finally   edge   retouch   and  grinding   of   the   basal   lateral  margins.   All   point   types   have   straight   to   convex   bases.   Agate  Basin  has  more  straight  bases  and  El   Jobo  more  convex   to  even  bipointed  bases.  All   types  underwent  micro-­‐retouch   to   straighten   the  margins.  After   this   the  basal   section   (from  the  base  up  to  the  widest  part  of  the  point)  of  the  points  was  ground  with  a  corse-­‐grained  stone.    

TABLE  10:  FINAL  STAGES  OF  PROJECTILE  POINT  MANUFACTURE  

Point  type   Base  shape   Edge  retouch   Edge  ground  Mesa   concave  to  convex   pressure   basal,  to  widest  part  Agate  Basin   straight  to  convex   pressure   basal,  to  widest  part  Haskett   convex   pressure   basal,  to  widest  part  El  Jobo   bipointed  to  straight   pressure   unknown    These  final  stages  were  of  importance  to  the  process  of  hafting  the  projectile  points,  which  must  have  happened  after  this  stage.  The  shape  of  the  tapering/contracting  base  was  made  to  fit  the  socketed  foreshaft.  The  edges  were  retouched  to  eliminate  irregularities  that  might  cause  breakage  within  the  haft  but  also  contributed  to  the  symmetry  and  sharpness  of  the  blades.   Finally   the   last   irregularities  were   removed  by  edge  grinding.  The  exact  amount  of  flaking   sequences   remains   largely  unclear  because   this   is   hard   to   trace  on   finished  points.  Refitting  studies  are  desirable  in  order  to  obtain  more  information  on  this  subject.  

  87  

4.5  ASSOCIATED  LITHIC  ASSEMBLAGES  

Tool   types   other   than   projectile   points   can   provide   an   insight   into   site   function.   Overall  many   different   cultural   groups   used   similar   types   of   tools   over   vast   periods   of   time.  Differences   are   seen   among   groups   using   (or   not   using)   specific   technologies.   Absent  technologies   among   the   here   discussed   projectile   point   complexes   are   macro-­‐   and  microblades.   Macro-­‐blade   technology   is   known   to   be   associated   with   thinning   biface  technological  traditions  such  as  Clovis  (Stanford,  2006)  Microblade  technology  has  not  been  associated   with   Paleoindian   traditions   but   microblades   were   found   at   the   Mesa   site.  However,  these  were  most  definitely  not  related  to  the  Mesa  occupation  as  they  were  found  in  a  different  site  area  and  were  probably  much  younger  than  Mesa  (Kunz  et  al,  2003).  Flake  burins   were   also   found   at   the   Mesa   site.   However,   they   were   rare   and   not   well   made.  Therefore  these  tools  were  not  considered  by  Kunz  et  al  (2003)  as  formal  tool  types  but  as  tools  of  opportunity.  The  most  abundant  tool  at  Mesa  sites  other  than  projectile  points  are  gravers.  A   few  gravers  were  also   found  at   the  Agate  Basin   site  and  possibly   in  association  with   Haskett.   Gravers   were   however   never   associated   with   Paleoindian   complexes   in   the  quantity  as  they  were  present  at  the  Mesa  site  (Stanford,  personal  communication,  2013).    

TABLE  11:  PRESENCE  OF  TOOL  TYPES  OF  THE  FOUR  PROJECTILE  POINT  TYPE  COMPLEXES  

  Bifaces   Scrapers   Gravers   Utilized  flakes   Knife  Mesa   X   X   XX   X    Agate  Basin   X   X   X   X   X  Haskett     X   ~X       X   X  El  Jobo   X   X     X   X  (bone)    Scrapers   were   found   in   association   with   all   the   complexes.   These   tools   were   used   for  multiple  purposes   such  as   cleaning  hides  and   scraping  wood  or  bone.  Utilized   flakes  were  used   at   all   sites.   These   flakes   would   be   worked   on   one   or   more   edges   to   function   for  multiple   purposes   such   as   cutting.   Knives   were   present   at   the   Agate   Basin   and   Haskett  complexes.  At  Taima-­‐Taima  a  bone  cutting-­‐tool  was  found  in  association  with  El  Jobo  points.  A   macro/microblade   technology   is   absent   from   any   of   the   thick-­‐bodied   lanceolate  technological  complexes.    

4.6  SITE  CHARACTERISTISC  AND  INFERRED  ACTIVITIES  

The  main  thing  that  Mesa,  Agate  Basin  and  El  Jobo  sites  have  in  common  is  that  they  are  all  connected   to   hunting.   Mesa   sites   are   characterized   as   observation   spots   where   hunters  were  scanning  the  environment  for  migratory  herds  of  animals.  Agate  Basin  sites  are  located  in   geographical   trap   features.   Bison   were   driven   into   these   steep   walled   geographical  locations   where   they   were   enclosed   and   could   be   killed   more   easily.   El   Jobo   sites   are  generally   kill   sites   where   the   butchered   remains   of   extinct   megafauna   have   been   found  associated   with   projectile   points.   El   Jobo   sites   are   often   associated   with   aquatic   settings  (spring  features,  river  terraces).      Haskett   sites   are   different.   These   are  mostly   found   in   caves   and   rockshelters,   these   sites  were  camps.  At  some  sites  hearth  features  are  found.    An  interesting  feature  is  a  projectile  point   cache   at   the   Redfish   Overhang   site   (and   possibly   Cooper’s   Ferry).   The   points   were  buried   probably   with   the   idea   of   coming   back   later.   The   burying   of   projectile   points   in  several  stages  of  manufacture  is  well  known  to  have  been  practiced  by  people  using  Clovis  

  88  

technology   (Stanford   and   Bradley,   2012).   The   presence   of   several   Haskett   bases   at   the  Running  Antelope  site  has  lead  the  author  to  believe  that  this  was  a  processing  site  (Russell,  1993).  However,  no  animal  remains  were  found  at  the  site  and  therefore  this  conclusion  is  a  bit  premature.      

Mesa   observation  spots  Agate  Basin   geographical  trap  features  (kill  sites)  Haskett   camp  localities  El  Jobo   kill-­‐  and  butchering  sites    

The  only  site  where  Haskett  was   found  and  that  contains  animal  remains   is   the  Bonneville  Estates   Rockshelter   where   smaller   mammals   such   as   sheep   and   pronghorn   were   found  (Goebel  et  al).  The  relation  between  these  animal  remains  and  the  Haskett  points  remains  unclear.   At   the   Haskett   type-­‐site   a   piece   of   teeth  was   found   possibly   belonging   to   bison.  Overall   the   preferred   prey   species   of   Haskett   hunters   remains   unknown.   However,   bison  was  an  abundantly  available  prey  to  Haskett  hunters  in  the  Snake  River  Plain  region.      At   the  Mesa   site  no  bone  material  was   found  either.  Kunz   (2003)   suggested   that  horse  or  bison  was  the  most  likely  prey  as  these  species  were  abundant  during  the  Mesa  occupation.  Another  possible  species   is   caribou.  However,  caribou  was  not  as  abundant  at   the   time  as  today   (Kunz   et   al,   2003).   There   is   no   question   about   the   preferred   prey   species   of   Agate  Basin   hunters.   Numerous   bison   remains   have   been   found   at   Agate   Basin   sites.   El   Jobo  hunters  preyed  on  now  extinct  megafauna.  Of  the  few  sites  that  are  presently  known  most  are  associated  with  megafauna  such  as  mastodon,  glyptodont  and  megathere.      Secondary  activities  that  are  generally  observed  at  all  sites  of  Mesa,  Agate  Basin  and  Haskett  is   the  manufacture  or   reworking  of   projectile  points.   This   has  been  observed  at   the  Mesa  site,  Agate  Basin  site  and  Haskett  site  by  the  presence  of  flaking  debris.  Gravers  might  have  been  used  for  untying  knots  on  hafted  points.  There  is  no  mention  of  bifacial  flaking  debris  at  El  Jobo  sites.      

  89  

5.  DISCUSSION  AND  CONCLUSIONS  

The  Mesa  projectile  point  has  many  traits   in  common  with  the  Agate  Basin,  Haskett  and  El  Jobo   projectile   point   types.   These   similarities   are   to   be   found   in   lithic   technology   and  morphology   but   also   in   environment   and   in   the   other   tool   types   associated   with   the  projectile  points.  There  are  also  differences  between  the  four  point  complexes.  The  specific  site  function  differs,  especially  with  Haskett.  Haskett  sites  are  mostly  camp  sites  while  Mesa,  Agate  Basin  and  El  Jobo  sites  are  all  related  to  hunting.      So  what   can  be   said  about   the  dispersal   and  migration  of  a  group  of  people  by   looking  at  material   culture?   The   problem   with   this   kind   of   research   is   that   you   often   cannot   draw  conclusions   with   certainty.   Without   direct   evidence,   for   example   DNA,   proposed   ideas  remain  suggestions.  What  can  be  said  is  that  one  explanation  is  more  likely  than  another.  A  hypothesis   can   be   constructed   and   tested.   It   is   important   to   use   a   multidisciplinary  approach.   For   example,   just   looking   at   lithic   technology   is   not   sufficient.   Including  environmental   information  as  well   as   information  about   the   radiocarbon  dating  and  other  finds  at  a  site  can  help  to  reconstruct  a  more  complete  picture  of  the  past  and  in  this  case  can   help   compare   the   different   archaeological   complexes,   previously   distinguished   by  archaeologists   on   the   basis   of   projectile   point   typology.   This   thesis   shows   to   some   extent  what   can   be   reconstructed   about   the   past   by   looking   at   these   aspects   of   archaeological  traditions.        Differences   and   similarities   should   not   plainly   be   viewed   as   such.   Even   though   the   site  function  of  the  four  projectile  point  types  differs,  this  cannot  be  regarded  as  a  reflection  of  a  cultural  difference.  One  culture  can  produce  different  kinds  of  sites  for  different  functions.  Only   one,   or   sometimes   two,   kinds   of   sites   are   found   for   every   projectile   point   type.   This  might  be  the  result  of  many  things,  among  which  erosion  or  reduced  site  visibility.  Whereas  observation  spots  in  the  Arctic  were  preserved,  the  base  camps  that  were  probably  located  at  lower  elevation  near  streams  were  destroyed  long  ago.  The  same  principle  can  be  applied  to  the  other  complexes.  Observation  spots  of  Agate  Basin  hunters  might  have  been  eroded  by  wind  action   in   this  dry  environment  and  kill-­‐sites   in   the  Haskett   territory  were  possibly  not  preserved  due  to  the  wet  conditions  of  the  Late  Pleistocene  Snake  River  Plain,  projectile  points  may  have  been  washed  away  by  the  Snake  River.      

5.1  ASPECTS  OF  TECHNOLOGY  

The  most  striking  similarity  between  the  point  types  is  their  morphology  and  the  technology  with   which   they   were   manufactured.   Both   are   of   importance.   Technology   is   a   tool   with  which   a   certain   morphology   is   achieved.   Why   was   this   lanceolate,   thick-­‐bodied   type   of  projectile  point  desired?  Likely   this  has  a   lot   to  do  with   the  hafting  of   the  projectile  point.  Hafting  is  in  many  instances  the  reason  for  a  specific  appearance  of  a  projectile  point.  It  was  the  reason  why  Clovis  and  Folsom  fluted  their  projectile  points,   in  order   to   fit   them   into  a  split-­‐shaft.  Later,  side-­‐notches  were  made   in  projectile  points   in  order  to  bind  them  to  the  shaft.  These  thick-­‐bodied  projectile  points  with  their  diamond-­‐  and  lenticular  shaped  cross-­‐sections   and   contracting   stems  were  most  probably  made   to  be  hafted   in   socketed   shafts  (fig.52).    

 

  90  

 After   experimenting   with   different   hafting   methods   Stanford   is   not   a  proponent   of   socketed   hafting   in   areas   that   lack   the   proper   material  (hollow  reed  shafts)  (personal  communication,  2013).  Frison  (1978)  also  pointed  out  the  difficulty  of  hafting  a  projectile  point  in  a  socketed  shaft,  although  he  did  mention  that  the  results  were  better  than  when  using  a  split-­‐shaft,   especially   when   thrusting   from   an   angle.   Split-­‐shaft   hafting  requires  a  thin  basal  cross-­‐section,  which  these  point  types  lack  with  the  possible  exception  of  Agate  Basin.      Interestingly,   at   the   Taima-­‐Taima   site   tools   were   found   with   side-­‐notches.  How  strong  the  association  with  the  El  Jobo  kill  is,  is  not  entirely  clear.  However,  if  there  is  a  connection  this  is  remarkable.  Side-­‐notching  has   been   regarded   by   many   authors   as   the   superior   of   all   hafting  techniques   (Darwent   and   O'Brien,   2006;   Dixon,   1999;   Flenniken   and  Raymond,   1986;   Justice,   1987;  Musil,   1988).   If   El   Jobo   hunters   already  possessed  this  technological  knowledge  then  why  did  they  not  employ  it  on  their  projectile  points?  If  the  association  between  these  side  notched  tools  and  the  El   Jobo  projectile  points   is  correct  that  provides  proof   for  the  employment  of  two  different  hafting  techniques  by  the  same  people.      

   FIGURE  52:  SOCKETED  SHAFT  HAFTING  (DIXON,  1999)  

Kunz   et   al   (2003)   suggested   that   the  Mesa   points  were  most   probably   hafted   in   bone   or  ivory   foreshafts.   The   hardness   of   this  material   can   possibly   also   account   for   some   of   the  damage  to  the  Mesa  bases.  Stanford  (personal  communication,  2013)  argues  that  not  all  the  concave  Mesa   bases   can   be   accounted   for   by   haft   damage.   In  many   instances   damage   is  present  but  not  as  substantial  that  it  could  have  transformed  a  straight  base  into  a  concave  base.   If   some   of   the   Mesa   points   were   made   to   have   concave   bases   then   this   poses  questions  about  hafting  technology.  In  an  ethnographic  study  Wiessner,  (1983)  asked  a  San  hunter   from   the  Kalahari  why   there  was  a   variety   in   the  base   shape  of  his   arrow   sets.  He  replied  that  he  had  simply   forgotten  what   the  bases  of  his  previous  set  were   like   (p.  265).  This  example  illustrates  that  it  should  be  kept  in  mind  that  archaeologists  might  ascribe  too  much  meaning   to   traits   such   as   base-­‐shape.   Agate   Basin   bases   also   vary   from   concave   to  convex   although   the  majority   has   straight   to   convex   bases.   There   is   no   use   for   a   concave  base  in  a  socketed  shaft  haft.  Concave  bases  are  generally  a  trait  of  split-­‐shaft  and  side  notch  hafting.   It   is  possible  that  both  techniques  were  used  by  Mesa  and  Agate  Basin.  These  two  complexes  exist   at   the  period  where   split-­‐shaft  hafting  was   still   employed  by   Folsom,   and  because  Agate  Basin  and  Folsom  possibly  occurred  simultaneous  for  a  little  while  it  might  be  possible   that   this   is   the   result  of  an   influence  of  Folsom.  Generally   the  differences  seen   in  Agate  Basin  points  when  compared  to  the  other  three  types  might  be  explained  by  a  joined  influence   of   the   thickening   technology   of   Haskett   and   the   thinning   technology   of   Folsom.  Seeing  that  both  these  types  occurred  in  the  immediate  vicinity  of  Agate  Basin  territory  it  is  plausible  to  suggest  a  connection  here  that  might  have  lead  to  influence  on  projectile  point  technological  traits.  There  is  no  suggestion  of  concave  bases  in  Haskett.  El  Jobo  has  a  range  of  concave  to  bipointed  bases.        In  lithic  technology  Agate  Basin  is  probably  the  biggest  outlier  of  the  four.  The  cross-­‐section  is  more   lenticular  than  diamond  shaped  and  the  width/thickness  ratio   indicates  that  Agate  Basin   is   the   thinnest   with   respect   to   its   width   of   all   the   four   complexes.   There   is   also  evidence  of  the  use  of  overshot  flaking,  a  thinning  technology.  The  finishing  pressure  flaking  sequence  is  also  different  in  that  it  is  more  parallel  than  collateral.  Overall  the  appearance  of  the  point  type  is  more  symmetrical  and  neater  because  of  these  traits.  

  91  

 One  interesting  trait  that  Agate  Basin  has  in  common  with  Haskett   is  that  both  point  types  were   made   quite   long,   longer   than   necessary   for   the   projectile   point   to   be   functional,  possibly  with   the   idea   of   reuse   and   resharpening   in  mind.   The   appearance   of   a   projectile  point  changes  when  it  is  heavily  resharpened.  I  suggested  that  the  so-­‐called  Haskett  type  1  point  is  the  product  of  heavy  resharpening  within  the  haft,  as  was  discussed  in  chapter  3.3.  The  blade  length  that  is  left  is  less  than  one  third  of  the  entire  point.  It  might  even  be  that  these  points  were  purposefully  discarded  because  they  were  no  longer  efficient  because  of  this  heavily  resharpening.    Associated   with   all   the   projectile   point   complexes   discussed   here   are   general   tools   often  found   in   association  with   Paleoindian   complexes.   These   tools   are   scrapers,   utilized   flakes,  knives  and  in  the  case  of  the  Mesa  complex  also  gravers.  The  abundant  presence  of  gravers  was   explained   by   Kunz   as   a   necessity   for   the   repairing   of   projectile   points.   They   were  probably  used   for  untying   the  sinew  used  to  haft   the  points  but  also   for   incising,  grooving  and  boring,   for   example   to   insert   feathers   into   atlatl   darts.   Interesting   to  mention  here   is  what   these   complexes   are   all   lacking:  micro-­‐blades   and  macro-­‐blades.  Blade   technology   is  very  different  from  the  bifacial  technology  that  we  are  discussing.  In  short:  blades  are  struck  from  a  core,   the  blades  are  used  as   insets   for  composite   tools.  With  blade   technology   the  flakes  that  are  struck  from  a  core  are  to  become  the  tools  while  with  bifacial  technology  the  core  is  shaped  to  become  the  tool  (Beuker,  2010).  Blade  technology  is  the  main  technology  present   in   Siberia   during   the   period   of   initial   peopling   of   the   Americas.   But   it   is   largely  absent  from  the  Americas  where  a  bifacial  technology  persisted  for  a  long  period  of  time.  An  ancestral  bifacial  technology  to  account  for  the  American  stone  tool  traditions  has  yet  to  be  discovered   in   Siberia.   Blade   technologies   are   known   to   accompany   Clovis   and   Folsom  projectile   points.   They   are   however   absent   from   the   thick-­‐bodied   point   type   traditions.  Perhaps   this   indicates   a   different   origin   for   the   two   traditions,   which   are   also   spatially  distinct.      Stanford  (personal  communication,  2013)  suggested  that  socketed  shaft  hafting  works  best  on  hollow  reed  shafts  such  as  bamboo  or  river  cane.  This  material  would  have  been  available  to   El   Jobo   projectile   point   makers.   Bryan   (1979)   argued   that   South   American   projectile  points  were  probably  generally  made  out  of  wood  and  bone  as  is  done  in  more  recent  times  by  native  tribes.  Perhaps  El  Jobo  hunters  changed  the  material  they  worked  with  but  stuck  to  the  method  they  used  for  manufacture.  Mastodon  skin  was  probably  easier  pierced  with  a  stone  projectile  point  than  a  bone  or  wooden  point.  They  maintained  the  already  known  technologies  of  manufacturing  and  hafting  projectile  points  and  adapted  their  strategies  to  stone.      Musil   (1988)   names   the   various   hafting   techniques   and   treats   them   in   a   successive   order  which   was   later   described   by   Dixon   (1999).   It   is   described   that   two   kinds   of   split-­‐shaft  hafting  existed  in  the  Americas,  one  the  successor  of  the  other.  Socketed  shaft  hafting,  as  it  occurs  in  North  America,  is  described  here  as  an  independent  innovation,  not  related  to  the  split-­‐shaft   hafting   technique.   It   is   possible   that   this   technique   finds   its   origins   in   South  America  where  bamboo  and  river  cane  were  abundant  and  made  socketed  shaft  hafting  an  obvious   solution.   It   is   a   probable   explanation   for   the   occurrence   of   this   technique.   The  innovation  of  a  tool  or  technique  is  best  explained  by  the  presence  of  a  trigger,  such  as  the  lack  of  an  effective  technology  or  an  abundance  of  a  certain  material  (hollow  reed  cane).  The  material   was   not   present   in   North   America   and   neither   was   there   a   lack   of   working  technologies.  So  possibly  the  technique  was  introduced  to  North  America  by  a  people  who  were  already  successfully  employing  it,  such  as  the  El  Jobo  hunters.  

  92  

 Whether   the   socketed   shaft   hafting   technique   was  more   efficient   than   split-­‐shaft   hafting  remains  debatable.  The  technique  eliminated  the  need  to  use  bindings  around  the  edges  of  the  projectile  point.  There  was  also  more  surface  area  between  the  point  and  the  shaft  that  could  absorb  the  energy  of  impact.    

5.2  CHRONOLOGY  AND  SUCCESSION  

When  looking  at  the  radiocarbon  dates  of  the  four  complexes  it  becomes  clear  that  there  is  a  succession  in  time  of  these  complexes:  El  Jobo  -­‐>  Haskett  -­‐>  Agate  Basin  -­‐>  Mesa.    Projectile  point  complex   Radiocarbon  dates  cluster   Oldest  dates  Mesa   10.300  –  9.700     11.660±80  Agate  Basin   10.500  –  9.700   10.850±500  Haskett   10.800  –  9.800   11.200±200  El  Jobo   13.000  –  11.000   14.440±435    But  does  this  succession  also  show  in  the  lithic  technology?  I  discussed  this  subject  with  the  late-­‐amateur  archaeologist  Tony  Baker  (2012).  He  believed  that  Agate  Basin  developed  out  of   Haskett   and   during   my   research   I   found   that   Mesa,   Haskett   and   El   Jobo   have   many  similarities,  while  Agate  Basin  is  a  little  different.  Mesa  might  have  derived  from  Agate  Basin  but   I  also  see  similarities  between  Haskett  and  Mesa.   It   is  possible   that  Mesa  was  derived  from  Haskett.  But  that  would  suggest  that  Agate  Basin  has  no  direct  connection  to  Mesa,  or  possibly   a   common   ancestor   (Haskett).   This   seems   strange   because   there   are   various  indications   of   Agate   Basin  moving   north.   However,  when   examining   the   dates   this   theory  gains   a   little   more   ground.   Mesa   and   Agate   Basin   are   almost   of   equal   age,   Agate   Basin  possibly   a   little   older   than   Mesa.   Haskett   is   older   than   both,   facilitating   more   time   for  migration  or  a  transmission  of  lithic  knowledge  through  contact.      Again  the  question  of  the  older  Mesa  and  Sluiceway  dates  arises.  This  is  a  critical  aspect.  As  I  explained  before,   I   am  not   very   confident  about   the  older  Mesa-­‐site  dates.   The  Sluiceway  site,   Tuluaq   Hill   was   also   dated   to   11.200   14C   BP   but   again   there   are   some   uncertainties  about   the   context.   However,   even   if   these   dates   are   reliable   there   still   is   a   window   for  migration  from  the  south.  The  earliest  occurrence  of  Haskett  points   in  the  Great  Basin  has  been  dated  to  11.200  14C  BP.  Mandryk  et  al  (2001)  as  well  as  (Dixon,  2013)  have  stated  that  the  earliest  possible  migration  through  the   ice-­‐free  corridor  could  have  occurred  at  11.500  14C  BP.   It   is  a  narrow  timespan  but   in   the  advent  of  an  earlier  Mesa  occupation   it  could   in  theory   still   be   possible   that   Haskett   and   Mesa/Sluiceway   came   into   contact   somehow.  Additionally,  a  route  along  the  west  coast  could  have  been  possible  from  at  least  14.000  14C  BP   (fig.53).   In   such   an   event   Haskett   would   have   ended   up   relatively   close   to   the   Spein  Mountain   site   and   still  would   have   to  migrate   a   long  way   to   the  Northern   Brooks   Range.  There  is  however  no  evidence  for  such  a  migration  event.    Even  though  the  four  projectile  point  types  are  very  similar,  they  are  not  the  same.  They  are  all   thick-­‐bodied   lanceolate   projectile   points   but   distinct   regional   types   of   this   technology.  The  type  is  not  as  widespread  as  for  example  the  Clovis  culture  and  it  shows  variation,  but  so  does  Clovis.  The  pattern  that  is  visible  is  one  of  similar  point  types  but  with  an  own  ‘touch’.  This   is  what  might  be  expected   to   see  as  a   result  of   a   transmission  of   knowledge   through  contact.  As  a  new   technology   is  adopted   it  will  be  employed  with  a  personal   touch  of   the  recipient  people.  Of  a  migration  of  people  carrying  with  them  a  projectile  point  technology  I  would  expect   to   find  more  homogeneous  projectile  points  all  over   the   route  of  migration.  

  93  

This   however,   depends   on   the   speed   of   the   migration.   A   fast   migration   will   show   in   a  homogeneous   record   while   a   slow   migration   would   produce   more   regional   differences  (Buchanan  and  Hamilton,   2009).  Mesa/Sluiceway,  Agate  Basin,  Haskett   and  El   Jobo  are   all  similar  projectile  point  types  but  with  slight  differences  in  morphology  and  technology.    There  are  at  least  three  distinct  areas  of  projectile  point  occurrence:  Alaska,  Western  North  America   and   Venezuela.   The   Northern   Great   Basin   area   where   Haskett   occurs   can   be  described  as  a  transitional  zone  to  the  Great  Plains.  These  two  areas  can  to  some  extent  be  connected  in  the  framework  of  this  thesis.  If  these  four  complexes  were  connected  through  migration   one  would   not   expect   to   see   geographical   gaps   such   as  we   see   here   (fig.53)   in  Mesoamerica.   The  absence  of   sites   in   the   ice-­‐free   corridor   can  be  explained  by   significant  erosion  and  sedimentation  due  to  the  melting  of  the  ice-­‐sheets.  That  these  three  areas  are  not   connected   by   sites   yielding   similar   technology   makes   the   connection   between   types  problematic.  

5.3  TRACKING  THE  MOVEMENT  OF  A  TECHNOLOGICAL  TRADITION  

The  mechanism  behind   the   spread  of   this  projectile  point   technology  can  probably  not  be  found  in  either  a  single  migration  of  people  or  a  transmission  of  knowledge  though  contact.  Events  such  as  these,  on  a  geographical  scale  this  large,  do  not  occur  that  straightforward.  It  is   probably   a   combination   of   the   two.   A   migration   of   people   might   have   occurred   very  slowly,   encompassing   many   generations.   A   migration   like   this   should   show   clearly   in   the  archaeological   record  as  a  widespread  occurrence  of   sites  along   the  path  of  migration.  On  the   other   hand,   it   is   possible   that   the   thick-­‐bodied   lanceolate   projectile   point   technology  was   innovated   independently   in   different   regions.   Archaeologists   are   often   inclined   to  diminish  distances   in   the  continent  of  North  and  South  America  because   it  was  populated  relative  late  on  the  archaeological  time  scale  and  especially  in  this  early  phase  it  is  proposed  to  have  been  thinly  populated.  This  however  does  not  mean  that  connections  between  the  groups  that  were  present  at  the  time  are  more  obvious.      The   socketed   shaft   hafting   technique   has   been   described   by,   among   others,  Musil   (1988)  and   Dixon   (1999)   as   superior   to   the   split-­‐shaft   hafting   technique   that   was   already   in   use  before   the   socketed   shaft   technique   was   introduced.   There   are   some   doubts   about   its  superiority  however.  Both  Stanford  (personal  communication,  2013)  and  Frison  (1978)  have  expressed   doubts   about   the   functionality   of   this   technique.   Therefore   I   suggest   the  superiority   of   the   socketed   shaft   hafting   technique   is   questionable   in   an   area   where   the  proper  materials  are  lacking.  It  seems  reasonable  to  state  that  socketed  shaft  hafting  might  have  had  its  origins  in  South  America  where  materials  such  as  hollow  reed  cane  and  bamboo  were  abundant.  El   Jobo   is   the  oldest  of   the  four  projectile  point  complexes  discussed  here  and  so,  when  we  are  assuming   that   these   four  complexes  are  connected,  El   Jobo  must  be  the  origin,  the  starting  point  of  the  spread  of  a  lithic  technology.  So  how  did  the  thick-­‐bodied  lanceolate  projectile  point  technology  end  up  in  North  America?    The   two   possible   El   Jobo   sites   in   Panama   and   the   one   in  Mexico  may   be   a   clue   of   small  proportion,  but  if  these  are  truly  El  Jobo  points  this  indicates  that  a  diffusion  of  the  El  Jobo  technology  occurred  north  of  Venezuela.  Sadly  these  finds  have  not  been  dated  and  so  no  migration  direction  can  be  appointed  here,  additionally  the  determination  of  the  projectile  point  type  remains  questionable.  An  explanation  for  the  lack  of  sites  in  Mesoamerica  could  be   that   a   quick  migration   of   a   relatively   small   group  of   people   occurred   at   approximately  11.200  14C  BP,  when  Haskett  first  appears  in  the  Great  Basin,  or  slightly  before  that.  Perhaps  these  people  moved  along  the  coastal  lines  of  Eastern  Mesoamerica  and  as  a  result  the  sites  

  94  

have  been   inundated  by   the   sea   level   rise  at   the   start  of   the  Holocene   (fig.53).   If   so,   they  would  have  arrived  in  Texas  and  from  there  moved  north.  There  are  some  Agate  Basin  sites  located  in  Northern  Texas.  These  sites  have  however  not  been  dated.  Moreover,  this  theory  does  not   fit   the  chronological  order  of  dates  as  Haskett   is  older   than  Agate  Basin  and  also  shows  more  similarities  to  El  Jobo  in  lithic  technology.    

 FIGURE  53:  PROPOSED  ROUTES  OF  THE  THICK-­‐BODIED  LANCEOLATE  PROJECTILE  POINT  TECHNOLOGY  

But   why   would   El   Jobo   hunters   have   moved   to   the   north   in   the   first   place?   In   order   to  account  for  the  earliest  presence  of  Haskett  in  the  Great  Basin  at  11.200±200  14C  BP  a  time  window  for  migration  should  be  found  at  approximately  11.600  -­‐11.200  14C  BP.  Depending  

  95  

on  how  long  such  a  migration  took  this  timespan  can  be  extended  further  to  the  past.  The  distance  between  Northern  Venezuela  and  the  Great  Basin  and  Great  Plains  region  is  great:  approximately   6000   km.   This   is   a   large   area   encompassing  many   different   environments.  Something   that  has  often  been  described  as  a   trigger   for  migration   is   climatic   change  and  the  migration  or  extinction  of  prey  species.  The  last  climatic  change  in  Venezuela  before  the  climate   started   representing   modern   day   conditions   (from   10.000   14C   BP   onwards)   was  recorded  between  11.900  and  11.100  14C  BP  when  temperatures  dropped  slightly.  The   low  number  of  sites  yielding  megafauna,  especially  mastodon  indicates  that  this  species  was  low  in   number   in   the   area.   During   the   latter   period   of   the   LGM   the   area  was   subject   to   high  aridity,  which  is  not  ideal  for  mastodons.  Mastodon  might  very  well  have  been  on  the  verge  of   extinction   in   the   region  when   El   Jobo   first   appears   in   this   previously   uninhabited   area.  Possibly  the  El   Jobo  predation  on  this  species   in  combination  with  climatic  changes  caused  the  species  to  disappear  from  the  region.  Perhaps  the  animals  migrated  away  or  just  simply  died  out.  This  could  have  left  El  Jobo  hunters  without  a  reliable  means  of  subsistence  even  though  some  species,  such  as  megathere,  persisted  longer  in  time  and  were  also  hunted.      This  could  have  been  a  reason  for  El  Jobo  hunters  to  go  look  for  another  region  with  a  higher  abundance  of  big-­‐game  species.  They  might  have  migrated  north  where  they  finally  ended  up   in  Northwest  America.  At   the  time  the  technological   tradition  arrived   in  North  America  megafauna   here  was   already  mainly   extinct.   The   abundant   big-­‐game   species   found   in   the  Northern  Great  Basin   and  Great   Plains   area  was  bison.   It   is   not   difficult   to   imagine   that   a  megafauna   hunting   people   such   as   El   Jobo   would   be   attracted   to   a   prey   species   such   as  bison.  The  absence  of  sites  in  Mesoamerica  and  Southern  North  America  however,  remains  problematic  in  this  construction  and  does  not  add  to  support  the  hypothesis  of  a  northward  migration.      After   El   Jobo,  Haskett   is   the   oldest   point   type   discussed   here.   Haskett   lithic   technology   is  very   similar,   if   not   identical,   to   El   Jobo.   One   should   not   be   cheated   by   the   different  appearance  of  the  two  types,  this  is  mainly  due  to  the  use  of  two  very  distinct  raw  materials  (obsidian   and   quartzite   sandstone).   The   occurrence   of   sites   is   highest   in   the   Snake   River  Plain  of  the  Northern  Great  Basin  area  with  some  outliers  in  the  middle  Great  Basin  further  to  the  south.  Among  these  outliers  is  the  Bonneville  Estates  Rockshelter  that  has  been  dated  to  11.000  14C  BP,  an  early  date  for  Haskett.  There  are  also  some  sites  in  the  Northwest  that  are  younger  than  the  dates  in  the  centre.  This  pattern,  though  barely  visible,  can  suggest  an  early   arrival   in   the  Great   Basin  with   a   preferred   central   area   in   the   Snake  River   Plain   and  further  migration  or  expansion  to  the  Northwest.  Raw  material  from  the  Running  Antelope  site   was   sourced   to   Southern   Utah’s   Mineral   Mountains.   Russell   (2004)   has   traced   raw  material   sources   and   suggested   that  Haskett   hunters  moved   in   a   north-­‐south/south-­‐north  direction.    Because  the  Snake  River  Plain   is  actually  an  environment-­‐connecting  corridor  between  the  Great  Plains  and  the  more  mountainous  area  of  the  Rocky  Mountains  and  to  the  south  the  Great  Basin,  the  connection  to  the  Great  Plains  is  not  difficult  to  make.  The  people  living  in  these   neighbouring   areas  might   have   been   in   contact.  Whether   Haskett   was   ancestral   to  Agate  Basin,   like   Tony  Baker   suggested,   is   not   that   clear   to  me.   The   lithic   technology   and  typology  of  Agate  Basin  is  the  biggest  outlier  of  the  four  discussed  types.  It  seems  however  very   well   possible   that   there   was   contact   between   these   two   groups   and   that   with   this  contact  these  two  complexes  influenced  one  another.          Agate  Basin  is  centred  in  the  Northern  Great  Plains  but  has  some  sites  in  the  south.  Whether  this  reflects  a  southward  migration  from  the  centre  during  a  later  period,  an  early  northward  

  96  

migration  or  perhaps  occasional  hunting  expeditions  is  unclear  because  these  sites  were  not  dated.  The  pattern  of  Agate  Basin  raw  material  sources  differs  among  sites.  Most  are  extra-­‐local  but  some  are  also  found  closer  to  the  site.  Large  distances  between  sites  and  sources  occur  often.  The  most  striking  of   these   is   the   raw  material  at   the  Frazier  site   that   finds   its  origin   in  Texas,   some  750  km  to   the   south.  The  Frazier   site   is  not  particularly  old   (9.650  –  9.000  14C  BP)  so  this  is  no  indication  for  an  initial  contact  with  El  Jobo  manufacturing  people.  It   does   however   show   that   Agate   Basin   hunters   were   a   highly   mobile   people   over   large  distances.  Agate  Basin  is  known  to  have  moved  north  along  with  the  degradation  of  the  ice-­‐sheet.   Ebell   (1980)  mentions   that  many  Agate  Basin   sites   are  often   located  approximately  950  km  from  the  ice  front.  Additionally,  bison  (B.  antiquus)   from  the  Great  Plains  migrated  northward  and   is  present   in   the   ice-­‐free  corridor  at  10.500  14C  BP  at   the  Charlie  Lake  Cave  site.  It  is  evident  that  Agate  Basin  moved  north,  sites  of  younger  age  have  been  found  in  the  Grant  Lake  region  in  Canada.  These  sites  are  often  referred  to  as  part  of  the  Northern  Plano  culture  but  the  projectile  points  are  strikingly  similar  to  Agate  Basin.      Mesa   sites   are   centred   in   the   Northeastern   Brooks   Range   with   a   few   occurrences   in   the  west.  Of  great  interest  is  the  presence  of  the  obsidian  at  the  Mesa  site  from  the  Batza  Tena  source  320  km  to  the  south.  Kunz  (personal  communication,  2013)  emphasizes  that  at  least  99%  of   the  material   at   the  Mesa   site  was   local   chert.  But   still   the  presence  of  Batza  Tena  obsidian  proves  that  there  was  either  contact  and  exchange  with  people  from  the  south,  or  it  might  indicate  that  the  Mesa  people  were  also  highly  mobile.      There   are  many   factors   suggesting   a   connection   between  Mesa   and   Agate   Basin   but  why  then   is   there  a  difference  between  Agate  Basin  and  Mesa  projectile  points?   If  Agate  Basin  people  moved  to  the  north  why  would  they  change  the  shape  and  flaking  patterns  of  their  projectile  points?  Could  it  be  that  they  were  forced  to  do  so  because  of  a  lack  of  material?  If  Agate  Basin  points  originally  were  hafted  in  a  wooden,  socketed  or  split-­‐shaft,  perhaps  they  had  to  change  their  hafting  method  to  work  with  bone  or  ivory  because  wood  was  scarce  in  Arctic   Alaska.   This   might   have   resulted   in   the   employment   of   socketed   hafting   which  required  a  more  diamond  shaped  cross-­‐section  and  a  more  tapering  stem.  Mesa  projectile  points   mostly   show   collateral   flaking   but   in   some   cases   the   flaking   scars   can   be   a   little  narrower,  almost  approaching  a  parallel  flaking  pattern  as  with  Agate  Basin.  However,  here  a  problem  presents   itself.  Mesa  points  could  have  been  hafted   in  a   socketed  shaft  but   for  Sluiceway   I   am   not   sure  whether   this  was   a   possibility.  Most   Sluiceway   points   have  wide  basal  sections  that  are  difficult  to  haft  in  a  socketed  shaft.  Perhaps  there  was  more  suitable  wood   available   in   the   western   part   of   the   Northern   Brooks   range   to   facilitate   split-­‐shaft  hafting.  

  97  

5.4  CONCLUSIONS  

This  study  has   focused  on   four  different  projectile  point   types   in   the  Americas   in  hopes  of  finding  a  connection  that  could  suggest  an  origin  or  ancestral  technology  for  the  youngest  of  the  four:  the  Mesa  projectile  point.  The  main  question  asked  in  this  thesis  is:  “What  can  be  said   about   the   origin   and   migration   patterns   of   the   Palaeolithic   people   of   the   Mesa  archaeological  site  by  examining  the  various  thick-­‐bodied  lanceolate  projectile  points  of  the  Americas?”   Various   sub   questions   have   been   asked   concerning:   geomorphological   setting,  environment,  dating,   lithic   technology,   raw  material   sources,  associated   lithic  assemblages  and  regional  similar  point  types.      It  was   proposed   that   the   four   complexes   (El   Jobo   -­‐>   Haskett   -­‐>   Agate   Basin   -­‐>  Mesa)   are  connected   and   successive   of   each   other   in   the   above   chronological   order.   The   similarities  between  these  point  types  can  be  the  result  of  three  different  mechanisms:      

1. Diffusion  of  technological  knowledge  through  social  contact  2. Dispersal  of  material  culture  through  migration  3. Convergence  of  the  technological  trait  through  independent  innovation  

 Similarities  and  differences  as  discussed  in  the  previous  chapters  are  summed  up  in  table  12.      TABLE  12:  PROJECTILE  POINT  COMPLEX  CHARACTERISTICS  

  Mesa   Agate  Basin   Haskett   El  Jobo  Site  type   Observation  

spots  Kill-­‐sites   Camp-­‐sites  

 Kill-­‐sites      

Geomorphological  setting  

high   locations  (hilltops,  bluffs)  

geographical  trap   features  (gully’s;   drained  riverbeds)    

caves   and  rockshelters  

aquatic  settings        

Environment   Mammoth-­‐steppe,   grass-­‐lands  

Steppe   with  tundra  elements  

sagebrush  steppe   mixed  with   high  altitude  vegetation    

herbaceous  savannah  

Hunted  animals   unknown  (possibly   horse  and   Bison  priscus)    

Bison  antiquus   unknown  (possibly  bison)  

mastodon,  megathere  

Width/Thickness  av.  ratio    

2.7   3.3   2.9   2.4  

Dating   10.300  –  9.700   10.500  –  9.700   10.800  –  9.800   13.000  –  11.000    

Oldest  dates   11.660±80   10.850±500   11.200±200   14.440±435      

  98  

Connecting  these  four  projectile  point  complexes   is  complicated   in  some  ways.  The  reason  that   these   four   types  stood  out  against   the   larger  archaeological   record  of   the  Americas   is  because  they  are  all  thick-­‐bodied,  lanceolate  shaped  projectile  points.  This  shape  is  probably  the  result  of  the  employment  of  a  hafting  technique  known  as  socketed  shaft  hafting  where  the   projectile   point   was   inserted   into   a   hollow   foreshaft   made   of   wood,   bone   or   hollow  reed.   However,   the   projectile   points   are   not   just   similar   in   morphology   but   also   in  technology.  Flaking  methods  are  similar  and  so  are  other  aspects  such  as:  base  shape,  edge  grinding  and  marginal  retouch.  Of  the  four  projectile  point  types  Agate  Basin  is  the  biggest  outlier.   It   is   thinnest   with   respect   to   its   width   and   flaking   is   mostly   parallel   instead   of  collateral.      Large  differences  between  the  projectile  point  complexes  are  seen   in  climate  even  though  the  vegetation  type  is  generally  similar  (plains-­‐like  grasslands  bordered  by  mountains).  The  climate  of  Venezuela  is  the  biggest  outlier  here,  especially  because  of  higher  temperatures.  The  northern  area  where  the  ice-­‐sheets  influenced  the  climate  is  certainly  a  contrast  to  this.  The  difference  in  climate  between  the  mid-­‐continental  complexes  and  Arctic  Alaska  was  also  pronounced.  Even  though  Agate  Basin  and  Haskett  were  influenced  by  the  presence  of  the  ice-­‐sheets,   these   complexes   were   not   subject   to   characteristic   Arctic   circumstances.   The  Mesa  hunters  had  to  deal  with  24  hours  of  darkness  in  wintertime  and  low  temperatures.      The  differences  seen  in  the  projectile  point  morphology  and  technology  might  represent  the  observed   differences   in   site   function   and   perhaps   differences   in   environment.   A   different  prey   species  might   result   in   adjustments   to   the  projectile   point   type.   Thrusting   spears   (as  with   Sluiceway)   require   much   sturdier   and   heavy   tips   than   atlatl   darts   (Mesa).   The   four  discussed  projectile  points  were  most  probably  all  hafted  on  atlatl  darts.  The  morphology  of  the  points  seems  to  be  connected  to  the  hafting  technique,  which  required  a  certain  shape  of  the  projectile  point  stem.  The  socketed  shaft  hafting  technique  was  possibly  used  by  all  four  complexes  and  was  possibly  invented  in  South  America.      El  Jobo’s  northward  migration  If  we  assume  that  people  using  El  Jobo  projectile  points  actually  migrated  from  Venezuela  to  the  Great  Basin  and  Great  Plains  area,  many  questions  arise.   First  of  all:  why  would   these  people   leave   their   familiar   territory   behind   to   move   6000   km   to   the   north?   A   proposed  explanation  for  the  ‘why’  question  refers  to  the  extinction  of  megafauna  in  Venezuela.  There  are   indications   that   mastodon,   the   primary   prey-­‐species   of   the   El   Jobo   hunters   was  becoming  extinct   in   the  region.  Perhaps   the  El   Jobo  hunters  were   looking   for  new  hunting  grounds  or  followed  migrating  mastodon  to  the  north.      Secondly,  what  would  such  a  migration  look  like?  How  large  a  group  would  be  involved  and  at  what  pace  would  the  migration  have  occurred?  It  seems  that  a  group  of  people  using  El  Jobo  projectile  points  stayed  behind  so  it  was  not  a  migration  of  an  entire  population  but  a  smaller  group  of  people.  Here  another  question  occurs:  was  a  small  group  of  people  enough  to   spread   the   thick-­‐bodied   projectile   point   technology   all   the   way   to   North   America?   A  distance  of  6000  km  should  not  be  underestimated  and  the  proposed  migration  might  have  taken  generations.  The  current  evidence  of   the  El   Jobo  projectile  point   complex   shows  no  evidence   for   large-­‐distance  mobility.   They   seem  confined   to  Northern  Venezuela  and   they  exclusively  use  local  raw  materials.      A   lengthy  migration,  encompassing   several  generations   in   time,  and  with  a   relatively   large  group  of  people  over  a   large  distance  should  be  visible   in   the  archaeological   record.  What  would   be   expected   to   show   from   such   an   event?   I   would   expect   to   see   the   presence   of  

  99  

characteristic   El   Jobo   projectile   points   along   the  migration   path.   Perhaps   technology   and  morphology  changed  slightly  along  the  way  but  it  would  still  be  recognizable.  El  Jobo  would  probably  be  found  alongside  to  aquatic  sources  such  as  rivers  and  springs.  Kill  sites  should  occur  in  areas  where  big  game  was  present.    So  why   is   there   virtually   no  presence  of   El   Jobo-­‐like  projectile   points   in  Mesoamerica   and  Southern  North  America?  This   can  be   the   result  of  different   things.   It   could  be   that   the  El  Jobo   people   migrated   along   the   eastern   coastline   of   Mesoamerica.   This   coastline   is   now  inundated   by   the   rising   sea   levels   of   the   Holocene   and   so   the   evidence   might   be   under  water.   A   marine   adaptation   of   El   Jobo   people   has   however   never   been   suggested.  Additionally   this   route   does   not   explain   the   lack   of   sites   in   Southern   North   America.   It   is  possible   that   El   Jobo   projectile   points   have   not   been   found   in   Panama,   Guatamala,  Honduras,  Nicaragua  and  Mexico  because  of  a  lower  research  intensity  or  bad  site  visibility.  Or  it  could  be  that  such  a  migration  never  actually  happened.      Judging  from  the  present  evidence  it  can  be  concluded  that  there  are  few  indications  for  a  northward  migration   of   El   Jobo   hunters.   The   proposed  working   hypothesis   was   based   on  typological   and   technological   similarities   between   El   Jobo   and   the   other   three   types.   This  research  has  not  been  able  to  add  to  this  idea  and  so  the  only  connection  between  El  Jobo  and  the  northern  complexes  remains   the  projectile  point  characteristics.  Therefore   I   reject  the   connection   of   El   Jobo   to   the   other   three   complexes   until   further   research   suggests  otherwise.      A  connection  of  three  northern  thick-­‐bodied  lanceolate  projectile  point  complexes  The  connection  between  Haskett,  Agate  Basin  and  Mesa  can  be  made  more  plausible.  Not  only   are   these   complexes   located   closer   to   one   another   but   they   are   also   dated   more  securely  to  a  less  extensive  period  in  time.      Haskett  is  the  oldest  of  the  three.  It  should  however  be  kept  in  mind  that  the  oldest  dated  site  is  probably  not  representing  the  actual  oldest  appearance  of  a  tradition.  Statistically  the  chances  of   finding   the   ‘oldest’   site  are   low.  Haskett   is   also   largely   simultaneous  with  both  Agate   Basin   and  Mesa.   There   is   a   probability   that   Haskett   and   Agate   Basin   hunters   were  aware  of  each  other’s  presence  and  possibly  had  contact.  Relative  to  the  area  of  Agate  Basin  and   Haskett   occurrence   the   two   complexes   are   not   spatially   located   far   from   each   other  (approximately  300  km).   It   is  also  possible  that  the  two  complexes  as  defined  in  this  thesis  actually  belonged  to  the  same  tradition  with  separate  groups.  The  different  morphology  of  the  projectile  points  could  be  due   to  different   functions:  possibly  different  prey  species.  A  difference   in   function   is   insinuated   by   the   difference   in   site   function   (camp-­‐   vs.   kill   sites).  Haskett   and   Agate   Basin   have   a   lot   in   common:   projectile   point  morphology,   technology,  environment,   and   other   lithic   assemblages.   It   can   be   said   that   it   is   likely   that   there   was  contact  between  these  two  complexes.    Let   us   now   assume   that   Mesa   was   derived   from   a   northward   migration   of   Agate   Basin  hunters.  This  migration  must  have  occurred  before  10.500  14C  BP  in  order  to  account  for  the  presence  of  Mesa   in   the  Northern  Brooks  Range,  but  also  after  11.500  14C  BP  because   the  ice-­‐free   corridor   was   not   viable   for   human   sustainment   before   that   time.   Because   Agate  Basin   also   remains   present   on   the   Great   Plains   after   10.500   14C   BP   this   migration   would  encompass  only  a  group  of  Agate  Basin  people,  not  an  entire  population.  The  distribution  of  Agate   Basin   sites   indicates   that   these   people  were  mostly   present   at   the   Northern   Great  Plains.  However,  the  occasional  occurrence  of  Agate  Basin  sites  as  far  away  as  New  Mexico  that   might   represent   small   hunting   expeditions   indicates   that   these   people   were   highly  

  100  

mobile   over   large   distances.   Additionally,   the   distribution   of   raw  material   sources   further  emphasizes  high  mobility.      The   following   scenario   can   be   postulated.   As   the   large   bison   species   (Bison   antiquus)  migrated  to  the  north,  a  group  of  Agate  Basin  hunters  followed.  It  is  possible  that  the  bison  migrated   further   north   through   the   ice-­‐free   corridor,  which   at   the   time  was   vegetated  by  grasses   in  a  prairie-­‐like  fashion.  The  distance  between  the  Northern  Brooks  Range  and  the  Northern  Great  Plains  is  considerable  (approximately  4000  km).  The  lack  of  Agate  Basin  sites  in   the   area   in   between   the   two   regions   can   be   explained   by   extensive   erosion   and  sedimentation   due   to   the  melting   of   the   ice   sheets   as   well   as   bad   site   visibility   in   highly  vegetated   regions   of   Alaska.   Hardly   any   archaeological   sites   of   this   period   have   been  recovered  in  this  region.  Once  the  Agate  Basin  hunters  arrived  in  the  Northern  Brooks  Range  area  they  would  have  found  an  abundance  of  big  game  such  as  horse  and  bison.      But  why  would  they  have  changed  the  design  of  their  projectile  points?  The  lack  of  wood  in  the  region  would  have  made   it  difficult   to  haft   their  points   in  a  split-­‐shaft.  With  only   ivory  and   bone   available   for   a   foreshaft   they   had   to   change   their   hafting   technology.   The  projectile  point  had  to  become  thicker  and  the  stem  became  more  tapering   in  order   to   fit  the   socketed   foreshaft   made   out   of   ivory   or   bone.   These   technological   adjustments   can  transform  an  Agate  Basin  point  into  a  Mesa  point.      The  presence  of  Batza  Tena  obsidian  at  the  Mesa  site  proves  that  these  people  were  either  highly  mobile  or  had  contact  with  other  people  from  the  south.  It  could  also  have  been  that  Agate  Basin  people  brought  the  obsidian  with  them  during  their  migration  that  ended  at  the  Northern  Brooks  Range.  Or,  once  they  arrived,  they  maintained  their  large-­‐distance  mobility.  After  9.700  14C  BP  Mesa  disappears  from  the  archaeological  record  in  Arctic  Alaska  as  bison  and  horse  become  extinct  here.  Somewhat  later  a  projectile  point  type  emerges  in  the  Grant  Lake   region   in  Canada   that   is   very   similar   to  Agate  Basin.   Coincidence?  Or   are  we  dealing  with  a  highly  mobile  hunter-­‐gatherer  group  very  capable  of  adapting  to  new  circumstances  and  environments?      Connecting   El   Jobo   to   the   other   three   projectile   point   complexes   has   proven   to   be  problematic   because   of   a   lack   of   evidence   supporting   the   working   hypothesis.   The  connection   between   Haskett   and   Agate   Basin   can   be   suggested   because   of   the   many  similarities   the   two   complexes   share,   differences   might   be   the   result   of   a   variety   in   site  function.  Agate  Basin  and  Mesa  seem  to  be  connected  through  a  migration  from  Agate  Basin  people  into  the  Arctic.  Another  scenario  was  proposed  in  the  first  chapters  of  this  thesis  and  that   is   that   the   thick-­‐bodied   lanceolate  projectile  point   technology  arrived   in  Arctic  Alaska  through   the   diffusion   of   technological   knowledge;   in   other   words:   through   contact.   This  scenario   seems   less   likely   because   the   area   between   the  Northern   Brooks   Range   and   the  Great  Plains  was  thinly  populated  at  the  time  or  even  empty.  It  is  not  likely  that  the  people  manufacturing   Mesa   projectile   points   learned   about   this   technology   from   neighbouring  groups.  Additionally,  it  seems  that  the  Northern  Brooks  Range  was  not  inhabited  before  the  arrival   of   Mesa   and   Sluiceway.   Bifacial   technologies   are   rare   in   Siberia   while   they   are  abundant  in  the  Americas  and  so  an  origin  in  Siberia  seems  unlikely.    Therefore   I  propose   that   the   thick-­‐bodied   lanceolate  projectile  point   technology  arrived   in  the  Northern  Brooks  Range  around  10.500  14C  BP,  carried  by  a  people  from  the  south,  most  likely  Agate  Basin.    

  101  

Possibilities  for  further  research  and  accompanying  expectations  All   the   four   projectile   point   complexes   are   in   need  of   further   research.  When  more  Mesa  and  Sluiceway  sites  are  radiocarbon  dated  it  will  become  clearer  whether  or  not  the  11.200  14C   BP   dates   of   the  Mesa   and   Tuluaq  Hill   sites   are   out   of   context   or   not.   This   is   essential  when  trying  to  locate  an  origin  for  the  Mesa  and  Sluiceway  projectile  point  technology.  I  am  expecting  that  more  sites  yield  dates  of  around  10.500  14C  BP.  If  another  separate  site  yields  a  date  of  11.200   14C  BP   the   chances   that   the   two  existing  dates  of   this   age  are  erroneous  become  much  smaller,  especially  because  the  outlying  dates  are  of  the  same  age.  In  order  to  understand  the  relationship  between  Mesa  and  Sluiceway  it  would  be  very  valuable  to  date  a  site  that  contains  both  point  types,  such  as  the  Tupik  site.  Perhaps  additional  excavations  at  this  site  will  yield  the  hearth  feature  that  Kunz  has  been  looking  for.      The   ice-­‐free  corridor  area  has  been   subject   to  extensive  archaeological   survey   in  hopes  of  finding   sites   that   could   demonstrate   a  migration   into   the   Americas.  With   the   use   of   new  technologies   in   archaeological   survey   and   fieldwork,   such   as   ground   radar,   it   could   be  interesting   to   reinvestigate   this   area  with   new   techniques.   If   the   connection   between   the  three   northern   thick-­‐bodied   lanceolate   projectile   point   types   (Mesa,   Agate   Basin   and  Haskett)  is  assumed  then  the  question  remains  where  the  lithic  technology  found  its  origin.  Were   the   El   Jobo   and   Haskett   projectile   point   complexes   innovated   independently   or   is  there   another   predecessor   to   be   found   elsewhere?   Further   research   might   show   the  presence   of   sites   in   the   now   empty   area   of  Mesoamerica.   Investigation   of   the   inundated  continental   shelves   of   both   eastern  Mesoamerica   and   the   Pacific   Northwest   coast   of   the  United  States  might  provide  new  insights.    The  connection  between  Haskett  and  Agate  Basin  remains  suggestive.  Even  though  there  are  many  similarities,  there  is  not  much  known  about  the  subsistence  strategies  of  Haskett.  It  is  significant  to  re-­‐evaluate  the  projectile  point  finds  at  various  Great  Basin  sites  dating  to  the  Late  Pleistocene   to   see   if  Haskett  determinations  are  correct  and  whether   there  are  more  unidentified  Haskett  points.  More  knowledge  about  the  Haskett  type  will  eventually  lead  to  a   better   understanding  of   the   connection  of   this   type   to   other   projectile   point   types.   The  typologies  of  the  American  West  should  be  inventoried  more  clearly.  There  is  a  strong  need  for  a  clear  overview  of  the  archaeology  of  this  region.  The  distribution  of  Agate  Basin  should  be  mapped  more   clearly  but   first   it   should  be   inventoried  what   is,   and  what   is  not,  Agate  Basin.  The  projectile  point  type  has  been  reported  from  Texas  to  Canada  and  from  the  Great  Plains  all   the  way   to   the  Eastern  United  States.  A   study  of   the   relationship  between   these  regions  would  enhance  our  understanding  of  the  transmission  of  knowledge  in  America.      Seeing   that   it   is   often   very   difficult   to   obtain   information   about   projectile   point   types,   it  would  be  very  useful  to  assemble  a  database  of  archaeological  sites  of  the  different  regions  of  the  Americas.  In  such  a  database  categories  can  be  described  such  as:  site  location,  age,  projectile   point   type,   faunal   remains,   raw   material   sources   and   lithic   technology.   This  database   should   be   easily   accessible   and   would   provide   an   ideal   overview   of   the  archaeological  complexes  of  Late  Pleistocene  and  Early  Holocene  America.  My  research  has  shown   that   it   is   not   always  easy   to   gain   specific   information   from   the   literature   therefore  such  a  project  would  include  artefact  studies  in  order  to  determine  types.      This   thesis   has   provided   the   hypothesis   that  Mesa  was   derived   from   Agate   Basin.   All   the  above  mentioned  issues  could  be  used  to  test  this  hypothesis.  Although  the  El  Jobo  type  was  not   included   in   the   final   scenario   this   connection   remains   interesting.  More   research,   and  access   to   present   research   in   Mesoamerica   is   essential   for   further   investigation   of   this  connection.    

  102  

REFERENCES  

 Ackerman,  R.  E.  2001.  Spein  Mountain:  A  Mesa  Complex  Site  in  Southwestern  Alaska.  Arctic  

Anthropology  38:16.  Ames,  K.  M.,  K.  A.  Fuld,  and  S.  Davis.  2010.  Dart  and  Arrow  Points  on  the  Columbia  Plateau  

of  Western  North  America.  American  Antiquity  75:287-­‐325.  Ames,  K.  M.,  J.  P.  Green,  and  M.  Pfoertner.  1981.  Hatwai  (10NP143):   Interim  Report.  Boise  

State  University.  Aveleyra  A.  de  Anda,  L.  1956.  The  Second  Mammoth  and  Associated  Artifacts  at  Santa  Isabel  

Iztapan,  Mexico.  American  Antiquity  22:12-­‐28.  Baker,  T.  2009.  "I  forgot  to  remember  to  forget:  1st  peoples  in  the  New  World."  Edited  by  T.  

Baker.  Barnosky,   A.   D.,   and   E.   L.   Lindsey.   2010.   Timing   of   Quaternary   megafaunal   extinction   in  

South   America   in   relation   to   human   arrival   and   climate   change.   Quaternary  International  217:10-­‐29.  

Barton,  C.  M.,  G.  A.  Clark,  and  D.  R.  Yesner.  2004.  The  settlement  of  the  American  continents:  a  multidisciplinary  approach  to  human  biogeography.  Tucson:  University  of  Arizona  Press.  

Beck,  C.,  and  G.  T.  Jones.  1997.  The  Terminal  Pleistocene/Early  Holocene  Archaeology  of  the  Great  Basin.  Journal  of  World  Prehistory  11:76.  

Beck,  C.  a.  J.,  G.T.  1988.  "Western  Pluvial  Lakes  Tradition  Occupation  in  Butte  Valley,  Eastern  Nevada,"   in   Early   Human   Occupation   in   Far   Western   North   America:   the   Clovis-­‐Archaic  Interface,  vol.  21.  Edited  by  J.  A.  Willig,  Aikens,  C.M.  and  Fagan,  J.L.,  pp.  273-­‐303.  Carson  City:  the  Nevada  State  Museum.  

Bedwell,  S.  F.,  and  L.  S.  Cressman.  1971.  "Fort  Rock  Report:  Prehistory  and  Environment  of  the   Pluvial   Fort   Rock   Lake   Area   of   South-­‐Central   Oregon,"   in   Great   Basin  Anthropological   Conference   1970.   Edited   by   C.   M.   Aikens,   pp.   1-­‐25:   University   of  Oregon.  

Beuker,   J.   2010.  Vuurstenen  Werktuigen.   Technologie   op  het   scherp   van  de   snede.   Leiden:  Sidestone  Press.  

Binford,  L.  R.  1965.  Archaeological  Systematics  and  the  Study  of  Culture  Process.  American  Antiquity  31:203-­‐210.  

Binford,   L.   R.   1972.   "Model   Building-­‐Paradigms,   and   the   Current   State   of   Paleolithic  Research,"   in  An   Archaeological   Perspective.   Edited   by   L.   R.   Binford,   pp.   244-­‐294.  New  York:  Seminar  Press.  

Binford,  L.  R.  1980.  Willow  Smoke  and  Dogs'  Tails:  Hunter-­‐gatherer  Settlement  Systems  and  Archaeological  Site  Formation.  American  Antiquity  45:4-­‐20.  

Binford,  L.  R.,  and  S.  R.  Binford.  1966.  A  preliminary  analysis  of   functional  variability   in  the  Mousterian  of  Levallois  Facies.  American  Anthropologist  68:238-­‐295.  

Booth,  D.  B.,  K.  G.  Troost,  J.  J.  Clague,  and  R.  B.  Waitt.  2003.  The  Cordilleran  Ice  Sheet.  1:17-­‐43.  

Bordes,   F.,   and   D.   deSonneville-­‐Bordes.   1970.   The   significance   of   variability   in   Paleolithic  assemblages.  World  Archaeology  2:61-­‐73.  

Bradley,   B.   A.   1993.   "Paleo-­‐Indian   Flaked   Stone   Technology   in   the   North   American   High  Plains,"   in   From   Kostenki   to   Clovis,   Upper   Paleolithic   Paleo-­‐Indian   Adaptations.  Edited  by  O.  Soffer  and  N.  D.  Praslov,  pp.  251-­‐262.  New  York:  Plenum  Press.  

Bradley,  B.  A.  2009.   "Bifacial   Technology  and  Paleoindian  Projectile  Points,"   in  Hell  Gap.  A  Stratified  Paleoindian  Campsite  at   the  Edge  of   the  Rockies.   Edited  by  M.  L.   Larson,  Kornfeld,  M.  and  Frison,  G.C.  Salt  Lake  City:  The  University  of  Utah  Press.  

Bronk  Ramsay,  C.  2009.  Bayesian  analysis  of  radiocarbon  dates.  Radiocarbon  51:337-­‐360.  

  103  

Bronk   Ramsay,   C.   2012.   "OxCal   ",   v4.2beta   edition.  https://c14.arch.ox.ac.uk/beta/oxcal/OxCal.html.  

Bryan,   A.   L.   1975.   Paleoenvironments   and   cultural   diversity   in   Late   Pleistocene   South  America:   A   Rejoinder   to   Vance   Haynes   and   a   Reply   to   Thomas   Lynch.  Quaternary  Research  5:151-­‐159.  

Bryan,  A.  L.  1979.  "The  Significance  of  Taima-­‐Taima  Site  from  the  Persepctive  of  America  as  a  Whole,"   in  Taima-­‐Taima.   A   Late   Pleistocene   Paleo-­‐Indian   Kill   Site   in  Northernmost  South   America.   Edited   by   C.   a.   G.   Ochsenius,   R.,   pp.   111-­‐121:   South   American  Quaternary  Documentation  Progrma.  

Bryan,   A.   L.   1980.   "The   Stemmed   Point   Tradition:   An   Early   Technological   Tradition   in  Western  North  America,"   in  Anthropological  Papers  in  Memory  of  Earl  H.  Swanson,  Jr.  Edited  by  L.  B.  Harten,  Warren,  C.N.  and  Tuohy,  D.R.,  pp.  77-­‐108.  Pocatello:  The  Idaho  Museum  of  Natural  History.  

Bryan,  A.  L.,  R.  M.  Casamiquela,  J.  M.  Cruxent,  R.  Gruhn,  and  C.  Ochsenius.  1978.  An  El  Jobo  Mastodon  Kill  at  Taima-­‐taima,  Venezuela.  Science  200:3.  

Bryan,  A.  L.,  and  R.  Gruhn.  1979.  "The  Radiocarbon  Dates  of  Taima-­‐Taima,"  in  Taima-­‐Taima.  A  Late  Pleistocene  Paleo-­‐Indian  Kill  Site  in  Northernmost  South  America.  Edited  by  C.  a.  G.  Ochsenius,  R.,  pp.  53-­‐59:  South  American  Quaternary  Documentation  Program.  

Bryan,  A.  L.,  and  R.  Gruhn.  2003.  Some  difficulties   in  modeling  the  original  peopling  of   the  Americas.  Quaternary  International  109-­‐110:175-­‐179.  

Bryan,  A.  L.,  and  D.  R.  Tuohy.  2005.  "Prehistory  of  the  Great  Basin/Snake  River  Plain  to  About  8,500   Years  Ago,"   in   Ice  Age  Peoples   of  North  America,   Environments,  Origins   and  Adaptations.  Edited  by  R.  Bonnichsen  and  K.  L.  Turnmire,  pp.  249-­‐263:  Texas  A&M  University  Press.  

Buchanan,  B.,   and  M.   J.  Hamilton.  2009.  A   Formal   Test  of   the  Origin  of  Variation   in  North  American  Early  Paleoindian  Projectile  Points.  American  Antiquity  74:279-­‐298.  

Butler,   B.   R.   1961.  The  Old   Cordilleran   Culture   in   the   Pacific  Northwest.   Vol.   5.  Occasional  Papers  of  the  Idaho  State  College  Museum.  Pocatello:  Idaho  State  College  Museum.  

Butler,  B.  R.  1964.  A  Recent  Early  Man  Point  Find  in  Southeastern  Idaho.  Tebiwa  7:39-­‐40.  Butler,   B.   R.   1965.   A   Report   on   Investigations   of   an   Early   Man   Site   Near   Lake   Channel,  

Southern  Idaho.  Tebiwa  8:1-­‐20.  Butler,  B.  R.  1967.  More  Haskett  Point  Finds  from  the  Type  Locality.  Tebiwa  10:25-­‐26.  Butler,  B.  R.  1969.  The  Earlier  Cultural  Remains  at  Cooper's  Ferry.  Tebiwa  12:35-­‐50.  Butler,  B.  R.  1975.  The  atlatl:  the  physics  of  function  and  performance.  Plains  Anthropologist  

20:105-­‐110.  Butler,  B.  R.  1978.  A  Guide   to  Understanding   Idaho  Archaeology   (third  edition):   The  Upper  

Snake  and  Salmon  River  Country.  Boise:  Idaho  State  Historic  Preservation  Office.  Butler,  B.  R.  1986.  "Prehistory  of  the  Snake  and  Salmon  River  Area,"  in  Great  Basin,  vol.  11,  

Handbook   of   North   American   Indians.   Edited   by   W.   L.   d'Azevedo,   pp.   127-­‐134.  Washington  D.C.:  U.S.  Government  Printing  Office.  

Clark,  G.  A.  1994.  Migration  as  an  Explanatory  Concept  in  Paleolithic  Archaeology.  Journal  of  Archaeological  Method  and  Theory  1:305-­‐343.  

Cressman,  L.  S.  1986.  "Prehistory  of  the  Northern  Area,"  in  Great  Basin,  vol.  11,  Handbook  of  North  American   Indians.  Edited  by  W.  L.  d'Azevedo,  pp.  120-­‐126.  Washington  D.C.:  U.S.  Government  Printing  Office.  

Cruxent,  J.  M.  1962a.  Artifacts  of  Paleo-­‐Indian  Type,  Maracaibo,  Zulia,  Venezuela.  American  Antiquity  27:576-­‐579.  

Cruxent,  J.  M.  1962b.  Artifacts  of  Paleo-­‐Indian  Type,  Maracaibo,  Zulia,  Venezuela.  American  Antiquity  27:4.  

  104  

Cruxent,  J.  M.  1979.  "Stone  and  Bone  Artifacts  from  Taima-­‐Taima,"   in  Taima-­‐Taima.  A  Late  Pleistocene  Paleo-­‐Indian  Kill  Site   in  Northernmost  South  America.  Edited  by  C.  a.  G.  Ochsenius,  R.,  pp.  77-­‐91:  South  American  Quaternary  Documentation  Program.  

Cruxent,   J.   M.,   Rouse,   I.   1956.   A   Lithic   Industry   of   the   Paleo-­‐Indian   Type   in   Venezuela.  American  Antiquity  22:172-­‐179.  

Darwent,   J.,   and  M.   J.   O'Brien.   2006.   "Using   Cladistics   to   Construct   Lineages   of   Projectile  Points   from   Northeastern   Missouri,"   in   Mapping   Our   Ancestors:   Phylogenetic  Approaches  in  Anthropology  and  prehistory.  Edited  by  J.  Darwent  and  M.  J.  O'Brien,  pp.  185-­‐208.  New  York:  Aldine.  

Davis,   L.   G.,   and   C.   E.   Schweger.   2004.   Geoarchaeological   context   of   late   Pleistocene   and  early   Holocene   occupation   at   the   Cooper's   Ferry   site,   western   Idaho,   USA.  Geoarchaeology  19:685-­‐704.  

Dillehay,  T.  D.  1989.  Monte  Verde,  a  Late  Pleistocene  Settlement  in  Chile.  Vol.  1.  Washington  D.C.:  Smithsonian  Institution  Press.  

Dillehay,  T.  D.  1997.  The  Battle  of  Monte  Verde.  The  Sciences  jan/feb:28-­‐33.  Dillehay,   T.   D.   1999.   The   Late   Pleistocene   Cultures   of   South   America.   Evolutionary  

Anthropology  7:206-­‐216.  Dillehay,  T.  D.  2000.  The  Settlement  of  the  Americas:  a  new  prehistory.  New  York:  NY:  Basic  

Books.  Dillehay,  T.  D.,  M.  B.  Collins,  M.  Pino,   J.  Rossen,   J.  M.  Adovasio,  C.  Ocampo,  X.  Navarro,  P.  

Rivas,  D.  Pollack,  A.  G.  Henderson,   J.  Saavedra,  P.  Sanzana,  P.  Shipman,  M.  Kay,  G.  Munoz,   A.   Karathanasis,   D.   Ugent,   M.   Cibull,   and   R.   Geissler.   1999.   "On   Monte  Verde:  Fiedel's  Confusions  and  Misrepresentations."  

Dillehay,   T.  D.,   C.  Ramirez,  M.  Pino,  M.  B.   Collins,   J.   Rossen,   and   J.  D.   Pino-­‐Navarro.   2008.  Monte  Verde:  seaweed,  food,  medicine,  and  the  peopling  of  South  America.  Science  320:784-­‐6.  

Dixon,  E.  J.  1999.  Bones,  Boats,  and  Bison:  Archaeology  and  the  First  Colonization  of  Western  North  America:  UNM  Press.  

Dixon,  E.  J.  2011.  Late  Pleistocene  colonization  of  North  America  from  Northeast  Asia:  New  insights  from  large-­‐scale  paleogeographic  reconstructions.  Quaternary  International  in  press:11.  

Dixon,  E.  J.  2013.  Late  Pleistocene  colonization  of  North  America  from  Northeast  Asia:  New  insights  from  large-­‐scale  paleogeographic  reconstructions.  Quaternary  International  285:57-­‐67.  

Driver,   J.   C.,  Handly,  M.,   Fladmark,   K.R.,  Nelson,  D.E.,   Sullivan,  G.M.   and  Preston,  R.   1996.  Stratigraphy,  Radiocarbon  Dating,   and  Culture  History  of  Charlie   Lake  Cave,  British  Columbia.  Arctic  49:265-­‐277.  

Driver,   J.   C.,   and  C.   Vallières.   2008.   The   Palaeoindian  Bison  Assemblage   from  Charlie   Lake  Cave,  British  Columbia.  Canadian  Journal  of  Archaeology  32:239-­‐257.  

Dumond,  D.  E.  2001.  The  Archaeology  of  Eastern  Beringia:  Some  Contrasts  and  Connections.  Arctic  Anthropology  38:9.  

Ebell,   S.   B.   1980.   The   Parkhill   Site:   An   Agate   Basin   Surface   Collection   in   South   Central  Saskatchewan,  University  of  Manitoba.  

Estes,   M.   B.   2012.   "WCRM   lithics   laboratory   manual,   Projectile   point   analysis,"   Western  Cultural  Resource  Management  Inc.  

Ficcarelli,  G.,  A.  Azzaroli,  A.  Bertini,  M.  Coltorti,  P.  Mazza,  C.  Mezzabotta,  M.  M.  Espinosa,  L.  Rook,   and   D.   Torre.   1997.   Hypothesis   on   the   cause   of   extinction   of   the   South  American  mastodonts.  Journal  of  South  American  Earth  Sciences  10:29-­‐38.  

Fladmark,  K.  R.,  J.  C.  Driver,  and  D.  Alexander.  1988.  The  Paleoindian  Component  at  Charlie  Lake  Cave  (HbRf  39),  British  Columbia.  American  Antiquity  53:371-­‐384.  

  105  

Flenniken,   J.   J.,   and   A.   W.   Raymond.   1986.   Morphological   Projectile   Point   Typology:  Replication  Experimentation  and  Technological  Analysis.  American  Antiquity  51:603-­‐614.  

French,  H.  M.  2007.  The  Periglacial  Environment.  Chichester:  John  Wiley  &  Sons  Ltd.  Frison,  G.  C.  1978.  Prehistoric  Hunters  of  the  High  Plains.  New  York:  Academic  Press.  Frison,  G.  C.  1984.  The  Carter/Kerr-­‐Mcgee  Paleoindian  Site:  Cultural  Resource  Management  

and  Archaeological  Research.  American  Antiquity  49:288-­‐314.  Frison,   G.   C.   1993.   "Paleo-­‐Indian   Hunting   Strategies   and  Weaponry,"   in   From   Kostenki   to  

Clovis,  upper  Paleolithic  Paleo-­‐Indian  adaptations,   Interdisciplinary  Contributions   to  Archaeology.  Edited  by  O.  Soffer  and  N.  D.  Praslov,  pp.  237-­‐249.  New  York:  Plenum  Press.  

Frison,  G.  C.  1999.  "The  Late  Pleistocene  Prehistory  of  the  Northwestern  Plains,  the  Adjecent  Mountains,   and   Intermontane   Basins,"   in   Ice   Age   Peoples   of   North   America.  Environment,   Origins   and   Adaptations   of   the   First   Americans.   Edited   by   R.   a.   T.  Bonnichsen,  K.L.,  pp.  264-­‐280.  Corvallis:  Oregon  State  University  Press.  

Frison,   G.   C.,   and   D.   J.   Stanford.   1982.   The   Agate   Basin   Site,   a   Record   of   the   Paleoindian  Occupation   of   the   Northwestern   High   Plains.   Studies   in   Archaeology.   New   York:  Academic  Press,  Inc.  

Fry,  G.  F.,  and  J.  M.  Adovasio.  1970.  "Population  Differentiation  in  Hogup  and  Danger  Caves,  two  Archaic  sites   in  the  Eastern  Great  Basin,"   in  Five  Papers  on  the  Archaeology  of  the  Desert  West,  vol.  15,  Anthropological  Papers.  Edited  by  D.  R.  Tuohy,  Rendall,  D.L.  and  Crowell,  P.A.,  pp.  207-­‐215.  Carson  City:  The  Nevada  State  Museum.  

Galm,  J.  R.,  T.  Fulkerson,  and  S.  Gough.  2011.  "Revisiting  the  Haskett  Complex  in  the  Pacific  Northwest:   New   Perspectives   from   the   Sentinel   Gap   Site,"   in   Northwest  Anthropological  Conference.  Moscow,  Idaho.  

Gilbert,  M.   T.,   D.   L.   Jenkins,   A.  Gotherstrom,  N.  Naveran,   J.   J.   Sanchez,  M.  Hofreiter,   P.   F.  Thomsen,  J.  Binladen,  T.  F.  Higham,  R.  M.  Yohe,  2nd,  R.  Parr,  L.  S.  Cummings,  and  E.  Willerslev.  2008.  DNA  from  pre-­‐Clovis  human  coprolites   in  Oregon,  North  America.  Science  320:786-­‐9.  

Goebel,   T.,   K.   Graf,   B.   Hockett,   and   D.   Rhode.   the   paleoindian   occupations   at   bonneville  estates  rockshelter,  danger  cave,  and  smith  creek  cave   (eastern  great  basin,  u.s.a):  interpreting  their  radiocarbon  chronologies    

Goebel,  T.,  M.  R.  Waters,  and  D.  H.  O'Rourke.  2008.  The  late  Pleistocene  dispersal  of  modern  humans  in  the  Americas.  Science  319:1497-­‐502.  

Gonzalez,   S.,   D.   Huddart,   and  M.   Bennett.   2006.   Valsequillo   Pleistocene   Archaeology   and  Dating:  Ongoing  Controversy  in  Central  Mexico.  World  Archaeology  38:611-­‐627.  

Gruhn,  R.,  and  A.  L.  Bryan.  1989.  "The  Record  of  Pleistocene  Megafaunal  Extinction  at  Taima-­‐Taima,   Northern   Venezuela,"   in   Quaternary   Extinctions:   a   Prehistoric   Revolution.  Edited  by  P.  Schultz  Martin  and  R.  G.  Klein:  University  of  Arizona  press.  

Gruhn,   R.,   and   A.   L.   Bryan.   1991.   A   Review   of   Lynch's   Descriptions   of   South   American  Pleistocene  Sites.  American  Antiquity  56:7.  

Haynes,   C.   V.   1974.   Paleoenvironments   and   Cultural   Diversity   in   Late   Pleistocene   South  America:  A  reply  to  A.L.  Bryan.  Quaternary  Research  4.  

Holliday,  V.  T.  2000.  The  Evolution  of  Paleoindian  Geochronology  and  Typology  on  the  Great  Plains.  Geoarchaeology  15:227-­‐290.  

Houlette,  C.,   J.  Rasic,  and   J.  Speakman.  Prehistoric  Obsidian  Procurement  and  Transport   in  Gates  of  the  Arctic  National  Park  and  Preserve.  Alaska  Park  Science  10:3.  

Irwin-­‐Williams,   C.   1967.   "Associations   of   Early   Man   with   Horse,   Camel   and   Mastodon   at  Hueyatlaco,  Valsequillo,"  in  Pleistocene  Extinctions:  the  search  for  a  cause.  Edited  by  P.  S.  Martin  and  H.  E.  Wright  Jr.  New  Haven,  NY:  Yale  University  Press.  

ISU.edu.  2013?  "The  Wasden  Site,"  vol.  2013.  

  106  

Jenkins,  D.  L.,  T.  J.  Connolly,  and  C.  M.  Aikens.  2004.  Early  and  Middle  Holocene  Archaeology  in   the  Northern  Great  Basin:  Dynamic  Natural  and  Cultural  Ecologies.  University  of  Oregon  Anthropological  Papers  62:1-­‐20.  

Jenkins,   D.   L.,   L.   G.   Davis,   T.  W.   Stafford,   Jr.,   P.   F.   Campos,   B.   Hockett,   G.   T.   Jones,   L.   S.  Cummings,  C.  Yost,  T.  J.  Connolly,  R.  M.  Yohe,  2nd,  S.  C.  Gibbons,  M.  Raghavan,  M.  Rasmussen,   J.   L.   Paijmans,  M.  Hofreiter,  B.  M.  Kemp,   J.   L.   Barta,  C.  Monroe,  M.  T.  Gilbert,  and  E.  Willerslev.  2012.  Clovis  age  Western  Stemmed  projectile  points  and  human  coprolites  at  the  Paisley  Caves.  Science  337:223-­‐8.  

Justice,   N.   D.   1987.   Stone   Age   Spear   and   Arrowpoints   of   the  Midcontinental   and   Eastern  United   States,   a   modern   survey   and   reference.   Bloomington:   Indiana   University  Press.  

Kelly,  R.  L.  1995.  The  Foraging  Spectrum:  Diversity  in  Hunter-­‐Gatherer  Lifestyles.  Washington  DC:  Smithsonian  Institution  Press.  

Kokorowski,  H.  D.,  P.  M.  Anderson,  C.  J.  Mock,  and  A.  V.  Lozhkin.  2008.  A  re-­‐evaluation  and  spatial   analysis   of   evidence   for   a   Younger   Dryas   climatic   reversal   in   Beringia.  Quaternary  Science  Reviews  27:1710-­‐1722.  

Kornfeld,  M.,  M.  L.   Larson,  D.   J.  Rapson,  and  G.  C.  Frison.  2001.  10,000  Years   in   the  Rocky  Mountains:  The  Helen  Lookingbill  Site.  Journal  of  Field  Archaeology  28:307-­‐324.  

Kunz,   M.   L.   2013.   "Mesa   and   Sluiceway:   Simmilarities   and   Dissimmilarities,"   in   Alaska  Anthropological  Association  40th  Annual  Meeting.  Anchorage.  

Kunz,  M.  L.,  and  T.  Baker.  2011.  "From  Mesa  to  Monte  Verde."  38th  Annual  Meeting  of  the  Alaska  Anthropological  Association,  2011.  

Kunz,  M.   L.,  M.   Bever,   and   C.   Adkins.   2003.  The  Mesa   Site:   Paleoindians   above   the   Arctic  Circle.  U.S.  Department  of  the  Interior  Bureau  of  Land  Management.  

Kunz,  M.  L.,  and  R.  E.  Reanier.  1994.  Paleoindians   in  Beringia:  Evidence  from  Arctic  Alaska.  Science  263:3.  

Kunz,  M.  L.,  and  R.  E.  Reanier.  1995.  The  Mesa  Site:  A  Paleoindian  Hunting  Lookout  in  Arctic  Alaska.  Arctic  Anthropology  32:25.  

Lafayette,   L.   M.   2006.   Use-­‐Wear   Analysis   of   Great   Basin   Stemmed   Points,   University   of  Nevada.  

Litzkow,   J.   M.   2011.   Late   Paleoindian   Subsistence   and   Settlement   at   Sentinal   Gap  (45KT1362),  Eastern  Washington  University.  

Lynch,  T.  F.  1974.  The  antiquity  of  man  in  South  America.  Quaternary  Research  4:356-­‐377.  Mandryk,  C.  A.  S.,  H.   Josenhans,  D.  W.  Fedje,  and  R.  W.  Mathewes.  2001.  Late  Quaternary  

paleoenvironments   of  Northwestern  North  America:   implications   for   inland   versus  coastal  migration  routes.  Quaternary  Science  Reviews  20:301-­‐314.  

Mann,  D.  H.,  P.  Groves,  M.  L.  Kunz,  R.  E.  Reanier,  and  B.  V.  Gaglioti.  2013.  Ice-­‐age  megafauna  in   Arctic   Alaska:   extinction,   invasion,   survival.  Quaternary   Science   Reviews   70:91-­‐108.  

Mann,   D.   H.,   P.   Groves,   R.   E.   Reanier,   and   M.   L.   Kunz.   2010.   Floodplains,   permafrost,  cottonwood  trees,  and  peat:  What  happened  the  last  time  climate  warmed  suddenly  in  arctic  Alaska?  Quaternary  Science  Reviews  29:3812-­‐3830.  

Mann,   D.   H.,   R.   E.   Reanier,   D.   M.   Peteet,   M.   L.   Kunz,   T.   Baker,   and   M.   Johnson.   2001.  Environmental  Change  and  Arctic  Paleoindians.  Arctic  Anthropology  38:19.  

McClellan   III,   J.   E.,   and   H.   Dorn.   2006.   Science   and   Technology   in   World   History:   An  Introduction.  Baltimore:  The  John  Hopkins  University  Press.  

Meltzer,   D.   J.   1981.   A   Study   of   Style   and   Function   in   a   Class   of   Tools.   Journal   of   Field  Archaeology  8:313-­‐326.  

Mesoudi,   A.,   and  M.   J.  O'Brien.   2008.   The   Cultural   Transmission   of  Great   Basin   Projectile-­‐Point  Technology  I:  An  Experimental  Simulation.  American  Antiquity  73:3-­‐28.  

  107  

Musil,   R.   R.   1988.   "Functional   Efficiency   and   Technological   Change:   A   Hafting   Tradition  Model   for   Prehistoric   America,"   in   Early   Human  Occupation   in   Far  Western   North  America:   The   Clovis-­‐Archaic   Interface,   vol.   21,   Nevada   State   Museum  Anthropological  Papers.  Edited  by  J.  Wilkins,  C.  M.  Aikens,  and  J.  L.  Fagan,  pp.  373-­‐387.  Carson  City:  Nevada  State  Museum  press.  

Mussil,  R.  R.  1988.  "Functional  efficiency  and  technological  change:  A  hafting  tradition  model  for   prehistoric   North   America,"   in   Early   Human   Occupation   in   Far  Western   North  America:  The  Clovis-­‐Archaic  Interface,  vol.  21.  Edited  by  J.  A.  Willig,  C.  M.  Aikens,  and  J.  L.  Fagan,  pp.  373-­‐387.  Carson  City:  Nevada  State  Museum  Anthropological  Papers.  

Nami,   H.   G.   1994.   Aportes   para   el   conocimiento   de   technicas   liticas   des   Pleistoceno   final.  Analisis   de   artefactos   bifaciales   del   norte   de   Venezuela   (Coleccion   Edmonton,  Canada).  Relaciones  de  la  Sociedad  Argentina  de  Antropología  XIX.  

Oliver,   J.   R.   2013.   "Taima   Taima,   a   13,000   years   old   Mastodon   Kill   Site   in   Western  Venezuela,"  in  Bradshaw  Foundation,  vol.  2013.  

Owen,   L.  R.   1988.  Blade  and  microblade   technology:   selected  assemblages   from   the  North  American   Arctic   and   the   Upper   Paleolithic   of   Southwest   Germany.   Vol.   441.   BAR  International  Series.  Oxford:  B.A.R.  .  

Pearson,  G.  A.,  and  R.  G.  Cooke.  2002.  The   role  of   the  Panamanian   land  bridge  during   the  initial  colonization  of  the  Americas.  Antiquity  76:931-­‐932.  

Quero,  A.   J.   1998.   El   Vano,  Venezuela:   El   Jobo   Traditions   in   a  Megathere  Kill   Site.  Current  Research  in  the  Pleistocene  15:25-­‐27.  

Quero,  A.  J.  2005.  condiciones  tafonómicas,  huesos  modificados  y  comportamiento  humano  en   los   sitios   de  matanza   de   el   vano   (tradición   el   jobo)   y   lange/ferguson   (tradición  clovis).  Boletin  de  Antropologia  Americana  41.  

Rasic,   J.   2008.   Paleoalaskan   Adaptive   Strategies   Viewed   From   Northwestern   Alaska,  Washinton  State  University.  

Rasic,   J.   2011.   "Functional   Variability   in   the   Late   Pleistocene   Archaeological   Record   of  Eastern  Beringia,"   in  From  the  Yenisei   to   the  Yukon:   Interpreting  Lithic  Assemblage  Variability   in   Late   Pleistocene/Early   Holocene   Beringia:   Peopling   of   the   Americas  publications.  

Repansbek,  K.  2007.  Shelter  from  the  Prehistoric  Storm.  American  Archaeology  11:5.  Roberts,  F.  H.  H.  1943.  A  New  Site.  American  Antiquity  8:300-­‐301.  Rouse,   I.,   and   J.  M.   Cruxent.   1957.   Further   Comment   on   the   Finds   at   El   Jobo,   Venezuela.  

American  Antiquity  22:412.  Rouse,  I.,  and  J.  M.  Cruxent.  1963a.  Some  Recent  Radiocarbon  Dates  for  Western  Venezuela.  

American  Antiquity  28:3.  Rouse,   I.,   and   J.   M.   Cruxent.   1963b.   Venezuelan   Archaeology.   Vol.   6.   Caribbean   Series.  

London:  Yale  University  Press.  Rull,   V.   1996.   Late   Pleistocene   and   Holocene   Climates   of   Venezuela.   Quaternary  

International  31:85-­‐94.  Rull,  V.,  M.  B.  Abbott,  T.  Vegas-­‐Vilarrubia,  M.  Bezada,  E.  Montoya,  S.  Nogue,  and  C.  Gonzalez.  

2009.   "Paleoenvironmental   trends   in   Venezuela   during   the   last   glacial   cycle,"   in  Urumaco   and   Venezuelan   Paleontology.   Edited   by   M.   R.   Sanchez-­‐Villagra,   O.   A.  Aguilera,  and  A.  A.  Carlini,  pp.  52-­‐83:  Indiana  University  Press.  

Russell,  D.  J.  1993.  Running  Antelope:  a  Paleoindian  site  in  Northern  Utah.  Utah  Archaeology  1993:79-­‐86.  

Russell,  D.  J.  2004.  Running  Antelope  Revisited.  Utah  Archaeology  17:47-­‐53.  Sackett,   J.   R.   1972.   "Style,   Function   and   Artifact   Variability   in   Paleolithic   Assemblages,"   in  

The   Explanation   of   Culture   Change.   Edited   by   C.   Renfrew,   pp.   317-­‐328.   London:  Duckworth.  

Sargeant.  1973.  The  Haskett  Tradition,  a  view  from  Redfish  Overhang,  ISU.  

  108  

Shelley,  P.  H.  a.  A.,  G.  1983.  Agate  Basin  Technology:  an   Insight.  The  Plains  Anthropologist  28:4.  

Slobodin,  S.  2001.  Western  Beringia  at  the  End  of  the  Ice  Age.  Arctic  Anthropology  38:17.  Stanford,   D.   J.   1999.   "Paleoindian   Archaeology   and   Late   Pleistocene   Environments   in   the  

Plains   and   Southwestern   United   States,"   in   Ice   Age   Peoples   of   North   America.  Environment,   Origins   and   Adaptations   of   the   First   Americans.   Edited   by   R.   a.   T.  Bonnichsen,  K.L.,  pp.  281-­‐339.  Corvallis:  Oregon  State  University  Press.  

Stanford,  D.   J.  2006.   "Paleo-­‐Indian:   Introduction,"   in  Environment,  Origins,  and  Population,  vol.   3,  Handbook   of   North   American   Indians.   Edited   by   D.   H.   Ubelaker,   pp.   1-­‐18.  Washington  D.C.:  U.S.  Government  Printing  Office.  

Stanford,   D.   J.,   and   B.   A.   Bradley.   2012.  Across   Atlantic   Ice,   the   origin   of   America's   Clovis  culture.  Los  Angeles:  University  of  California  Press.  

Swanson,  E.  H.  J.  1962.  Early  Cultures  in  Northwestern  America.  American  Antiquity  28:151-­‐158.  

Swanson,  E.  H.  J.  1972.  Birch  Creek.  Human  Ecology  in  the  Cool  Desert  of  the  Northern  Rocky  Mountains  9,000  B.C.  -­‐  A.D.  1850.  Pocatello:  The  Idaho  State  University  Press.  

Taylor,  J.  2006.  Projectile  points  of  the  High  Plains:  Jeb  Taylor  Artifacts  Inc.  Troll,  T.  E.,  and  S.  Hackenberger.  1998.  "Prehistory  of  the  Eastern  Plateau,"   in  Plateau,  vol.  

12,  Handbook   of  North   American   Indians.   Edited   by  D.   E.  Walker   Jr.,   pp.   120-­‐137.  Washington  D.C.:  U.S.  Government  Printing  Office.  

Waguespack,  N.  M.  2007.  Why  we're   still   arguing  about   the  Pleistocene  occupation  of   the  Americas.  Evolutionary  Anthropology:  Issues,  News,  and  Reviews  16:63-­‐74.  

Wiessner,  P.  1983.  Style  and  Social   Information   in  Kalahari   San  Projectile  Points.  American  Antiquity  48:253-­‐276.  

Wilson,  M.   C.   1996.   Late   quaternary   vertebrates   and   the  opening  of   the   ice-­‐free   corridor,  with  special  reference  to  the  genusbison.  Quaternary  International  32:97-­‐105.  

Wilson,  M.  C.,  L.  V.  Hills,  and  B.  Shapiro.  2008.  Late  Pleistocene  northward-­‐dispersing  Bison  antiquus   from  the  Bighill  Creek  Formation,  Gallelli  Gravel  Pit,  Alberta,  Canada,  and  the  fate  of  Bison  occidentalis.  Canadian  Journal  of  Earth  Sciences  45:827-­‐859.  

Yesner,   D.   R.   2001.   Human   dispersal   into   interior   Alaska:   antecedent   conditions,  mode   of  colonization,  and  adaptations.  Quaternary  Science  Reviews  20:315-­‐327.  

     137  references