Тезисы докладов, представленные иностранными учеными

122
Тезисы докладов, представленные иностранными учеными ИЗДАТЕЛЬСТВО «НАУКА»

Transcript of Тезисы докладов, представленные иностранными учеными

Тезисы докладов, представленные иностранными учеными

ИЗДАТЕЛЬСТВО «НАУКА»

XII Менделеевской съезд по обшей н прикладной химнн

Рефераты докладов и сообщений 7

Тезисы докладов, представленные иностранными учеными

ИЗДАТЕЛЬСТВО «НАУКА» Ностаа 1981

УДК

Тезисы просмотрены ученный секретарями секций и ученым секретарем по иностранным делан Оргкомитета

XII Менделеевского съезда пэ общей и прикладной химии.

Издание осуществлено способом офсетния печати с оригиналов, представ лонных авторами в Оргкомитет XII Менделеевского съезда по общей и прикладной химии Тезисы докладов, представленные иностранными учеными

Рефераты докладов и сообщений секции 7 Утверждено к печати Оргкомитетом XII Менделеевского съезда по общей и прикладной химии

Подписано к печати 21.07.ttl. Формат 60 х 90 1/16. Бумага офсетная N* 1 Печать офсетная. Усллеч.л. 7,5. Уч.­иэд. л. 7,6. Тираж 2000 экз. Ti.n. зак .606 Бесплотно. Эаквэное Издательство "Наука", J 19864 ГСП­7, Москва В­485, Профсоюзная ул., д. 90 Ордена Трудового Красного Знамения 1­я типогрвфия издательства "Наука", 199034, Ленинград, В­34, 9­я линия, 12

,20500­362 Без объявления. 1800000000.

© Оргкомитет XII Менделеевского съезда по общей и прикладной химииу 1981 г.

НЕКОТОРЫЕ ВОПРОСЫ ФИЗИЧЕСКОЙ ХИМИИ ФАЗОВЫХ ПЕРЕХОДОВ П.Савич Сербская академия наук и искусств, СФРЮ. Белград Современное развитие физики и физической химии позволило всктыть

многие особенности электронной структуры конденсированных веще­зтв. При переходе в лабораторных условиях элементов из парообразного состояния в жидкое могут возникать высокие давления порядка резонан­сного потенциала. Они могут ослабить связь электрона с атомом, при­чем в металлах образуется слой свободных электронов. Вследствие этого металлы становятся проводниками первого рода, в то время как их пары являются изоляторами.

Непосредственный результат перехода электронов на более высокие энергетические уровни ­ скачкообразное повышение плотности. Весьма интересным в связи с этим является заключение о той, что в резуль­тате каскадных изменений плотности в теле происходит образование слоев различной плотности ­ различных фаз тела.

Наличием внутреннего давления объясняются явления делокализации электронов проводимости в некоторых бинарных системах, а также и переход металлическая ­ полупроводниковая ­ ионная проводимость.

УРАВНЕНИЯ СОСТОЯНИЯ ДЛЯ ЩЦКИХ МЕТАЛЛОВ И.Г.Мургулеску, срр Обсувдаются уравнения состояния

где 2 ­ атомный радиус; у ­ коэффициент строения, в данном случае имещий значение "Уйс N ­ число Авогадро, и

F V K l (1­х)5

где ос = £ . 6 _N. ^— атомный диаметр. to у '

Первое уравнение было обосновано в предыдущих работах /1/. Вто­

рое уравнение было получено Рейсе, Фриш и Лабовиц / 2 / статистиче­

ским методом. Это же уравнение было получено Тиеле ,75/ исходя из уравнения Перкуса­Йевик для текучих веществ, образованных ия уп­

ругих сферических частиц.

Для проверки этих уравнений были рассчитаны с их помощью сле­

дущие термодинамические величины: коэффициент расширения» коэффи­

циент сжимаемости, энтропия, удельная теплоемкость Ср. Полученные результаты сравнивались с экспериментальными данными.

Л и т е р а т у р а 1. MurguleBCU I#C. ( Salageanu S. Revuti Houm. Chim„( 17, 603(1973).

Marguleecu I .C. , LelbOTlci А, Яетце Ноиш. Cbim., 23, 539(1974), 2. Helen M., Frisch H.I», Lebowits J, I* J. Chem. Phye., 31, 363

(1959). 3. ТЫв1е S, J. Chem. Pbys.,^9_, 474 (196З).

ВЫБОР РАЦИОНАЛЬНЫХ ПУТЕЙ ПОДГОТОВКИ ИСХОДНОГО СЫРЬЯ ДЛЯ ПИРОЛИЗА З.Новак, Г.Циммерманн, Г.Гюншель Центральный институт органической химии АН ГДР, Берлин

Исследовалось поведение реэличных высококипящих фракций нефти в условиях пиролиза в трубчатке.

На основе полученных данных обсуждается необходимость и возмож­

ность гидрокаталктической подготовки этих франций с целью повьше­

ния выходов низших олефиноз и ароматических углеводородов, а также снижения коксообразования.

Обсуждаются различные пути и условия гидрокаталитической подго­

товки (полное гидрирование, селективное гидрирование и гидрокрекинг). На основании данных, полученных при пиролизе подготовленных фрак­

ция, оцениваются пути и предлагается оптимальный режим подготовки для различных тяжелых фракция (газойлввые фракции, вакуумные дистил­

ляты и др . ) . Для выяснения влияния различных типов углеводородов на распреде­

ление конечных продуктов и на побочные реакции исследовался ряд ин­

дивидуальных углеводородов, находящихся в ЕЫСОКОКИПЯЦИХ фракциях. Приводятся данные*пиролиза би­ и трицнклических нафтенов и нафтено­

ароматичесяих углеводородов. Ив, основании подученных датах уста­

новлена зависимость состава конечных продуктов от строения индиви­

дуальных углеводородов.

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА И ХИМИЧЕСКАЯ­ РЕАКТИВНОСТЬ ХБЛЛТНЫХ КОМПЛЕКСОВ НЕКОТОРЫХ ПЕРЕХОДНЫХ ЭЛЕМЕНТОВ В.Конколович, Э.Гера, Я.Рожнятовска­Давщювич Институт яшин Вроцлавского университета, Вроцлав» ПНР Проведенные термохимические исследования ­дикетонов некоторых

переходных металлов и определение энергии цинической связи металл­кислород позволили оценить термодинамическую устойчивость комплек­сов в зависимости от характера заместителя в лиганде и электронной структуры металла.

Накамото £l] констатировал, что замещение метальной группы на фенильную ведет к увеличению силовой постоянной связи М­0 и устой­чивость _р>­дикетонатов уменыяается в ряду: dfezm>6*ac>6u:ac УЬгщ­дибенэоилметан, &здс ­ бензокяацетон, acac ­ ацетилацетон) в согласии с потенциометрическими исследованиями комплексов £&. Хольцклав и Коллман ^3, 4/ ка основании анализа ИК­спектроэ и по­лярографических исследований констатировали, что устойчивость ха­латов изменяется в противоположном направлении: аеас>ёгас><АБгт.­Приведенные противоречивые данные и результаты наших исследований говорят о том, что реальной мерой прочности химической связи U­0 является анергия процесса, происходящего в фазе идеального газа, в которой исключаются влияния среды.

Полученные нами результаты исследований позволяет составить следующий ряд возрастания прочности & ­дикетонатов некоторых пе­реходных металлов: d6*mx %tac< tt<*G4 лсас < t$ac я Ь$ас (t>iac-

бенэоилотрифторацетон, t£ac ­ трифгорацетилацетон, ft,|ac­ гекса­фторвцетилацетон). Из полученных результатов следует, что наиболь­шее влияние на величину энергии связи оказывает феннльный замести­тель /5/, уменьшающий устойчивость номплаксов. Замещение метильной группы в р ­дикетокатах на фенильную уменьшает термохимическую энергию связи также в случае трехвалентных центральных атомов.

Сравнение величин Е й и Ej позволяет сделать выводы о тон, что процес?: диссоциации комплексов по радикальному механизму является энергетически более выгодным, чем по ионному* Значения гомогенной энерп-U связи Е g может иметь также практическое значение как н.п. критерий каталитической активности комплексов. Значение гетероген­ной энергии связи Ej зависят от электронной структуры­металла и для тех же лигандов изменяются в ряду:

Mft(JI)<FV?Ul><Co(m, Zft(.H)<NiCn), Cu­Ufl, т.е. обратнопропорцнокально с ионными радиусами Нп.*

2 ­ 0,91; Fe

+ й ­ 0,ВЗ; С о+ а

­ 0,82; Nv""a ­ 0,78; Си** ­ 0,72; 2 *

+ г ­

0,83 (согл. с Гольдшмитом). Энергия стабилизации в кристаллическом 5

Величины термохимическая энергии связи ыеталл­кислород (нкал/моль)

Металл Энергия (Xcac izac dtzm. t /oc Цас И/ОС

к^г Е„(И­0)

EjCH­oJ 51,6

181,4 49,0

178,9 43,0

172,9 54,3

184,1 53,8

183,6 50,6

160,5

» • * БгСМ­0)

53,0 187,6

49,2 184,9

42,9 178,5

52,8 188,4

53,6 189,2

50,7 186,3

^ 51,0

191,5 47,5

168,0 4£,4

183,0 52,9

193,4 53,0

193,5 51,9

192,5

HSZ

ERCH­O)

EJCH­O)

52,6 197,5

52,4 197,9

42,2 187,7

54,5 200,0

54,4 200,0

50,6 196,0

с*4

* Е R(M­0)

Ез(И­0)

38,9 197,2

34,4 192,8

30,3 188,7

41,9 200,0

38,6 197,0

38,8 197,0

г^ E R ( M ­ O )

E I C M ­ O )

36,9 191,5

37,7 192,3

23,5 178,0

40,7 195,2

40,2 194,8

38,5 193,1

поле, которая нами определена, зависит только от характера атома, непосредственно связанного с центральным атомом, а структура ос­

тальной части лиганда ведет к незначительному изменению для боль­

шинства этого типа комплексов.

Л и т е р а т у р а

1. Sakamoto К., Korimoto Y., Kartel l A.E. 3, Рдо* Chem., 66, 346 (1962).

2. Rao В. , Hathur Н.В. J . Ihorg. Huel. Chem., _33, 2919 (1971). 3» HoitzclsH H,F,, Carlson А.Я,, Collman J ,P , J, Ant. Chem. Б о с ,

2&, 1838 (1956). 4. Holtzclaw H.P., Collman J .P . J . Am. Chem. Soc., J2i 3319

0957) . 5. Kakilorrlcz W., Giera E. Therraochiaica Acta, 22., 19 (1979).

HEKOTOPfcE АСПЕКТЫ ИСПОЛЬЗОВАНИЯ НОВЫХ АЗОТНЫХ УДОБРЕНИЙ

К . К н о п Сельскохозяйственная институт, ffpara,4CCP

В связи с резким ростом производств и потребления минеральных удобрений в последние годы изыскиваются новые пути уменьшения не­

производительных потерь питательных элементов,из них прежде всего аэота. Перспективным является создание и применение медленнодействую­

щих азотных удобрений. Равномерное высвобождение аэота медленнодей­

ствующих азотных удобрений в течение вегетационного периода может исключить также его избыточное потребление растениями и ограничить накопление в них нитратов.

Были проведены лабораторные опыты по определении размера газооб­

разных потерь азота удобрений в виде аммиака на двух почвах: почва * I ­ суглинистая, р Н С 0 Л ­ 6 , 8 ; М о б щ ­ 0,14%; C / N ­ 9,9; Т ­ 16.4 мэкв/100 г почвы; почва 2 ­ глинистая, р Н С 0 Л ­ 6«?.*М00­Щ ­ 0,1756; C/N ­ 8,41 Т ­ 21,2 мэнв/100 г почвы. Азот вносился из расчета 30 мг на 100 г почвы. Аммиак определяли методов абсорбции при температу­

ре 20°С. Ингибитор нитрификации N­Сарве вносили из расчета 2% на азот удобрений: N Q . , ­ N H , ИЕДУ 2 и ИБДУ 28 (мочевиноизобутиральдегид­

ные) на глубину 3 см. Влажность почвы была 60$ от ЛВ. Наибольшее количество азота в виде аммиака (табл. i ) выделялось на вариантах с мочевиной: почва * I ­ 5,8%, почва * 2 ­ 1,7%; с добавкой Л/­Сер­

ве: почва M l ­ 15,3%, почва 1 2 ­ 7,7% из аэота удобрения. Наимень­

шее количество аммиака выделялось на вариантах с медленнодействую­

щими удобрениями ­ ИЕДУ. Добавка N­Серве сдерживала во всех случа­

ях нитрификацию, в почве накапливался аммонийный азот, вследствие чего повысилось рН почвы, а поэтому повысились и потери аммиака. й»еение мочевины на глубину 3 см прежде всего на почве I ока­

залась недостаточной.

Были проведены вегетационные опыты по определению влияния стан­

дартных и новых азотных удобрений на содержание нитратного аэота в салате. Почва глинистая, рН С 0 Л ­ 7,0; гумус ­ 6 ,2%;N o 6 ­ 0,26%, подвижный Р и К ­ 235 и 685 мг/кг почвы. Удобрение: I г N , 0,44 г Р и I , i г К/6 кг почвы. Самый высокий урожай и самое низкое количе­

ство азота в виде N 0 3 в салате получены на вариантах с медленно­

действующими удобрениями (табл. 2 ) . Характеристика новых удобрений: ИБДУ 2 (АИ=93, производство

ЕАСФ, ФРГ), ИБДУ 26 Ш=Ю0, Мичубши Хим.Инд, Япония?, М м с сер­

ной оболочкой С37,4% N , 14,2% S , ТВА, США), УФ 22 (АИ­61, МХЗ Острава, ЧССР).

Т а б л и ц а I Потери аэота в виде ашиака 1% N­NH^) из различных азотных удобрений

Почва Удобрение Дней от начала опыта Удобрение 3 7 14 21

* I

N„ ИВДУ 2 ИБДГ 28

0,2 1,0 0 0

0,3 3,8 0 0,1

0,9 4,7 0,6 0,5

1,5 5,8 0,7 0,6

* I

< ИВДУ 2 " ИЩУ 28

0,2 2.4 0,1 0,04

1,0 7,8 0,03 0,1

1,0 II .4 0,5 0,3

1,7 15,3 1.0 0,5

* г

N l ! ИЩУ 2 ИЩУ 28

0,2 1.0 0 0

0,3 1,2 0 0

0,8 1.4 0 0

0,8 1,7 0 0,1

* г N­ + fir- Серве

И5да 2 " ИВДУ 28 "

0,2 2,4 0,2 0,05

0,5 2,9 0,2 0,2

2,1 3,9 0,3 0,5

2,3 7,7 1,1 0,7

Т а б л и ц а 2 Влияние азотных удобрений на урожай н содержание нитратного аэота в салате .

Удобрение Урожай сырого ве­ Содержание N­NOa азотом щества, г/сосуд иг/кг сыр. вещества

0 130,3 850

Са 133,3 1090

К* 143,3 960 Nj

a 151,7 920 У4 22 143,3 860 N с серкой оболочкой 171,7 860 ИВДУ 28 153,3 870 ИЕДУ 2 185,0 890

Я»0,в

ЛАЗЕРНЫЕ СПЕКТРЫ КР КООРДИНАЦИОННЫХ СОЕДИНЕНИЯ МЕТАЛЛОВ С ДНЦИАНАШЩОН И ТРИЦИАНЫЕТАНИДОМ А.СЦивадэе, Х.Келлер Институт общей и неорганической химии АН СССР, г.Москва Секция химии Университета Мартина Лютера, Галле, ГДР

о Изучены спектры КР (А В 0 з б =4880 и 5145 А) соединений

М[Ы(СМ) ь ] а и J l [ C ( C r O b ] 2 j H = t t n . , C o , F e , N i . , C u . , Zn. . В спектрах КР M[N(CN>a.3 1 наиболее интенсивно проявляются ли­

нии в области 310­200 с м ­ 1 , относящиеся к преимущественно валентным колебаниям 0(НН) . Эти линии в спектрах указанных соединений, з& исключением комплексов цинка к марганца, имеют триплетную структу­

ру; наибольшей интенсивностью характеризуется высокочастотная ком­

понента. Частоты ^(MN) понижаются в ряду: Mn.< Cc< Nv. < Ге < «Си. < Zn,.

В спектре 2 n , [ N ( C N ) t ] 2 наиболее интенсивно проявляются ли­

нии при 240 и 207 см"1» а линии 340 и 270 см характеризуются ма­

лой интенсивностью. В случае Нп.[Ы(СМ)г] а найдена только интенсив­

.ная синглетная линия 239 см" 1 , тогда как в спектре другой, бежево­

коричневой формы Mn.[N(cN )г], имеются интенсивная при 244 и малаинтенсивная при 197 см­1* линии. В спектре КР F e [ N ( C N ) z a

кроме характерного триплета около 257,216»189 см" 1 найдена налоин­

тенсивная линия при 297 см~*. Совокупность данных по ИК­.и КР­спектрам указывает на то, что в

этих соединениях дицианамидные группы имеют тридентатную функцию. Особенности стереохимического строения комплексов различных ме­

таллов с дициананидными группами характерно сказываются на спект­

рах КР в длинноволновой области, где проявляются частоты преиму­

щественно валентных колебаний связей металл­лиганд и деформации остова комплекса. Характерно также, что там, где наблюдается раз­

личие в спектрах КР­комплексов в длинноволновой области, обнаружи­

вается отличие и в области 2000­2300 см" 1 , где проявляются частоты \Ч (CN) и 0 а 4 (CN). в тех случегя, когда спектры КР­комплексов ниже 400 см" 1 по характеру аналогичны, наблюдается определенная аналогия и в области 2000­2300 с и ­ 1 .

При переходе к комплексам дицианамидоч металлов с пиридином, частоты О (КМ) незначительно понижаются.

В спектрах КР­комплексов трицианметанядов металлов наблюдают­

ся аналогичные закономерности, что объясняется практически одина­

ковыми функциональными возможностями дициакамидных и трицианмета­

нидных лигандов. Обсуждается геометрия изученных комплексов и характер связей

в них.

9

КИНЕТИКА И МЕХАНИЗМ ПАРОФАЭНОГО ГИДРОХЛОРИРОВАНИЯ АЦЕТИЛЕНА НА РТУТНОМ КАТАЛИЗАТОРЕ Нгуен Зак» Тонг Куан Чукг Национальный центр научных исследований, Хо он мга.СРВ Исследование кинетики парофааного гидрохлорирования ацетилена

на ртутном катализаторе проводилось в проточно­циркуляционной ус­тановке. Результата опытов удалось описать следувдей зависимостью:

0,5 z K - K P C z H z - P H c e ( J )

Это уравнение хоропо описывает экспериментальные данные со сред­ней относительной погрешностью (СОШ 6%, Расчеты проводились на Э Ш 1 Ш 360/40 и "МИНСК" 22 по методу наименьших квадратов для ли­нейной комбинации.

Сопоставление опубликованных данных, которые были получены раз­ными авторами на ртутном катализаторе в близких условиях (кинети­ческая область* интерал температур), показало, что полученное ки­нетическое уравнение (I) также хорошо описывает эти литературные данные с СОП около %.

Анализ полученного кинетического уравнения позволяет предполо­жить следующий механизм парофазного гидрохлорирования ацетилена на ртутном катализаторе (КГ).

КТ + 2НС2 ^2­ ктгнсе, ш КТ2НСе +CZHZ~* КТ-С гН 5С£ИСЕ, <П)

кТ-с,гНлсг-нсе-— кт+с гн-,с£ + нс8; сш) НТ обозначает действительный катализатор, который образуется на

основе Н д С £ г и реагентов. Стадия <П) является лимитирующей ста­дией, и процесс на этой стадии происходит по механизму адсорбции Тёмнина­Эельдовича. Анализ кинетических данных по этому механизму для всех известных опытов показал, что на различных катализаторах энергии активации стадии (П) мало отличаются друг от друга. Разли­чие в каталитической активности ртутных катализаторов определяется лишь разными величинами предэкспонбкииальных множителей.

ИССЛЕДОВАНИЕ РЕАКЦИОННОЙ СПОСОБШСШ. МЕЛКОДИСПЕРСНЫХ.ПОРОШКОВ < / ­ И jf-fegOs Ян Щубрг Институт несрганической хмии АН ЧССР» Прага А.А.Захаров, Н.С.Шашшгин Институт общей и неорганической химии АН СССР, Москва

Оксиды железа в настоящее время изучены достаточно хорошо в связи с иапользованием их ч качестве исходных материалов для полу­

чения ферритов, пигментов, иагнитомягких материалов, каталнаитиуив. В то же время оксиды железа являются удобным объектом для исследо­

вания нинатики и механизма твердофазных реакций. В настоящем сообщении прииедены результаты исследования мелко­

дисперсных образцов Л~ и f-FezOs. Образцы получены гидролизом из сульфатных растворов железа ( I I ) в Институте неорганической хи­

мии Чехословацкой Академии неук по оригинальной методике. Исследо­

вание проводилось методами дифференциально­термического, ИК­спект­

роскопического и рентгенографического анализов и измерением маг­

нитной восприимчивоетн исходных образцов и продуктов на их основе. Установлено, что исходные образцы с£­ и f- Г е г О й содержат до

3­5 масс.% адсорбированной воды» причем по аере увеличения диспер­

сности оксида железа количество адсорбированной воды, как правило, увеличивается, а полная дегидратация происходит при более высоких температурах. Превращение cL-FexOb-*- j f ­ fe iOi происходит в ин­

тервале 520­5Э0°С, причем для ряда препаратов ^ ­ F e a 0 4 полная дегидратация проходит лишь при фазовом переходе, что может указы­

вать на вхождение части молекул воды з кристаллическую структуру / ­ гЪгОа в момент ее образования.

Реакционная способность различных образцов оксидов железа изу­

чена в система:: &i. 2,05­Ffe f c0 i л 2n ,0­ feaOs в области зквимо­

лярных составов, где образуются ферриты ЫГсО&

и 2иГе г О ч .со­

ответственно. Установлено, что в случае ^­ГеяС^ образование фер­

ритов проходит при более низкой температуре, а образовавшийся при синтезе до П00°С продукт (без дополнительной термообработки; об­

ладает в атом случае более совероенной кристаллической структурой. Показано, что наличие химически связанной воды в / ­ 1 е 4 0 3 вли­

яет, по­видимому, только на кинетику начальной стадии образования двойных оксидов висмута и цинка. Особенно отчетливо это фиксирует­

ся при образовании БъГеО^. Проведены также испытания исходите <Х­ и ^ ­ Г е а О л в качестве пигментов для глазурей и подглазурных

красок и получены перспективные результаты.

11

ХЖОСОРБЩШ ХЛОРА НА ОКИСЛАХ МЕТАЛЛОВ Б­Баяр (Улан­Бато&ННР), В.И.Евдокимов (г.Москва)

В химии твердого тела большую роль играют процесса хеиосорбщш газа на поверхности конденсированной фазы. Так, процессы химичес­

кой возгонки веществ, широко применяемые в технологии неорганичес­

ких соединений и в металлургии, в качестве обязательной стадии включают хемосорбцию, которая в ряде случаев определяет возмож­

ность протекавЕК реакция газ­твердая фаза, Б данной работе иетодоы импульсной газовой хроматографии иссле­

дованы закономерности хеъюсорбсии хлора на поверхности окислов алюминия, индия, сурьми к железа. Установлено, что в случае ис­

пользования окислов с Солыиой удельной поверхностью активирован­

ной хемоеррбции всегда предшествует необратимая хемосорбцая не­

больших количеств хлора, наблвдаемая даже при комнатных температурах pax. Это свидетельствует о наличии на поверхности окислов высоко­

активных центров, в качестве которых тлогут выступать как дефекты решетки, так и примесные атомы.

Активированная хеиосорбция хлора на поверхности акпслов до оп­

ределенной степени заполнения поверхности не соцравоадается выде­

ление!; в газовую фазу кислорода и хлоридов. В таблице приведены данные, характеризующие влияние температуры на хемосорбцию хлора и переход в газовую Фазу кислорода

Окислы Количество хемосорСярованного хлора см /ЙГ поверхности

Количество кислорода.

выделяемого см"/ьг

120°С 250 S70 600 750 120°0 250 370 600 ?50

МгО, 1 п г 0 3

TVs

0,016 0,035 3,221 3,076

0,007 0,096 0,553 0,068

0,007 0,110 0,670 0,090

0,008 0,124 0,760 0,138

0,020 0,233

0,357

­ Следа

­ Следа ;1 • I!

0,00! 0,02!

0,052

0,011 0,056

0,102

Анализ полученных данных позволил сделать некоторые выводы о механизме хемосорбцин хлора на окислах и механизме химической воз­

гонки хлоридов при взаимодействии хлора с различными окислами цвет­

ных металлов.

12

HEW TREHDS Ш PHOSPHATE CBEMISTRX: PHOSPHATB­TBLWRATES AHD PHOSFHO­CBHOHATES A.Durif, H.T.Averbueb­Pouchot Laboratoire do Crlstallographie, aeeoeiS a l'U.S.H.G., C.N.R.S., 166 X, 39042 Grenoble Cedex (Prance)

A ­ Phosphate­telluratSB This new clasa of compounds 1в mainly characterized by the

coexistence of Te(0H)g octahedral groupв arid phosphate anions ав Independent unite, In the вале atomic arrangement.

Alkali monophosphate­telluratea (e.g. Te(0H)6.2(HH4)_HP04, Te(CH)g.HaJIP0..g20*..) have been almost completely investigated daring the past three years.

Alkali trimetaphoephate­telluratee (e.g. To(0H)6.2Ha,p^0„.bH­0) are known for K t Ha and Kb. Hexagonal ammonium and thallium trims­taphoephates­telluratee are on invaatigation.

The first example of tetrametaphoBphate­tellurate: 2Te(OH)g.(IH.J.P.012.2H20 is described. For ihie compound a comp­lete doecrlptlon of the hydrogen bonds pattern is given.

В ­ Phoeplio­ch­' iates These Baits с .respond to a new series of heteropolyanlona whose

general fornnla lo

t? 0

vW"3

Up to new salts are known for the first four terms. The most in­teresting compounds are aalta corresponding to the fourth term: (НН.) эК!г 40 1 б, K 3PCr.0 1 (j... They provide the first examples of quaternary phosphorus in a finite group.

PROGRESS HI PESTICIDE HElABOLISH» DEGRADATION AID MODE OP ACTIOS E."j.Casida Caelds, Pesticide Chemistry and Toxicology Laboratory Department of antomologlcal Sciences, University of California Berkeley, California 947г0 USA

Several recent studies illustrate the Interdisciplinary approach of the Berkeley Laboratory in investigating the metabolism, degra­dation and mode of action or pestioldes.

Camphechlor or toxaphene Inssctii­ide, prepared by chlorination of сашьлепе, contains octaehlorobomane 1 (the most tojdc compo­

nent oil as acute basis), heptachlorobornane 2 (the moot easily iso­lated toxicant) and > 100 other polychl^robornanee end related compounds. Heptechlorobornsne 2 ia metabolized and photodecomposed In part by reductive dechlorination and dehydrocMorlnntion at the gem­dichloro group. Analysis of residues and riek evaluation are complicated by the large number of components end pro ductв derived therefrom and the mutagenic and carcinogenic activities of camphe­chior £i»af.

Ф'^^^М Pyrethroid insecticides include ehrycanthemates such as tetrame­

thrla (3) aad dihalochryeanthemBtes each as deltametrir (4) which have marked differences in their areas of uee, environmental stabi­lity and types of action on the nervous system* The sltrs of meta­bolic and photochemical attaclc on these pyrethroide are designated by arrows /3­5/. The toxicity of pyrethroiue le sometimes greatly inoreaood by pyrethraid «otomnc Inhihltora including profenofoc (5) &J.

W, W X^>* <^li~o~ ® ^ Otf

Diflubenzuron (6) controls immature ineecte by blocking ohltln synthesis within the integurent / V but i t ia not a direct inhib­

itor of ehitla synthetase (EC 2.4.1.16) /Й/. 4­Alkylidone cyclic рповрЬогов enters (7) are effective insecticideв although they are less potent than sallthie­n (6) / 5 / . One mechanism by which carba­

ryl (9) , dlazlnon (10 and several related ineecticidee / 1 0 / induce embryonic abnormalities in avian speclee involves inhibit­

ion of kynnrenlne (11) formamldase (EC 3.5.1.9) leading to Impaired synthesis cf the crit ical enzyme cofactor NAB С\Л*

0

dCNHCHj

3 Metabolic oxidation of thlocarbaaate herbicides plays an Im­

portant role in their biological activity. ZPTC (13) may require

metabolic conversion to the eulf02d.de (13) prior to exerting Its herbicide! action Л З Л Sulfoxides such AS 13 are detoxified by reaction with, glutathione, an enzynf.tlcally­medlated ргосевв acce­lerated in corn by the herbicide antidote 14 Л з Л

о о о X>­SC,H S ^ON|SC I H J X ^

C H C I

^

S­Chloroallyl th lo­ and dithiocarbamate herbicides euch ae dla l la te (15) and CDEC (16) are carcinogens and proflmtagena, undergoing me­

tabolic conversion to 2­chloroacraleln (17), the ul t l aa te mutagen, by sulfoxidation, of 15 and. S­methylene hydroxylation of 16 ^4 ,1v7 .

R e f e r e n c e s 1. Salah H.A., Caeida J.S. Advances In Pesticide Science (GBIBB­

buhler И., Ed.; Perganon, Hew York), Fart 3, $62-566 (1979). 2. Hooper N.K., Anws B.H., Saleh И.А., Caalda J.E. Science, 205•

591­593 (1979). 3. Caeida J.E., Gaughan L.C., Huso L.O. Advanceв In Pesticide Scien­

ce Ueisebuhler H., 2d.; Pergamon, Se» York), Port 2, 182­189 (1979).

4. Caeida J.E., fiuso L.O. Peetie. Sol., 11, 257­269 (1980). 5. Ruto L.O. Prog. Pestle. Bioohem. 2, accepted (1981). 6. Gaughan L.C.f Bagel J.I., Beside J.S. Poetic. Biocha». Physiol.,

U , 91­85 (1980J. 7. Had jar H.P., Caalda J.E. poetic Blochem. Physiol., Ц , 33­45

(1979). 8. Cohen S., Caside J.E. Pestio. Bioehea. Sbyeiol., 12, 129­136

(19B0). 9. Tawata S., Sto U., Casida J.E. Agr. Biol, Cham., submitted (1981). 10.Eto H., Setters J.f Engel J.L., Caeida J.E. Toxicol. Appl. Phar­

macol., 54, 20­30 (1980), U.Selfert J., Caeida J.E. Prog. Peatie. Blochem., 1, (1981) In

press. 12.Caeida J.3., Klmtiel B.C., Lay Ы., Ohkawa R., Bodebueh J.E.,

Gray R.A., Ti.lea H. Envlwn. Qaal. Saf, Suppl., 2* 675­679 (1975). 13.Lay M.­U., Casida J.B. Peetic. Biochem. Physiol.,_6, 442­456

(1976). 15

H.Schuphen I . , Rosen J . D . t Caeida J . B . S c i e n c e , 305, 1013­1015 ( 1 9 7 9 ) .

i5*Schupb*n I * . S e g a l l If., Eosen J . D . , CasldB J . B . l a : Sul fur Chemistry and Biochemistry 1д Halation t o P e s t i c i d e Metabolism and Action (ВОБВП J . О . , Casiila J . E . , Kagee Г . , E d s . , Amar, Chea. Soc. Symp. S e r . ) (1961 ) , In p r e s s .

COMPLEXES OF АВЕВО31Ж&-5*~ИОЖ0т03ткГВ ЛХЪ CttIVES&-5*-

KOVOSFHOSFHitK WITH TRAlSlTIO* MBIAL 10ЯЗ

H.KatearoQ, A.Grigo«t tou , P . K a l o u l i e , B . S i d e r l e

Chaaistry Department, Huclear reaearch Center "DBIOSHXTOS", Athene, Oreece

We have prepared and charac ter i sed come complexes of adenos ine ­

­5«^»onophospbMe and ©ytldene­5*­H»ouopaoephate w i t h Mn » ^° |*» J »

2

* , Cd2

* , V 02

\ P bS +

, P d2 + end P o

2 +

, P d2 +

, Z r 02 +

, V 02 +

, T b * \ Hi r e s p e c t i v e l y .

These complexes were prepared by n i x i n g equlmolar aqueous e o l u ­

t l o o s of the mononucleotide with the metal c h l o r i d e o r n i t r a t e s o ­

l u t i o n . Proa t h i s mixture the complexee were p r e c i p i t a t e d immedia­

t e l y , washed with alcohol» e t h e r and dried under high vacuus* The s t o i c b i o a o t r y of the complexes prepared were 1:1 metal t o mononuc­

l e o t i d e r e s p e c t i v e l y and ware of the gen era l formula H(mnc) x H_0 where ll­metal» and mno­mononucleotlde).

The complexes were h i g h l y I n s o l u b l e i n water and e l l common organic s o l v e n t s i n d i c a t i n g probably that they are h i g h l y polyme­

r i c i n nature* Coispleiea of edenoeine­S'­monophoepbate, cy t idene ­5 ' ­aoaopboe ­

phate and o t h e r mononucleotides with a l k a l i e s and a l k a l i n e earth ae t t t l e e x h i b i t a s trong absorpt ion around 990 cm" which l e absent i n the s p e c t r a of the f r e e a c i d s . This absorpt ion l e i n d i c a t i v e of the i n t e r a c t i o n o'f the metal Ion w i t h the phosphate group of the mononucleotide. In the complexes of 5'­AHP w i t h Hh ( Pb , F e

2

* , C d2 + and c j t i d m e ­ 5 * ­ » m o p h o e p h o r l c a d d with Р е

2

* , Х т Ог +

, Т Ь

4 + r e n p e c t i v e l y . the c h a r a c t e r i s t i c band around 990 cm" was present i n d i c a t i n g that these meta l s i n t e r n e t with m e phosphate group of the mononucleotide C\J.

The Adenosine­S'­Jfanophoephorie Acid e x h i b i t s a s t r o n g broad absorpt ion «round 1650 cm" due t o ­HH 2 bending v i b r a t i o n which i s coupled with the С­Я" s t r e t c h i n g v i b r a t i o n of the l a i d a s o l e r i n g . In a number of complexes hae been observed a decrease 1л the I n t e n ­

s i t y of the band around 1610 eta" and t h i s UP'J beea taken a s an 16

Indication that the metal Ion i s interacting with the nitrogan­7 of the purine ring fzf.

Зоше of the complexes showed a decrease In the intensity of the band around 1610 cm indicating probably an Interaction of the metal Ion with the 1Г­? of tLe purine r ing. Changee In the absorpt­

ion around 1650 cm have been considered ae favoring par t ic ipat ­

ion of the ­HHo nitrogen In coordination, however I t would bo rather naive to sake ouch a structural assignment with any degree of confidence, in view off the many similar aeeignmente for adenine complexea made in the peat, that were l a t e r proved wrong when their crystal atructuroa determined / 3 / .

Complexes of t ransi t ion metal lone with 5*­CMP which Interact with the Н­Э of the pyrimidene ring beaidea the absorption at 1650 cm and additional bond appears a t higher wera&umhers around 16B0 cm" 1. In the complexes of S'­CHP with Uo|* f Pe 2 *. * d 2 + tmd Jit thie band appears around 1680 cm Indicating poeaibly en l r ­

teraction with the H­3 of the pyrimidene ring / 4 / . magnetic measurements, refloatance opectfa and other spectros­

eopic techniques were also examined and structural Implications considered.

R e f e r e n c e s 1. a. Ogawa M., Sagaguchl I. Chen. Fharm. Bull., 20, 193 (1973).

b. Ogawa U., SaUaguchi I. Chem. Phann. Bull., 19, e» 1650­1655

(1971). 2. а. Й1А., Reinosa J.A. Biochemistry, _5, 3375 (1966).

b. Chatterji D. ; Bandl U.S. Biopolymers, 16, 1В6З (1977). 3 . a. Hodgeon D.J, ?rsgr. Inorg. Cuem., J 3 , 211 (19773.

b . marail l i L.G. Prugr. Inorg. Chem., 23_, 255 (1977). c. Gellert R.W., Бац Я. Metal Ions in Biological Systems, Vol.8,

(X.Slgel ed . ) , Marcel Dekker, New York, 1978, p . 1. 4 . Ogawa I I . , SskagucM Т . , Yakugaku Z a s s M , 9 2 , (9 ) П 6 6 (1972J .

SPECTHOSCOPIC, BXE1ECTRIC AND WqR STUDIES OP STROTGLY HYDBOGEH BDHDED COMPLEXES

L.sobczyk Ins t i tu te of Chemistry, University of Wroclaw 50­383 Wroclaw, Poland

A series of complexes composed of pentachlorophenol and various amines has been studied Ш solid s ta te and solutions by using seve­

ral techniques. Proton transfer equil ibria have be' , revealed a t

ар pro pal site A pK­volues both in solutions and crystall ine ata tc . Iho evolution of IH protonic absorption bands, especially theae tuvnLne into cor.tirua i s analysed in de ta i l , л confrontation of !P.! rnia ТЯ .'i'joctrn with dipolB mOEenta and chXorine MB. frcqucnclen mcftournd for o, number of complexes enabled to distinguish а Л pK regioa for which nearly 50Й of charge transfer taJtes place and, on the other hand, proton transfer equilibrium appears.

A creation of XR contlnua iB discussed in terms of stochastic ­•,112017 applied for slightly asymmetric double minimum potential with iow barrier .

fi e f f: n o n c e s

7. flrecft K,, Kalenik J., Sobczyk 1. JCs, >araday Traoo, l5S7Py7S>. 2, Lialaroki Z., Ruopenk Ц., Sobczyk L., in prepavation. 3­ nomanoweki H.t Sobczyk L. Chem. Phy B., 12, 361 (19Г73; Chen.

Phya. tetters, 58, 79 ("197£>)i Acta Hiys. Polon., in ргеов.

COHPAHATIVS THERMOGRAVDCETHIC STUDY OS THE CHLORIfiATJOH RBACJIOHS OP VARIOUS METAL 0XIDE3 I.Bertoti, I.S.FTtA.Toth, T.Szekely Research Laboratory for Inorganic Chemistry of the Hungarian Academy of Sciences, H­1112. Budapest, Budaorni ut 45

Thermogravijiietric measurements were carried out to study the chlorination reactions of some metal oxides (У­А1„<К, d ^Al^O,, P e

2°3' V2 * V

W i t h v o r l o u a chlorinating agents (C0C1?, CO+Cl?, Clj, CC1., C­,C1.) in an open flow system from rood temperature up to 1123 K, at partial pressures of the reactive gases up to Ю 5 Р&. For this рагрове в specially designed, highly sensitive equipsent was developed on the basis of a Mettler semimicro recording ba­lance f\7.

Heactivities of the different chlorinating agents were compared. Anomalous temperature dependence of the reaction rnte with a maxi­mum at B70 К WBB observed in the case of C0C1­ and RCl,. ThiB phenomenon can be explained by the thermal decomposition of these active gagев which was proved by separate mass spectzometrlc in­vestigations C$ •

In order to interprete the reactivities of the solid phases the chlorinatio» behaviour and morphological features were studied simultaneously in the савее of & and У modifications of alumina and of different iron oxides.

In case of a lumina c h l o r i n a t i o n t h e two e o u n t e r ­ р г о с е в е ч и , пяз«­­

ly tho chemiso rp t i on of t h e r e a c t i v e g a s e s end t h e v o l a t i l i z a t i o n of t h e gaseous p r o d u c t s o c c u r sJjnultBnBDiaalJ d u r i n g t h e соитие of t h e r e a c t i o n . The i s o t h e r m a l TG cu rves s t a r t w i t h a weigh t ga in which i s fo l lowed Ъу a s t e a d y s t a t e weigh t l o s s . A k i n e t i c model l a proposed t o d e s c r i b e t h i s phenomenon and t o I n t e r p r e t s t h e k l n d t i o p a r a m e t e r s o b t a i n e d from t h o i s o t h e r m a l т о c u r v e s . D e t a i l e d c a l c u l a t i o n s were performed f o r t h e case of t h e r e a c t i o n wi th CCl^, The t e m p e r a t u r e and t h e p a r t i a l p r e s s u r e dependence of t h e k i n e t i c p a r a n e t e r s show, t h a t t h e o v e r a l l r a t o i s c o n t r o l l e d Ъу tho e h e a i ­

a o r p t i o n s t e p a t low t e n p e r a t u r e e ( T < 9 2 0 K) and by t h e v o l a t i l i ­

z a t i o n r e a c t i o n a t h igh ones (!!>• 990 к ) . S p e c i a l t e s t s were c a r r i e d out t o d e t e c t t h e i n f l u e n c e of the

d i f f u s i o n a l p r o c e s s e s on t h e r e a c t i o n r a t e , and t h e u p p e r t empera­

t u r e l i m i t of t h e chemica l c o n t r o l was d e t e r m i n e d . On t h e bne ie of t h e e x p e r i m e n t a l r e s u l t s a c t i v a t i o n energiOB were c a l c u l a t e d f o r t h e o v e r a l l c h l o r i n a t i o n r e a c t i o n s I n v e s t i g a t e d . I n cose of T

­ a l u m i n a c h l o r i n a t i o n by CC1, a c t i v a t i o n e n e r g i e s f o r the chemi­

a o r p t i o n and v o l a t i l i z a t i o n p r o c e s s e s were d i s t i n g u i s h e d end an a p p r o p r i a t e r e a c t i o n кос1.ап1вт WQB s u g g e s t e d .

R e f e r e n c e s

1 . B s r t o t i I . , Toth A . , Pap 1 . 5 , , Szekely 7 . Thermal A n a l y s i s , ICTA BO, BirKhause r Y e r l a g , Base l* Boston* S t u t t g a r t » t , 235 ( 1 9 8 0 ) . "

2 . Szefcely ? . , Podor В . , Bor to ' t i X., Mini G., Z e l e i В . , p a p e r p r e ­

s e n t e d a t t h e 1 9 8 1 . Mendeleev C o n g r e s s , Baku.

MS AND 1R STUDIES OH THE CHLORISATIOH REACTION П? VARIOUS МЕТАЬ OZIDES

T . S z e k e l y , B.Podor , I . B e r i o t i , G.Mtnk, B . S e l e i

Reaearch L a b o r a t o r y f o r I n o r g a n i c Chemist ry of t h e Hungarian Academy of S c i e n c e s , H­T112. Budapes t , Budaors i u t 45

C h l o r i n a t i o n r e a c t i o n s of m e t a l o x i d e s ( У ­ A I g O , , V­OgJ w i t h CC1,, CgCl , , C0C1 2 and C0+C1 2 have been s t u d i e d by 1л s i t u o a s s spGc­ rome t r i c (MS) a n d / o r i n f r a r e d s p e c t r o s c o p i c <IR) methode .

C h a r a c t e r i s t i c thermal decompos i t ion s t e p s of t h e c h l o r i n a t i n g a g e n t s were i d e n t i f i e d , m CC1 4 d i l u t e d w i t h Ar, s t u d i e d i n a flow r e a c t o r , t he rma l decompos i t i on p r o d u c t s proved t o be C^Cl* and C l 2 , w i t h t r a c e s of C ^ d g and CgClg. The decompos i t ion s t e p s e r e

19

accompanied by marked changes in the initial chlorination uaction rate of IT­Al.O, observed In Isothermal TG experlaents / V . The chlorinating efficiency of the decomposition produota io lees than that of CCl.t causing e steep decrease of the initial reaction rate beginning at 820 K. Purthsrmore an increase of the Initial reaction rate le observed at that temperatures «here the thermal decompoaition of CgCl. begins.

In Bitu IIS experiments on the onlorination of ТГ­А1.0, end v.O­with CC1. have shown that these reactions proceed via a similar mechanism* In both сааев the Initial stage of the reaction 1в а partial chlorlnation of the surface, substituting a considerable part of surface oxygen atoms by chlorine and resulting in the formation of gaseous C0C1. and CO.. In the case o<.* T­AlgO, and VgOc, COClg was detected In the gas phaee at 420 X and 340 К respectively* Starting from *20 К a weight gain attributed to che­mieorptlon was measured In the eyetem У ­А120*+СС1д In Isothermal TO experiments /V* The experfjaental results suggest that the for­mation of volatile AlCl­j and VOCl­j proceeds vie the reaction of C0C1­ with the partially chlorinated surface. &1C1~ and VOci­, pro­ducts appear In the gaa phase at £00 К and 420 К respectively as stable products. ' The apparent activation energy of the initial process and that

of the steady state cMorlnatlon reaction, for T -AlJtj ^ V

3°5 has also been determined by Ms­method.

In situ IBt abecrptlon studies were carried out In a specially designed cell with a hot stage sample holder. The adsorption and cneoieorption processes of CC1., CQC1_ and CO+clg gases on Jf­11­0^ were Investigated in the 2300­1200 cm spectral range.

In the case of CO*Cl» at room temperature at leaat two forms of chenieorbed C0C1­ could be observed* in Intensive band appeared at about 1700 cm"1

, and two leas Intensive bands were detected at about 1600 and 14ОО cm , These might be related to C0C1­ moleculee cbemlsorbed In a different way. At elevated temperatures (up to 570 K) the 1700 cm"1 band io predominant.

In the case of C0C1­ a similar spectrum related to cheoloorbed states was observed. The splitting of these characteristic bands observable even at higher temperatures refers to the more complex nature of the Interaction. Unlike to the above systems, only phyelsorption of СС1д was detected at room temperature. Zh accor­dance with the US investigations above 420 E along with the C0C12

in the gas phase, chemisorbed COCl* has appeared with an intensive band at 1700 cm"1

.

R e f e r e n c e s 1 . B e r t o t l I . , Totb A . , Pap l , S . t Seekely T, P r o c . 6 t h I n t . Conf.

Thermal A n a l y s i s , ЛаугаШЬ, 1980, Birkb i raae r V e r l a g , Base l» Bos ton , S t u t t g a r t , 2 , 235 (19B0).

SYHTHESB3 АНТ) BEACTIOHS 0? HE" 9­10 АФОН CAHBABOHAUES

B . S t f b r , К.Ваве , Z.Janousek , J.Dolanefcy

I n s t i t u t e of I n o r g a n i c Chemis t ry , Czechoslovak Academy of

S c i e n c e s , Prague 6 , Hajakovskeho 2 4 , Czechos lovak ia

The 6­Н(СН 3)­ 3СБдН 1 1 c a r o a b a r e n e r e a c t s w i t h aodium i n l i q u i d ammonia t o produce 6­CBgH^g ( I ) which e x h i b i t s i n t e r e s t i n g chemica l f e a t u r e s . I t e r e a c t i o n w i t h P e C l , I n d i l u t e aqueous HC1 / V r e s u l ­

t e d i n t h e f o r m a t i o n of 4­CBgH^ ( I I ) w h i l e anhydrous HC1 l a t h e pre sence of Lewis b a s e s ftj gave t h e 9­Ь­б­СВлН^ ( L ­ ( C H \ ) 2 S , CHjCN, ( C g B 5 ) 3 P ) d e r i v a t i v e s . Treatment of I w i t h CoClg­6H 2 0 and c y c l o p e n t a d l a n e i n ne thanolAc KOH y i e l d s 07 a n i x e d sandwich comp­

l e e 2 , 3 ­ ( 7 5 ­ С 5 Н 5 ) 2 ­ 2 , 3 , 1 ­ С о г С В д Н ^ 0 w h i l e a s i m i l a r r e a c t i o n w i t h PeCln'4HpO r e s u l t e d I s t h e i n s e r t i o n of on ly one Meta l atom t<j g i v e

СагЬаЪогапе I I undergoes a t h e r m a l d e h y d r o g e n a t i o n a t 623 К t o o b t a i n 4 ­ ( T ­ ) C B g H 1 2 ^ 4 / . The s k e l e t o n of I I i s a l s o c a p a b l e of i n ­

s e r t i n g one molecu le of a c e t y l e n e s Л_С­ (RMH, (ЯЦ) u n d e r thv­ f o r ­

mat ion of S­CH^­StS­CgBgH.,., and Э . б . Э ­ С С Н ^ ­ З . б ­ С ^ д Н д d i e a r b a b o ­

r anea £ * / • Such a t y p e of i n s e r t i o n seems t o be a g e n e r a l p r o p e r t y of n i n e ­ v e r t e x arachno­frameworfcB, which was demons t r a t ed by t h e r e a c t i o n of 4 ­ ( C H , ) S S B E , H 1 3 w i t h a c e t y l e n e t o o b t a i n 5 , 6 ­ C j B ^ ^ end •Q­(CH, a S­7 ,8­C a BgK 1 1 . The s y n t h e s i s of I I a l s o p r o v i d e d a new c a r b a b o r s n e s k e l e t o n s u i t a b l e f o r p r e p a r i n g t r a n s i t i o n m e t a l complexes . Thus t r e a t m e n t of I I w i t h P t ( P i C g H 5 ) , ) . produced t h e 9 , 9 ­ P ( C g H c ) 3 ) 2 ­ 6 t 9 ­ C P t B 8 H 1 2 / 6 / p l a t l n a b o r a n e and t h e c o b a l t a c a r ­

baborane 6­ (^^ ­С 5 Н 5 ) ­6 ,1 ­СоСВ е нГ was i s o l a t o d on t r e a t i n g t h e 4­CBgHr 3 ( I I I ) an ion w i t h Сеет and CctLBa i n e t h e r . The r e a c t i o n between Hi(CeHe) 2 and I I I l a a e e t o n i t r i l e produced t h e l O ­ v ^ O ­ H ­ ) ­

­10,1­HlCB^Cg a l o n g w i t h t h e 2 , 1 0 ­ ( 7 5 ­ C 5 H 5 ) 2 ­ 2 , l O , 1 ­ N i 2 C B 7 H e com­

pound.

R e f e r e n c e s

1 . S t f b r В . , Base K. , Hermwiek S . , P l e l e k J . Chem. S o c . Chem. Common., 150 ( 1 9 7 6 ) .

2 . Base K . , Негпишек S . , 5 t f b r B. Dhera. I n d . (London) , ЮбВ ( 1 9 7 6 ) .

21

. JolansJcy J . , Base K. , S t f b r fl. Chem. Ind , (London), 853 O b ? ' . ; .

. Зь5й К . , HormaneJt S . , S t f b r B, Cheio. Ind , (London, Э5"< i\l)n":.

. ilxor В . , Ваза К.., Pleook J , , Hermanelt S . , Dolansliy J . , j&r...­,^­

eek S. Pore Appl . C h e a . 9 i 5 . e(y (7977) . Вазе К . , u t f o r В . , Zokharova I . A . Synth . R^ac t . I n o r g . M e t , ­

0 r S . Chem v 1J l (5> . 509 ( 1 9 9 0 ) .

талмгроанлтзш OP SYNTHETIC JT­Реооя IN WATSH AND Ш Ш П )

SUifflMia SOLUSIOWS

O.Subr t , T.HanBlfk, K.Bech ine , V . Z e p l c t a l

I n s t i t u t e of I n o r g a n i c Chemis t ry , CzechoalovuK Academy of S c i e n c e s , P r a g u e , Czechos lovak ia

Тпц a y n t h e t i c Jf ­FeOOH can bo p r e p a r e d i n a s t a t e of G a t i o ­

i a c c o r y p u r i t y by o x i d a t i v e p r a t i p t a t i o n of i r o n ( I I ) a a l t e w i t h a e r i a l oxygen / " 1 / . Otfing to i t e thermodynamic i n s t a b i l i t y , t h i ; oxlue hydrox ide can r e a d i l y be t r ans fo rmed , u n d e r a p p r o p r i a t e c o n d i t i o n s , to more s t a b l e i r o n ( I I I ) o x i d e s and o x i d e hydrox ides (af­РоООЯ, d ­ Р е 2 0 3 , ЗГ ­ P e 2 0 3 ) . On h e a t i n g i n a i r a t 280­320°C, dry <T­PeOOH l o s e s n a t e r t o form У­Fe^O, which i e trannfoJ­med to (^ ­P(i ,0 on f u r t h e r h e a t i n g t o в t empera tu re IIDOVS • ] O O C , C

In aqueous medium, the t r a n s f o r m a t i o n of V­7eC0H оселге a t c o n s i d e r a b l y l ower t e m p e r a t u r e s y i e l d i n g CC ­PeOClI o r s2T­?e_0, / 2 , 3» 4 / . At t e m p e r a t u r a s above 140°C t h e ргосеав y i e l d s p:­edomi­

canx ly cC~feJd-, w i t h only an admix tu re of CC ­PeOOH i ? s t o r t i n g n a t a r i n l of phase p u r i t y h a s been usod . I t has Ьиеп demons t i a t ed t h a t d u r i n g t h e p r o c e s s , t h e s t a r t i n g У­РеООН i s d i s s o l v e d w h i ­

l e c r y s t a l s of CC ­Pe^Oj and <af ­PeOOH grow from t h e s o l u t i o n . Kxa­

minavtion of t h e p a r t i c l e s i z e and t h e t o t a l c o n t e n t of CC ­Pe 2 0­ . d u r i n g the ; r a n s f o r m a t i o n i n d i c a t e d t h a t t h e growth occured on a c o n s t a n t munber of CC ­Ре„О э p a r t i c l e o . I t h a s been proved t h a t the phase c o o p o n i t i o n ot t h e produc t of the hydro the rma l t r a n s f o r m a : ­

l a n of iT ­PeOOH i s l a r g e l y a f f e c t e d by t h e preaence i n the s t a r t ­

i ng Ejanple of seeds of t h e p o s s i b l e r e a c t i o n p r o d u c t s . under the вехе e x p e r i m e n t a l c o n d i t i o n s , SC­PeOOH o r a f ­ P e ­ O , may predomina te i n t h e ond p r o d u c t , depending on which of t h e s e p h a s e s i e dominant i n t h e c r y s t a l s e e d s .

The r e s u l t e of the s tudy of t r a n s f o r m a t i o n of sy . ' . t he t i c JT­PeUUH i n aqueous s o l u t i o n s of i r o n ( I I ) i o n s markedly a c c e l e r a t e t h e p r o c e s s во t h a t i t proceeds a t a measurab le r a t a a t t e m p e r a t u r e s a s l ev a t 70­10Q°C. I t has been proved t h a t , i n analogy wi th the p n ­

vi«uo dysiom, the ше(Л.ал1ва oi' chiu reaction n^at iikely .n­o­ ­dioooluiion oi' the uuosable if­PeOOli and cryatai;­.;uti<iii ы :­:>_,.• stable phaseo 1год tho solution. The­ nechaniyi£ oz У *­?с^^;: • ­._ ­formation carried <*u.t aa described in / i / la miner COLV. ; с ' :•< ln/olvee eoverul consecutive and side rencTionu. When heatv ­j i.A PsSO. solution, phaae purity JT­PeOOH f i r s t undcrgoea гесгул? .".;• • ion yielding cryotalo 01* V ­PoOOH of enlarged oiv.o, better .•­..­•/•• loped utructuro und dif^erenT morphology­ s c formed ~o ­i'ofnii: 1 then transformed to Of ­PeGOK and finally to J^­Ft^C, which m ti.a moot stable modification under the given conditions /,'57. )f ­r­tvj­­ • containing йГ­ ОрО­, nuclei i s transformed under siir.ilbr i;^ri­'.­i­ •?.­. directly into a mixture of ЯГ­FeOOH and ftT­Fo^O or into pure ДГ­POgO, QS tho intermediate #­?eOOH i s relatively rapidly ­:o.."^ • ed into сИ­Ро20~.

The reection products were characterized by иоапа of X­ruy o­., der analysis, IH and UonsUmer вреегговсору, high­resolution ui>^­' ron microscopy, and proton NMR. The annlyeea indicated tlm; uli­n^ with the phase tru3sforwietior.s significant chantey occur 1;. -'••,: structure of the n action pruducto. iS­FepO., pariiclea feiatd in various part ia l reactions were found to differ outotontiully ZIXJI: one another in dimensions and shape The dependencco of thcoi' L­:I:I­

rac ter ie t ics on the reaction conditions and the properties of t,hc star t ing sample have been determined. The resul ts enable ono to prepare fitf­PG?0­, perticlee of required size and ohape, thua cont­

roll ing some, of the properties of the product which ore of practi­

cal interest (reactivity, optical properties when uaed ua pltucntsi e t c . ) .

Moreover, i t has been found that both & ~ F e 2 a 3 a n ( 1 i ^ " ? f ; 0 l ' l l i formed on ЗГ­РеООН tranafontation in aqueous medium, contain etruc­

tural ly fixed water in amounts considerably in excess beyoua r­oic 1

iometry. The influence of water on the properties of dZ-Tf.^j- r.in; uf­PeCOH ha/) been studied, and the behaviour of the water in • !.•. course of the reaction has been described.

Finally, dependences of the rates of transformations on t.. .­resction conditions (temperature, pti, PeSO^ concentration) un.i c> the xethod ot preparation of thu start ing У"­*еООН have been (let­

mined, and formal description of the kinetics of she ];госи;­г. hf:* been made.

R e f e r e n c e s 1. Solcova A, et a l ­ Silikaty, 24, 133 (1980). 2. Nitschmann K. He7v. Chim. Acta, 21, 1609 (1930). 3. Van Oosterhout G.W. J . Ioorg, Nucl. Chem., 2%, iJ35 (l9'vV.),

4­ 5ubrt J. et al. Silikaty, 2$, 255 (19S0), 5. lengmuir D. Aa. J. Sei., .271, 147 (1971).

RAblOACTIVB KKPTOHATES ГН EHVlROHHEOT EOLLUTIOH COSTROL J.Tolgyesey Department of Environmental Chemistry and Technology, Cheoicotechnologieel Paculty, Slovak Technical University, Bratislava, Czechoslovakia

Environmental pollution ie not s new phenomenon for nan, but it ia currently considered to be one of our global ргоЫеи of expand­in.); concern.

Thr. analysis of air and water for pollutants ia very difficult for a number of reesons, including: nonhomogeneoue samples, the wide range of chemical and physical characteristics cf pollutants, low concent:retione for many constituents, the Instability of some pollutants, and interferences.

Fftln'­releaee method Kith the aid of radioactive Kryptooates have been successfully used in air and water pollution analysis. Baeico.ll?, the method includes procedures in which the nonradio­active test substance is brought into contact with radioactive Kryptonate, and as a result of an appropriate reaction, a portion of the radioactivity ( \ r ) is released. The determination is car­ried out moBt often using a calibration curve, which ie construc­ted by plotting the quantity of released radioactivity r), o? the rate of release, versus the concentration of the determined eubetancee. In some cases it is possible to c­lculate the aoount of competent determined from the amouat of reloased S 5

hr. provided the Specific activity of the Kryptonate and the atoichlometry of the reaction are known.

The lecture reviews results obtained at the Chemicotechnological Faculty of the Slovak Technical University, Bratislava in the deter­mination of water and air pollutants. Kethods for the preparation of radioactive Kryptonatee (Ionic bombsrdaent, eublimatlon and micro­diffusion technique) were developed. Radioactive Kryptonatee were ueed for the determination of hydrogen fluoride (reagents radioac­tive Kryptonate of elllca), mercury (selenium sulfide), ozone (hyd­roqulnone), carbon monoxide (hopcalite; 1,0^; PdCl­; HgO), water vapor (silica gel), sulphur dioxide (hydroquinons; iodine) in &*~ samples and oxygen (thallium), dichromats silver) and vanadium (silver) in watfif eamplee.

24

RESOLUTION О? НАСЕЩС HTXTURES OP AMINO ACIDS SY IMMOBILIZED AMINOACYLASEj PHEPARATIOU, CIAНАСТЕЙIZATION AND PRACTICAL APPLICATIOH OP A NEW IMMOBILISES PDHH OP PIG КШ1&С humoKCiusE B.Szajani, Katalin Ivony, L.Boroso Reanal Factory of laboratory Chemicals, Budapest, Hungary and Department of Biochemistry, Attila Jozsef University, Szeged, Hungary

In relation to Industrial applications of pig kidney aainoacy­IBBP (E.C. 3.5.1.14) fs4 have immobilised the enzyme on varioue types of support nedie, by forming covalent bonds between the sup­port and functional groups 1л the enzyme. The moat favourable re­oults неге obtained when the enzyme кяв ircobilized by covalent binding on support media containing carboxylio functional groups•

The pig kidney aminoacylaae was immobilized by covale.it attach­ment to Akrilei C, a solyacrylamide type support medium possessing curboxylic functional groups. The carboxylic groups of the support were activated with water aoluble earbodilmidea.

At, a result of immobilization the pK optimum for catalytic acti­vity shifted by about 0.5 pH unit in the alkaline direction to lie between pH 7.3 anu 7.6. "She apparent optimum temperature of the immobilised enzyme was about 5°C higher than that of the soluble enzyme. Substrate specificity was not changed appreciably by immo­bilization. With N­aeetyl­L­methionine as BUbstrate, the value of Кщ was only slightly different from that of the soluble enzyme.

Immobilization brought About marked changes in the conformatio­nal stability of the enayne. Treatment with heat or urea lnci*eausu the catalytic activity of the immobilized епвуте considerably, likewise, the pH dependence of heat inactivation was also affected. About one­half of the original activity, as measure». *t the opti­mum pH, of the immobilized enzyme was preserved even during pro­longed incubation at 70°C, while the soluble enzyme was almost completely inactivated in 10 min under the same condition*).

The atereoiaomere of several amino acids (alaaine, methionine, valine) were separated by our immobilized aminoacylaee preparation both on laboratory and on industrial scale. Based on the experimen­tal results a technology пае elaborated for the application of immobilized aminoacylaee.

25

взилтомдь­лгаль ютиис^'Ш.':; Л;; Л т^И'Ш.^и^су, OF TH>' MUTUAL IIIFLUfiMCfc UP LTGniib!)

Jan Ga"o

i c p a r t a o n t of I n o r g a n i c C'lmsilutj­y, М.чтУ; T'__.T. ; .WJ. U n i v e r s i t y , S6U 37 bratiuiu­.­ : . , Cs­'­.i­u­'­.'­uvoiia

In thi­ p r e s e n t e d l c c t u i ­ e , an lnfcndui . iyn w i l l be eivv­a about the concep t ion of *.ht> mutual i n f l u e n c e of l igend: i \ 'Л1^; which tokfca I n t e g r a l l y i n t o accoun t t h o s e l i i x e r a o t i o n e оГ i i g a r ­ l o which a r e r e a l i z e d th rough t h e ceniiel utom i!i octahedral and pueudo­octahed­

ral complexes, 'foe details concerning (he imbjuct are preoented more thoroughly in paper / V ­

On tho feaaia of o.­ijjferiEental data obrs Tvee far u greet юцпЬвг of various complexes, iiiTOractior.c between ligands ­;л aquatoriel plane and those in osiul positions Heivs proved to huve consequences on stereochemistry, physical pronertica, and inactivity of tho COJL­

рХеяэв, ao troll es oi> the mode in which the­ thiocyanato group ie bonded as a ligtind. Experimental result о and those of quantum che­

mical calculation have ohtnm thab the inteitictiouo viA contwil atom pxay a dominant rola шцопк the equatorial­axial interactions under investigation. The phenomena, being roleted zo the consequence» of the equatorial­axial iatcrcictiona trough tho еептго1 atom upon tho taennodynamic properties of complexes, wer*,' >sar*od an etjuatorial­

Qx±al influence (abbreviated ao oqu­ar" influence) t The consequen­

ces of the interactions which exert influence upo>; kinetic proper­

ties of the complexes, were named as cquatorial­axii­l offact (abb­

reviated aa "equa­as." effect). The conception of the "equ­ax" interactions gives a mora integ­

ral picture of the MIL bocouae i t involves interaction» of all Ug­

anda in the coordination sphere and not only those of thorn, boing placed on a distinct coordinate of the polyheder.

Although an integral and not a fragnuntary approach to tho probietna of the ЕСТЬ i s mora adequate to the reality, r.everthelees, i t need not always bo the moHt nuitnbla ouc. If eomr of the pro­

perties of о complex are influanced in a dominant way by 'iba inter­

actione in a oegaent of the complex (the trano­effoct in 3't(II) complexes шву serve ag an esanple ГОР i t ) , i t ie naturally reaso­

nable to Investigate theee dominant interactions. Our knowledge on this subject supports the conduction that the

conception of the l!equ­ax" interactions is especially adjustable to the complexes which possess central atoms with electronic dege­

nerated or pseudo­degenerated states, ae well ae to the complexes with metallocycleo (macrocycloB includingJ 1л tho equatorial plane. 26

К -A f I.; Г е U С О а

1. Gazo 0 . , Boui» P.., JUHLL Е.. , akibviiovc о!, л Уаслак^уо 1 . , Pu l ' kn j . P . , Sin.­­. J . , '.Y.lacn f« u ' ­^n l . СЬси. £ u v . , i i . b j uub t f i t t cd ,

DIAUHCBTIC VALUE Or ГЫБЬ'1Х)С110ьГНйЗТ£НАВ£; ISOEIliil'HES AND

ОХНБП 3EKUH EHSiiiES lit CIHtOIvtC LIYBTi DISKiSBb

I.'.Iiigy, K.Dnvii:, L.Halmy

C e n t r a l Labora tory of t h e lii=ltu Pel P e d i a t r i c Hcioul ta l ; iHt Department of I n t e r n a l Medicine of the Korvln Ot tc H o a p i t a l Budapes t , Hungary

D i f f e r e n t enzyice de tc ­ r ­dna t luna v/ero performed from t l ie aenun of 259 o u u l t p a t i e D t s , where ch ron i c d i f f u s e l i v e r d i s e a s e wno confirmed by h i o t o i o g l c a l ncthct t (40 mild,' 20 i soduretn , 0 e a r i o u e f a t t y d i s t r o p h y , 42 ch ron i c p e r a l a ­ u i i : , ',5 c h r o n i c a c t i v e h e p u t i t i e and 6 ' J . ivsr c i r r h o s i s ) . Ffioudccnoli i iooteraije iHoenzyjsea were oepa ­

r a t e d on po ly aery l a a t d o g r a d i e n t g e l ucluwn by oj­octrophor­ociu and i d e n t i f i e d on the baoe oi' t h o i r b u t y r y l t h i o c h o l u j s p l i t t i n g a c t i ­

v i t y . The t o t a l a c t i v i t y of ,L ­«apor t a tb : P ­ o ­ o g l u t a r a t © an inoSranB­

f e r a o c КС 2 . 6 . 1 ­ 1 . (AST), L~a±aiilno: 2 ­ o x o g I u t a m t e a m i n o t r a n o f e r a o e EG 2 . 6 , 1 . 2 . (ALT), L ­ l a c t a t o : HAD uxydoreduc tuse КС 1 . 1 . 1 . 2 7 . (LOH), a l f a ­ L ­ i e u o y l p o p t i d e h y d r o l a s e EC 3 , 4 , 1 1 , 1 . (LAP), gsinnia­glutaniyl­

p e p t i d e ; amino a c i d gaomia­glutamyliirunof oraoo EC 2 . 3 . 2 . 2 . (GT), a c y l c h o l l n e a c v l h y d r o l a e e EC 3 > u l . 8 , (CHE/ and o r t o p h o e p h o r i c ac id monoeefcer phoophohydrolaee ЗС 3 . 1 . Э И . (ALP) п а з measured by o p t l m a l i s e d s t a n d a r d i s e d k i n e t i c methode a t 25C°. The ave rage a c t i ­

v i t y of the CHE d e c r e a a e d i n c i r r h o e i e . I n accordance w i t h t h i s p h e ­

nomenon t h e a c t i v i t y of t h e c h o l i n e a t e r a n e isoenzymes d i m i n i s h e d , bin, t h e number of t h e f r a c t i o n s wag unchanged* I D o t h e r t ypee of t h e d i f f u s e l i v e r d i s e a s e s the t o t a l a c t i v i t y of th­з CHE and i t n Isoenzyme d i s t r i b u t i o n пае not a l t e r e d ­ The e l e v a t i a n of t h e G7 was moat f r e q u e n t among t h e епгуиеэ i n u l l groupo , 1в 1О5З of t h e p a t i e n t s d e s p i t e of the p a t h o l o g i c a l h i s t o l o g i c a l f i n d i n g s (2 c l r x n o a i s and a c t i v e h e p a t i t i s among them) t h e a c t i v i t y of the aerum enzymee was I n normal c o n t r o l r a n g e . C h a r a c t e r i s t i c enzyme p a t t e r n s were n o t found i n the d i f f e r e n t g r o u p s , ыо t hey do no t prov ide exac t d i f f e r e n t i a l d i a g n o s t i c i n f o r m a t i o n i n d i f f u s a

l i v e r rlH!E3gO.

?7

REACTIOSS Qp SOM3) HAXOOEI COMPLETES

L . K o l d l t s

Z e n t r a i m s t i t u t f u r a n o r g a r i e o h e Clieale d e r A k a d n d o d f r f iHeeneoha f t en d e r DDR, B e r l i n , OBR

H e x a f i u o r o s i l i c a t e s produce a t b e g i n n i n g t h e r m a l decomposi t ion ve ry r e a c t i v e s t a t e s which a r e caused by a a p e c l a l new typo of d i s o r d e r / V " and by a c t i v a t e d decompooi t iot t f r a g m e n t s . The r e a c t i v ­

i t y haa t e e n proved by i n t e r a c t i o n w i t h CHCl,­gae СИ and w i t u e o l i d e ( f l u o r i d e s , c h l o r i d e s £ J / , c a r b i d e s n i t r i d e s , o x i d e s fAf, p h o s p h a t e s and o t h e r o x o a a i o n e ) . By x ­ r a y ­ d i f f r a c t i o n arguments have Ььеп found f o r s p l i t t i n g of f SIP^ ­ p l a n e s f r o » / S l P g / 2 " ­

o c t a h e d r o n e / 3 7 . The r e s u l t i s a h igh r e a c t i v i t y a t t h i a s p o t s . Anothe r r e a c t i v e toxa I n h e x a f i u o r o s i l i c a t e s i s r e p r e s e n t e d by mobi le S l ­ P ­ o p o c l e e , pe rhaps SIP J , Analogous d i s o r d e r e t r u e t a r e s a r e supposed t o be p r e s e n t a t b e g i n n i n g t h e i s a l decompos i t ion w i t h a l l e o l i d e h a v i n g complex ­.cms I n c l u d i n g c a r b o n a t e s , s u l f a t e s and o t h e r s *

R e f e r e n c e s

1. u o i d i t z L . , ffilde W. И. Chan . , 12 , 364 ( 1 9 7 9 ) . 2 . K o l d i t z L . , J a n i a k P . , Wilde V . , S e i s B i e l s k i S . , F e i s t S.

Zb anorg» a l l g . Chenu, ^ 5 2 , 43 0 9 7 9 ) . 3 . K o l d i t z X... Wilde W., freiet я . z. anorg. a l l g . C h e » . , 452 , 54

( 1 9 7 9 ) . 4 . K o l d i t z b,, f h l e l s c h П. i , Chem., 19» 229 ( 1 9 7 9 ) .

RELATION BBOTEEH TEE CfflfSTAX 3THPCIU3BS C* SOUS SALTS OF THE TIPS Нв(ОС0СН^)2­п512О AND ТНБ1Б ABILITY TO 70BK HUBD CBXSIAIS OR DOUBLB SAMS ( Ы е 3 + = n g , c a , Ito, Co, Hi , Cu, Za, Cd)

• Chr .Ba la rew, D . S t o i l o v a

Chemical Reagents and P r e p a r a t i o n s l a b o r a t o r y i B u l g a r i a n Academy of S c i e n c e s t S o f i a 1Q4Q, B u l g a r i a

The ртосевввв of fto­eryotalliaation i n a number of ayatems of t h e t ype He(OCOCH 3) a ­ ИеОСОСН3) а ­ H.,0 have been e t u d l e d Л ­ ^ 7 ­

The p r e s e n t work r e p r e s e n t s on a t t e m p t t o f i n d t h e r e l a t i o n between t h e c r y s t a l s t r u c t u r e s of t h e i n d i v i d u a l s a l t s , p a r t i c i p a t i n g I n t h e sys tems undor c o n s i d e r a t i o n , and t h e i r a b i l i t y t o toim mixed c r y s t a l s o r double .­«alts, t t & l n g I n t o accoun t t h e d i f f e r e n c e s I n the g r o u n d ­ s t a t e e l e c t r o n i c c o n f i g u r a t i o n of t h e meta l (X1J i o n s .

It is known that the coordination environment about the aetal lone In the salts of the tjpe MetOCOCE^Jg­nH­O ie built up of oxygen atone from the water molaeulee end of acetate groups. According to the type of acetate bonding to the metal lone, the erjatal hydrates nay be divided into several groupat unidentate, bidentate­ohelata and bridge­bonded acatatea. In the praaant work a conclusion haa been drawn that bidentate acetate Uganda are obaerved when the aetal ion polyhedron nay be subjected to a strong angular deformat­ion (О­Ые­0. volant angle defomation) > i.e. in the caaaa of p ­* a

5

­ (high­spin configuration) and d ­ lone (where CPSE ­ О). She d*­ and d 9

­ ions display a strong radial deformation tan a conse­quence of the Jahn­Tellsr effect) and f o m bridge­bonded acatatea. The ar^­ lone, due to lose of crystal field atabillcation energy give unidantate bonds with the acetate groups*

Mixed cryetale are formed in the cases when the admixed lone may assume the coordination environment of the substituted ions in the cryotal structure of the host salt. Since the lone with an open shell configuration do not allow a strong angular deformation of the coordination polyhedron these ione cannot substitute the lone In bidentate­bonded acetates. On the other hand, d^­ And d ­ lone ma? substitute the Ions 1л the unide&tateboaded acetates. The for­mation of mixed cryetale le energetically unprofitable in the eaaee when the' crystal structures of the individual salts от the ionic radii of the aetal ione differ essentially each fron others and thle fact favours additionally the fornatlon of double aalte.

It haa been established that double salts are formed mainly bet­wean the acetates of the d ­, d ­ and p ­ metal ions, i.e. for lone that allow strong angular deformation of the coordination pol­yhedra or when at least one of the metal ione siesta this condition so that the acetate bridge bonding may occur*

H e f a r e n c e e 1. Balarew Car.. Stoiiova D. Comm. Departm, Chem. Bulg* Acad. Sci*.

7, 355 (1974). 2. Balarew Car.. Stoilova D. Coapt. rend. Acad* bulg, 3ci.,_27,

803 (1974). 3. Balarew Car., StoiloTa D. Zh. neorg. Khim. (USSR), U,555(1976). 4* Stoiiova 0., Balarew Chr., Demirev L. CQBKH* Departs. Chea.Bulg.,

Acad. Sci., £, 60* (1976). 5, Stoiiova D., VaseilBva V. Comn. Departm. Chem. Bulg. Acad. Set.,

12, 562 (1979)­ . 6, Balarew Cor., Stoiiova D. coxapt. rend. Acad. bulg. Sol., 27,

651 (1974). 29

'(, Balorew C h r . , S t o i l o v a D, , Grigoi­ova П. Jahvbucli d e r Hoc'tushLiltf f u r chemleche T e c h n o l o g i s , Burgae . , У, 255 ( S 7 2 ) .

8 . Balarew C h r . , S t o l l o v a D. Jnhrbuch dr,r H.ochschulfi f u r chfiininche T e c h n o l o g i e , Burgee , 1Q. 503 ( 1 9 7 3 ) ,

9 . S t o i l o v a D. Z­ a n o r g . Q l l g ­ Cbwa,, ^ S 3 , ?27 ( 1 ? 8 0 ) .

Л COMPLEX РОЖАТ10Н AHD A DEHYDRATION IW THB АСЕТАТЯ SYSTEMS IH WATER AHD VAIER­ALCOHOL 50LUTI0SS

D.Trenda fe lov , I . Z l a t e v a , M.Spaoeova

Chemical Reagen t s and P r e p a r a t i o n l a b o r a t o r y B u l g a r i a Academy of S d e n c e o , Sof i a 10d0, B u l g a r i a

The рпаве e q u i l i b r i a of meta l a c e t a t e ~ a c e t i c a c i d ­ w a t e r and m e t a l a c e t a t e ­ c e t h a n o K a t h a n o l ) ­ w a t e r t e r n a r y e y e t e a a t 25°C a ? e s t u d i e d by p h y s i c a l and chemical a n a l y s i s . I t i e fou­id t h a t ХЫ complex­ format ion and d e h y d r a t i o n procoaoee u r e governed by t h e energy of t h e e o o r d l n a t i v e m e t a l i o n ­ w a t e r bond of t h e c o r r e s p o n d ­

i n g aquocomploxes. The m e t a l Ion aquocomple tes can be d i v i d e d on t h e bao io of t h e i r thermodynamic c t o b i l i t y i n t o t h r e e g r o u p s : i . e . of aquocomplexes forming a c i d , normal and b a s i c a c e t a t e . Thio r e l a ­

t i o n s h i p i e v a l i d f o r l o n e of p , d and A'*' c o n f i g u r a t i o n and i o c o r r o b o r a t e d by k i n e t i c d a t a and by t h e r a t e c o n s t a n t »t w a t e r « c h a n g e w i t h o t h e r l i g a n d e i n c l u d i n g a c e t a t e o n e s .

The p h a s e e q u i l i b r i a of the Hg , Ca * and Ba a o e t a t e o haa been ezna ined f o r n i z e d e o l v a n t e and nonaqueous media . The d e h y d r a t ­

i o n p r o c e s s e s i n t e n s i f y i n tho o r d e r of t ha d e c r e a s e i n thermody­

namic o t a b i l i t y of t h e aquoconp lezes i . e . Hg Ca * Ba + , Thua, f o r example no d e h y d r a t i o n пав obse rved f o r tho magnesium sys t em. The ca lc ium Bjatem a f f o r d e d t h e l o w e s t c r y s t a l h y d r a t e ­with a com­

p o s i t i o n Df CatCHjCOO^'O.SH^O, whi le r i t h t h e barium sys tem t h e d e h y d r a t i o n proceeded t i l l t h e aahydr .z Sa(CH­.COO)_. Lower c r y s t a l h y d r a t e s unobserved 1n t h e p o l y t h e r n s of the c o r r e s p o n d i n g b i n a r y sys tems a r e found . Cofflplei f o r m a t i o n *ав observed f o r t h e magnesium a c e t a t o ­ methanol ­ w a t e r s y o t e n and и r e g i o n of e q u i l i b r i u m e x i s ­

t e n c e of t h e MgCCH,C00) 2*l,5ffi 30]I i a found.

30

Л ЯГ­'.У ol'H­rHBSTfi OP B0R01J HYUHIDES

V.Prochn tko , V . S a p l o t a l , M«Urbttnova

I n s t i t u t e nf I n o r g a n i c Chemis t ry , (^«choalDvnk Acudesy of S c l e n c c o , P r a g u e , СsochoSlovakia

The r e a c t i v i t y of sodium «iydrf.de o b t a i n e d by c a t a l y t i c h y d r o p s ­

n a t i o n of fused sodium was I m m a t l g a t e d . Sodium hydrldi» p r e p a r o d i n t h i s viay i s a. f i n e l y d i s p e r s e d powder of s p e c i f i c s u r f a c e a r e a i n t h e r ange 1 t o 5 m / g and of a narrow p a r t i c l e s i z e d i s t r i b u t ­

i o n , t h e p i r t i c l e n ai­e porous v/i th m e t a l l i c sodium i n e r u s t o d ­ When a s t r eam ът gaseous ir>lxture of boron t r i c h l o r i d e and hydrogen « a s paaaed th rough a column of t h e oodiura h y d r i d e h e a t e d to Я80°С, i t wae round t h a t boron t r i c h l o r i d e wao t aKas up q u a n t i t a t i v e l y , A f t e r a l l t h e dodiun h y d r i d / had r e a c t e d , d iec»ane appea red a t t h e o u t l e t of the r e a c t o r . The r o n c t o r c o n t a i n e d l a y e r s of aodiiua c h l o r i d e and sodium b o r o h y d r i d e , t h e l a t t e r n ig ra f t ing i n t h e d i r e c t i o n of the gas s t r e a m . At t e m p e r a t u r e s above J O n " C , p o l y b c r o h y d r i d c a were f c r ­

medi w i t h ^ Q 2 ^ t 2 ^ 1 2 fte *ke p r edomina t i ng p r o d u c t .

The p r e s e n t e d o b s e r v a t i o n i o on c o n t r a d i c t i o n « i t h t h e l i t e r a ­

t u r e d a t a / ~ 1 , 2 7 . With an only e ­ c e p t J c n / 3 .7 , ­he a u t h o r s concluded , t h a t i n t h e absence of o o l v e n t e o r a c t i « u t o r t i , sodium h y d r i d e gave no r e a c t i o n w i t h boron t r i c h l o r i d o . / p a t e n t d j e s l o e u r e / Д / c l a i m ­

ing t o have p r e p a r e d oadium borol iydr ide by dvywoy r e a c t i o n hr.a n o t been c o n s i d e r e d t r u s t w o r t h y /*! / •

A s e r i e s of check experiments* nhovec t h a t the r a t e of t b e r e a c t ­

i o n was t o o slow f.ro:5 t h e p r e p a r a t i v e p o i n t uf v i e * u n l e a e nooiujn h y d r i d e of a s p e c i f i c mir fece a r e a T.bove o r ? m / g was uoed . With eodlum h y d r i d e of l ower s p e c i f i c s u r f a c e a r e a ( I s o l a t e d from o i l s u s p e n s i o n o b t a i n e d by hydrog ' jna t ing sodium d l s p u r s e d i n p a r a f f i n o i l ) » t h e r e a c t i o n w i t h boron t r i c h l o r i d e did no t proceed q u a n t i ­

; a t l v e l y ( i n 20 n , abou t 3 p e r c e n t of sodium h y d r i d e was found t o have r e a c t e d ) .

R e f e r e n c e s

1 . Zhigach A . P . , S t a e l n e v l c h 3 . S . Chimia g i d r i d o v , i z d . C h l o i a , Leningrad., 157 ( 1 9 6 9 ) .

2 . Long Ii .H. Recent S t u d i e s on Dibrtrane, i n the honk P r o g r e s s i n I n o r g . Cnemlstry ( S . J . L i p p a r d f e d . > , Wiley, В Л , , 15 (1977) .

3 . Kurd D.T. J . Am. Chem. So".., 7J,, 20 ( 1 9 4 9 ) . A. Hurd D,T. U.S. P a t . И 2 , 5 9 5 , 6 9 0 (1952) .

31

КИПИ1С STUDIES 0? SOBSSITUHOB КЕЛСТГОШ Off 0LEPIH3 0Ы SQUARE PLAHAR РХДТЛПИ (II) COMPLEXES IH SObOTIOH Kaauo Saito, Kaeuo Kaehlwobara, Sin1 у a Ш у е Chemistry Deportoent, Faculty of Science, Tohoku University, Sandal, 980, Japan

Introduction Substitution of an olefin, molecule for a coordinated olefin on

Ft complexes le on Important elementary process In the synthetic chemistry involving; tranoltlon metal catalysis. However, the kine­tics has. Dot been studied because of experimental difficulty* the visible and CV absorption spectra of the complexes containing different olefin Uganda are too similar to one another to enable kinetic studies by the speStrophotomotrlc method, ffe have introduc­ed a new method by use of optically active complexes and by measur­ing the change in.circular dlehrolem (CD) pattern accompanied by the substitution reaction.

Y/ «/«• \ — Y / "v • i

i ® . 4­I­pyridL ­ or 4­X­anlllaeJ trans­/PtCl 2(B)lSJiftin)/ + Йсе trane­/PtPl 2 (H)ldce)/ + mbn

Experimental method l e prepared Pt ­ec­splexea contaiulng 2­methyl­2­butene (mbn)

In 3­configuration and 4­substltuted pyridine or aniline trans to nbn. /ttCl(o­deb2)(S­jnbn)/BCgHc)j was also eyntheised as the f i r s t example of optically active complex cation of Ft Tilth olefin. These compounds enable the examination, of the influence of "trans llgand" to the olefin and of the overall charge of the complex. Another new complex t rana^^ le f lnJ ­ZEtBr­GK^X­pyJCc^) / wae also prepared to find the ease of rotation of olefin around the Pt~olefin axis by the PJCR coalleeconce method.

The optically active complexes have plus CD peak a t ca. 500 am with Д S ct>. 0*5, The CD strength decreases according to the f i r s t order rate la* on addition of a large excess of eia­1,2­

dionloroethylenotdoe). The observed rate constant ^ 0 h S

i s proporti­

onal to the conesetration of added dee,and the rate i s expressed by

32

Bate of loss of CD ­ k^Pt 1 1

/ /fr«* olefin/. She kg reflect the nil of direct olefin substitution (Л),

The olefin rotation we» exeaued by observing toe Ш Л 7 .

Flg.i ТьЪХе Botrtloa of attaylta* 1л txrme <л,

olefln)­/PtBrCl<0 aa 4)(4­I­py)/

Fij.l

X [ aolvent 1 V* Л Gt/btaol­1

OHj CD­HOg 323 66

H 328 67

01 (CP 3 ) 2 CO 295 60

CM 298 61

OH CD 3 H0 2 300 Cl

г о " coalleecence temperature

HeoultB and discussion The log kj values are plotted, against the

pX Q of the nitrogen base which ie trans to the man tp be replaced by Ice» dijwthyl­2­butene (dmt) and вйт In Plg«2. There are linear relationships, and the stronger base gives smaller fcg'e. The trana effect is so understood, that the electron donating baee gives more electrone on the Ft ion to hinder the nucleophilic attack of the incoalng olefin. The leee importance of the Л­ ­back donation from Pt to mBn la ehown by the mcdeBt difference of & G*

v a l u e s saong complexes w i t h d i f f e r e n t b a s e s , the o­dabs сошр1ех shows tha t the o v e r a l l cbnrge 1в not dominating £ > / . ( F o r the s t e r e o ­

s e l e c t i v i t y eeotKuzuo J M t o AOS _в

у? лееШш S e r i e s , W 719»p.9U T980) . )

R e f e r e n c e s

1. Hiya, Keehiwabara, S a l t o * Inorg . Chem., 1J, 98 ( 1 9 8 0 ) . 2 . Ulya , S a l t o . Inorg . Chem,, 2 0 , 287 ( 1 9 8 1 ) . 3 . U i y s , Kaehiwabara, S a l t o , Ball. Chea* Зое . J p n . , In p r e s s .

5TEUCTUEAL STUDIES OH THE CAPSULAR POLS U0OURIDB8 PROH

STRBWOCOCCUS FIBUHOIUS ГУРЕЗ 1 , 4 AID 12?

B.Lindberg

Department of Organic Chemistry, Arrheni..­ T

­*boratory (

u n i v e r s i t y of stocfcHolm, s­106 91 Stockholm» Sweden

Streptococcus jmvunoniee c a u s e s not only pneueofliee but a l s o o t h e r d i s e a s e s , such a s o t i t i s and etenl t tg l t ld la­ I t occurs In s o r e than 80 d i f f e r e n t t y p e s , each of which e l a b o r a t e s I t s one , t y p e ­

s p e c l f l o c a p s u l a r p o l y s a c c h a r i d e . The p o l y s a c c h a r i d e s frosi the n o s t f r e q u e n t l y occurr ing type hare r e c e n t l y t e e n need ae T a c c l n s . The a t r u e t u r a l e l u c i d a t i o n of t h e s e p o l y s a c c h a r i d e s has t h e r e f o r e become a n a t t e r of sone i n t e r e s t *

S t r u c t u r a l s t u d i e s on t h e capsu lar p o l y s a c c h a r i d e s ttorn t y p e s 1 , 4 and 12? , which « 1 1 c o n t a i n unusual s t r u c t u r a l f e a t u r e s , w i l l be d i s c u s s e d . S p e c i f

4

" degradat ions , H and С п . ш . г . ware the e s s e n ­

t i a l t o o l s i n \ i ieee s t u d i e s . ­ > 3 JoSugp (1—4 HB­Oalp (t—J3 UD­Qalp ( 1 —

3ug м z­acetamljido­j) . ­anlno­a.J!­ ,6­trldeoiy­D­ealeotoee

type 1

_>*)/D­MsnpHAe(1^3) l ­PuepHlc( l ­*3J D­GalpHAc(1_~4) D­G»lp(1 —

/ D­U»lp(1­

HjO / NjOjK

Type 4

] I 1 1

ot t ­oa lp oiO­OlopCl­^JfUWJcp 34 Тур» 12?

IONIC CONDlTCTIVlmr О? PLUORI!PE­!KPE P1W0HXDES P.Hagenmuller, J.­M. Seau, C.Lucat, G.Mater» G.VUleneuve Laboratoire de dilate de Solide da C.3.R.S., University de Bordeaux I. 351 cours de la Liberation, 33405 Talcnce, Ce'dex, Prance

Fluorides am the beet anionic ­conductors because of the «eok metal­fluorine bond* which enhances the P~ Ion mobility <T1/. Fluorite­type materials seemed particularly promising because of the holes present In the lattice» which can be ideally described ae a cubic fluorine sublattice with half of the cubes occupied by the cations and half empty»

If one compare о the И? г binary compounds with fluorlte­type structure, I t appears that the activation energy AS which cha­

racterises the P~ ion nobility decrease* by weakening of the M­p bond, but above a l l when a lone pair i s present of the s r

+ Ion: Л E • 1,04 eV for Са? г, but only 0.45 eV for fi ­PhPg, Лв a conse­

quence at 500 К a 10"°© cm on one hand and I0"^o"1 cm*

on the other hand. The lone pair increases the poiarizability of the cation and makes easier the diffusion.

Having in sjlnd this result» the authors isprovsd the ionic con­

ductivity by working with KBifr , Ht>BiP4 or K.Bi?4 which have either a cubic fluorite­type or a fluorlte related struotore ­ TIBiP.). lbs presence of a monovalent cation weakly bound to fluorine leant to a mobility significantly higher than that of fi ­PbPg ( j l « 0.38, 0.37. 0.3» a? forXM> 4 , RbBU4 anfl ОС ­11В1*4> (wig. л) &J. in­

ckreaslng content of Bl'* in related solid solutions l ike И

1­«М ,

х*2х*1 ** " K

' R b

* *x > ° '

5 0

> йвотежаев agals the nobility because of the trapping effect of the supernumerary BSr oations£j/.

Another way to raise the conductivity of $ ­p D ?

p i 8 t o i ^

t r o d u c e

anionic discorderlng thanks to the presence of extra P" anions,e.g. In ^i­xBij'a+x "here РЪ

г

* l a partially replaced by a homologous В!­* cation (Pi£. 2) £*/. * °

e юопяпш corresponding to the Р Ь

0 ,75В 1

о .г^г*25 wraposltlon (with a minimum Л 2 of 0.39 ev) expresses hlgn disordering with many vacancies in the Pj normal fiuorita­type sohlattice and an important number of P i r Interstit­

ial anions (n= ­ ­ Пу + x ) . Tig. 3 i l lustrates the variation of 1 1 P

I the лчтЪьг c­f vacaauiee 7 ? J and of Interst it ial PJJ anlone with x, as obtained from neutrol diffraction data.

Then x > 0.35 ordering i s again appearing at f irs t at short range and finally at lone range. Pis* 4 ehows the superstruoture obtained for x ­ 0.50 (corresponding to PbBiPe). When x ­ 0.50, n™ Is equal to x and По * 2x.. «

Slkllar results have been retained for the р ь

ч. . х

т ь

т/г+2х solid •olr.tloii owing to high polariiabllity of the Th

4

**" cation /2Л The beet perfcx*ancee have been realised for the fluorite­type related

#« and Jl ­PbSaP: varieties thanks to strong polarizablllty of the Sn

2 + cation (Fig. 1 ] . FbSnF^ la the best во far known anionic con­

ducton at 100e

C0 ^ W Si ел with an activation energy of 0.14 eV Д Л

А ЮШ etudy of *¥ ehowe that two nechanianifl шву he detected: one at law temperature correspond» probably to diffusion between normal eitesj, the second at higher temperature characterising fluorine migration from погваД. to interst i t ia l altes Fig. 5)* Above 350 E the whole F~ sublftttlce веаав to be in a quasi­liquid state, thla situation corx.epondB probably to the formation of JJ­PbSnP4 A/«

The influence of high pressure on several of these materials has been studied. The conductivity at given tewperatnra decreases with rlaing pressure* correlative!? the activation energy increases (Fig. 6) / 7 / . Lower activation «nergleo ввея to correspond to lower aotlvatloa volunee Vg ­ ­ M (JLAS&iL) , Some of the investigated materials could he ueed as pressure gauges because of the sensit i ­

vity of conductivity to pressure variations.

Fig. 1. Variation of log fi1

' Fig. 2. Variation of log<Г with with reciprocal teapezatttre. se for ЯЬ^^*^*** edlid solu­

tions at various temperatures.

36

"*

\^-~ ' I L. 0,20 ИМ >

Hig. 3. 1Голш1 It TxumoiM u d l a t m t l t i a l » t I «nitm» in

f 4 t e ^

( )% <M) Fig* 4> Stweture of PbM»? H$. 5. Conduotlon «ehui lM

in a flnoxlta­tjpo etxeotttrt

V ' . c m *1

)

20 30 40 70 в0 70 PftB ­1 1 1 1 1 t ­ V

Fig. 6. Variation or the conductivity of CC 'PoSttP^at 300 К with preaaure

R e f e r e n c e s 1. Seen J.H., Portier J. Solid Electrolytes. Fluorine ion Conduc­

tors, 313 (ed. P.Hagenmuller, W. van Qool). Academic Preas (1978). 2. lucat C , Rhandour A», Reau J.H., Portler J . , Hageinmller P.

•J.Solid State Chea.r 2g, 373 (1979). 3* Hatar S., Reau J.H., Iueat С , Сгиопво J . t HagBnmiller P. Mat.

Res* Dull., la ртявв (198°)-

4* lueet C , Portler J . , Reau J.H., Hagemmller P., Souoeyroux J.L. J. Solid State Chem., in press (i960).

5 . Perec Q., V i l a t o o g S , , Cot L . , l a o a t C, Heau J . M . r P o r t i e r J . , Я а д о ш и П е г P. U a t . Ree. B u l l . , 1 5 , 567 ( I 9 6 0 ) .

6 . V i l l e n t u r e Q . t Echegut P . , l u c a t C . , Reau J . M . , Hageniaaller P. Phya. S t . S o l . , ( b ) , 5 7 , 295 ( 1 9 8 0 ) .

7 . Hatar 3 . . Reau J . M . , Ьашаг­заи Q., Lucat 0 . , P o r t i e r J . , Hagen­

n u l l e r P . S o l i d S t a t e Comm., i n praos (198Q) .

30

THE ISVEBT10S OF/ HEW BEICTIOSS ABT> HEAGEHTS РОВ ORGAHTC smnsssis

3 a r t o n D.H.R.

I n a t i t u t de Chimie боа Subetenoee N a t u r e l l e a , C.H.H.S . , 91190 a i f ­ e u r ­ Y v e t t e , P r a n c e

Tha o r i g i n of t h e p r o c e s s of i n v e n t i o n i n Organic Chemist ry i s i n t e r e s t t a g end n e r i t s more c a r e f u l a t t e n t i o n . Throe рхсгаввее сел be r e c o g n i s e d which l o a d t o I n v e n t i o n .

1 . C o n c e p t i o n , where on o r i g i n a l i d e a , t e s t e d i n t h e l a b o r a t o r y ±3 found t o he t r u e * S i g n i f i c a n t c o n c e p t i o n i t r a r e .

2 . ma c o n c e p t i o n , where an o r i g i n a l i d e a , t e s t e d i n t h e l a b o r a ­

t o r y i s found t o he f a l s e * However, what i e obse rved i c o r i g i n a l and of i n t e r e s t .

Э» A c c i d e n t , ­ h e r e i s t h e c o u r s e of a r o u t i n e « x p e r l a a n t , a n o r i g i n a l o b s e r v a t i o n I s nade and r e c o g n i s e d t o be I m p o r t a n t . Moat of t h e i m p o r t a n t r e a c t i o n s i n Organic S y n t h e s i s ha^e been d i s c o v e r e d i n t o l a way. Exonples a r e t h e B i r c h r e d u c t i o n and the w i t t i g r e a c t i o n .

These t h e n e e « i l l be i l l u s t r a t e d by s e l e c t e d examples .

ИЕТАЬ ASSISTED ЯЕЛСТЮИЗ OF TERTI1H* PHOSPHIHES

РЕЗЬ THA^ITIOH HKTALS AHD SOME А В С 1 Ш И LIGAUI^

L.Saccon i

I s t i t u t o d i Chimlca G e n e r a l s ed i n o r g a n i c a , U n i v e r a i t a , l e t i t u t o d e l CRR, F i r e n i e , I t a l i a

T e r t i a r y and p o l y t e r t i a r y phosph inee a s t r l e t h y l ­ p h o a p h i n e , 1 , l , 1 ­ t r i e d i p h e n y l p h o a p h i n o m e t h y l ) e t b a n f , t r l p h o e , and 1 , 1 , 1 ­

t r l e C d i e t h y l p h o e p h l n o a e t h y D e t h a n e , o t r i p h o e , a r e c a p a b l e t o a c t n o t on ly a s " I n e r t " U g a n d a , b u t a l s o t o promote s e v e r a l r e a c t t o n e w i t h f c r o a t i o n of many u n e e p e c t e d m i t a l complexes which a r e h e r e p r e s e n t e d .

The l l g a n d t r l p h o s , i n ргевепсе of e o b a l t ^ X I ) a q u a ­ c a t i o n s r e a c t s i n валу ways w i t h s u l f u r c o n t a i n i n g a n c i l l a r y l i g a n d s . Гц p r e s e n c e of RSH <R о H, Ие) d i f f e r e n t dlmi c l e a r m e t a l сощ)1ехев | a r e formed w i t h fo rmulae / < t r i p h o s ) C o ( ( H ­ S H e ) 2 C o ( t r i p h o s ) / 2 + and ' / ( t r i p h o s ) C o ( f l ­ S ) e C o ( t r i p h o e ) / 0 ' + 1 * + 2 .

These d i n u c l e a r сопф!ехев p r e s e n t i n t e r e s t i n g magne t i c behev iour which i s r a t i o n a l i z e d i n t e r m s of a s e m i ­ q u a n t i t a t i v e o r b i t a l t r e a t ­

ment .

3?

The ваше Ugand triphos In presence of cobalt(II) aquacationa and CS 2 formo many <JSa*derivativae. Among theee compounds there is the Cs_­brldged dinuelear dlaaagnetic complex /(trlphoa)Co(|Jl ­­CS2)Go(triphoeV

a+

. With the llgand 1,1,l­trla(di­etoylphoephliiD­methyl)ethanef etrlphoa, and 1гоп(Ш aguacationa, the unexpected complex /(etrlpho»)Pe|SgC(PEt2CB2)C(Ue)2|/

2

*' ifl obtained. Thle Is the first five­coordinate eoetplex of iroa(II) in a singlet atate, The two above Uganda, triphos >asd etrlphoe, in presence of 3d» 44 and 5d metals and White phoephorua, give triple­uecleer sandwich metal complexes of the general formulae /(tripboajM'­^^­P^H" trlphosV*

1

'*2 tf'f<* " * °°* И

» S h

* J r

' M

* a a d / < " * * * I * M W O ­

­ C^­^IUCetrlphoa)/2

* (H ­ Fe, Co, Hi), The structures of many repreaentative triple­decker complexes have been elucidated and the magnetic behaviour accounted for on the baela of a aemi­quanti­tatlve MO approach.

Finally the tertiary phoaphlne VEty ^acting with nickeltil) Qqua­catione and hydrogen sulfide gives a diamagnetic metal cluater of the formula / H i g ^ ­ a ^ ^ ­ S ^ C P E ^ / 2

* " . The geometry of thle cluster la confacial biOfitehedraX with the nine nickel lone at the vertices of ­throe staggered triangles and the nine sulfur atoms bridging the metal lone» The six phosphlnaa are bound to be six external metale»

SOME ЕБСВ5Т ACHIEVEMENTS IH THE KHOWLEDGB OF SHE BLBCTROKC STRUCTURE OF COOBDXSATIOS CCHPOUBKJ УЯС* THOTOELBCTROH CPBCIHOSCOFIC TECHSIQUSS C.Purlani, G«Mattogno, C.CaulettJ. Institute of General and Inorganic Chemistry, University of Home, Italy

Amplication of photoeleotron spectroscopic Inveatlgatlon tech­niques (XPS in solid state, or UPS la gas phase) to coordination caopotmda has opened since a few years an attractive ^erapectiva of obtaining almost direct measurements of such interesting quan­tities as orbital energies of valence levels In the coordination shell and atomic charge diBtilbutionij la the ohromophore. The rapid growth of research in thie sector is contributing considerably to deeper and more extensive knowledge of the electronic structure of coordination compounds,and helps solving various kinds of related chemical problems* Soma inorganic eyBteme Investigated recently at our laboratory Include;

40

Gold cluster compounds of Au.L.X­, AnBLJE2» Au^L^Z and AiigLgX type (IrfHu, X»I,SGH,FPg). This la only one example of the Increas­

ing interest devoted to the etna? of n&tel cluster compounds Ъу X­ray photoeleotron spectroscopy. The energy spectrum of chemically shifted core levels (Au 4f) , primarily depending on the oxidation state of gold atoms, eonflaes the nonequivalence of natal stoma In Atic *Ed Aug clusters, and suggests metal chcrge sssignmsnts.

Spin isomers Ce»6> ^eI I

(BCS) 2 (ophen) 2 7 f d6 coordination com­

pounds), allow the experimental determination of two sets of inner­

ehell Ъ.«. values of chromophore atoms, from which a system of linear approximate relationships can be set up, and lead finally to an estimate of atomic charge variatione accompanying eoTalency changes In the high­flpin ^£r low­spin transformation»

Satell ite structure of metal 2p peaks reflect not only spin con­

figuration (see preceding caeo), but also scalier variations in the llgand field produced by the chemical environment, and. help e.g. classification of surface speoies In transition­metal baaed cata­

lys ts . In the widely investigated copper chromite eyeterns, b*e. values. Auger spectra, intensity ratios and sate l l i te structures of XFS signals, give an overall picture of oxidation etate, chemical environment and particle dispersion of the active copper centers.

Valence orbital levels are Identified from gas­phase UPS spectra and, despite severe limitations of the Коормвпе

1 model, sequences of d­orbital levelв can be compared with those obtained froa the more familiar ligand­field picture derived from optical spectra. Metal dlfluorophoBphate complexes of «"(a­SPg^ type afford one of the moat clear­cut examples of DPS characterisation of the entire valence shell of ohromophore orbitais comprising eesantially non­

bonding d­levol», and <T and JW* oxhitala of the donor atoms» Thal­

lium (I) monomelic species such as Tl'(dtc) or Tl(dtp) are aleo a system of considerable simplicity for the assignment of metal lone pair, end llgand 0" and ST levele, also .by comparison with the corresponding dlalltylthalllum(III) species.

Recent advances on the electronic structure of the widely UPS­Investigated metal­cyclopentadlenyl derivatives include a com­

plete assignment of the valence shell of аоше decamethylaethallo­

cenes M(Jj> ­CJle 5 ) 2 (M • kg, v, Cr, Ifa, Pe, Co, Hi), on the ground both of comparison between Hel and Heir spectra and of a Xigand f ield treatment, which gave v&luee for Д 2 , В and о la good agreem­

ent with the experimental findings.

41

HCRSABIC 0РИСА1 ACMVIM H.P.GUlerd. P.L.Wimer Examples of optically active molecules or lone containing no

carbon atoms are extremely rare. Two well­authenticated caeea existed until recently. These were Werner,

o /if "h«ol" and Mann'i C2l sulphaxsto­rhodate(III3, shown as formulae I and II.

<­*H|

Some other apparent^ exanples are not well established. Xheee in­clude» /СгСКР^^Т/З/апа eie­ZPtClgdlOg J (1Ш, & / V which was 'resol­ved' by selective adsorption on (+)quart«. All such, resolutions have been brought into question by the work of Aaerlglio and Duvel /5/ end by the related work of Jeoue /'(j?.

We nave now studied the various solids obtained by crystallisat­ion from a solution of platlnum(tV) in yellow ammonium polyeulphlde. These solids are as tollowst

(aH4)2/Pt(S5)3/­ffl£0 (Pom A, brick­red) (1) (HH^Jg/PttSgjy.SSgO (FormB, brick­red) 12) А)^?Ш5)2/ <PoraC. maroon) O) Porma A and В of (HH 4> 2 /Pt(Sg)­7 are obtained by cryetalllsat­

ion from highly­alkaline ammonium polysulphide solutions while Form С le obtained by adding hydrochloric acid to cheae solutions. Я10 crystal structure of Form A has been reported £lj* Our recent cryatallographlc work with Dra. J.Bdcharde and E.M.H.Evans shows that the unit cell of Form В is roughly twice the size of that of Form A. The platinum Ion Is oetahedrelly coordinated and the che­late rings have the chair conformation. The three forms can be differentiated by their X­ray powder patterns.

Hie crystals of P o m С are highly Interesting, since they are optically active. Under these particular coordinations, It appears that the solubility selarlone between the possible solids favour the enantlomorphoua form, and the first handed crystals act as This form has a higher sulphur analysis than Porma A and В and may contain larger chelate rlnge.

•eeede' for subsequent crystallisation, the rate of latereonvereion of the ешш­tlomera In solution (under these particular conditlcnej is high enough to Maintain a rwenlc coBpoeition. Indeed, we can induce raeenlsation of /Pt(S g) 3/" by deliberately adding a solut­loa cf polysulnhid'e ions.

He have eleo achieved a classical optical reaolution of /Pt(S 5) 3/" ueing the (+)/Bu(l»lO­phenanthroline)3/

2

* ion, forming the diaetereoieomerlc salt (*)/Ru(phen)../(*)/PtS14/.

We therefore add the third example of inorganic optical activity enown in 111* aie ie perhaps the ainplcet einee it contains t*o elexenta*platinun end sulphur,

Vfe are extending this work to the absolute stereochemistry, to reaolvlng analogues and to understanding the remarkable phase rela­tione of the aqueous <ННд) 2 ^ t s

i 5 ^ eyateas.

S e f e r e n c e s 1. Werner A, Ber., 47, 3087 <1914). 2. Нот P.O. •*­ Спеш. S o c , 412 (1933). 3. Podlaha J . , Ebert M. Ruse. J . Inorg. Chem., 3_* ИЗО (1962). i . Chernyaer Z. I , , Karablins L,S., Jfareveislcaye G.S. Rues» J. Inorg,

Cham., 10, 567 (1965). 5. (a) Amariglio A,, AmarigUo H. t Duval X. Ann. Chela., _3_, 5(19бб).

tb) Amariglio A., Amariglio H., Duval X. Helv. Chia. Acta, Jjl, 2110 (19BS).

6. Gillard H.D., Jul io Doaengoe Pedrosa de buz de Jeeus* J* Cheffl. Soc. (Dalton Brans.) 1779 (1979).

7. Jonee P.В., Rata L. Acta Oryst., 25J. 745 (1969).

a0iaSDEHl»­95 NUCLEAR МАСИБТ1С BESOHOJCE PROPERTIES OP K0LYBDEHIM­Q3C0, ­SU1POR ABD ­SSlEHIuH SPECIES

A.G.Wedd

Department of Inorganic and Analytical Chemistry, La Trobe University, Bundoora, 3083i Australia

The ' Ho nucleus bee been shownO^J to have an extended NHH che­mical ablft range and it le expected that subtle electronic and

43

structural effects can be detected by у э

Ио HMH. However, qusdrupo­lar line broadening associated with thle nucleus (I =i 5/2) la sites of reduced symmetry might be expected to restrict the chemical use­fulness of "Но Я Ш . This paper reports that a combination of accep­tably narrow llnewidthe (usually < 50Hs) and rapid data sccumulat­ion (presumably associated with favourable relaxation processes) Is possible for various molybdenum specleB of reduced symmetry.

Interest in the chemistry of the large inorganic molecules the polyoxomolybdatea, is sustained by their complex structural and reactivity patterne, and their Importance as catalytic precursors In the petrochemical industry. An integrated 0­ and "Ыо­BMR study showe that soma of these molecules are fluxlonsl in solution. Рог example, the 9 5

Mo­JMR of К and J3 ­/UogOgg/"* In HeCH eathibit the same single, narrow resonance at О 15 ppm from /UoOj/ at room temperature, Implying exchange of all molybdenum atoms on the "Mo­MR tlmescale. A concerted interconverelon mechanism will be discussed.

Ihe series of anions /MoO. „5 и/г

~ and /MoO, ­Se„/ 2

" (a > 0­4J show nariow experimental llnewldtha and a systematic decrease in shielding of the uolybdenum nucleus as the number of Bulfur or selenium Uganda Increases. /UoSeJ exhibits the most shielded signal observed to date and extends the known chemical shift range to 5500 ppm (/HoSe4/

E_ la McOHt 3339; /(^­CgHj) H6(C0>y In CH 2Cl 2i ­2120), Ihe ion /(CTJCuKoS^ 2 ­ contains the MoS^ unit bound as a bidantato ligand to a trigonal copper in the solid state /3/. Its Tfo HHR signal in HeCH (and those of related species) ia shiel­ded relative to /MoS^/2

" (2207 ve 1363 ppm) and the llnewldth Is increased W w , 38 те 0.3 Hz). In addition compounde containing the Mo % "

a Q

3 Ho 0,­structural units bound to sulfur­Uganda provide useful HMR data.

In summary, the combination of reasonable sensitivity, acceptable llnewidthe 1л an extended chemical shift range of 5500 ррв and rapid data accumulation suggests that "Mo NMK has potential In exaslnat­lon of the dlimagnetlc states of the sulfur­rich Bitее in the vari­ous molybdo­enzymea /47» as well ae a probe for the Cu­fc­S Interac­tion In higher animals.

R e f e r e n c e s 1. LutB 0. et al. 2. Haturforach., 3.1a, 356, 454 (1976). 2. Wsdd A.G. et al. J. Organometall. Cham.­ 195, C17 (1980); Inorg.

Chen., 19., 3866 (1980). 3. TTedd A.G. et al,, unpublished work. 4. Coti^Man Ы.Р. Ed­, "Molybdenum­containing Eazyaea", ?ergamon

Preoa, 1979.

CHEMICAL, ТНЕЮЛ.ШНАМЮ AND SOLID STATE ASPECTS OP THE METALLUHGICAL PR0CES5MG OP BAUXITE, SULPHIDE ORES AMD ILMSHiETE

A.F.Reld

CSIRO Institute of Earth Heeources, Division of Mineral Chemistry, P.O. Box 124, Port Melbourne, Victoria 3207, Australia

In the 1лcaption, operation and optimization of chemical metal­

lurgical processes i t i s necessary to understand the thermodynamics of the expected multicomponent reactions /17 and thei r consequences for yield, side reactions and operating conditions. In many cases experimental procedures oust be devised which simulate reaction conditions, for oxaaple in the provision of co­existing sulphur and oxygen fugecitiee at high temperatures, or in the modelling of flash saelt ing.

In theoretical and experimental studies, the effect of composi­

tional and phase impurities in the real нуstem must he recognized, and application of phase equilibrium results must take account of t i n t t i c s , the occurrence of non­equilibrium phases, local or micro­

mechanisms, and of ranges of impurity compositions rather than aver­

age values. Interpretation of the reactions and products of the real process system also requires the use of techniques such ae electron microprobe analysis petrology, and modal or image analysis, and of correlation with physical properties such ­ porosity and grain s ize .

The application of the range of theoret ical , experimental and observational methods to metallurgical process chemistry i s i l l u s ­

trated by: (X) the removal of iron from bauxite by a multistage sulphidi­

zation­clorlnation /"2/; ( I I ) the raise and products of reaction of par t ic les in suspen­

sion smelting /37; ( I I I ) the production of synthetic r u t i l e from ilmenite by coal

reduction with со­segregation of ttu impurity by sulphidizatlon /4 ,57 .

R e f e r e n c e s 1. Tornbull A.G, "The CSIRO­HPL ТКЕНМОГАТА Syatera.% Chemistry 1д

Australia, 44 (12), _«i­5 (1977). 2. ffadsley M.W. "Use of the CSIRO­MPL THERMODATA system in the

design of a bauxite purification process", Proc. Second Austra­

l ian Thermodynamics Couf., 19B1 (R.A.C.I.. Parlcville, V i c , Australia), 112­124.

45

3­ Jorganean F.B.A. "Combustion of caalcopyrite, purite, galena and •pbalwit» uafler simulated Huapenelon melting conditionA", Australia Japan Bxtrmctiva Metallurgy Symposium, Sydney, 1980 Uuot. Inet. H n . HeUll., Earkville, Vic, Australia), ЗЭ7­4С8.

4. Qrey I.E.t Held 4.Г., Jones D.G. "Reaction sequentкэ in the re­duction of llaenites 4 ­ interpretation In terms of the Fe­Ti­D and Pe­to­Ti­0 phaee diagrams". Trans, Inet. Min. Me tell., CEO, 105­111 (1974).

5. Grey X.S.i Merritt R.R. "Thermodynamics of the coal reduction process for the upgrading of ilmenlte", Australia Japan Extrac­tive Metallurgy Symposium, Sydney, 1960 (AUG. I.H.M., Parkrille, Vic, Aust.), 397­408.

STUDIES OH METAL GOMPIBS CATALYZED DECOMPOSITION OP OSGASIC RYDSOPEROIIQBS ВТ KKB METHOD A.H.Trzeclak,, J.J.Ziolkowslcl Institute of Chemistry, University of Wroclaw, Vroclsw, Poland

The studies on catalytic decomposition reaction of the organic hydroperoxides at the presence of transition metal complexes are the part of broad studies on catalysed oxidation proceseee of hydrocarbons.

Proa that view­point the recognition of the decomposition reac­tion mechanism of hydroperoxides could greatly contribute to unders­tanding of the oxidation reaction mechanlen. That is of the essen­tial practical meaning because the reactions of the organic hydro­peroxides are know» to yield the new, useful products either by means of hydroperoxide decomposition or by epoxidatlon of olefins. It la generally believed that the formation of an active complex by the incorporation of hydroperoxide Into the coor* lation sphere of a catalyet le toe first reaction atage of the organic hydropero­xide with the transition metal complex.

That Interaction results In activation of hydroperoxide which next undergoes decomposition according to the radical or molecular machAnieau Potnation of the active complex le therefore the essen­tial ooment in the reaction mechanism.

!he direct proofs for existence of the transition complex with hydroperoxide could be obtained by the HUB method which is useful mainly In investigations of the systems, where a catalyst is the paramagnetic compound* The ЙМЕ method was applied to studies an

46

i n t e r a c t i o n s of hydroperoxides» (CR^KCOOH, (CH^gCgHeCMB, OH3J2C6H5C(CH2)OOH, <CH 3) 2C 6B gC<OH 2) 2O0a, (С 6Н 5) 3СОСВ w i t h comp­

l e x e s /Rc 30(CH 3COO) 6(H 2o1 3/CH 3COO and /CojOtCHjCOOJglCHjCOOH)^ which c a t a l y z e t h e i r decomposit ion In homogeneous sys tems .

The exchange r a t e constant of the f r e e and coordinated, hydro­

peroxide c h a r a c t e r i z i n g the formed t r a n s i t i o n complexes , depends equa l ly on s t ruc ture o f hydroperoxide and on e l e c t r o n i c s t r u c t u r e of a c a t a l y s t ; the e t e r i o e f f e c t s play the a a s a o t l a l r o l e .

I r a n s l t i o n complex i d e n t i f i e d a t low temperature by the ШКА taethod 1 B the a c t i v e form of a c a t a l y s t I D hydroperoxide decompo­

s i t i o n r e a c t i o n . That was i n d i c a t e d by c o r r e l a t i o n of the exchange rate cons tants of hydroperoxide i n the coordinat ion ­jphere of a c a t a l y a t and i t s decomposit ion r a t e .

Appl ica t ion of the JMR method al lowed to e s t a b l i s h that the f i r s t s t a g e of cyclohexene epoxldat ion r e a c t i o n by the cumene hydro­

peroxide a t the presence of Hg/ltogO^OX) (HgWg/CCH^gCO.ABgO ae c a t a l y s t , was the s u b s t i t u t i o n of the coordinated water by hydro­

peroxide.The n e s t e tage was based upon the i n t e r a c t i o n of the coor ­

dinated hydroperoxide with o l e f i n , y i e l d i n g epoxide . The HltR method al lowed to e l u c i d a t e e x p l i c i t l y the mechanism of

c a t a l y t i c epoxldat lon p r o c e s s of o l e f i n s at a p p l i c a t i o n of the o r ­

ganic hydroperoxides i n homogeneous and heterogenlced systems.

R e f e r e n c e s

1 . Swift T . J . , Connlek R.E. J . Chem. F h y e . , 307 ( 1 9 6 2 ) . 2 . Traeciak A.M., Zlolfcowski J . J . Oxid СОЕ», ( i n ргевв) . 3 . Txzecialc A.M., Sobccak J . , Zlolfcowafci J . J . J . Hoi . Cat. ( i n

preoe? .

SXHIHESES AHB REACTIONS OF HE* 9­10 VERTEX AZABQRABES

K.Base

Znetitute of Inorganic Cb©aletry, Czechoslovak Academy of Sciences! Prague, Czechoslovakia

А тегу email number of azaboranes have been described up to date /l7. Reaction of B ^ Q H ^ with HaHOg in tetrahydrofuren /2/ followed by acidification afforded) depending on the reaction conditions» arachno­4­HBgH^ (1) £J or nldo­6­HBgH,,g (II) Z V as In £q. 1.

HaHOg diluted Ы01 4_вВдН

Asaborane I 1я the f l r a t uncharged arechao­a&*boraae, the a u l e e n l a r atniBtur* of which waa d e t e n u n e d by an X­ray a n a l y a l e / Э / * ft* a*ea a p a e t x w of I e x h i b i t e d c u t ­ o f f • / • 125, correwponding t o ' V B ^ H ^ but t ea attempted ajathawla or Щ^л2 ** * t h a n » ! s p l i t t i n g of I * • • u n a u e c t a f u l l . Iraatmaet asaboruia I with P t ( P P h 3 ) 4 produced / 5 / 9 i 9 ­ t I T h ^ ) 2 ­ 6 , 9 ­ J r P t B e H 1 1 f tha atzuoture of which waa d e t e n d n e d by «a X­ray a n a l y a i e Д / . АааЪолш* и l a tha f l r a t uncharged a ido­a ieborane wboa* a t m o t u r e wae proaoaad on th* baale of *B and

1 1

S n . a . r . apaotra. Maaa wpeetrua of И e x h i b i t e d a m i a c u l a r c u t ­ o f f м/Э 125, correepondine t o ' V

1

* ^1

H

1 2 * А

* * ° о ­

пше I I r e a c t s almost q u a n t i t a t i v e l y with Lewie M e t ! t o af ford агасЬло­9­Ь­б­ИВдН^ ( I I I ) conpounde, (L­HeCV ( I l i a ) , lfegS ( IXIb) , PPh, ( I t l c ) ) . ваяв s p e c t r e of I I I show peaks corresponding to E* and Tl В в

1

н | г , thus I n d i c a t i n g the fragmentation of a o l e c u l e e under the c o n d i t i o n s of s e e s spectroscopy» Thie s p l i t t i n g of the B(9)­L bond have a l e o been observed i n the В n . m . r , s p e c t r a . The reduct ion of I l i a w i t h LiAlH^ i n tetrahydrofuran afforded araohno­

­ 6 ­ H B Q H ^ 3 i n high y i e l d . R e f e r e n c e s

1. H e r t l e r W.R., Klanberg P . , Muet ter t i ee R.L, Inorg» Chen*, 6,, 1696 ( 1 9 6 7 ) .

2 . Muettert lea E . L . , Pord C. US p a t . 3 . 0 5 0 . 3 6 1 . 3 . Base K., Keremanek G., Pieвек J.,Huffman i\,, Bagatz P . , Schaef­

f e r R. J . C . S . Chem. Соишип., 1975, 9 3 4 . 4 . Base К . , Напоивек P . , Pleaek J . , Stfbr В . , Lycka A . , i n p r i s t . 5. Base K., St fbr В . , Zakaarova I . A . Synth. React . Inorg . Met.­Org.

Caea. , 10 ( 5 ) , 509 ( 1 9 8 0 ) . 6. Base K., Petr ina A . , St fbr В . , Petr fcek v . , Maly K., bfnefc A . t

Zakharova I . A . Cham. 2nd. ( Iondonj , 1979, 2 1 2 .

SOME HJVBSTIGAMWfS 0? BIHAR* 110LTBH SALT MUTURBS

H.­H.Qaone

Bergakademle Preiborg, DDR ­ 9200 Freiberg, G*rwen Oeaocratlc Republic

Uaing the Knudeen effusion method the rapor preeaura of pure alkali helidee and alkaline earth haliaea (chlorides, broaidee, Iodides) and some of their charge­uneyimetrical mixturea haa been determined. The vapor phase over these salts has been ir ostlgated over a wide temperature i­ange with a maas­epectroaieter, equipped .

48

with a Knudsen Islet systea, to find the correct composition of the тарог*

The repor phase of alkali balldes conteata significant aaounta of polymeric species tab. 1).

T a b l e 1 Content of polymeric opeclea in the vapora over alkali halidвв

S a l t Tcsipera tur* n u g e , 01дегв^ *

Trimore, *

ЫС1 783­1073 79­60 2 . 8 0 ­ 5 . 5 0

S»01 873­1163 23­52 0 . 6 0 ­ 1 . 2 5

KC1 B3B­111B 16­63 0 . 2 5 ­ 0 . 4 5

RUGI вое­1123 12­50 0 . 1 0 ­ 0 . 4 0

CeCl 720­1093 5­51 0 . 0 5 ­ 0 . 2 0

ЫВр 773­903 78­67 2 . 7 0 ­ 4 . 0 0

наВг 793­110 19­52 0 . 4 0 ­ 0 . 6 0

KBr 783­1093 12­57 0 . 1 5 ­ 0 . 6 0

RbBp 758­1068 6­41 0 . 1 0 ­ 0 . 4 5

CaBr 678­993 4­32 0 . 0 5 ­ 0 . 1 5

L i l 698­833 60­50 0.72­245

Hal 723­1063 9­54 0 . 2 5 ­ 0 . 8 0

KI 748­1088 7 ­ 5 2 0 . 0 5 ­ 0 . 3 5

аы 733­978 4­26 0 . 0 5 ­ 0 . 1 5

Cal 683­958 2­20

The equilibrium constants of the diBBOclation of dimeric species HgX­ 77 ** 2 1С hare been determined.

The enthalpies of sublinatlon and vaporization were calculated from the teopereture dependence of the mass spectra

d 1д(1+.Т) я ш Л H v

dT НТ2 end eoapared with literature, data.

In the naao spectra of binary oysteas alkaline earth hallde ­alkali halide the lone KK'Xg and lyi'X^, formed fron neutral mole­cules НМ'^Ц and IIJPX., ware observed. Only the dlaerlc alkali hallde molecules in the vapor hare a significant influence on the

;alcuiatlon of vapor pressure according to Knudsen equation. From tbs corrected values of vapor pressure were determined activities end QICBSB free enthalpies of mixtures*

EFFECT OP DIFBERSHT PREIREATHKHTS OH DEGRADATION 0? CELLULOSE AHD LIQHOCELLULOSE BY BHZYMATIC AND AGIO KYDKOLYSIS B.Fhlllpp Academy of Sciences of the GDR Institute of Polymer Chemiatry In Teltow­Seehof German Democratic Republic

Tr heterogeneous hydrolysis of cellulose by dilute acid or a cellulolytlo enzyme solution overall rate of reaction as «ell ав final glticoee yield and OP of residue depend largely on the physi­cal structure of the sample and, with lignocBllulose из a subst~ rate, also on the amount of llgnin and on lignln structure.

In thie context, results are summarized on the effect of various prutreatmente of cotton llnte­ra, i.e.

«ret and dry milling, swelling and drying procedures; thermal and irradiation pretreatment; changes in eupe molecular order via formation ox addition; contpounda with NaOB, Ш , and HpH­CHp­CHp­NHg, reap, on heteroge­

neous acid (in HC1 at 100°C) and enzymatic (culture filtrate of Gllocladlum spec.* pH 5, 40°C, oubetrate ­ to­liquid­ratio 1:100) hydrolysis»

The course of hydrolysis was pursued by weight loea of saople, amount of reducing sugars and of glucose formed, and by DP of residue* Additional information was obtained from water retention value, 2»ray diffractsgram and electron alcrographa of the saaplea before and after hydrolysis.

Enzymatic degradabillty of celluloses la enhanced by using a never­dried substrate or by wet milling of the sample, but le diminished by drying procedures or by thermal treatment, while with acid hydrolysis the ;­everae holde true. Electron beam or V ­irra­

diation increseea the enzynatic degradabillty of pure cellulose only after applying a very high dosis > 500 kGy, while the LODF alfter acid hydrolysis Is affected considerably already by a smalZ doele. From results on enzymatic and acid hydrolysis with cotton linters pretreated by aqueous sodium hydroxide, liquid ammonia or ethylenediamine It can be concluded that degree of lateral order is of high relevance for both ways of hydrolyeie» while the lattice 50

type of cellulose seems to be of minor Importance only. Addltiona­Hty, with enzymatic hydrolysis, "accessibility of fibrillar struc­tural unltaH plays a major role» while aoid hydrolyeie м у be en­hanced by "internal structural в­Ьхевв" within the sample.

After discussing this work with cellulose of rather high purity, some results of current work on enzymatic degradation of lignooel­lulose of spruce, beach and annual ilanta are presented, combining chemical and morphological, methods in theae inveetigatioue. Qhvl­ously, some destruction of the llgnin­cellulose­network is neeee­sary to achieve a considerable degradation of cellulose by oellu­lasee, but the extend of delignlfication needed may be rather dif­ferent* depending on starting sample and mode of deligniflcation.

Conclusions are drawn from the results with regard to feasibi­lity of enzymatic degradation for utilizing celluloslc waste.

ELECTROItfTE SOLOTIOHS, POSIMOHAL AHD VKLOCIK CORBELATIOHS H.G.Hertz bietltnt fur Ihysikalische Chemie und BlektTochemie, der Dnlversltat, Karleruhe, P.E.G.

A brief outline of structural Information on electrolyte solu­tions In form of pair correlation functions is given* The various methods, diffraction, thermodynamlce and N.M.R. studies, are die­cussed erltlc^ily. Then an introduction to our knowledge of velo­city correlations In electrolyte solutions la given.

The basic conceptual difference as compared with the positional information Is described. Some typical examples for electrolyte solutions with variable degree of complex formation and also Includ­ing acids are presented.

ELECMOCHSMISTR*, A REFOHHUJATIOH OP THE BASIC PRHTCIMES H.C.Hertz ' Inetitut fur Physlkallsche Cnemie und EZektrochemle, der Unlversltat, Karlsruhe, P.R.G.

A new general scheme to treat multi­component electrolyte dif­fusion is presented. Next the diffusion of electrolytes in the presence of an electric current ie treated which leade to what we call the fundamental Пат? of electrochemistry. The concept of the transport number appears In a no* contest and the two moot Important

51

experimental methods to determine t aire mentioned. A ring­shaped diffusion arrangement» In which a chemical reaction proceeds, forms the prototype of a galvanic cell* Conventional formulae far the EMP are derived which however have the fundamental difference that the liquid junction potential belongs to the reversible part of the electric potential Concepts like electrochemical potential,double­layer, and Galvani potential do not occur. A new explanation Is given to the Bait­bridge and the membrane potential.

PALLADIUH(II) AHD И А И Л О М С П ) COMPLEXES WITH BEBZOXAZOLE AMD BIIDA20LE DERIVATIVES II.Biddau, G.Devoto, U^Uaaeacesl, R.Pinna, G.Pontijelli Inetituto dl Chimtca Qenerale* Inorganics ed Analitica Univereita degli Studi di Cagliari, Italy

The isoxazole, oxazole and imidazole derivatives are Important from a biological point of view. These Uganda and their complexes рое ее в в very peculiar pharmacological properties (Г1­4Л

Previously £$ we have reported the preparation and character!­ . zation of complexes with lsoxasole (lsox), 3»5­diMeixos, Э­Ие, 5­Phieox, 3»5­diPhieox, 3­amino, 5­methyliBox(3­AHI), 4­amlno, 3,5­dimethylisox (4­JVDI) and 5­amino­3»4dlmethylieox (5­ADI). These coordination compounds are of the general formula H(L) JE„ where M • Pd, Pt; X • Cl, Br, I and in some case the lt(LX_ derivatives are obtained 2fce и(Ъ^. complexes are trans­sonar© planar while the 11(L)X2 derivatives are cifl­square planar. The Uganda iaox, 3t5­diMeieo:c. 3­Me,5­Phisox and 3,5­diPhisox act aa monodentate Л­bonded, the 3­А1П hehavea ae O­bonded while the 4­АЫ and the 5­ADI act ав monodentato via nitrogen atom of the ­HH, sr°u

The HdOgXg derivatives (X = isox, methyl and/or phenyl auhBti­tuted iaox, 4­ADI; X <• CI, Br) are also investigated for their In­hibitory activity on the ferments with the collaboration of I.A.Za­fcharova and other russian coworkers /6/.

Recently ft] we have characterized the palladiiun and platlum com­plexes with 2,5­diphenyloxa30le (FED) and 2­5­dl"RthylbenzoeazolG I . (IfegBO). These derivatives are genorally of the type MdJJC­ trans­square planar: the PPO acts ae monodentate н­bonded, while the Мэ ВО • behaves ав O­bondeda In order to extend this study to other hetero­cyclic ligandH we have now prepared ant. characterized new M(IO X~ complexes where L в benzoxttzole (BOJ, 2­aethylbenzoxazole (MeBO), Д­ethylimidazole (H­Etlm), Л­propylimidazole (N­Proplmjf n = 2,4; X = Cl, Br and I. 52

The aim of this work is to Investigate the coordination beha­viour of the Uganda and to establish the sterochemistry of the complexes.

The Isolated compounds have been prepared by refluxing with the HX­ salts and the Uganda used 1л excess as solvent or in methanol solution. With KJK. saltв the complexes have been obtained in water. All the compounds have been studied by chemical analyses, infrared (4000­100 cm" 1

), electronic speeti­ and molar conductivity data*

These complexes ore generally soluble in MeOH, EtHO , DMP and parum soluble in water. Only the Pd(H­EtIm)aci and the M(L) 4X 2

(L a H­Etlm, H­Proplm and X • CI, Br) are very soluble In water End it is possible to use them for the cancer research.

The MBO)gX­ derivative a are trees square planar, except to Pd(HeB0)2Cl£ and Pt(MeB0)gCl2 that seen to be cie­equare planar. Regarding the imidazole derivatives complexes those of the type H(L)2X­ are probably cie­oquare planarj the И(Ь>дХ_ are Bquare pla­na* with the halidea out of the coordination sphere: in fact the \) (M­2) bandB are absent in the expected ranges. The H­Etlm and N­Proplm ligande are obvloucly monodentati H­boilded /v> (Pd­H) = = 259­236 cm" 1

; ^(I"­H)s 22b' cm"V /Й/. It is important to point out that these compounds have probably antitumor activity because the eis­.Ptimidezole)gCl derivative has cytostatic property on the miceg for leudemic Ы 2 Ю UUDCL­ /9/. £uia activity togheter to the toxicity, antlallergicel and inhibitorlol properties «ill be investigated In the next future.

R e f e r e n c e s 1. Kirehner Б., Wei V.K., Francis D., Bergman J.G. J. Hed. Chen.,

i, 369 (1066). 2. Vetulani J., Postepy Hig. Med. Doew., 22, 315 (196B); Dies.

Phara. Pharmacol.» 18, 13, 19 (1966). 3. Puig­Parellada, P. Garcia Gaeulla, Puig­Mueet P. Pharmacology,

10, 161 (1973). 4. Anderson R.G.C., blngren B.R., Colldahl H. Acta Pharmacology

and Sox^col., 42, 381 (1978). 5. Pinna R., Ponticelli G., Preti C , Tosi C. Transition Met. Chem.,

1. 173 (1976) and refe. therein. 6. Za«harova I.A., Salyn Ja.V., Tatjanenko L.V., Hashkovsky Yu.Sh.,

Ponticelli 0. J. Inorg. Eiochem., in proof, 7. Hassaceei M., Pinna R., Ponticelll G. Spectrochim. Acta,in presa. 8. Biddau Ы,, Devoto G., Massacesi M., Ponticelli G. Transition

met. Chem,, J., 99 (1976. 9. Van Sralinger C.G., R

sedijk J. luorg. Chin. Acta,'30,171(1979). 53

Так CONCEPT CP ELECTRONEGATIVITY Iff SLATER'S THEORY OP THE ATOM C.I.Lepadatu Institute of Physical Chemistry, Bucharest, S.R.Romania

It 1B made a tentative to Interpret the electronegativity, start­ing from Wilson's formula ^*l/ for the exact nonrelativietlc ground state energy of an atwai expressed ae a electronic density functio­nal.

Assuming approximate density functions built from Slater type orbitale, one finally obtalna for the absolute (MullifcenJ electro­negativity

2

tMulllken Ы "

H 7 + V where the first term would represent the necessary energy to remove the electron from an Imtcaglnary hydrogen atom, namely from the dis­tanoe of the valence shell of the element to infinity, and the se­cond ­»ne the. electron affinity of the hydrogen aton. A similar re­sult ie obtained with the vectorial model of the atom. It has been thue found that the quantity ^/^Mulllken ш у b e w e l 1 regarded as the energy necessary to bring a hydrogen couple оГ electron charges to a distance equal to that between the nucleus find the valence shell of the chemical element*

The electronegativities stressed in unite of that of lithium, show a etribing parallelism with Pauling's onee.

The quantity 2/tnuHii c e n

т а

У h e a l e o Identified with the Permi

energy Of the atoms.

R e f e r e n c e s 1. Wilson 2,B.t J r . J . Спет. Рпув.^Зб, £232 (1962J.

METAL­COMPLEX ELECTRODES. D5TERMIHATIOH OP CYANIDES IH W>.TERS C.Luca, V.Magearu, E.Daacalescu Institute of Chemical Phyelcs and Polytechnical Institutei Bucharest, S.H.Romania

It haa been achieved the metal­complex electrode C\7 Ag | Ag(CH)2, СИ™, as an Indicator fo' the CH~ Ion concentration, having the ree­ponee elope ' • „ — ­ 0.118 Л 7 at 25°C. The dependence of the

Л(1 в(СН>) standard potential on the Ag(CH)„ concentration, enforces to keep constant the Ag + ion concentration. 54

A procedure to determine fsf the cyanide в from waters лав been elaborated usiag thie new metal­complex electrode. It conyiots from the following ateps:

НСИ stripping from the eamplf lo be analyzed, In acid medium: retention of HOT In an electrochemical cell built fron the wet<il­

conplei electrode Ag | Ag(TEA)t, 1Ek and a reference electrode­ Aft.T the HOT retention, the electrode Ag I AgCTEA)^, TEA. transforms i::tt Agl Ag(CH)", CH~ electrode, according to the equilibrium

Ag(TBA)J + 2CH" Z^±Z Ag(CH)­ + ЭТЕЛ, with the equilibrium constant К • 10 5**2 (TEA к Threethanolammine);

recording the electromotor tension of the electrochemical cell, function of CH" concentration.

The procedure Is carried out on an equipment formed from three devices: stripping device, electrochemical cell end pX­neter. The equipment 1B initially calibrated ueing standard solutions contain­ing known CH" concentrations. It has the following pertогоапсевt Time for analysis 30», concentration range for CI7™ within 1С ­

­ 10" 7 aol.l ­ t

. Xn order to remove the pobeible interference due to the sulphide

lone, a special device to retain the hydrogen aulphiae пан been also achieved.

R e f e r e n c e s 1. Duca C«, Magearu 7., Pops С J, Electroanal. ­Tien., 12,45(lSS6). 2» Popa G., Hagearu V., ])аесв1евси E., Luca C. Romanian Potent,

H 67893 (1975).

KIHBTICS, HECHAHISKS А1ГО DKSIOH QP OLIGO­OSCILUTOHX BEACTIOHS M.T.Beck Institute of Physical Chemistry, Koeeuth Lajos University, Debrecen, Hungary ­

Usually the concentration of any intermediates changes according to а г­р­йтш curve; in case of oscillating reactions the concentrat­ions of at leaai; two Intermediates show a high number of extrema, while in the oligooeclllatory reactions the concentration of ODR or more intermediates exhibits only a limited number of extreme*

So far only the behaviour of reversible linear ayetemn vraa t:ant­ed theoretically, end recently oligo­oaclllatory relet •'•эля УЕТГИ found and designed by perturMng certain clock rebctiti;.*>..

Ihe lecture systematically discuss tba different tyj.ee of oli-gooscilletory reactions; j

I) Degenerate oscillating reactions; | II) Perturbed clock reactions; XII) Paralel reactions with a common intermediate; , IT) Spontaneous ollgo-oscillatory reactions. | The principles of design of +he types I) and II) are given and

several ezanplee are discussed in detail» The theory of the type III) is outlined, but no eynteai if found

experimentally. Spontaneous oligo-oacillatory reactions can be expected in case

of redox re&otlons «here both the oxidant and the reductsnt can exiet in a jjtBBber of different oxldstlon state leading to the neces­sary feedback for exhibiting several extreme In the concentration of an Intermediate. The oxidation of hydroxylamine by lodatt or periodate belongs to this type of reactions. Perturbing such a sys­tem by a suitable reagent the number of extrema can be increased. In fact, by adding nalonic acid to the aforementioned systems, as many as five extreiLa in the concentration of iodide was observed.

The connection of ollgo-oacillatory systems with the oscillat­ing reactions ie, dieciieeeu.

POLYHEfl SV.HTHESI5 IN COLD PL!SUA COHDITIOHS C,I,Siaiitmeecu, B.C.SlaioneBtti Department of Organic and Ilaeromolecular Chemistry Polytechnic Institute, 6600 Jassy, Romania Last years numerous papers dealt with chemical reactions carried

out in plaeaa conditions. She possibility of generating mono- and multifunctional radicals under the influence of electrical dischar­gee in the gaseous phase created new highways for the transfonoat-ion of practically all of the organic and elemento-organlc compounds In macx-omolecular structures* However, only recently plasma-ehemie-try penetrated the polymer chemistry field and, almost unnoticed, a new branch of aa'cromolecular chemistry started to develop - the x

macroicoZeoular plasma-chemistry, j Plasma polymerisation oriented In the following main directions; polymerization of common monomers, such as vinyl and ethynyl

compounds, etc.; polymerization of unconventional monomers, e.g. saturated hydro­

carbons, aromatic derivatives, saturated cycles, etc.;

56

surface grafting and/or modification of polymers (film3, natural and synthetic fibres, fabrics);

synthesis of biologically important compounds 1л simulated pri­meval Earth conditions (eiopolymer­llke structures).

The development of technologically advanced plasma­polymeriza­tion reactions and proceaeee present, however, a number of linita­tlona. Irrespective of the nature of predominantly active species, side­reactions take place simultaneously with the main ргосеввев, and the structure and properties of plasma­obtained polymers con­siderably differ from those of the conventional ones, these poly­mers being generally amorphous and highly crosslinked.

Plasma­induced polymerisation is a new direction in macromole­cular plaama­cheatetry» In thle particular case, the initiation reaction takes place in the gns phaae and can be easily controlled; the molecular weight and polydiapersity of the obtained polymers is directly related to the reaction conditional and, at the ваше time, the activity of the propagating species appears to be unusually high and very stable in time, even at i">om temperature.

She paper deals with some homopolymerizations, copolymsrizatlona, block copolymers.zatlons and grafting reactions initiated In cold plasma conditions.

Plasma­induced homopolymerlzatlon (in bulk or solution) of viny­lic monomers leads to ultrahigh or high molecular weight polymers (e.g., polystyrene ­ Jo? • 3.87*10', poly(methacryllc acid) ­ I*» -

м 1*?5*107

, polyacrylamide ­ to • 1.37*10^), The macro­radicals res­ponsible for chain growth remain active in time and can be used as macromolecular initiators In polymerization reactions, as well as mpport moleeuios for block copolymerizations*

The copolyzaerizatlon systems studied (e.g. methyl metoaorylate ОЦ) ­ atyrena <M 2), r 1 > O.ai, r g • 0.57; alpha­methyl styrene (Hg) ­ methyl methacrylate (Ы.,), r 1 = 0.42, r 2 = 0.22; acrylonltrile (ltj) ­ alpha­ethyl styrene (Ы^), г, » 0.0Э, r g ­ 0.14; methacrylo­nitrtle Ш ­ ) ­ etyreue ' v

3)» *­| = 0.21, г 2 с 0.34, ate.) led to po­lymers with composltl&jiu .and configurations very close to those obtained by radical mechanisms, indicating the radical nature of the plasma­induced process.

One has to underline the interest of using the active raaeroradl­cals resulting in bulk hooopolymerizationa ев "macron» lecular ini­tiators", as well as the possibility of block copolymer synthesis starting from these macroradicale.

The paper presents also some date on the mechanism of plasma­Induced reactions and underlines the characteristics end advantages of this new approach to polymer synthesis.

57

PHASS EQUILIBRIA IH TH£ SYSTEM C a C r ^ ­ C a j P ^ C L AT LOT

PARTIAL OHGSS PRESSURE

J . H a v l i c a , B , K a n e l f r , v.AnbruV.

I n s t i t u t e of I n o r g a n i c Cheml0t i7 , Caul::"*? of Cnemi­­^ S c i e n c e s , Slovak Academy of S c i e n c e s Dubravaka e e a t a •;» 809 34 B r a t i s l a v a , Caechoalovalcla

The t e r n a r y diagram o f t h e t i t l e sys tem h a s n o t been r u b l i e h e d y e t . The i n v e s t i g a t i o n СУ which l e d t o r e f inemen t of t h e phasii diagram of t h e sys tem CaCr^O,­CaPo ? 0, showed t h a t s e v e r a l f a c t u , s a p e c l a l l y s i m i l a r i t y of e t r u c t u r e , c iooe v a l u e s of cc­aatanta f o r t h e e l emen ta ry c e l l of ca l c ium f e r r l t a end ca lc ium chromi te СИ and a s i m i l a r t ype of bond ing h i n d e r e d f o r m a t i o n of con t imioue s o l i d s o l u t i o n s of t h e t y p e C a ( C r P e ) g 0 4 . By quenching method t h e p h a s e r e l a t i o n s were de te rmined i n t h e sys tem CaCrpO,­Ca J e g O _ i n argone a t p a r t i a l ozycen p r e s s u r e of ПО Pa and I n t e m p e r a t u r e i n t e r v a l 1260­1520°C. wi th the a i d of e x p e r i m e n t a l d a t a t h u s o b t a i ­

ned a peeudobinaxy phase diagram of t h e e y e t e a « a s c o n s t r u c t e d . The e u t e c t i c t e m p e r a t u r e of 1405+5°C and t h e a r e a of f o r m a t i o n of s o l i d s o l u t i o n s were d e t e r m i n e d . Format ion of a s o l i d s o l u t i o n of t h e t ype Ca(CrPe)gO. a c c o r d i n g t o t h e e q u a t i o n

( 1 ­ i ) CaCrgO. + Gn^egOc С а С г г ( 1 в т г ) Р в 2 х ° А + ^ ^ l e accompanied by f o m a t I o n of CaO which o c c u r s bo th i n t h e a r e a of c o e x i s t e n c e of CatCrfeJgO w i t h C a ^ e g O ­ and I n t h e a r e a where s o l e y t h e s o l i d s o l u t i o n of Ca(Cr.Fe.) 20. 1в formed. At t e m p e r a t u r e s above 1520°C a s i m i l a r b e h a v i o u r of t h e I n v e s t i g a t e d sys tem i n a i r atmosphere was assumed. P e r c o n s t r u c t i o n o f t h e phase diagram t h e v a l u e s of m e l t i n g t e m p e r a t u r e s o f d l c s l c l u m f e r r l t e / 3 / and ca l c ium

' chromi te / 4 / were u s e d , t e m p e r a t u r e s of m o d i f i c a t i o n t r a n s f o r m a t i o n C£-fl ca lc ium e h r o m l t e , which i s a f f e c t e d by t h e p a r t i a l oxygen

p r e s s u r e I n gaseous p h a s e , was c a l c u l a t e d on t h e b a s i s of an a p p r o ­

x i m a t i v e r e l a t i o n r e p o r t e d i n f$].

R e f e r e n c e s

1 . Ambzus V . , H a v l l e a J . , Panek Z. S i i i k a t y t i n p r i n t ) . 2 . H i l l P.M. , P e l a o r H . S , , R a i t J . R . Acta C r y o t . , 9_, 981 ( 1 9 5 6 ) . 3 . Johnson » . Minera l H a g . , 3 2 , 408 O 9 6 I ) . 4 . P h i l i p s В . , Iiuan Л. J . Am, Ueram. S o c , 42_, 413 (1953) ­

5 . H a v l l e a J . , Panek 2 . S i i i k a t y , 24 , 1 (19S0) .

59

РЛНДКЛОНЕТХС METAL IOHS AS PROBES TS 1E­IALLQPB.OTBINS I.Bertinl Instltuto dl Chimica Generale ed Inorganics, Pacolta dl "armada, University of Florence, Via Gino Capponi 7, Plorence, Italy

It is well known that the parameters describing the electronic structure of lone con be related to the synmeti? of the chromophore and to the nature of the donor atone. A recent eucoees In this field Is the understanding of the hyperflne parameters In blue cop­per proteins on the basis of the pseudo tetrahedTsl structure and of the donor iTpln orbit copullng constant /1,2?. However, quite a lot of Information can be obtained through N1TO of nuclei feeling the paramagnetic «ater < 1

H f

S

H, П0 ,

1 Э

С , 14

IT, 1 5

N, etc.). Ae an exaiople of concurrent sources of information, the behaviour of copper­zinc euporoxide dismutase towards several anions is diacuBB­ed aa Inferred from copper EPR and nultinuclear anion НКЙ /Э/.

Variable frequency BUB иву allow a more quantitative analysle of the hyperfine Interaction* In particular, structural information and the electronic correlation times of the таг1оцв lone are obtain­ed In several natal substituted zinc containing eetalloproteine (carbonic bjihydi­ase, carboxypeptidase A, thermolysis) and cetal eubtituted transferrina.

Finally, a proper choice of the metal ion in a given geometry on the Ьав1в of Its electronic relaxation time may provide the % M S spectrum of the environment of the metml neglecting the dlamag­netic port of the enzyme* The moat meaningful examples are provided by the five­coordinated inhibitor derivatives of cobalt substituted carbonic anhydraae /4/.

R e f e r e n c e s 1. Bertlni I . , Cwtl G., GrasBi E., SeoEzafava A. Inorg. Chem.,

12,2198 (1980). 2. Bencini A., Gatteechl D., Zanchini C. J . Am. Chem. S o c , 102,

5237 (1980). 3. Bertlni I . , Barghi S., Luchinat C. J . An. Chen. Soc M 102.

70S9 (1980). 4* Bertlni I . , Cantl &., bucninat C , Scoezsfava A. J.Aa. Chen.

Зое,, 100, А87Э 0978) .

59

HEW РЫ>» COBXOHETRIC METHOD WITH THE СОЫЛШ BLECTHODE ­A CQHPOOTER COSTROLLSQ AffAl^SER SXSTEH FOR THE TRACE METAL &3ALISIS

Toitlro Fujinaga Department of chemistry. Faculty of Science, Kyoto University» Sakyo­ku, Kyoto, 606 Japan

Though ooiilometry has groat advantage over Toltemmetrlo methods of being ail absolute tuetho of analysis basod on Faraday's low,con­ventional coulometry has not been used for trace analysis because of insufficent sensitivity.The disadvantage of coulomatry was over­come by using a glaaey carbon column as the electrode. Especially, the stripping coulopotentiograpny with double column cells ena led oe to analyze lead in quantities as low ва 10" mol/1­

The automated coulopotentiographic analyzer system for the tra­ce aualyaie of metals 1л a hydrosphere environment waa developed. The ssitometed CP system la composed of four column electrodes with glassy carbon grainfl! for the purifiestion of the carrier solution, for the elimination of disturbing components, for the pre­coneea­tration and selective stripping of the subject metal, and for the detection of the elated metal ion. Tne electrode potential of each cell le controlled automatically by using an Individual three­eleotrode system with an Independent potentlostax, with the use of either л timer program controller or a more flexible controller equipped with a mini­computer. In the latter system, the computer 1B successfully used not only as an operating controller, but also ев a data processor.

Figure 1 ehowe a schematic diagram of the system. The operation procedures of the system are aa follows. The carrier solution, the sample solution, and the counter electrolyte solution, all pre­viously deoxygenated by bubbling nitrogen gas, are fed through each column electrode in rutn at a constant flow­rate of 1 ml/min by aeana of Pumps 1, Z, and 3 respectively. The sample solution, after having been mixed with the carrier purified by pre­electre— lysis at Cell 1 with Potentioetat 1, flows into Cell 2 to remove any nobler metal impurities* Then, in the third cell, the objective ion In the sample is preconcentrated at the initial potential of potentioatat 3. After the concentration action, the potential of Cell 3 begins to sweep in ordi:r to strip out the depostied metal. The dissolved objective ion is detected at Cell 4 by constant­potential coulometry. The stripping coulopotentiograni is obtained by recording the electrolsis current or Cell 4 against the stripp­ing potential of Cell 3.

«3

I N

Rttordcr on, ofF

i r i i | current I 1 I L

I

Pot.b (detector)

Potential ft^f-ei^t L—Jptft.j

Sweeper Cell?

(Gate) CelU

Support. CoUhtez Sample Joirt. jo/ft j-Wtt

Pig. 1. Schematic diagram of automated coulopotentiogrephlc analyzer.

Thle newly developed automatic CP analyzer system was found useful for the automatic analysis of metal lona at eub­ppb level. The method шву also be used in an unmanned station.

R e f e r e n c e в 1. Tujinaga T, Pare and Appl. Chen., 25, 70f> (1971 )• 2. Fujinflga Т., Xinara S. Critical Rev. In anal. Chen., Э, 223

(1977). 3. Fujlnaga Т.. Okazaki S.f Yamada T. ohem. Letters, 863 (1972)

and 1295 (1ЭТЗ)« 4­ Yamada Т., Okazafci S., Pujlnega T. Bull. Inst. Свет. Ева.,

Kyoto DniT.» 56» 151 (1978) and V 6, 1 (197в>.

SEPARATION IBGCESS DESK» UHDER THE A5PECT OF EMBOY 3AVIHG E.Billet Biibr­Onivereitat Boohnm Bochom, BHD

The thermal process design In planning of modern Industrial unite is highly influenced by the ever Increasing scarcity of energy and raw material on the o,j» band and by the necessity of protecting the environment as much as possible on tee other hand, there arises tb* question to what extend the thermal separation, pleats can be layed out end operated to meet the demand for minimum investment «ad energy oosts in. eoonectiem with the noximu» utili­sation of raw materials and preventi'jn i t dangerous emissions ее m o b as technically poeeible.

39tis situation lede to the economic, necessity for toe develop­neu,* of low cost effective apparatus having good, separation pro­perties and for the need of optimizing their dimensions as «ell as the ргооеав conditions.

This r e p o r t devo tee t o d e c i s i v e probleme d e a l i n g w i t h t h e a f o r e ­

mentioned s u b j e c t whereby i t i e a t t e m p t e d to p u t f o r t h a s p e c t s of s i g n i f i c a n c e p a r t i c u l a r l y t h o s e a r i s i n g from c u r r e n t i n d u s t r i a l a p p l i c a t i o n . F o r example i t i s shown how t o f i n d t h e optimum o p e r a ­

t i o n presflUro l e a d i n g to a n ' a b s o l u t e t o t a l c o a t minianun of a r e c t i ­ j f i c a t i o n p l a n t . Or i t i e r e p o r t e d about computing and e v a l u a t i n g methode i n view of economical c o n s i d e r a t i o n s of p a r t i c u l a r s i g n i f i ­

cance when l a r g e number of s e p a r a t i o n s t a g e s a r e needed and t h e p r e s s u r e drop p e r t h e o r e t i c a l s t a g e of t h e column i n t e r n a l s s e l e c ­

t e d w i l l be a major o b j e c t i v e ; t h e n t h e minimum of t o t a l c o a t , c o v e r ­

i n g i nves tmen t and o p e r a t i o n of t h e p l a n t , i n c r e a e e s w i t h I n c r e a s ­

i n g column p r e s s u r e d r o p , and t h e p r o p e r s e l e c t i o n c * t h e column d e v i c e o p e r a t e d w i t e r o p t i n u a l oad l e of major l o p o r t a n c e . . f u r t h e r ­

more I t w i l l Ъе shown how t h e s e p a r a t i o n and p r e s s u r e drop c h a r a c ­

t e r i s t i c s of t h e i n t e r n a l s w i l l i n f l u e n c e t h e economy of r e c t i f i c a t ­

ion p r o c e s s e s u s i n g I n e r t vapour t o reduce t h e o p e r a t i n g t e m p e r a t u r e whan r e c t i f y i n g the rmal i n s t a b e l p r o d u c t s such a s f a t t y a d d s o r a l s o i n c rude o i l columns .

I t i e n o t t h e o b j e c t i v e of t h i s p a p e r t o p r e s e n t a t o t a l rev iew of a l l t h e a c t i v i t i e s c a r r i e d ou t i n r e s e a r c h of t h e r e l a t e d f i e l d of t h e t i t l e announced» bu t t o r e l e a s e u s e f u l I n f o r m a t i o n c o n c e n t r a ­

t e d on t h e need r e l a t i v e t o I n d u s t r i a l a p p l i c a t i o n s .

РКОТОСАЪШНС ЛSTEMS. THE GOUPbBD PHOTORSDOX SK3T31

/ , Co(BH 3 ) 5 CH 2 /+ + + i fCrO­VR0H, H2Q

H.Hennig , P . S c h e i b l e r , D.Rehorelc, R.Wegener

S e c t i o n of Chemis t ry , K a r l ­ M a r x ­ U n i v e r s l t y , L e i p z i g , GDft

' I t h l n o u r l n v o s t i g a t l o u a of p h o t o c a t a l y t i c sys tems w i t h l i g h t ­

s e n s i t i v e c o o r d i n a t i o n coapotmde f\7 bo th e c b a l t ( I X X ) complexes and chromium(VI) compounds a r e from s p e c i a l I n t e r e s t .

I t I s w e l l кшлга c o b a l t ( I I I ) amnine complexes do n o t ehow any r evArkob le pho to redox r e a c t i o n s upon I r r a d i a t i o n w a v e l e n g t h above 350 am. F u r t h e r m o r e , t h e mechanism of t h e p h o t o l y s i s of aqueous s o l u t i o n s , of chromic a c i d e s t e r » most a c c e p t e d now, I n c l u d e s t h e j f o r m a t i o n of chroa lua<IV) s p e c i e a a l o n g t h e primary r e a c t i o n s t e p . I Aqueous s o l u t i o n s of K 2 CrO. c o n t a i n i n g up t o 4ffi6 a l c o h o l a r e v e r y s t a b l e i n t h e dark a t low hydrogen i o n c o n c e n t r a t i o n s a l s o I n p r e ­

sence of c o b a l t ( I I I J ammlne complexes . However, t h e sys tem C o ( I I I ) / K 2 C r O / Н Ш , H ? 0 i s ve ry s e n s i t i v e t o l i g h t up t o 550 am connec ted with' a ve ry e f f i c i e n t fo rma t ion of c o b a l t ( 1 1 ) / g / .

63

Piret investigations of the mechanism of this rather unexpected photowetox reaction demonstrate unamMgeouely the formation of cob»ltCII) with eurprleingly high quantum yield values beside the generation of cnromlumCv) and alkoxy radicalв within the primary step. the reason of the participation of ehromiun(V) within the primary etep eeeme to be a very efficient scavenging reaction of the cot»lt(III) complex. А number of experimental results strongly support в this suggestion.

Meanwhile we havo been able to demonstrate some further coupled photoredox systems alec with both copper(II> and iron(HI) ccraple­

%ee instead of /Co(NHq)cCH2/'M"'". Some reflections on the mechanism

of these coupled photcredor ayetamo will be discussed in some detail.

R e f e r e n c e s

1 . Hennig H«, Thomas P.» Wegener R . , Rehorek В . , Juxdeczka X. 2 , СЪвт., Г7, 241 ( 1 9 7 7 ) ; Hennlng H . , Thomas P . , Wegener В . , Bene­

d i x R . , Ackermann M,, Rehorok D. J . S i g n a l AM, I n p r e s s * 2. SennigH., Scheibler f. t flagener R . . Kehorek 0 . Tnorg . Chim,

A c t a , 44» Ь 231 ( 1 9 6 0 ) .

ACTUAL DEVBL0PME5T3 I S THE СОЯСЕРТ OF BIiEHEKT­HOUOIiOeOu'S СОИРОиТГОа

B.Koh le r

S e c t i o n Chemie t ry , l l a r t 1 л ­ L u t h e r ­ U n i v e r s i t y H a l l e ­

W i t t e n b e r g , H a l l e ( S ) , GDH

The concep t ot element­homologous compounds hae been i n t r o d u c e d i n t o c h e m i s t r y by ВШЗКЕНВАСН by t h e f o r m u l a t i o n of t h e fami ly of pBeu&obal ldea, based on a comparison of main chemica l and p h y s i c a l p r o p e r t i e s of p e e u d o h a l i d e e w i t h t h a t of h a l i d e e / V , During t h e l a s t y e a r s the, o s a u d o h a l i d e concept g o t new c o n f i r m a t l o n a by i n v e s ­

t i g a t i o n s vt f u r t h e r p a r a l l e l s i n d i s t i n c t p h y s i c a l d a t a of peeudo­

b a l i d e s l i ice t i t rueture— and s p e c t r o s c o p i c p a r a m e t e r s , g r o u p ­ e l e c t r o ­

n e g a t i v i t l e a , d o n o r ­ a c t i v i t i e s and l i g e n d ­ f i e l d ­ p a r a m e t e r s , by t h e d e t e c t i o n of t h e f a c t o r s . I n f l u e n c i n g t h e bond­ type of t h e s e g e n e ­

r a l l y ambiva l en t U g a n d a / г / . At t h e ваше t ime t h e p e e u d o h a l i d e concept could be extended from t h e c l a s s i c l i n e a r r e p r e s e n t a t i v e s t o new p l a n a r i c and t e t r a h e d r a l t y p e s Z 2 ­ 4 7 .

New p o s s i b i l i t i e s f o r a more g e n e r a l a p p l i c a t i o n of t h e concept of element­homologous compounds have been opened by t h e f o r m u l a t i o n of a p e e u d o h a l i d e ­ p a r a l l e l peeudocha lcon ide concept / 3 , 5 / . The

significant properties of paendocbaloonidee are connecting ibia claae of conponnde as well as with ehaloonldee as with pseudo-

nalldee. Theae propertlea nay be aummarlaed as follows: Isosteriroe of peeudochaleonides У " with peeudohalld.ee X~. Close para l le ls in the ambivalent nature of isoeteric pseudo-

chalconidee and pseudohalides. Groupalectronegatlvitiee of peeudochaleogena being elni lar to

that of cnalcogene. Remarkable basicity of pseudochalconide-anione t and YH~. larked tendency of peeudochalconidee for Ълве-acid reactions. Close physical and chenicel relat ions of peeudachalcogen-groups

containing compounds to oxygen-derivatives of the ваше type. General abi l i ty of pBendochalQOge&-graupa for participation i s

mesomerlc systems• Existence and typical react ivi ty of aoleoular pseudocbalco-

gene ^2' Sone consequences and poss ib i l i t i es of the pseudocbaleogen-con-

oapt are demonstrated, considering paeudochalcogen-groupe X(Y - HCH, CCCNJg) containing anionic systems l ike cyanates CSCt~), phosphates P 0 . n ^ ~ ) and ni t ra tes (K0Y~, HOJf"). Molecular parameters l ike bond-dlBtances and -angles* Infrared spectra aa well as BMR- and SSCA-data are confirming the equivalence of the peeudochalcogen-

groops with oxygen in these systems /Э, 6-37. The pseudohaiide-parallel ambivalence of peeudochalconldes i s

shown by comparing the tendencies of cy&nsnrtde (u"CH2'i) and the cyanatee (HGO~, KCY.") for the formation of different bond-typea including isomeric derivatives.

R e f e r e n c e s 1. Birckenbach Ь. , КвЦеигагщ К, Бег. dtsch'l chem. Ges. ( j>8,

7860 (1925). S, Chorale der FseudoheJLogenlde(AatorenJcollektlv unter Lelting

A.H.Qolub u. H.Kohler, Berlin, 1979. 3 . Kohler H. Koord. СЫш. /Мовкви/, .3 , 139 (1977). 8. El l i s I ,B. J . Organometal. Chem., Вб, 1 (1975). 5. Kohler В. , Eichler В. , Salenefcl R. Z. anorg. a l lg , Chea., 379.

1ВД (1970). 6. Kohler H., Fischer J . z. anorg. a l l g . Chera., £58, 177 (1979). 7. Hefedov V.I . , Salyn Ja .V. t Glan? D., Kohler H. 2. Chea.-1981,

In press.

5 tot 65

8 . Skopenko V . T . , K o h l e r H . , Zub J u . t , , Bole l i ; ) v . P . Koord. СЫд. /Moskau / , 1981» I n p r e s s .

9 . КоЫег И . , J a g e r L . , Gian t D. P u b l , 1Л p r e p .

PLAIIHVK ACETYLIDES AS MODELS CP DTTERHEDUTfiS IN ТЯЕ OLIGOUBBIZATIOH AHD POLYMERIZATION HBACTIOHS OF ACEKIBHES A . P u r l a u i ­ G . S a r t o r l , M . V . E U B B O , S . L l c o c c i a I n s t i t u t e of Genera l and I n o r g a n i c Chemis t ry , B n i v e r e i t y of Ношв, I t a l y

Complexes w i t h m e t a l carbon tf bonds have been proposed a s a c t i v e I n t e r m e d i a t e s I n t h e p o l y m e r i z a t i o n o r c y c l i ' t a t i o n r e a c t i o n s of u n s a t u r a t e d h y d r o c a r b o n s . In t h e r a a c t i o n e w i t h t e r m i n a l a c e t y l e n e s t h e e x i s t e n c e of a meta l ­hyd rogen bond I n t h e I n t e r m e d i a t e s t a g e h a s a l s o been proposed / V .

We have found t h a t t h e / P t 0 1 2 ( P P h , ) g / complex i s an a c t i v e c a t a ­

l y s t towards p h e n y l a c e t y l e n e 2f and 2 ­ m e t h y l b u t ­ 3 ­ y n ­ 2 ­ o 2 O/ e l d ­

i n g l i n e a r polymers i a n a l o g o u s /HiXgtPPhjJgV complexes g i v e w i t h p h e n y l a c e t y l a n a m i x t u r e e of c y c l i c benaene t r l w e r s and l i n e a r p o l y ­

mers fA/ and w i t h 2 ­ a e t h y l b u t ­ 3 ­ y n ­ 2 ­ o l t h e 1 ,3 ,5 (X • Br) o r 1 ,2 ,4 t r i o ( 1 ­ h y d r o x 7 ­ 1 ­ a Q t h y l e t h y i > b e n s e n e (X • I ) i n v e r y h i g h y i e l d s

/П5/. 5he . formation of t h e symmet r ica l o r u n a y a n e t r i c a l benzene i somer i s dependent on t h e X an ion bonded t o t h e m e t a l atom / 4 , 5 / .

We have c a r r i e d ou t a s y s t e m a t i c i n v e s t i g a t i o n on t h e c o n d i t i o n r e a c t i o n s i n which , s t a r t i n g from c l s / P t C l 2 ( P P h , ) 2 / o r t r a n s / P t H C K I T h ^ g / , t r o n e / P t ( C a C ­ H ) a ( P P h j ) ^ , t r a n e / P t C l C C ^ C ­ R ) ( P P h 3 ) g / and t r o n a / P t m c s C ­ R H P P h ^ g / complexes can be o b t a i n e d .

The r e a c t i o n p r o d u c t s a r e dependent on t h e r e a c t i o n medium and on t h e R r a d i c a l of t h e m o n o s u b s t i t u t e d a c e t y l e n e .

a ) Hoact ioa between e i e / P t C l g t P P h ^ g / and H­C = C­R i n Ы Н Ч С ^ ^ ( a t r e f l u x 10­30 m i n u t e s ) . (R . CgHg, С(СН Э)­СЖ Е , С(СН 3МОН)СН 3, СНдОН, СН(Ш)СК 3 , 0H(0H)C g H 5 , сн 2сн(он)сн 3, с 6 н 1 0 он, с(сн 3>(он)сн асн 3 , сн 2шсНз ? c ^ r a c H g C ^ , CH £ N(CH 3 ) e , CHglKCgH^g).

i n These r e a c t i o n s t r a » B / P t ( C 3 C ­ R ) 2 ( P P h 3 ) 2 / a r e o b t a i n e d i n h igh y i e l d s •

b ) R e a c t i o n s between c i o / P t C l g C P P J ^ g / and H­CSC­R i n СНСЦ i n t h e p r e s e n c e of few d r o p s on HHtCjLilp ( a t r e f l u x ) t r a n s / P t C l ( C 3 C ­ R ) < P P h 3 ) 2 / a r e o b t a i n e d .

The R r a d l o a l e of t£ ­ h y d r a x y a c e t y l e n e s e a s i l y undergo d e h y d r a ­

t i o n r e a c t i o n s when bonded t o t h e p l a t i n u m i n t h e s e complexes . The

66

elimination of water leads to the complexes of the related alcenyi­

alkynes or to the complexes of the corresponding ethere, when p r i ­

mary alcohols are used ав precipitating agents. Secondary or t e r ­

t iary alcohols do not give ethers but promote the intramolecular dehydration :o the corresponding alkenylalkynee.

c) Reaction between trans/PtHCHPPh­j),,/ and H­C«C­R In CgHg or CHC1,.

I ) If H i s *CgHc or ,C(CH,)­CH2 an insert ion reaction into the Pt­H bond occurs: trana/PtCKCHg­C­CgHcMPPhj)^ or trana/PtCKCHg.. C­C(CH3)=CH2)(PPh3)2/ are obtained Д Л

I I ) If the acetylene ie a t e r t ia ry acetylenic alcohol H­C3C­

CR^gOH elimination of hydrogen and water occurs and trans/PtCl(C= C­CI^HjCB^KPPhjJj/ complexes axe obtained when a primary alcohol

R CS la added aa precipitat ing agent. She etherlfication reaction occurs In very nild condltiona. When secondary or te r t iary alcohole are used ав precipitating agents, an intramolecular dehydration takea place giving the complexes of the а1кепу1а1луцеа.

3) Reactiona between trans/PtHGl(PPh. J) 2/ and H­C =C­R in CHCX3

by addition of few dropa of HHiCglU)­. The base f ac i l i t a t e s the elimination of HC1 and aydrldo complexes

^^(СЭС­йХРРЬ­,)­/ are obtained. Such complexes fore of great Inte­

rest because they are s t r i c t l y related to the hypotized Intermedia­

tes in the oligODorizatlon reactions of terminal acetylenes / V . I .R. , U,v., JJMR spectra and crystal structures of the synthesized compounds have been determined. Their catalytic activi ty i s now under Investigation.

R e f e r e n c e s 1. Meriwether L.s . , Leto И.Р., Colthup E.C., Kennerly G.iV. J . Org.

Chem., 27, 3930 (1962). 2. Purlani A., Collamatl I . , Sartori G, J . Organomat. Cham., 17.

463 (1969). 3 . Purlani A., Blcev P. , Carusi P. , Russo H.V, ­ J . Polymer Scl . ,

Polymer Letters, 9_, 19 (1971). 4» Purlani A., Bicev P. , Frticao M.V., Piorentlno M. Gazz. Chim.

Xtal, , 107, 373 0977J. 5. Purlani A., Rueso M,v., Bicev P. Gazz. Chim. I t a l . , 1C7,517(1977). 6» Purlani A., Puaro M.V., Chieoi Villa A., Caetani Manfredottl A.,

Guastini C. J. Chem. Soc» Dalton Тгапв., 2154 (1977).

VAPOUR­IJQuTD ЕГДШЯБША IB CHEMICAL EHGIHEERIHG

E t E a l a

Institute of Chemical Process Fundamentals Czechoslovak Academy of Sciences Praha 6 ­ Suchdol

For the design of industrial separation equipments euch ao diB­tillatlon colunna, extraction columns and absorbers and for the determination of their optimum operating conditions, it is neces­eary to know a number of thermodynamic data of ­multicooponent sys­tems whose components are to be separated* It ie especially the data on ­vapour­liquid equilibrium and liquid­liquid equilibrium in a wide range of temperatures and pressures. These data are usually obtained in experimental way. The experiments are, however, expen­sive and tise­coneuolng and therefore it is one of the main prob­lems to obtain as much as possible complete information on complica­ted syeteae from a email number of easily accessible measurements.

Classical thermodynamics of mixtures reduces considerably the number of direct experiments necessary for quantitative characteri­zation of the complicated eystem but it 1в not In principle able to predict the behaviour of mixtures on the Ьавев of properties of purs components. Statistical thermodyaaaice is able to do so ~ at least priacipially.

In this contribution, a critical review ia given of the methods used In chemical engineering practice for quantitative characteri­sation of multiphase multicomponent systems in the range of low, normal and higher pressures*

SCTTHftSBB OF SEW ПАТИПЩ COMPLEXES WITH HSTSROBORAHE LIGAHDS K.Baae, B.Stfbr Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, Prague, Czechoslovakia I.A.Zalcharova Kurnakov Institute of General and Inorganic Chemistry, Academy or Sciences USSR, Moscow, USSR

ffe wish to report in this paper воле reactions, producing new platinaheteroboranes which exhibit epeclflc structural and chemi­cal features. The reaction of arachno­4­XBgH­­ hcteroboranes with

P t < P P i u ) 4 y i e l d e d t h e f ami ly of a r a e h n o ­ 9 , 9 ­ ( P P h _ ) 2 ­ . 6 , 9 ­ I P t B ^ l 1 0

(X ­ CH2 ( l a ) , HH ( l b ) , S ( I c ) ) p l a t i n a h o t e r o b o r a n e s / " 1 / . The r e a r ­

rangement o r l a a t I t e m e l t i n g p o i n t produced 9 t 9 ­ ( P P h 2 ­) 2 ~ l ' r 6 H 4 ' ' 2 "

6 ,9­CPtBgH 1 0 ( I I ) t h e s t r u c t u r e of which, was d e t e r m i n e d by an X­ray a n a l y s i s / 2 7 . Trea tment of 4 , 5 ­ C p B 7 H 1 1 w i t h P t ( P P h 3 ) 4 r e s u l t s &J i n t h e f o r m a t i o n of a r a c h n o ­ 9 , 9 ­ ( P P h 3 J 2 ­ 5 , 6 I 9 ­ c 2 P c ^ 7 H 1 1 ( I H ) , A l l compounds I ­ I I I c o n t a i n t h e P t t P P h j J g e^oup bonded t o t h e B(4»B,10) atoms i n a d e c a b o r a n e l i k e s k e l e t o n t o form a peeudo s q u a r e ­ p l a n a r c o o r d i n a t i o n around t h e c e n t r a l P t 2 + a t o n s i m i l a r t o t h a t found f o r $ ­ s l l y l P t complexes . Anothe r f a m i l y of p l a t i n a h e t e r o b o r a n e e waa o b t a i n e d i n t h e r e a c t i o n of P t L g C l ^ W P h j , EtgS) w i t h n i d o ­ C ^ g H ^ t o g i v e the (И ­ & , 9 ­ r t l g ­ 6 , g ­ C 2 B g H 1 0 complexes / 4 Л c o n t a i n i n g a b r i d g i n g P t X 2 group bound t o b o t h C(6) and C(9) s k e l e t a l atoms»

R e f e r e n c e s

1. Base K . , S t f b r В . , Zakharova I . A . S y n t h . R e a c t . I n o r g . H e t . ­ O r g . Chem., 10 , 509 ( 1 9 8 0 ) .

2 . Kukina G.A. , Serg ienko V . S . , Base K . , S t f b r В . , Zekharova I . A . , Pora l ­Koah l tB И.А. t z v . Akad. Hank SSSB, З в г . Khim. 1961 , i * p r i n t .

3 . S t f r b В . , Hermanek S . , P l e a e k J . , Base K . , Zakharova I . A . Chea. Ind» (London) , 1 9 3 0 , 4 6 8 .

4 . Kukina G.A., P o r a l ­ K o a h l t B M.A., Serg ienko V . 3 . , fftrouf 0 . , Base K . t Zakharova I . A . , S t f b r в . I z v . Akad. Nauk SSSK, З е г , Khim., Z, 1686 ( 1 9 8 0 ) .

PREPARATION DP UJOGBANIC PHOSPHORUS COHPOWDS BY USU3S OS "P0SI1I0K1L SinP2HESIS" OR «ТЛЯ ШНВ KSLP OP "STRUCIURAL REOBCABIZATIOH"

H.Grunae

Zentralinstitut fur anorganisohe Chemie dor Akademle dor Wissenschaften der DDR, Berlin, QDH

Concerning the temperatures at which chemical react lone PCCU*­, cheniotry can be divided into two broad fields: In the lower tempe­rature range, i.e. the region of "positional synthesis" ­ the most reactions of the organic chemistry belongs to this category ­ and in the higher temperature range, i.e. the region of "structural reorganization", in which the reactiono finally lead to theracdy­naraioal equilibrium /1/.

69

Hany Inorganic phosphorus compounds can be prepared both by positional syntheses and by reorganisation reactions, though with different yields ffl'• Examples for th is are the pyrophDBphoryl chloride PgO^Cl and the dichlorophosphorlc acid HOPOClg. Рог instance, the P 0,C1, was obtained by reaction of H0P0C1. with

' 2 3 4 с phosphorue panta chloride Pelt according eq. (1) at normal tempera­

ture in nearly quantitative yield / 3 / . г HOPOCI2 + P C I 5 +- ?2°эсг$ + Poci 3 + 2 HCI d> In the course of thia reaction tt­з intermediate Cl^OPOCl.)

is formed, which decomposes exclusively iato the compounds PgO,Cl. and P0C13­ ­ The analogoue reaction between difluorophosphorie acid H0P0P2 and PCl 5 leads to the intermediate Cl^OPOFg), which is decomposed Into the chloride of the difluorophoephoric acid POClPg and POClj. ITherofore in this way the pyrophoephoryl fluoride P 2°3

F

4 io not available /4/« ­ Contrary to reaction (1), no pure PgO^Cl. wae obtained by reaction of P>0 Q with POCl^ according oq. (2) at elevated temperatures.

р

4 ° ю * a Е 0 0 1

э — 4 р

г°э0 1

4 с г )

In this caae of reorganization equilibrium mixture of linear, cyc­lic end network­like phoaphorylohloridea resulte /"57, in which only about 25Й of the phosphorus are contained in the form of P­0­C1, /6/.

At temperatures below ­30e

C only the P­O­P­bond of the pyrophos­phoryl chloride can be split up by reaction with water and In this manner according eq. (3) the positional syntheele of pure, crystal­lieeble dichlorophoephoric acid ie possible /7/.

р г ° з С 1 4 * Н 2 ° *" 2 H 0 P D C 1 2 ( 3 J

Otherwise no pure dichlorophoBphoric acid can be obtained by s t ruc­

tural reorganization between PGC1, and raonophospheric acid 70(0H)n according eq. (4) at el*­ <ated temperatures.

г POCI 3 + PO(OH) 3 ш-з HOPOCI2 (4)

The equilibrium mixture contains c^Jy 55Й of dichlorophosphoric ctid besides polymeric compounds end the initial components /6/. In the course of approaching the equilibrium of the structural reorga­nization, depending on temperature and reaction tine, various con­secutive reaction states are involved, characterized by different iind of molecular г «1.1ве and, therefore, by different distributions of the structural units. Considering thie, novel possibilities for chemical syntheses may be achieved, and, e.g. such inorganic рдов­phorus compounds may be prepared, which hitherto were not accessible by means of positional, syntheses. For instance, after heating phos­

70

рЬогивСVJoxlde w i t h a l k a l i m e t a l f l u o r i d e s fo l lowed by some quen­

c h i n g , from t h e r e a c t i o n productB пел u e f i n i t e o l i g o m e r i c d i f l u o i o ­

phospl ia tea / Р ^ з п . ­ ^ д / 1 1 " " 1 t h n ы 3-5 have been I s o l a t e d and c h a ­

r a c t e r i z e d / 9 7 . F u r t h e r , t h e s e r i e s of t h e phosphorus ox ide s u l f i d e s ^4 , ° io ­n S n

w i t h a d a c a n t a n e ­ l i k e s t r u c t u r e (n » 1­9) h a s been o b t a i n e d by s h o r t the rmal t r e a t m e n t of m i x t u r e s of Р*Он 0 and Р д ^ л .

The s t r u c t u r a l i n v e s t i g a t i o n s of t h e s e compounds h a w e s t a b l i ­

s h e d , t h a t i n t h e c o u r s e of t h e t he rma l r e o r g a n i z a t i o n r e a c t i o n s b e t n e e n Р д 0 1 0 and P j S « 0 on ly bu t one d e f i n i t e learner of t h e i n d i v i ­

d u a l compounds p i O i o ­ n S n i s f 0 M n e d Л"Э7 &?•

R e f e r e n c e s 1 . Van Wazer J . H . Amer. S c i e n t i s t , . go , 450 ( 1 9 6 2 ) . 2 . drunze H. Pure and Appl . Chem., 5 2 , 799 ( 1 9 8 0 ) . 3 . Grunze H. Z. Chem,, _2, 313 ( 1 9 6 2 ) . 4 . Grunz» H . , iTolf G.­tJ . i t o be p u b l i s h e d . 5 . Morgan ЙГ.Б. e t a l , I n o r g . Chem., 13 , 1832 ( 1 9 7 4 ) . 6 . Grunze H . , Zr a n o r g . a l l g . Chem.» 29.6, 63 ( 1 9 5 8 ) . 7 . Grunze H. Z. a n o r g . a l l g . Chen . , 29J , 152 ( 1 9 5 9 ) . 8* Grunze H. Mber. J » . AJjad. W±ee . r _5 , 636 О 9 6 З Х 9 . Grunze K. , Heel s J . , Grunze I . Z. a n o r g . a l l g . Chem., 400 ,

137 ( 1 9 7 3 ) . IQ.Vfolf G . ­ U . , Mleeel M., Jancke H . , t o be p u b l i s h e d .

Off THE IHPLUEHCE OP THE Р0НМАИ0Н COHDITIONS OP THE CHEMICA' BEHAVIOUH AHD AHIOH­CONSTITUTIOT OP THE CALCXUMttDROGEH­

SILICATE "TOBEHKORITB"

S.ff ieker

Central Institute of Inorganic Chemistry of the Academy of Science of the CDR 1199 Berlin, Rudower Chaussee 5

Tobermorite was discovered as a natural mineral at Tobermory in Scotland and haв oince been found in soversl locations in the wolrd. It has also been shown to be a major constituent of the binding ma­terial in most autoclaved cement­silica or lime­silica products» Prom uncomplete x­ray Investigations of mamedow and Below [\] and Megaw and Kelsey /a/ it is known, that the Tobermorite structure le buit up by layers. According to the watercontent these layers

™ are '4, 11 or 9 A thiefc. So that there are different Tobenaorite ­ specimens which have tht! follow^g idealised compos it*, on /5/

7]

5 CeO.g S10_»9 HgO ­ 14 A Sobermorite 5 CaO'6 S102*5 H?0 ­ 11 X Tebtrmorite 5 CBO'6 S i c y i H­0 • M Tobermorlte While Uumedow and Below assumed that in the layers there are e l l i ­

cete­doublechaine, Hegaw and Keleey concluded from their Investiga­

tions that there are single chains­ Because of disordering phenomena It was up t i l l now not possible to decide between these two assump­

tions by x­ray methods. Therefore we investigated the Tobemorite by chemical, methods i . e . molybdate method and paperchromatography.

By these methods i t was possible to show, that the 14 A tober­

morite of Crest»re (California) l e built up by infinite single s i ­

l icate chains l ike those in (Li aSiO,)_, After a dehydration of this 14 A Tobemorite to the 11 A and 9 л Sobermorlte at temperatures of 60°C or 300°C respectively, these single chains s t i l l remain in the structure» So that the constitution formulas of these tobermorlte species nay be written as;

(CagH2 /S i 6 O i e / . f l HgO) (са5н2 / a 6 o 1 B / ­ 4 H 2 O) S

(Ca5H2 / 3 1 б 0 1 в / я

By corresponding investigations these results are also establis­

hed on 14 A tobermorlte samples which are synthesised by curing a precipitated calcituDhydragenBillcate under their mother liquid at 50°C for several month*

If the methods mentioned above are appllcated to an 11 A Tober­

morlte which i s not prepared by dehydration of a 14 A specimen but by an autoclave­reaction of line and s i l i ca at temperatures be­

tween HO°C and 180°C, i t can be shown / 4 / that In contrast those samples are bull'­, up by eil icate double­chains* These double chains are also preserved by dehydrating this 11 I tobermorlte type to a 9 A tobermorlie. Thi constitution formula of 11 A and 9 i tobermo­

rltee from autoclave reactions may be written as (Ca 5 / 3 i 6 0 1 7 / ­5 H 2 0) x

(Ca^SigO^ H 2 0) x

The doable­chain 11 Л tobermorite shows a stability region ran­

ging from Ca:Sln0.6 up t i l l Ca:Si«1.0» By ^Sl­IflCUneaeuraments It wee recently shown / 5 / , that depending on the Ca/Si ratio the num­

ber of connecting usi­0~SlE bridges in the double chains may vary. This seems пв to be the reason for the so called normal and шщог­

mal behaviour of such sasplea in dehydration reactions, which means

72

that at 300°C some double chain 11 A toberaorltea for» 9 A tober­

morlte and some do not. Hatural 11 A tobermorite samples from different deposits we In­

vestigated, showed tbat there are воше with single­chain ai l icate­

anions and some with double­chain anions• That means the foraer once are dehydration products from primarily formed 14 1 totwimo­

rtte and the latter are directly grown under bydrothersml conditioua. So that It la possible from thla to draw eonclualone on the genesis of the natural 11 A tobermorites.

The apparently deviating restilts of the x­ray studies by Kamedow end Below and Megaw and Xelsey mentioned above possibly fin4 tuvir explanation in the fact that In the nature 11 A tobexaorltea realy exlat ae well with single chain aa with double chains sll lcataa.

R e f e r e n c e s

1 . Megaw H.D. , Kelsey C.H. Hature, Lorn. , УЦЩ 390 ( 1 9 5 6 ) . 2 . Kamedow K h . S . , Below H.7 . Dokl. Ale ad. «auk. 3SSR, 12£, 163(1956) . ;U Wleker V. Z. anorg. a l l g . Chemie, 360 , 307 ( 1 9 6 8 ) . A, Winkler A . , « e k e r w. Z. anorg. a l l g . Chen., 451., 45 0 9 7 9 ) . 5 . Lippmaa B . , Magi M., Tormak * . » Grimmer А . ­ Я . , Vlelrvr v . , " i n ­

k i e r A . Z. anorg. a l l g * Chen. In preae .

JttGSESIUH OXIDE AS A 30LVBHT ­ COBtTOCTIVITY;

DIWUSIOR; HilACTlONS

W.D.Kingery

Professor of ОегатЛов CoraidcB Division Department of Materiale and Engineering Haeeacnueetts Institute of Technology Cambridge, Massachusetts 02139 USA

Efforts over many years to characterize the properties of "pure" magnesium oxide ae a ceramic have led to uncertain results» This occurs becauet the wide band gap end high energy of formation of Sehottky and Frenkel defect» in HgO make the material behave ее an extrinsic oxide even at the highest attainable temperatures and with the purest materials so fur prepared.

A research approach which has proved more successful is to con­elder magnesium oxide crystals and polycrystalllne materials ae invariably containing solute lone and adding .controlled amounts of

?3

nolutee in order to definitely fix the composition, apeoiiy proper­ties and Interpret the behavior of this oxide.

Samplea of magnesium oxide containing controlled traditions of Je­O.» ^lg<>3, Sc 20 3, Cr 20, t MgO, hav* been evadied by determining the electrical conductivity and transport numbers ее a function of oxygen, pressure and temperature. Thia Ьле allowed ua to determine the Feral level of the material» to establish the eoblllty of mag­nesium Ion vacancies отег a temperature range, and to iaterpret the­ oxidation pro севе. Electron spin resonance measurements of samples containing Iron in solution nsve allowed the determination of phase boundaries and established the nobility of Iron­vacancy associates. Is combination, these reanlte allow the interpretation of diffn.'>' .in data reported in literature which otherwise are con­fusing and contradictory.

These studies show that understanding the Influenee of grain boundaries and dislocations on oxygen diffusion is critical ir" we are to obtain a complete and satisfying Interpretation of the beha­vior of magnesium oxide and its chemical and physical properties*

OR SOKE HE* AEPLICATIOflS OP EfHAZOLONE ток тагаааныЕюн op TRACES OP ELSEHPS

W.Jordaaov Ins t i tu te of General and Inorganic chemistry Bulgarian Academy of Sciences, Sofia 1040, Bulgaria

The synthesia of 1~рЬепу1'­3­*ве*Ьу1~4­Ьвоиоу1ругахо1опв­5 (МНР) and i t s ohloroeoyl derivatives Is Improved with a view of applying th«a for extraction preconcentration of traces of elements / V . Tho reagenta are characterised by thin layer chromatography and electro­

phoresis /£?. The proton s tab i l i ty constants are determined by poten­

tiowatric t i t r a t ion £$f. A hybrida extraction­atomic absorption method for extraction pre­

coacsntration and subsequent determination of Zn, Cuf Co, Pe and Ms i s proposed. The extraction la performed with PKSP and. methyl isotratyl ketone or o­xylene aa a diluent. The conditions for the simultaneous extraction of a l l elements studied are found. the e^traotlon cons­

tants are determined. The conditions for the atomic absorption deter­

mination of the elei­. its in both solvents are optimized fif The cap­

roate complexes of the corresponding elements are proposed as oil soluble standards /*>/. Analytical procedures for the determination of Znt Co, Hi t Co, Pe and tto :ln KC1, KOH, SaClO^ and KAl(SO^)2»12BoP are developed fi>J. 74

A h y b r i d s e x t r a o t i o n ­ p h o t o B B t r i e method i s propone* f o r s e p a r a ­

t i o n and d e t o m l n a t i o n of aranlum(IV) from phosphor i c a o i d s o l u t i o n s . The e x t r a c t i o n i s per formed w i t h ИШР or a Mixture of MBP and t r i o c ­

ty l . iboephine oxide (ФОРС). Benzene, t o l u e n e , x y l e n e and t h e i r n l z t u ­

r ea <X9 u s e d a s d i l u e n t s , The e x t r a c t i o n i s s t u d i e d a s a f u n c t i o n of phosphor ic a c i d c o n c e n t r a t i o n . The compos i t ion of t h e s o l v a t e i a d e ­

t e r m i n e d . The i n t e r f e r e n c e of subs taaoea t h a t could accompany uranium i n I n d u s t r i a l s o l u t i o n s i s i n v e s t i g a t e d , She f i n a l d e t e r m i n a t i o n of uranium i s c a r r i e d oc t w i t h a reenazo I I I , A procedu re i s proposed f o r d e t e r m i n a t i o n of uranium i s phosphor i c e c i d s o l u t i o n s » a p a t i t e s and p h o s p h o r i t e s tfl'•

A h y b r i d s a d s o r p t l o n ­ a t o s i o a b s o r p t i o n method f o r p r e c o n c a n t r a ­

t i o n and d e t e r m i n a t i o n of t r a c e s of e lemen t s i n t h e preeenoe of an a p p r o p r i a t e m a t r i x i s proposed . The elei­wnts a r e complexed w i t h FHEP and adsorbed on a c t i v e ca rbon , Carbon i a s e p a r a t e d by c e n t r i f u g a t i o n and a f t e r s u i t a b l e t r e a t m e n t i s i n t r o d u c e d i n t o t h e f l a n e of t h e a tomic a b s o r p t i o n s p e c t r o m e t e r . A procedure I s developed f o r t h e a n a ­

l y s i s of se len ium of h igh p u r i t y .

H e f e r e n c e s

1 . Tarebenina Л . 7 . , Jordanov H . t Jordanov В . , Bor i seov G. i n p r e a a . 2 . Akinova T.G . , Tereben ina А . Т . , Syanava З . И . , Jordanov H. , B o r l s ­

sov G. Zh. a n a l . Khijn. ( R u s s i a n ) , 3 5 , *1561 (19S0) , 3 . Ivanova E . , Jordanov H . , Tereben ina д . , ttareva S t * , B o r i s s o v G . t

i n p r e s s . 4­, Ivanova E , , Mareva S t . t Jordanov N. Z. a n a l , Chen, , 2 8 6 f 62(1977) . 5 . Ivanova E . , Hareva S t . , Jordenov S . Созапт. Dept. Chen, Bulg.

Acad, S c i . ( B u l g a r i a n ) , 1 1 , 57 (1978) . 6 . Ivaaova H,, Hareva S t . , Jordanov N. z. a n a l . Chen. , 303 ,373(1980) . 7* P . S a l a v e r a c o r o n a l , H&rava S t . , Jordanov H"., i n p r e s s .

APPLICATION OP THEHMAL ANALYSIS TJ FUME

EStABQATION BESBftRCH

J .Glaon* B.Andcoeito

I n s t i t u t e f o r General and A n a l y t i c a l Chemist ry of t h e Technica l U n i v e r s i t y Budapest , Hungary

The f l a m a a o i l i t y c h a r a c t e r i s t i c s of n a t u r a l and syn the t i c" macromo­

l e o u l c e a r e b e i n g s t u d i e d w i t h t he rma l s n a l y s l e . p a r t i c u l a r l y w i t h a d e r l v a t o g r a p h ^ V and i t s f u r t h e r developed v a r i a t i o n s / 2 ­ f t / . wi th t h e a i d of t h i s t echn ique on» can determine t h e the rmal s t a b i l i t y of

75

the sample* that i s one of the Important parameters because the igni­

tion takes plaoe in vapour phase» and below this temperature Ignition does not occur, Фае shape of the thermogravlaetric ourves /Tu/ be­

longing to the treated and untreated sample show the amount of poten­

t ia l ly flammable gases on the one hand, and non­flamable residue on the other hand* The amount of one selected gas product can be deter­

mined by the TOT curve, The fine structure of the decomposition can be examined with a Q­dsrivatograph in which the advantageous of the iaotharaic and dynamic thermal methods are combined. The flaoh and self ignition temperature can also be measured with ajLnctltaneously recorded K, OTG, DTA and T aignalB.

It ie known» that the calor­imatric data can only he considered as intensive parameter among the flaiuwbility characteristics. 5he re­

sults obtained by the DSC the following infornation oan be gained. Onset temperature of exotberus, rate and anount of heat evolved.

She two most prominent elaaees of flame retardants based on either halogen or phosphor. In order to gain sons insight into the nature of the retardation effects a aeries of s&mpiess treated with re£. hoe­

phor/P/ various P and P­H containing additives and halogen as well as halogen + SbpO* ***• examined.

The data collected by thermal analysis were eoaplated other inst­

rumental technique ( i . e . seaming electroaaioroscope, IH, photometry, X­ray). It was established, that in the case of halogen containing additives including antlsony bolides the inhibition reaction takes place in vapour phase. While i s the case of phosphorous compounds the retardation process i s occur /5,6? ia solid­melt­ and vapour­

phase alike. The brutto mechanism i s suggested.

R e f e r e n c e s 1. Paulii ?. , Paulifc J., Srdey L. Z. Anal. Choe., ISO, 241 (1958). 2. Paul Ik J., Phallic P., Erdey L. Mikrochim. Acta, 886 (19*6). 3. Paulix J . f Paulik F. Anal. Cham. Acta, 56, ?S8 (1971). 4. Simon J., Androaits В., Szalai В., Lantos S. Hung. Scl. Inatr.,

48, 1 (1980). 5. Egyed 0. , Simon J. J. Thermal Anal., 15, 30? (1979). 6. Egyed 0. t Simon J. J. Thermal Anal., I6j 321 (1979).

PASSITrrr 0 ? COEFEH ГО ACIBIC SULPHATE ЗГЯСТНОШЖЗ

L . K i a s , U.L.Varebnyli A.Boequaz

Department of Phys i ca l Cfcoiti t r y and Hadio logy ,

ЕЗЬтоа U n i v e r s i t y , Budapes t , Hungary

The anodic d i s s o l u t i o n t a k e s p l a c e i n two c o n s e c u t i v e s t e p e . £i»ST-

T h i s mechanism baa Ъеоп found t o o p e r a t e Ш s u l p h u r i c a e l d , p e r e h l o ­

T I C a c i d / V a r d i p h o s p h a t e / V media. At a s u f f i c i e n t l y h i g h p o s i ­

t i v e e l e o t r o d e p o t e n t i a l coppe r may he p a a s i v a t e d a l s o i n a c i d media ^ 5 ? 6 / , T h i s occu r s f o r i n s t a n c e i n a s u l p h u r i c a c i d s o l u t i o n and a l s o i n copper e l e a t r o l y t e s g e n e r a l l y u s e d i n t h e r e f i n i n g of t h i e m e t a l .

ffe have s t u d i e d t h e p a s s i v a t i o n of copper w i t h a p o t e n c i o d i n a n i c method u s i n g s t a c i o n o r y p l a t e , r o t a t i n g d i s c and r o t a t i n g r i n g d i s c e l e c t r o d e s i n s u l p h u r i c a c i d s o l u t i o n s of copper s u l p h a t e . Our main aim was t o g a t h e r expe r imen ta l d a t a which a l i o » t o drair c o n c l u s i o n s f o r t h e mechanism of t h e p a s s i v a t i o n p r o c e s s of copper i n t h e medium mentioned.

l a accordance wi th l i t e r a t u r e d a t a , our expe r imen ta l r e s u l t s s u g ­

g e s t t h a t , o t h e r c o n d i t i o n s b e i n g t h e same» lower ing t h e t e a p e r a t u r e a n d i n c r e a s i n g s u l p h a t e o r / a n d a c i d c o n c e n t r a t i o n d e c r e a s e t h e c r i t i ­

c a l c u r r e n t d e n s i t y j f o r p a s s i v a t i o n . I n c a s e of r o t a t i n g copper d i s e e l e o t r o d e t h e i n c r e a s e of r . p . a , of t h e d i s c e l e c t r o d e i n c r e a s e s t h e c u r r e n t p a s s i n g t h r o u g h t h e e l e c t r o d e i n every s e c t i o a of t h e p o l a r i s a t i o n c u r v e , i n o l u d i n g t h e v a l u e of Ап, a s w e l l .

When t h e r o t a t i n g r i n g d i s c e l e c t r o d e i s u s e d , t h e C u + ­ i o n e f o r ­

med on t h e d i s c e l e c t r o d e can he o x i d i z e d on t h e p l a t i n u m r i n g . P l o t t i n g o x i d a t i o n l i m i t i n g c u r r e n t of C u + ­ i o n e a s a f tmot ion of t h e d i s c e l e c t r o d e p o t e n t i a l r e s u l t s i n a c u r v e p s s n e s а п ш х Ь т т .

According t o exper imen ta l da t a t h e d i f f u s i o n of copper i o n s from t h e e l e c t r o d e s u r f a c e i s t h e most impeded s t e p up t o a no t too h igh anodic p o l a r i z a t i o n . At h i g h e r anodic c u r r e n t dens i t i e s ' » hovew r , t h e d i f f u s i o n of wate r towards t h e e l o o t r o d e s u r f a c e governs t h e r a t e of anodic d i s s o l u t i o n . At n i g h c u r r e n t d e n s i t y , a c o a t i n g of r a r i o u s copper o x i d e s i s developed on t h e e l e c t r o d s u r f a c e and i t l e a d s t o t h e p a s s i v a t i o n of copper .

On t h e b a s i s of exper imenta l r e s u l t s , a r e a c t i o n mechanisa has heen sugges t ed f o r t h e p a s s i v a t i o n o f copper 1л a c i d i c s u l p h a t e e l e c t ­

r o l y t e s . In accordance w i t h t h i s mechanism, assuming t h a t t h e Lang­

muir i s o t h e r n a i s ' va l id f o r a d s o r p t i o n , po tenc lod inamic c a r v e s a n d cu rves t h a t demons t ra te t h e change of o x i d a t i o n l i m i t i n g c u r r e n t of Cu ­ i o n s on t h e p l a t i n u m r i n g a s a f u n c t i o n of d i s c p o t e n t i a l were c a l c u l a t e d under, d i f f e r e n t c o n d i t i o n s . These cu rves p r o p e r l y r e p r e ­

77

sent the character of experimental ourves, and conflxm that the me­onanism deoribee correctly the process» ocourine is the system in­vestigated by ua.

H e f e r e n ^ e s 1. Mattson P., J.O'M.Bockria. Trans. Far. Soc.,_55, 1586 (1959). 2. Kiss L.f Parkas J. Acta Chira. Sing., 6§, 395 0970). ?. Молодое А.И. V др. Элехтрохиыжя, 7,263 (1971). 4. Aetakhora R.K., Saalna J., Parkas J., Kiea L. Acta СкЫ, Hang.,

l£T, 151 C1979). 5. Leokie H.P. J. Electrochen. Зое., 11£, 1478 (1970). 6. Садаяоэ Г.А., Боадшша Т,Б. Загита мтшиовДО, 197(1974).

STUDIES ОН THE RECOVEffif Of VALUABLE ASSOCIATES

МШВВАЦ5 FHOM Т Ш OBSS

B.T&pfer, W.ZSonchea

Hesearch Institute for Mineral Processing of the Academy of Sciences of the Gm, preiberg, GDR The cusiterlte ores of the Saxonian ore Mountains (GDR) contain

In addition to 0.25­0.3* Sn as further valuable components O.02­0.05* WOj, 0,01­0.03* Bi, 0.002­0.02* Ho and 0.05­0.5* As. At present only tin, arsenic and a small amount of the bismuth contained in the ore are recovered (the latter 1л the process of tin smelting) by mineral dressing and metallurgies! treatment.

Tungsten is concentrated 1л the tin concentrates (0.5­8$ WO,), and bismuth and molybdenum are present in the arsenic concentrates (1­9* Bi, 0,5­6* Ho) of the plant. The studies on the utilization of H, BI and Ho are carried out on these products, net magnetic separa­tion is envisaged for the separation of wolframite. Por the recovery of bismuth and molybdenum the following process variants are studied!

1. Recovery of Mo, As and Bi conoentrates by differential flota­tion of the bulk concentrate followed by separate furtb&r metallur­gical treatment af the three obtained concentrates.

2. Hydrometallurglcal extraction of t>isnuth from low­grade bulk concentrates of Aa rougher flotation followed by flotation of molv> • dsnite and then flotation of arsenopyrite from the leaching residue.

5. Hydrometallurglcel extraction of bismuth from enriched bulk concentrates of Aa flotation followed by flotation of molybdenite and flotation of araenopyrite.

Typical results of the first orientating test3 on differential flotation according to Tariant 1 are: 78

Ho concentrate! 33.S5G Mo at а recovery of 90%« By one­fltage reolean­

ing of ­this concentrate the Ho grade Is raJseo. to 49%. As concentrate; 34.5% As at a recovery of 85%. Bi concentrates 30,3% Bi at a recovery of 84% Bi, By one­stage roc­

leaning the Bi grade i s raised to 41%. Рог the hydrometallurgieal extraction of bismuth according to the

­variants £ вдД 3 the following parameters and conditions) respecti­

vely, were atudiedi bismuth grade of the bulk concentrate; concentration of sulphuric acid and hydrochloric acid, respecti­

vely, in leachingj 1caching temperature; leaching kinetics; effect of chloride additions and of aeration; matrix influence of arsenopyrite and other minerals; parallel­flow and countercurrent leachingj conditions of hydrolysis of bismuth­containing leaches; removal of arsenic from waste liquort circulation, of acid» The studies carried out so far showed that a recovery of 95% Bi

was obtained by two­stage discontinuous countercurrent leaching at 80"С and low acid concentration with addition of chlorides. Bismuth I s separated as BiOCl grading 76% Bi by hydrolysis. Acid recycling i s part ly possible. In th is direction a process proposal was elaborated and additional tes t s for i t s exact specification were studied.

First studies on the flotation of molybdenite from the leaching residue were also carried out. They gave a Mo concentrate grading 36% Ho at a recovery of 84%. These t e s t s are continued with the object of achieving an essentially higher Mo grade of the concentrate without a decrease in recovery,

NEW HbTEROPOblTCHGSPATBB WKH fPRANSCTIOB UEFALS

­Ei(IT) AHD H i ( I I ) AS HEEEROATOMS

Ih.Marcru, Bodies va'tjulescu, T.Budiu

I n s t i t u t e of Chemis t ry , ClnjJ­Napoca Romania

The p a p e r i s concerned wi th t h e s tudy of two new h e t e r o p o l y t u n g ­

s t a t e s w i t h t r a n s i t i o n m e t a l s a s b e t e r o a t c m s , namely t h e a n i o n s : il­timgstcaquoniccolun(II)titanateClV) / Т ^ ш т й ' ^ и , / 6 ­ CI) and 5­tungstoaquoniecolmCII)titunate(I7) /HgOSIiW.w'jDgQ/ ( I I ) , isola­ted under the form of sa l t s with inorganic cations (Na+, K*, HHj, T l + , Baa*) and organic cationsi /СВА/*, ^ ^ \ ° ^ + * ' С 2 1 н * в я / * and / C ^ ^ O j R ­ g A *

The now synthesized compounds belong to two dist inct classes of heteropolytungatates; the anion I belongs to the 2i11 series and the anion II "belongs to the 2:5 series of beteropolytungstates.

The formations conditions of hctergpolyanione I and I I , аь в fun­

ction of pB, temperature end time» were established speetrophotomet­

r ical ly and It: was Bpeeified by photocolorimetric t i t ra t ions that the rat io Bi/Ti i s equal with one» for both complex anionB.

The U.V, absorbtion spectra studies snow an absorbtion characte­

r i s t i c for the heteropolytungstic framework, that was assigned to a charge transfer, in the ease of the both anions.

By interpreting the abaorbtion spectra in visible range, i t was indoubtedly established that the R i 2 + ion i s octahedrally coordina­

ted both in the anion I and in the anion I I , and the ligand field strengths and the asimmetry of the K106 chromophore group were es­

tablished. The characterisation of the behaviour of the mentioned anionB in

solution» was completed by ion exchange studies on cationites in acid and neutral cedlma, papsr electrophoresis, basicity determina­

tions and the Study of thei r s tab i l i ty as a function of pH, The pnyeico­chemioal studies carried out in solution on the anions

/H 2 0NlTiff 1 1 0 3 9 /6 ­ and /EgDHiTi^Ogj/ 4­ were completed with studies

in_solid phase, concerning the structure, the thermic s tab i l i ty , the I.R. absorbtion and the molecular weight determinations.

The results of the powder К ray diffraction analysis lead us to the conclusion that the I* and HB sa l t s of anion I are iaomorphous and crystal l ize In the cubic system ­ the centered face ae­dlflcation­

being iaomorphous with a ] j t of representatives of the 2111 hetero­

polytungsfcic series (the elementary cel l size i s a ­ 21.3364 A for the E* sal t and a ­ 21.921B A for the ЯН* ga i t ) .

Consequently we have attributed to anion I a modified "Keggin" structure, in which the titanium Is the central hoteroatom, t e t ra ­

hedrally coordinated, l ike in a classic "Keggin" structure, being surrounded by 11 octahedra of WO, Uganda. The modification consists in the fact that nickel (the octahedric exterior heteroatoo) repla­

ces randomly one W atoo In the 12­heteropolytungstlc cage. The mo­

le :­ale of constitutional water i s most probably coordinated a t the nickel atom.

\ s far as the anion I I ie concerned we concluded that i t cannot be Included iu the str icture type adopted by soma representatives of the 2i5 series ( l ike NagPJfojOgj'lJKgO and (NH^5HP­ lMo502,­3H20).

The results of our s' udies allow us to suggest a new structure type for th is anion, a gap type structure.

SO

Tims we consider that an "Aderson" pattern Is possible where the nicbel atom, octahedrieally coordinated, occupies at randan the pla­сч of doe W atom. 1л the ring of elx W06 ootahedra of the classic "Anderson" structure, whereas the titanium serves AS central note* roatoa,

ЗЯРЗЕШЕИТАЬ AHA1YSIS АЩ) DIAGNOSIS OF TiO­PHASE CHEMICAL EKfrXHBKREIG SfaTHBS J.cWafc Insti tute of Chemical Process Fundamentals Czechoslovak Academy of Science, Prague 6 ­ Suchdol

a'wo pbaas systems can be encountered in majority of chemical tech­

nologies. As t jpioal examples separation columns (gas­liquid, l iquid­

liquid) and chemical reP­ctnrs (gas­liquid, gae­solid) can be given. A considerable effort baa been devoted in the past to mathematical modelling and analysis of these systems baaed on pbaaomenological approach.

" The ua£ of efficient mainframe computers promoted so far the for­

mulation of more complicated model structures and the i r solution.Lees atteatlon has been given to the experimental analysis of the s t a t i s ­

t i ca l characteristics of t i ae and space inhomogeneltiss of decisive s ta te variables in time, amplitude and frequency domain. These are important not only for the ve­jiflcation of the adequacy of existing sophisticated model structures» but at the вала time the ; can give a qualitatively new­insight into the mechanism of related transfer ргояевеев.

By the advent of modern data acquisition and processing systems haeei en mioroproeesBC­re t h i s approach becomes aja efficient tool especiallyfor dynamic and s t a t i c modelling as well as diagnosis of full­ecalB units under plant conditions. JL survey of resu l t s obta­

ined in author 's laboratory during the past decade will he presented.

APFLIcmOB 0* STOCHASTIC DEWEHEHIUL EWMIOHS FOR DBSCRIPTIOH OF HOS1DB&L FLOW MIXERS А2ГО REACTORS V.Rudrna, J.Sfcrivuiek, J.Vlcek Department of Chemical Engineering Prague Ins t i tu te of Chemical Technology 166 S3 Prague 6, Czechoslovakia Complex processes of contemporary chemical technology require a

corresponding level of the i r physical and mathematical analysis* 6 606 SI

One of possible approaches is apjjlicatic­д of etocfc*>;

tic differen­tial equations. Those equations have the advantage of enabling us to describe the random nature of aaea, heat and momentum transfer In chemical equipment.

fheory of stochastic differential equation is subject of special mathematical literature /V* and novadays some of Its aspects may be found in chemical engineering literature /2Л

We applied thle mathematical tool for description of mass trans­fer In flow mixers and reactors, assuming, that each mass element оотев inside the sixer due to the influence of random and non­random forces and that the random forces F are of the following nature

~?dt ~ df where W i s eo called Wiener process / V . an exactly defined random function of time. In this case the II Newton's law, describing the movement of the mass element, takes the form of о ctochaatio diffe­rential equation* It can be proved /Э7» that thle approach leads under specific simplifying assumptions to relations commonly used in chemical engineering for description of mixer or reactor behav­iour ­ we have In mind the diffusion model a the model of an Ideal stlred tank cascade*

One of the results of our approach Is, that the residence time distribution of a moss particle In a flow reactor can be expressed by the eo called gamma ­ distribution. Thin conclusion was experi­mentally verified on laboratory, just as well as on industrial велев, the latter being a 25 m flooculatlon chambei­* We have shown, that this approach can be with considerable success used for scal­ing up laboratory data to equipment of Industrial size.

R e f e r e n c e s 1. Gichman 1,1., Skorokhod A.V. Stochaatlceskle diforentialnyi urav­

nienia. ­ Naukova dumka, Klew.igfiS. 2. Seinfeld J.H., Lapidue L. Mathematical Methods In Chemical Engi­

neering, vol. Э, Prentice­Hall, 3nc.r Hew Jersey, 1974. 3. Kudraa V. Coll. Czech. Chem. Соштш., 44, 1094 (1979).

CUHKEHT CHAbLEBGES Hi Ш mUVEBSITIBS' AHAItfTICAL j

CHEKSTHY CURRICULUM |

H . P r e i e e r

Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA 1 A review is presented of the current analytical chemistry curri­

culum trends (both undergraduate and graduate; in American univer­sities. Particular attention will be paid to the clarification of the relationships between analytical chemistry and

a? other branches of chemistry; b) modern developments in physics, biology and mathematics) e) theoretical vs» fundamental studies; and, i) Interactions between the unvereitiee, government and induetry.

STBUCTURE OP ASPHALTENES ЛОТ THEIR PLACE IH THE ORQJUJIC Ш а П З Т И CLASSIPICAriWI li.A.Baatougeff l Dr. Scientific Counsellor Prance, Eaubonne 95*600, 12 rue Jean Thomas Althrough eephaltenee play an important port in the natural phe­

nomena (formation and evolution of petroleum, maltha, aephalt etc*) and in different branches in industry, this group of chemical com­pounds has not found till yet Its place In organic chemistry clas­sification.

This paper presents results based on personal research of the author and recently published data from numerous sources on struc­ture cf aephaltunes.

The main points studied are: btructural elements of asphaltenes» review of their properties depending on their origin, analysis of their physico­chemical behaviour. ТЬэ set of available data on structure and properties of asphal­ I )

tenee taken by the author as a system of polyoondsnsed molecules, ' show thet asphaltenes must Ьате their place in organic chemistry classification between micro­ and macro­molecular compounds.

83

OEHEHU. 2B0BLSMS OF PESTICIDB BESK1ECH A.Ssanto Research Institute for Heavy Chemical Industries, Уввзргет, Hungary

In the research on crop protection chemicals basically not the technological study of available products and known agents should be envisaged, bat rather the development of completely new pesti­cides suitable for wall^eflned purposes.

Pharmaceuticals and pesticides are products of specific, compli­cated nature. For both producte the applicability, field of appli­cation, dosage, formulation etc. of the final product should Ъз determined, discovered ­ without exception ­ by those carrying ou­t R+D work.

If the researo into new compounds ia envisaged in севе of phar­maceuticals and peetlcldes a basic question should be considered. If we can speak of research industry (like engineering or chemical Industry) at ell* neither pharmaceuticals nor pesticides appear as producte of the eheaical industry, but those of the research indus­try* I& the proceed of manufacturing producte emerged from the re­search industry, extraordinary complex intellectual activity and realizations, experiences and skillfulness in totally different fields are required.

As for both products, pharmaceuticals or pesticides should be die covered steadily for solving newer and newer problems, and consumers should be protected from the harmful effect of chemicals, a permanent Innovation is required in both lines of the industry.

Bt­D plays a greater part ia the innovation systeia of the two research areas than is the case for any other branches of the che­mical Industry.

Therefore it is of pa­^ticular Importance, what kind of research strategies will be applied In these fields*

Speaking now of the research into pesticides only, at present three strategies can be applied in this field:

a simple, selecting, the chemical structure modifying, the selecting strategy based on the theoretical biological

system model* Obviously the last two strategies can be effectively applied.

To support this opinion I should like to mention our suecees ful researches in the field of acid anllide and sold amide type com­pounds, as well as our fundamental research parried out together with the Biological Beaeareh Institute of the Hungarian Acadeey of 84

Scienoee In the field of the presence, quantity and physiological effeot of .­onoanrines and cyclic nucleotides In Insects.

Both strategies can only ъе Bocceeufull> applied i£ the dis­cover of the final application area of any potentially нем agent, the development of the compound to a pesticide ­ which can be than put on the market ­ are carried out experimentally. In a very complicated interdisciplinary research system. Nowadays experts Involved in the research on pesticides are inclined to exaggerations,

The Importance of the mathematical investigation of the relation­ship between chemical structure and biological effect la over­esti­mated la гоню places* This remains, however, no new pesticides have been discovered on the basis of these relationships in the past decades.

It the ваше time, by the progress of "biology ­ even if I do not challenge Its determinant role ­ one is inclined to underestimate the part of chemists, disregarding that a sew orgsno­chemleal re­cognition* allowing to develops new compounds where the Investiga­tion could not be possible without that recognition, nay be equally or even core important in the research work as these results achie­ved In the. fundamental biological researches.

THfiOHSMCAIi IBVBSriGATI0N3 ON IODISED STATBS H.Cambi­, G.Ciullo, A.,Sg&taellottl» F.Turantelli Department of Chemistry, University of Perugia, 06100 Perugia, Italy

Theoretical investigations ere reported on ionized states of molecules and on toplce related to electron spectroscopy. The follo­wing research lines are discussed!

I. Correlation effects and potential energy surfaces for ionized states­ of simple molecules, computed by the Configuration Interac­tion Method.

Extensive HHD­CI calculations have been performed on the neutral states of CBg^B,, 1

*,), BeHgC 1

*,), HHgt2

^,2

*,,) und on the relative core iontaee states /1,3/* Optimised geometries and potential energy surfaces hare been computed for all the states considered. Harmonic force constants for the vibrational normal modes have thus been obtained and an estimate of the vibrational fine structure accompa­nying lonlsatlon. has been made by means of computed Franek­condon factors. '

II. Green** function formalism for calculating оЪаегтаЪЛев of phcioelectron and (e*2e) spectroscopies.

85

The one­particle Green's function A„ Q (^ allows direct calcula­

tion of Ionization potentials and electron af f in i t ies of molecules* Кзеяе оЬветтаЫев appear as f i r s t order poles in the Lehmann repre­

sentation of G , t 'd spectral in tens i t i e s nay be determined by the calculation of the pole residues. Poles and residues oay be computed by solving the Dyson equation for the eexf­energy, which can be con­

veniently expressed as a series of Abrlkosov diagram*. This expan­

eion may be truncated to the third order diagrams and r^norealised t al ternat ively, for low pole strengths, i t яау be expanded according to the Гошм Oancoff (Sph­?DA) approximation.

Results obtained for fluoroaethanes £57 and for some fluorine derivatives of ethylene show that the quasl­particle picture breaks down for inner valence ionizations. Therefore Ionization from these orbltale gives r lee to eereml apectraX U n c i , spread over a wide energy range, with no components of predominant pole strenght* These theoretical results are confined by the (e,2o) spectra OJ*

H I . Ab in i t io investigations on ground ant1, core ionized statea of model systems far the reversible binding of email molecules.

Lb In i t io calculations» a t the Hartw«­Pack level» have been carried out on /CaHH3)2CO/+, /Cu(BH 3) 3C0/ + and the i r Cugs, Cujp, Cle and Ols core hole s t a t e s . ^Ъеве molecules have been considered «e model systems for воле stable ethylendlanlne and hlst ldlne CuI) complexe», which reverslbly bind and activate carbon monoxide, The theoretical Investigation Л 7 , which has been extended to the frag­

ments /СпШэ)?У , /Cu(HH,),/ and CO, provideo coordination energy values of CO which are fa i r ly consistent with the reverslbly bound nature of the CO llganfl. Л confoiMatlonal study confirms the expe­

rimentally ascertained l inear i ty of the Cu­C­o moiety and the ca l ­

culations also tJhow that the Cu­CO bond has a substantial of —inter­

action contribution. The theoretical Investigation of the core ionized s ta tes allows

a discussion to be made of the chemical shifts between the core levels of the two model systems. The corresponding l ikely solid s ta te spectra are discussed by Inclusion of l a t t i c e potential ef­

fects in terse of nearest neighbour in teract ions . 17. The Xd. method applied' to the calcination of continuum state

wavefunctlons and of photoemleslott i n t ens i t i e s . The ХЛ method. In the multiple Scattering formall™, may be

effectively employed for the calculation of continuum state func­

t ions, as well as bound etate functions. Since In the Xd framework the molecular potential I s described by a local density functional, the dlpole t ransi t ion moment Integral may be expressed in I t s aece­

B6

l e r a t i o n foxnLi H\\&.f\L>l*\<\\A-*Vli>\/y"K

i

-€l1

which l a computat ional ly very convenient , ft* c a l c u l a t i o n of the p h o t o i o n l a a t l o n d i f f e r e n t i a l croea s e c t i o n and of the asymmetry parameter fi m y then b» atraigj i t fonrmidly accompllahed.

C a l c u l a t i o n s of p h o t o e e i e e i o n c r o s s aec t iona at varying photon energy and o f •+ paraee ter* *r# c u i r a n t l y be ing c a r r i e d out f o r s o ­

r i a a of aoleoulf lSt a l i o conta in ing t r a n s i t i o n metal a t o a a .

B e f o r e n e e a

1 . Clark D . T . , Quaat I J . , 3gfa»9 l lo t t l k., T a x e n t e l l i P. A CI Invea­

t l f f a t l u i of t h s cere i o n i z e d s t a t e s derived f r o » ^ and B^ methylene. Chen. F h y e . , 5 2 , 11 ( 1 9 8 0 ) .

2 . Canbl E . , C i v i l e G., S g a m e l l o t t i A . , Taramle l l l V. Л CI I n v e s t i ­

g a t i o n on the Ion ized e t a t e a of BeH_, Chea* Phyo. Lattejra (виЪ­

n i t t e d TOT publication). 3 . Caabi a . , Clu l lo G., S g a n e U o t t l A . , T a r a n t e l l l P . , Pentoni H.,

Giardlai­Guldonl A . , Serg io A. I o n i z a t i o n of CH. and 1 а м f l u o r o ­

netbanea: а Згеап'а f u n c t i o n study and an ( e , 2 e ) apectroecopic I n v e s t i g a t i o n . Che». Phye. b e t t a r e , 0 0 , ooo ( 1 9 8 1 ) .

4 . Clark D . t . , S g a w l l o t t i A . , T a r a n t e l l l j . A t h e o r e t i c a l i n v e s t i ­

g a t i o n of the ground and core h o l e e t a t e a of / С и ( Ш 3 ) 2 С 0 / * «да /GaM^<30/*i Models f o r the r e v e r s i b l e binding of CO t o Cu(I) complexes. Inorg , Chcm., o o , ooo ( 1 9 8 1 ) .

HODERH TECHNOLOGIES 70S PRODUCTIOH OF BLAST­FURHACE COSE ГВ0М HIGH­VOLATILE COAL

S.Anderhega'en

Honorary НвшЪвг of the Steinkohlenbergbsuverein Eeaen Bundeerepublik Deutachland

Prime coking coal' accounts f o r about 25 per cent of the world: ч

coal r e s e r v e s , but i t e pr ice as charged t o the ooke oven plante m n by the i r o n and e t e o l industry ie higher than the pr ice of steam coa l f o r power generat ion . Tale i s du» t o the r e l a t i v e l y high e x t r a c t i o n c o s t s and t o *ha f a c t that 1л аопу оаээа g r e a t e r dis tanceshave t o be covered between the тзлвв and the c o k e r l e s , which impl i e s higher f r e i g h t c o a t s .

Thus, methods have been developed during the l a s t y e a r s whlob permit t o admix to the coking blonds the h i g h e s t p o s s i b l e propor­

t i o n of h i g h ­ v o l a t i l e weakly­caking c o a l , without detriment t o the

87

4tttlitr of the blaet­funuc* coke, moreover, tb» addition of eoel with * volatile content швЮв ГРОШ 30 to 40 рог o u t orfera the advantage of increasing tbo gas production which in many countries la urgently needed*

Efforts to auperaede blaat­faraao» сока by formad 00k» таАа free high­volatile coal have sot lad» во far, to striking auaoeaa.

In the field of conventional сокв­aking technology, using a lot type recovery QTOT'J with gravity charging, both technical end aoo­

noqlc progress baa been aado by sophisticated blending and grind­

ing of the individual components of the feed coal and by adapting the flue gas temperature and tbe отав width to the nature of the feed* The Input of weekly­caking coal, however» ie not reelly In» cxweeed la this ray.

Beoent experiences hare shann that the desirable higher f lexi­

bi l i ty In 'jh» composition of tbe coking blends 1в achievable by drying or preheating tbe feed coal and by compaction of the coking blend in the oven*

Br preheating tbo feed coal to temperatures batiraen 160 and 250°C the etrengtto of the coke i s improved, «теп i£ high­volatile ooal la added to the bland» and the throughput of the ovens Is raised. The differences between the flash­type and the fluidisud­

bed dryers used for this porpose, e.g. In the OK, the USA, Tranoe and Japan, depend mainly on the mode of ooke oven ohargSng. A recent method developed in the И Germany, with use of ateaaj in­

stead of waste gas as preheating agent, leads to higher safety and' lower energy consumption.

Admixture ot weakly­nakiiig ooal i s also facilitated by compac­

tion of the ooking blend, a method praotlstd mainly In Japan. It oan be done by briquettlng with or without addition of binder. ­ In this way» the 1'jput of high­volatile coal can be raised by someth­

ing between 20 and 25 par cent* A further increase in the proportion of weekly­caking coal i s

achievable by stamping the coking blend во ва to ralaa i t s bulk density ap to 1.125 t /аЛ with such в degree of compaction, а etrong blast­furneoe coke can be obtained from a ooking blend which tnay contain mora than £0 per cent of high­volatile coal, depending : on lta oaking and coking power. After successful attempts to ralee the height of the ovens to 6 m even in plants where the stamping technique i s practised, their production capacity i s tbe sen» as in йав* of gravity charging.

A recent, particularly interesting development in the FE Ger­

many, i s coabined preheating and stamping of the coking blend. In tbo light of the results obtained eo far, the proportion of prime 88

coking c o a l I n t h e blend can be reduced owing t o t h i s t e c h n i q u e t o ao twth ing between 10 and 15 per c e n t , end i n extreme c a s e s no prints coking c o a l a t a l l i s r e q u i r e d .

LA RBSORB DE LA RBPARTMIOH GRABULAIRE PAR ЮТЗДСХХСЯ D'ini PAI3CEATJ LASER: AMPLICATION AtTC CIHBHTS

J . P . K a r l c

D i r e c t e i i r Ge'ne'ral du C . E . B . I . L . H .

Lea t e c h n i q u e в g r a u u l o a e t r i q u f t e i i t i l i s e e s dane ^ I n d u s t r i e c i ­

m*nt±ere aa aont e n r i c b l e e d ' u n e m^thode n o u v e l l e don t l a promotion a 4t6 аевига'о par l e C.E.H.X.L.H. I I s ' a g i t da l a granulome ' t r l e p e r d i f f r a c t i o n d ' l m f a l s c e a u l a s e r q u i preee&te, p e r r a p p o r t aux me­

t h o d a s u t i l i e e ' e a J u e q q ' 4 pre ' s en t , un c e r t a i n noobre d ' a v a n t a g u a dont l e e p i n e i a p o r t a o t e e o n t l a p r e c i s i o n a t l a r a p l d i t f i . C e t t e p r e c i ­

s i o n e t o e t t e r a p i d i t e " aon t o b t e n u e s grace a une a u t o m a t l e a t i o n l n ~ t v g r a l e da I s шваагв a t de S e x p l o i t a t i o n dee r e " s u l t a t a . Sans сев c o n d i t l t m a , 11 d e v i a n t p o a s l b l e d ' e f f e c t u e r dea d d t e n n i n a t i o a s g r a ­

n u l « * t r i q u e e t r e e f r i q u e n t t e e t de Г а i r e e n t r e r e s t examen dane l e e p r o c e d u r e s d» c o n t r o l * de l a f a b r i c a t i o n , l ' av r toma t i ea t i on , dee b r o y t o r a # t l e e t r a T a u x de r e c h e r c h e . Cea t r a v a u x de r e c b e r o b e p o r ­

t e n t e a r 1*inf luence de l a g r a n u l a r l t e " s u r I ' h y d r a t a t i o n dee o l ­

a e n t e P o r t l a n d s втес ou sane c o n s t i t u e n t s e e c o n d e i r e s , o e l e s u e s ! a u r 1* r a n d e e e n t dee d l f f e r e n t a aodea de broyage u t i l i s e s dene, l ' i s d u a t r l e o l m e n t l e r e .

La me*tnode de a s s u r e de l a g r a n u l a r i t e * p a r d i f f r a c t i o n l a s e r a a l n s l pena ie de f a i r * p r o g r e s s e r l e a eonna leenncee e t a denostre" son u t i l i t e . B i l e a p e r n i o d ' a b o u t i r a un s p p a r e i l r e a l i s e i n d u a ­

t r i e l l e n e n t e t q u i e a t lodgement commavoiaПай,

PROCESSES OP PAST HEATIHO OP SLACK GOAL» AHD ТПВ IRSOVATIOH OF ХЛШЗЗтаШ. PROCESSES 0? COAL DEOASIPICATIOH IB CZECHOSLOVAKIA

J . l eVee» J . B u c h t e l e

СсесЬоаЮтак Acadaqy of Sciences, Institute of Geology and Geoteobnloe, Prague, Chechoslovakia

Toe coneback to the solid fuels as perspective source of in­dustrial carbon is oharaoterletio of the actual situation in the fuel energy eoonoay of шалу countries.

в?

The predominant production process of Industrial carbon in Czechoslovakia is nowadays the chamber coking of coal* This pro­cess participates with, round 50% in the structure of black coal consumption and secures the actual annual production of pig iron round 10 tons. Toe dependable yield of suitable coal basis for traditional chamber coking with regard to the narrowing ehare of wall cokeable coal evokes alao in Czechoslovakia the necessity of innovations concerning the traditional technology­. With regard to the results of Czechoslovak research as perspective seeo to be suoh innovation processes that bring the increased density of batoh. in the cjwnber. In the longterm prognosis these processes enable higher velocity of indirect heating at the pyro2yoia of ln« cokeable and worse cokeable types of Czechoslovak coals on labora­tory models. The experiments proved favourable influence on the formation of pyrolyaia residue and its physical mechaniaal proper, tiee. At the ease tiee the distribution of mass changes for the benefit of liquid and gaseous phaee and their structure changeв too. In Czechoslovakia we study first of all the heating rise without temperature rise in the draughts.

On the identical sample baee fast heating of incokeable and worse cokeable coals by the goa tfcoraoearrier in tbj fluid bed [ and at the saae time the thermoformstion of plastifylug coals are ' being studied. The obtained laboratory results show the possibi­lity of connection of the forced coke production and the pyrolyeie tare.

THE RARB­BAOTH B0K0CARBH>£S ­ REPARATION АШ) FffifSICAL HtQPERTIES J.Etourneau, J.lLTarascon, P.Hagenmuller Laboratoire de Cnimie du Solid© du C.H.B.S., University de Bordeaux I, 351 couxs de la Liberation, 33405 Talence Cedei, Prance

Many rare­earth borocarbldee have been discovered previously with general formula corresponding to RE ВС (e.g. У, Nd, Sm, Ho, Er, Xb,Lu),BE B £C (e.g. R£ ­ i'b, Щ ) , RE BgOg (e.g. RE . X, La — lu) and HBjBgC^ (e.g. RB a La •+• Er except.Eu>/1,2,3,4,5,6/.

The present work concerns the study of new borocarbides M E

g­ IC (M m £u, Yb, Sr) which derive from the hoxaborides having the Ca6B­type structure /5,7,37. These borocarbides have been prepared by borothemal reduction of the metal oxides in the presence of carbon at high temperature (1700°C) under vacuum. The homogeneity 90

range le 0 *<x 4: 0.20 with Si and 0 x^f­ 0.10 with Yb. X ­ 0.05 J is tbe upper limit of the carbon content for single crystals pre­ 1 pared by aluninioji flax technique. Is both cases the cubio lattice parameter decreases progressively as x lncreaaae. I

It is well established that divalent hereborldaa (CaBg, SrBfi, BaBg, EuBg and VbBg) are narrow gap intrinsic seni conductor*^* 97­Therefore it was interesting to know how transport and magnetic properties vary with carbon substitution in the hexaborldes.

Semiconducting behaviour arises for »i*Bg hexmborldes because the bonding bands of the boron network «те filled up by transfer or two electrons front the nation. Dlvalaat hexaborldes can be dopafl by substitution of trl ­ or tetrHTalent cation or by repla­cing воцо boron гЛажв by carbon. In both cases substitution yields n­type conductors /в/.

The borocaxbidaa *&$^х (H * Su» *b» Sr) have been studied by ЕЭК at X band. A coaparieon at 300 E of the peak­to­peak llnewldth Д Н (first derivative of the Bu 2

* resonance line) in the two systene ^ ^ б ^ х •**

B u

r*xM

x*B

6» B B 0 l f t > ***** oaa

^ ^ 2 c3oetrene are delocaliied In the conduction band for x carbon atoms preaont in the unit cell. This observation le w e n confirmed by Hall effect I measurements. Turtheiatore a weak and extremely narrow line which appears, superfcaposed on the E u 2 + гевопапсе line» only when x rf 0» Indicates an electronic localisation for the remaining x/2 electrons introduced. They are likely to font pairs ilQ/.

While pure SnBg is a ferrcmagaet at low tanperatnre(Ic 13,7 KJ» the borocarbides E " 2

^ »0

, have a magnetic behaviour which depends strongly of carbon content* The conduction electrons Introduced by cerbon modify the magnetic Interactions and induce a sign change of the paramagnetic Curie temperature 8 £&,117»

Magnetic structures of EuB c and Eufis _G were detarained by neutron diffraction on powders prepared from В and •

) J

B Q . BuBg is a simple ferromsgaet» wherefte the x • 0.20 compound has an Incommensurate spiral structure with propagation vector"!? • /0,28, 0,0/. Data far a magnetically inhomoganeous intermediate coimjiosl­tlon x • 0.05, Indicate a mixture of ferromagnetic and hellma­ j\ gnetlc domains ZiB/.

R в f e r e n c e a 1. Smith P.K., Gilles F.V. J . Zoorg. Unci. Cnem., 29, 373 1967). 2. Baaer J . f Debulgne J . С.Л. lead. Sc. , 272. 1277 (1972). 3 . Beirut E.T., HarkavekU b.Tfa. Zh. BrUl . ЕНд. (Moscow), 4§,

3 (1972). 4. Bauer J . , Bare 0. Acta Cryst. , ВЗб, 1540 (1930).

91

5. Bauer J. (private communication). 6. Kisaya II., Taraecon J.M., Btourneau J,, Hagennuller F. Hat. Res*

Bull.» 13, 751 (1978). 7. Schwetz K.A., Hoerle 11., Bauer J. Cer&nurgica Intern., _5_, 105

(1979). 9. Tarsscon J.U., Etourneau J., Dordor P., Hagenmuller P., Ka­

вауа M., Coey J.M.D. J. Арц. Phys», _51_, 574 (1979). 9. Hasegawa A., Xanaae A. J. Poys.,_£, С5­Э77 (1980). lO.Tarascon J.II., Btoiirneau J., Dance J*M,, Hagenntuller P., Geor­

ges R­, Angelov 3., Holnar S. год (to be published In J* Lees Common Hotel).

11.Coey J.M.D., Massenet 0., Kaeaya И., Btourneeu J* J. Pbya., iO, СЭ­333 (1979).

12*Тагавсоп «Т.Н.) Soubeyroux J.L., Etourneau J., George0 H. (to be published in Solid State Communication (1981)).

ИИГ PROGRESS IN THE CHEMISTRY OP MW.TICKNTEHSD THAH3ITI0N UET4L COKPLSffiS R.Pollblanc leboratoire de Chimle do Coordination du C.H.H,s., 205, route de ffarbonne, 31400 Toulouse, Trance

As a consequence a£ our general interest in the developnsnt of amiticentered organametallio reegente, the reactivity of several aeries of homo end hetero di­ or trimetallic complexes stabilized by bridging Uganda has been the object of a rathe? large program in our laboratory*

Recent results will be presented concerning; the reactivity of /Ir((H SBu*)(C0)I/2 toward hydrogene» activated

alkenes and alkynes* the reactivity off* 2

­n» bridged alkyne adduete /Ir(SBtt*)(C0)V2

RCCR toward hydrogene and trifluoraacetia acid, Intramolecular reactions inside trimidear arowlllce compounds, new extensions In the field of heterometallic compounds. These resultв throw some light on the problems of the bimetallic

activation of H„, CO and hydrocarbons and of the cooperative In» fluence of the bimetallic eltea.

92

CHARAMEEIZATIOH B¥ HSSSBAUER RESOKANCE OP Sn 2

* IMPUHITIES LOCALIZED ON THE SUHPACE OP СГдО, P.B.Fabritchnyi , G.Demazeau, A.N.Proteky , P.Hagenmuller Labgratoire de CMmie du Sollde du C.N.R.S., University de Bordaux, 351 Cours de la Liberation, 33405 Telence Cedex (Prance) Cbalre de Ohimie tfucl^siro, Paculte de Chimin, Universite* Lomonoeov, Иоесои V­234 (URSS)

The annealing in an hydrogen flow of Sn*+

­doped Cr_0 'пН­О samples has led to the formation of Sn . The oxidation state of Sn has been characterized by Boasbauer parameters In the pazemagae­tie domain (T > TK(Cr20­j) ­ Э08К): chemical ahlft 6" a +0.73+0. Q2mm/s,, qusdrupole splitting A • 2.08+0,04 as/в. These values ere close to those of 5n z

* in orthorhombic SnO /"1/. At low temperature /(T < %(Cr 20,)/ t hyperfine magnetic interac­

tions have been observed for the first time for sn 2

* introduced ев doping agents in a magnetically ordered oxide (11

'SniCr 0_). Moe e­

bauer roBonance shows for ''^Sn^* the simultaneous prosenoe of hyperfine magnetic and quadrupole interactions, which are of the same ardor of magnitude at 77K. From the spectra the following parameters have been determined (2) ­ tranefered hyperfine magnetic field: Н_2+(77К? ­ 38+_1 kOe, elgn and value of the quadrupole In­teraction constant: eV л и +3.6+0.3 шт/в, aaysnetry parameter Г[ аО.15+0,05 polar (6 ) and aaimutal <4 ) angles: 0 ­ У 90° ana chemical shift 0 /BaSnO, а +2.69+0*02 тш/в.

J "* Ox MoBEibauer investigations and ESCA measurements show that Sn

are localized at the surface of Cr.O, par t i c l e s . The geometry of the anionic environment of Sn9* in the mirfaee layers corresponds to a cationic ei te in the orthorhombic SnO phase / 5 7 .

R e f e " • n c e s 1* Boyle A.J.P. , Bunbury D.st .P . , Edwards C. Proc. Phys. Soc. A7g,

416 (1962). 2. Corkov U.P., Delyagin N.J7., Krylov V.I . , Hesterov V . I . r Che­

chlna A.A. Obrabotka i interpretstsya fizlcheakih eksperimentav Ed. Moscow University, 144 (1979).

3 . Pabritchnyi P.B., Proteky A.H.,Gorkov V.P., Demazeau G., Hagen­

rauller P. (to be published In Mat. Res. Bull. 1981).

SELECTIVE HYDR0GSHM40IT OP J'OLVENEBTO MON'OEKES, CATALYSED Ж RUTHHIIUH COMPLEXES H.Airoldl, G.Deganello, G.Die, G.Gennajro letituto di Chimica Generale, Facclta di Science, Universlta di Palermo, Via Archlrafl 26­2B, 90123 Palermo (Italy)

Complexes of transition cietals with cyclic polyolefine have received mnch attention specially in thai* syntheses and spectros­copic characterization / V . However sparse data are available on their \шва as homogeneous cat&lyete, A few reports mention their ability 1л promoting hydrogenatlon of raonoenee /2/.

In this communication we describe the first case of a cyclic polyolefin complex of tranuition metals as homogeneous selective hydrogenation catalyst of polyenes to monaenea.

The complex /Ru(^ *­COD)0£ 6­ C ^ 1 0 V tl) tCOD ­ 1,5 cyclocta­

diene, C ^ 1 0 • 1,3,5 cyclooctatriene) /3.4Z, depending from, the solvent, ie an effective catalyst precursor in the selective hydro­genation of polyenes to monoenes under mild conditions <t • 25°C and P H ­ 1 ata.).

О i

The substrate used are cycloheptatriene, 1,3­ and 1,5­cyclooc­tadiene*

Influence of temperature, pressure of hydrogen, and solvent, are discussed as well as mechanistic interpretation of results. This work is supported by "Progettl Pinalizzati" of Italian CNR.

R e f e r e n c e s 1. Deganello 0. Transition Metal Complexes of Cyclic Polyolefins.

Academic Press, London, 1979. 2. Schrock H.H., Lewie J. J. Am. Chem. Soc., 9J>, 4 1 0 2 (1973). 3» Pertici P., Simonelli G.P.,'Vitttlli G., Deganello C., Sandri­

ni L.P., Mantovani A. J.C.S,, Chem. Comm., 132 (1977). 4. Airoldl M., Deganello G., Die G., Gennaro G. J. Organomet. Chem.,

167, 391 (1960). 94

AN ELECTROCHEMICAL AITO XSS STUDY CP THE INTERACTI035 ВБОТЕВН SOUS БЩЛПтЛГЕО ХННГВП0НЗ AND PEAHLITIC ЭРЕЕЬ WISE. SOME Рввт.тмткдпу RESULTS HECAHDING NICKEL AHD COBALT

D. De P l l i p p o

Istituto dl Chimica Generale, Inorganics ed Analitiea Univereita de«li Studi dl Cagliari, Italy

The interactions with a pearlitlc eteel wire (C 0.7, Ыа 0,6%) have been studied using the following sulphurated Uganda as corro­elon Inhibitors:

a) inidazolidine­2­thione and its derivatives (aymbole: L, HeL, BtL, EtgWs

b) some dithiacarbamnic salts (symbols: Etgdtc» pydtc for pyirolidinedithiocarbamate, pidtc for plpsridtaedithiocsrbamate, modtc and modsc for morpholine dithio­ or diseleno­ carbamate))

c) the methyl eatera of (b) (symbols: Et?dtcHe, pydteHe, pidtcMe, modtcMe, modeeMe);

d) thiomorpholin­3­ona. The choice of a does of molecules containing S or Se donor atoms

ia due to some considerations arising from the 4ard and Soft Aclde and Bases'1 theory and from the hypothesis that the inhibitor act в mainly by anchoring itself to the metallic surface by means of an alone pair of electrons.

The study was carried out by the following methods1 1) measure­ments of corrosion rate by кевпа of weight lessee; 2) potentlody­namlc polarization and Tafel'splot.f 3) measurements of polariza­tion reelstence; 4 SPS study of the surfaces.

All molecules studied proved to be excellent inhibitors effl­ci9nsy of 9056 for a concentration of 0.3 ­ б wit). By increasing the Inhibitor concentration, the cathodlc part of the Jafel plot shif­ted towards more negative potentials, thus demonstrating a predo­minant cathodlc mechanism of inhibition. Simultaneously, the Rp values increase from about 40 Q си 2 to 1000­2000Q cm 2

. It is shown that, by elaborating the experimental data accord­

ing to the models of Langmuir, Frumkin, Hill de Boer and Parsons, they agree very well with the Prunlcin isotherm. It was therefore possible to evaluated the A G2AB values (from ­5 to ­10 К cal/mole) and the parameter tt

f" correlated with the mutual interactions bat­ween the adsorbed molecules.

The material considered and the problems studied here are strictly related to the production of a brass plated steel cord and the to rubber­metal adhesion In the manufacture of tyres.

95

Prom the shift of the S ^ signal towards higher binding energise (about 1 »V), in.the ITS study of the surfaces, and by comparing ­these results with the XP3 study of eome transition metal complexes of the same molecules* It follows that the inhibitor Is always bonded to the metal via the sulphur (or Se) atom.

As far as regarde nickel and cobalt, thionorph.olin­3­one proved to he a mediocre Inhibitor probably because of the presence of a superficial film of oxide* The 3CPS study of these eurfacee Is still In progress*

Ргои the above* It le possible to conclude that In order to achieve a good efficiency of the corrosione Inhibition» the donor atom must have empty d orbitals with a cytometry cocpatlble with those of the metal, and at same time the presence of large alkyl chains in the organic molecules contributee to Improve the screen­ing effect of the sites adjacent to that In which the adsorption of the molecule takes place.

CHBKICIL MBCHAHISMS REbEVAHT TO QQ12» GQMBUS'fXOB IN A ?LUH)I5£D BSD J,F.Davidson University of Cambridge, Department of Chemical Engineering, Pembroke Street* Cambridge» England* CSS 3HA

Recent work on the combustion of carbon In a dilute mixture with slrfluldiaed sand or other inert solid is described, together with related work on the absorption of sulphur in a fluldleed bed con­taining limeвtone.

Early котк (\f had shown that in a bed at about 900°C the carbon particle temperature is somewhat above the inert particle tempera­ture, 1­е» the carbon temperature is 900 + Дт'С. The magnitude of Д Т determines the combustion mechanism. If Д T is sufficient, the reaction C0_ * С—*"2С0 1в important* Studies of the rate of this reaction in a bed at temperatures up to 1400°C /2/ revealed that in a coabUBtor at 90oe

C Its rate la negligible at the likely values of A 1. Values of A T were measured In an operating combuetor by colour matching the burning carbon against (1) eaaplex of carbon at known temperatures and (2) emission from tungsten filaments at known temperatures. The results /5/ show that A T may be up to T50p

C and le ppoportional to the concentration of oxygen 1л the particulate phase around the burning carbon. This work suggests a beat transfer aechanian between the burning carbon and the Burrounding gas inert particle mixture* 96

In the light or the above, studies of carbon combustion in flul­diebd beds, inferring combustion rates from off­gas C0_ concentra­tion в, can be interpreted. The results suggest that the oxygen diffuses right up to the carbon eurface where It burns to fern CO. The CO then diffuses away, burning with oxygen near the carbon sur­face to form C0„. Рог large carbon particles the heat of CO combus­tion is transferred back to the carbon, sustaining the above men­tioned Л Т. Рог snail particles (< 0,2­0.5 am) the heat of CO com­bustion is absorbed by the Inert particles round the carbon) in this савеД T is small and the combustion Is controlled by the chemical rate of oxidation of carbon to CO* For the larger particles ( > 0.5 mm) the rate controlling step Is diffusion, either locally round the particles for small carbon charges, or from bubbles to particulate phase tor large carbon charges A / .

These results explain why small particles bum slowly and are liable to be elutriated, causing loss of combustion efficiency In Industrial combuators /5/.

Similar experimental techniques using a small fluldlsed bed gave results on SO p absorption in limestone* It appears that the reaction S0 3 + io_—*­30. is on important Intermediate step. This may explain why the percentage conversion of calcium to calcium sulphate is observed to be much higher in a coabuetor than in laboratory ex­periments in which so contacts a limestone sample. This hypothe­sis is supported by experiments In which the oxygen concentration was varied: low oxygon concentration gives high conversion of cal­cium to calcium sulphate /5,7/.

R e f e r e n c e s 1. Avedesian 11,11., Davidson J.P. Trans. Instn Cham. Eugrs, 51,

121 (1973). 2. Patel U.S. Fluidlzed bed gasification and combuctlon. Ph.D. dls­

sdi­atation, Cambridge, 1Э79. 3. Rose I.В., Patel H.S*, Davidson J.P. The teraperature of burning

carbon particles In flnidised beds. Trans. Instn Chem. Eagre 1931. To be published.

4. Ross I.B. The efficiency of fluldlsed bed combustion. Ph.D. dis­sertation., Cambridge, 1979.

5. Pluidlsed combustion: systems end applications, institute of Energy Combustion Series N 4, paper* IV­2 and IV­4.

6. Fieldes R.B., Burdett H.A., Davidson J.F* Trans, Instn Chem. Sngre, J7, 276 (1979).

7. Fieldes R.B. Reaction of sulphur dioxide with limestone parti­cles. Eh.D. disaervation,Cambridge, 1979.

97

THE CHARACIEHISATIOT 0? COAL LIQUIDS EX NUCLEAR MAGNETIC BESOHAHCE SPECTROSCOPY J.Hemec, I.Lang» P.Vavrecka

In recent years* a great defll of reeear­a In the Industrial countries has been directed towards coal as a source of liquid fuels. In Czechoslovakia, the technology of coal hydrogenation was used for liquid fuel production In the fifties and sixties. The part of contemporary research is a development of new analy­tical methods for checking coal liquefaction products. The oils and aaphaltenea were Isolated from batch autoclave liquefaction products of Czechoslovak coals t>y solvent extraction and charac­terized by elemental analysis, vapour—phase osmometric molecular weight determination, and proton and carbon nuclear magnetic reso­nance (PMR), The НШ1 spectroscopy provides useful structural in­formation on products formed during coal liquefaction. The qualita­tive and quantitative aspects of HHR are being discussed. The re­sults are compared with those obtained by other spectroscopic tech­niques* The oils and asphaltenee were also fractionated by gel per­meation chromatography into subtractions of different molecular siae and each of these euefractione was analyzed by proton HMR. The gained experience is utilized in the present cooperation of ICI and UCG.

SHE PHASE DIAGRAM PbSe­GeSeg AND IHVESTIGATIONS IH THE TERHAKX SYSTSI PbSe­GeSe­CeSe2

W.Iudwig, A.Felt2 Sektion Chemie der Priedrich­achiller­unlversitit, Jena, Ш П

The phase diagrams and compounds In the system MX­MX„ for dif­ferent eulfldes and Belenides from Oe, Sn and Fb has been reported, the combination FbSe­GeSe? seems to Ьв unknown up to now. The eyetem PbS­fieS shows the formation of the two compounds PbGaS~ and PbpCeS. f\Tt the phase diagram SnS­GeS­ only shoas the formation of SnCeS­a /*2/. The analogous selenlde mixture SnSe­GaSe­ ehow a simple eutectic behaviour without formation of any compound / V . The pre­sent investigations of the phase diagram FbSe­GeSe„ were effected by the study of the glass formation range and crystallisation beha­viour in the ternary system PbSe~GeSe­GeSe2 /4/.

The samples were prepared by melting the mixtures of high purity elements Pb, Ge and Se at 850°C for 6 hours in quarts tubes 5/. The melting process Is followed by annealing at 400°C for 3 weeks. 98

DTl­studlee and X­ray analysis of thee© powdered sample* yields the рпаве diagram FbSe­QeSe» shown In Fig. 1. GeSe„

ш в 1

* в congruantly at 740D

C. The liauldue temperature decreases when GeSe 2 Is stepwlee substituted by PbSe and the melting point of a euteotic becomes visible at 563+4°Ci The mmrimHiq of the peak areas in the OTA­eurvee 1B observed at the euteetie composition (GeSe„)0 .g (FbSe)0 p.. The email glaea for­mation range was found around the euteotic with the lowest llquidus temperatures* Starting from 0.57 PbSe the DTA­diagrams show a new enthalpy effect at 590+5c

C which area is Increasing up to 0.67 PbSe while the­eutectic pealc is docreaslng and at higher temperature a third melting effeot of a peritectic occurs. The at 590+4°C incong­ruently molting compound has the composition Pb­GeSe. and le a grey glittering eubetance of metal like appearance. Because of the perl­tactic decompOQltion the Ъеа1; preparation conditions are given by quenching a melt followed by annealing at 500°C for one week. At 590+4°C decomposition takes place yielding solid PbSe and a melt with the composition of (PbSe)Q „<Ge£e 2 0 4 3 ie fomed. Иге eutec­tlc composition of the system consists of a mixture of PbpGeSe. and GeSea in a mole ratio of about 3 to 2. X­ray diffraction patterns confirm the phase diagram deduced from DTA­meaeuremente,

In the Bystem PbSe­GeSe­fleSe2 X­ray diffraction pattern and the thermal behaviour were studied in the serlee А, В and С which are plotted in Pig.2. The area of glass for­mation PJ Is also drawn In the figure. рьЗв The presence of Pb­GeSe. in the samples AS, A3 and B1 ­ B4 1з unambiguously confirmed by X­ray analysis. For the aamplex СЗ, A6 and B6 the X­ray pat­terns of solid solutions of GeSe in PbSe are obtained, which le in accor­dance with the phase diagram of the system FbSe­GeSe. In the area between the border lines a set of new reflexes Eire found. ObvIoUBly, a thlrdphase 1c formed in this area of the ternary

GE5E

s y s t e m . However, t h e p o s s i b i l i t y of t h e f o l i a t i o n of a s u p e r s t r u c ­

t u r e of t i e s i x e s c r y s t a l s PbSe­GeSe h a s s l e o Ъе c o n s i d e r e d . The DTA­dlagrama of samples i n t h e broad a r e a show o n l y a s i n g l e peak a t 525­530°C i ndependen t of t h e i r compos i t ion* S t a r t i n g f r o » Fbg&eSej t h e DTA­dlegrsns of t h e e p e c i a e n e of s e r i e s Л show t h a t t h e HqUldua t e m p e r a t u r e d r a s t i c a l l y d e c r e a s e s and t h e new B o a t i n g e f f e c t i s obse rved a t 525­5300(3, which i n c r e a s e s i n d i r e c t i o n t o t h e compos i t ion of AS. The f i r s t e n t h a l p y e f f e c t a t 5 W V C of 32 and B3 can he u n d e r s t o o d м t h e m e l t i n g of a e n t e c t l o c o n s i s t i n g of Pb„GeSe.» GeSe 2 and t h e n o n s t o i c h i o m e t r i c compound ment ioned above . S o l i d QeSe_ d i s a p p e a r s . The second e f f e c t o b v i o u s l y с о х т е в ­

ponde t o t h e e n t e c t i c l i n e of t h e combina t ion of t h e n o n ­ a t o i s h i o ­

n o t r i c p h a s e and PbpGeSe, i n t h e t e r n a s y s y s t e m . F i n a l l y » t h e t h i r d peak i n t h e DTA­dlagram shou ld be caused by t h e m e l t i n g of PbgQeSe. .

R e f e r e n c e o

1 . B i l l И.» Hugnol i A, A t t i Accad . Haz. Xdncei , Hand. , C I . S c l . P i e . Hat* H a t . , 3 3 , 315 ( 1 9 6 2 ) .

2 . ­ s a n e r J . » Hoots D. H a t u x w i s s e n s c h a f t a n , 6 1 , 127 ( 1 9 7 4 ) . 3 . Belde b . , Khodadat F . CiB, Acad. S c i . , S e r . С 278 , 243 ( 1 9 7 4 ) . 4 . P e l t s A . , Senf L. Z. a n o r g . a l l g . C h e n . , 444 , 195 ( 1 9 7 6 ) . 5 . P e l t s A . , ludwig W. ( Senf L.» Simon C. K r i e t a l l u . Techn ik , ; t 5 t

в ( 1 9 8 0 ) , 6 9 5 .

COMPLEX РОгаилЧОЫ BY PYEIOIL SUBSTITUTED BEHZEUE SULFONAMIDES

E . U h l i g , H.DoriDg

Sektlon Chemle der Friedrich­Schiller­Univeraitat, Jena, DDR

As p a r t o f o u r i n v e s t i g a t i o n s on new e x t r a c t a n t s f o r 3 d ­ e l e m e a t s we have s t u d i e d t h e c o o r d l n a t l v e b e h a v i o u r of t h e compounds Р В Л , PT­H ? PEB­H, and PET­H.

i MJ-CH 2NHS0 2—<^-B P6­H:ft=H PT­H:R=CH 3

P£B­H:R = H

3y reaction with the nitratea of copper(ll), cobalt(II), nlckel(H), or zink(II) five­ or sii­aerabered chelates ­ IIII

(1'B) , H I I

(PT) p»

И1 1

(РЕВ)», Ы *(ИЯ?) 2 ­ are formed. JJI theee complexee, according to the IB­spectra, the sulfonamide anions are bldentate (coordination by the nitrogen atoms of the pyridyl and the sulfonamide» groups).

A equare planar structure was proved for Hi(PB) 2, HiFI)2<VIS­

spectrum» magnetism), and Cu(SB)_ <ESR­epectrum). The octahedral complex lIi(PT)2CH20)2 loseo water on heating above 120°C. ­In metha­nol/ chloroform Co(P3) 2 is tetramerlc with a spectrum which is cha­racteristic for five­coordinate cobalt(II) complexes f\/.

Neutral complexes are also formed by silver(I) /Ag(PB)/ and platinumdD/PtCPEB)^, but not by iron(II). In the iron(III) соир­lexee /Pe(PB­H) 3/(Ha 3) 3 and / О Д Р Я ­ В Д ^ Л П О ^ the oulfonamidea are coordinated as neutral bidentate ligands. There is a tight relation to /Pe(dipy)3/(H03),j both as to the donor set (ffg) and the colour and the magnetiam (low­spin­type) CsJщ

In general the new chelates are easily soluble in chloroform and alcohols, but not in toluene and hydrocarbons, in contrast to eulfonaciids which are derived from S­amino tjulnoliiie ChJ they cannot be recommended as metal extractants.

R e f e r e n c e s 1. Cianpc­lini M, Structure and Bonding, 6, 70 (1969). 2. Brandt W. s Виуег F., Gyarfas E. Chem. Reviews, SAj 858 (1954). 3. Kordoaky G., It&c Kay K,, Voroig M. Тгапа, Soc* Min, Eag. АШЕ,

262, 36 (1977).

CHEMICAL TRANSPORT REACTIONS IN SYSTEMS CONTAtHIlIG SEVERAL COEXISTING PHASES AND PHASES WITH A HOMOGEHBITY RANGE. TRAffSP02T OP THE BJSABX ASO TERKARY Ю Ь Ш Д О Л Г SULPHIDES MoSg, Ko 2S_, AHD PblfogSg G.Krabbes, H.Opperoann Central Institute of Solid State Physics and Materials Research, Academy of Science of GDR, DDR^027 Dresden

Many chemical systems contain several phases* Single crystals of such phases can he grown by chamical transport reactions (CTR), Some of theee phases have a finite phase width. Generally, CTR in thee» cases results in either composition differences between the powder in the initial ьрасе and the deposited crystals or in the deposition of a second phase different from the starting material.

The thermodynamic analysis of the steady state transport answers the questions concerning the criteria of the chemical transport of coexisting phases and the оощювШоя change if a phase with a hoao­

Ю1

geneity range i e cransported. This la of great practical importance because the physical properties can change considerably within the homogeneity range even when the phase width la very small*

The problem will be demonstrated with the chemical transport of the Ио ­ S ayaten as an example for binary вуaterns and of the I Bo ­ 3 ­ Pb system which i s a ternary one.

Konocrystala of MoS_ have been grow* using Br £ , GeBr2» and 5пВгг as transport agent, respectively. The Б: Mo ra t io 1э not greater than э even in the case of sulphur excess corresponding to phase diagram investigations. The Mo2S, phase can also he obtained hy CTR. The homogeneity range was found to he within the l imits 0.008 i y 4 0.036. Mo,5 4, however, decomposes at the t rans­

port temperature. CTR resul t s in the deposition of Mo^S­ and crys­

ta l l ine IfoSBr, In the system Pb ­ Ho ­ S the superconducting CHEVHEL phase

FbJforS (PUS) Is the sole ternary compound. The ideal composition P b M o 6 S 8 d o e e n o t f a l 1 l n * ° t n e homogeneity range at shout 1000«Ct

the l imits of which were determined ae 0.9 £ г < 1.1 and 7*6 4 У £ 7 ­ 9 .

PMS can he transported using РЬЗг,, if an equilibrium mixture of , PKS and Uo la present in the s tar t ing space or if there ie the pure PUS phase not exceeding a c r i t i c a l sulphur content. The t rans­

port condition? were deduced from the thermodynamic analysis of the system Pb ­ Mo ­ S ­ Br.

The c r i t i c a l temperature of the superconductivity depends on the composition of the PUS.

KINETICS AND ЫЕСНАВ15Н OP THERMAL REACTIONS OCCURRING UNDER

COHVEHTIGHU AND QUASI ISOTHERMAL ­ QUASI ISOBARIC CONDITIONS

P . P a u l i k , J . P a u l i k , Ы.Arnold

Institute for General and Analytical Chemistry Technical University Budapest, Hungary

In the course of conventional thezoaoanalytical exandnatlone the progress of transformations ie regulated by a selected linear heat­ j ing program. Despite the strictly constant rise in. furnace tempera­ | ture, due to the slaw heat transport the transformations are prot­racted in time. The sample viz. is no* able to take up instantane­ously the relatively great amount of heat neceeeary to the trans­formation. The continuously further increaoing temperature Increases also the rate of transformation in an uncontrollable way. As a result the course of the curves become distorted. In contrast, the ousel isothermal heating technique [\,2,3/ ensures that the rate 102

5 0 Fq.1 w *• 4 W Fig.2

of transformation be kept at a very email and constant value. Acc­ording to experience under mien conditione the distorting effect of best transport ie eliminated*

In the Inside of the conventional open crucibles, by applying a dynamic heating program, the partial pressure of the gaseous decomposition products changes and along with thle also the decom­position temperature changes in a continuous and uncontrollable «ray. This also contributes to the distortion of the curves. With the application of the so­called labyrinth crucible /1.2,2/ * "self­generated" atmosphere is ensured within the sample holder and the transformations take place under "quasi isobarie" conditions. As a result» the above mentioned distorting effect also becomee eliminated.

This problem can be studied in Pigs 1 and 2. Former illustrates the dehydration of sodium sulphate dekahydrate, while the latter one that of calcium hydroxide. Curves 1 were recorded by means of the Q­Derlvatograph by using the quasi isothermal ­ quasi ieobaric mea­suring technique /1,2,37, while curves 2 were traced applying the conventional dynamic heating program. Authore stated that by apply­ing the new Q­TG measuring technique the dehydration of both com­pounds occurred in an isothermal way at the temperature value, belonging to PJJ­O ­ 1 Ъ а г P

a

'tial pressure,known as "normal value" from phyeico­chsmietry. Under the conventional conditions the dehyd­ration of the above compounds took place In a broad temperature in­terval with a changing rate. Prom these two examples it can already be seen that the interpretation of the curves obtained with the new measuring technique ie easier, their quantitative evaluation le more accurate and in general kinetics and mechanism of the reactions can better be studied.

R e f e r e n c e s ?. PaulikP., Paulik J. Wiermochlmica Acta, 4, T69 (1S72). 2. Jaulik P., Paulifc J*. 3. Therm. Anal., % 253 0973). 1

/г7бол

3. Paulik J<i Paulik P. Simultaneous themoanalytical examinations by means of the Derivatograpb EXeevlzr Sci. Publ. Садр. Amster­dam, 19B1.

PLOW­THROUGH АЯАОДХОЛЬ CHANNELS AND THEIR APPLICATIONS E.Pungor, K.Tota.G.Nsgy, 2s*Pebe\r I n s t i t u t e f o r Genera l and A n a l y t i c a l Chemist ry T e c h n i c a l U n i v e r s i t y , Budapes t , Hungary

The p a p e r d e a l s w i t h t h e o r e t i c a l problems connec ted w i t h f low­

through, a n a l y s i s and w i t h t h e tew de re lopmen te c o n c e r n i n g t h e f low­

i n j e c t i o n a n a l y a l e and t h e t r i e n g l e programned t i t r a t i o n . Examples a r e g iven from t h e f i e l d s of p h a r m a c e u t i c a l and e n v i r o n m e n t a l a n a l y s e s .

HEW METHOD РОЙ THE PREPARATION OP CORUNDUM­SPINEL COMPOSITES

L . K a t c h a l o v a , J . T a l a b e r (Budapes t )

We r e p o r t t h e r e s u l t s of t h e e y n t h e e i e and t h e p r o p e r t i e s of conmdum­Bplnel compos i t es w i t h s p i n e l c o n t e n t up t o 30%.

The compoei tea were made by h i d r o l i z l n g of h i g h p u r i t y a lu tn ln iun f o i l e ( i n d u s t r i a l w a e t e ) i n w a t e r s o l u t i o n s of KgSO. of d i f f e r e n t c o n c e n t r a t i o n s * VgSQ. g e t s absorbed on t h e s u r f a c e of t h e newly formed aluminium h y d r o x i d e . The e x t e n t and t h e p r o d u c t s of c r y s t a l ­

l i z a t i o n of t h e amorphous aluminium h y d r o x i d e , t h e form of c r y s t a l ­

l i t e s , t h e p r o p e r t i e s of t h e p r e c i p i t a t e a s w e l l ae t h e p r o d u c t s of t h e topochemlca l r e a c t i o n s t a k i n g p l a c e on t h e s u r f a c d of t h e p r e ­

c i p i t a t e depend on t h e q u a n t i t y оГ t h e X­ray amorphoue HgSO^ l a y e r . The e t i c k l n g f o r c e o f t h e SgSO. l a y e r e d e c r e a s e s HBOothly w i t h

t h e d i s t a n c e from t h e s u r f a c e of t h e aluminium hydrox ide l e a d i n g t o p a r c i a l r e d i a s o l u t i o n of absorbed MgSO^. T h i s p r o c e s s t h e r e f o r e c o n t r o l s t h e h i g h e s t p o s s i b l e s p i n a l c o n t e n t of t h e compos i t es and Impedes t h e p r e p a r a t i o n of t h e s p i n e l a s a monophase produc t*

The f o r m a t i o n of t h e s p i n e l t a k e s p l a c e d u r i n g h e a t i n g of t h e p r e c i p i t a t e ; t h i s p r o c e s s b e i n g euperdBJposed on t h e p r o c e s s of t he rma l d i s s o c i a t i o n of MgSO, t ransformed, t o c r y s t a l l i n e s t a t e . Oceurlng i n t h e t e m p e r a t u r e r a n g e 760­1000cc .

104

The t r a n s i t i o n of a lumina n o t Invo lved I n t h e e p l s e l f o r m a t i o n t o t h e Otf ­ac id i f i ca t i on s t a r t s a t 1100°C,

The compos i t es t h u s formed a r e of vex? h i g h chemica l p u r i t y . I h e l r a o t l v l t y d a r i n g s i n t e r i n g depends on d l s p e r e i t y de f ined p r i ­

m a r i l y by t h e e x t e n t o f c r y e t a l l l n l t y o f t h e aluminium hydrox ide and t h e t e o p e r a t u r e of f i r i n g of t h e p r e c i p i t a t e .

The f i e l d of a p p l i c a t i o n of t h e corundum­sp ine l compos i t es depends on t h e i r a p l n e l c o n t e n t ­ H a t e r l a l n w i t h e m s l , ~ 0.5%. s p i n e l c o n t e n t can s e r v e а в s t a r t i n g m a t e r i a l s f o r o b t a i n i n g a p e ­

c l a l p r o d u c t s e*g* t r a n s p a r e n t corundum, M o c e r a m i c e and o t h e r d e ­

t a i l s o f h i g h s t r e n g t h and w e a r ­ r e s i s t a n c e . I n t h i s севе t h e s p i n e l p i e ? t h e r o l e of t h e n l n e r a l l z a t o r p e r m i t t i n g t o d e c r e a s e t h e f i r ­

i n g t e m p e r a t u r e of t h e aluminium ox ide and c o n t r o l t h e r a t e of c r y s t a l growth» Samples of t o l a m a t e r i a l f i r e d a t 1400*0 I n h y d r o ­

gen a tmosphere had a r e l a t i v e d e n s i t y of 9B.T&, a t e n B l l e s t r e n g t h of 500 Я/ma 2 a t an a v e r a g e c r y s t a l l i t e s i z e of 3 M m.

Composi tes w i t h 1O­30J6 s p i n e l c o n t e n t can he used f o r p r o d u c t i o n d e t a i l s need I n t h e e l e c t r o n i c and vacuum I n d u s t r i e s .

KIHETICS 09 SObVEBT EXTRACTION OP METAL CHELATES

H* P r e i s e r

Department of Chemis t ry , U n i v e r s i t y o f A r i z o n a , Tucson. Ar izona 85721 , USA

Study of e x t r a c t i o n I t l n e t i c a o f а number of m e t a l c h e l a t e sys t ems u n d e r c o n d i t i o n s of r a p i d p h a s e mixing s e r v e t o show t h a t t h e r a t e ­

d e t e r o d n i h g a t o p ( в ) I n t h e o v e r a l l e x t r a c t i o n j i roceee i e t h e fo rma t ­

i o n of t h e m e t a l c h e l a t e I n t h e aqueous p h a s e . T h i s was obse rved i n t h i s c h l o r o f o m e x t r a c t i o n of C d 2 * , 2 n 2 + , C o 2 + , and Н 1 г + by d l p h e n y l ­

t h l o c a r b a z o n e ( d i t h i s o p e ) and a e e r i e e of s u b s t i t u t e d a n a l o g u e s end of Hi by £ ? a * ­ d l p y r l d y l and 1 , 1 0 ­ p h e n a n t h r o l l n e ,

I n a d d i t i o n t o t h e s e sys tems of p r i m a r i l y a n a l y t i c a l i n t e r e s t , examina t ion of t h e k i n e t i c s of t h e e x t r a c t i o n of C u 2 hy t h e h i g h m o l e c u l a r weigh t hydroxyoximes , 11X65 and L1X63» and of t h e c o r r e s ­

pond ing ly s u b s t i t u t e d 8­QUinolinol,KBLEX­100, used I n p r o c e s s s c a l e s e p a r a t i o n , r e v e a l s t h a t aqueous phase f o r m a t i o n of t h e meta l comp­

l e x , r a t h e r than i n t e r f a c l a l phenomena, i s t h e r a t e l i m i t i n g p a r t of t h e e x t r a c t i o n . l b s s i g n i f i c a n c e of t h e s e f i n d i n g s i n the d e s i g n of new e x t r a c t a n t e i s d i s c u s s e d .

8 60s i OS

SEW raroEESTiSDHrO 09 FHDTOREACSIOHS IK BOLK POLYMBHS O.I.EiOMbaoh Institute of Keoromoleculer Chemistry» Horaann­Staudinger­HOuaa, University of Freiburg, Stefan­Heler­St?. 31, E­7S00 Traiburg.FHO

Jhotoreaotiona in polymers ere of great interest ror variouu reaaeae and particularly In connection with the use of a polymer aa a ciatrlx for a photoiniuoad reaction1 e*g. photoioaging process­es. Howevjr, In aoat aaaea considerable deTlationa from solution ar» observed if the reaotion la carried out in a solid polymer oatriXp a phenomenon, which so far was ascribed to the viafaoelae­tlo pxopartiaa of polyaera In general. Systematic investigationo of the photoohroalera of aromatic ело compounde /1*3/ and spiropy­гапв /3­5/ aa models for photoaotivo oompounde in a serine of polymers, revealed that the free volume and the molecular mobility of both the photoactive compound and of the polymer chains are the actual reaction controlling parameters.

Thie ie demonstrated, e.g., for the case of aromatic azo com­pounds (ois­trana ieomerination around the ana linkage) in the temperature Лереьавпсу of a^ (ratio of the thecal cle­tratm re­laxation time it temperature T to its value at T ) In the yeduaed Arrnenlue­plot (Fig. 1) and the WLP­plot (Hg. 27.

The reduoed Arrhanias­plot eshiblta the e^lstenoa of two dif­ferent relaxation maohanieme of the eso chromophore in the glassy polymers (aa determined from the analysis of the kinetics of the thermal baok reaotion). both with temperature independent apparent energies of activation which are found to be much lower than ic solution, i.e., 68.7 kJ/mol. and 26.6 ftJ/mol, respectively. ТЪеве values coincide with the oharactoristio energies for rotationi.l (cranksheft) and translational chain segmental motions in glassy polyuersj It la tnerefoia concluded that only chain segmental re­laxation processes, which depend on the local environment of the ohromophora, are the controlling factors for the isomerizatlon.

The connection with the free volume theory is obvious from the decrease of the apparent energy of activation of the bleaching process with increasing temperature above T as exhibited by the curvature In the Arrhenius­plot. Such a temperature dependent energy of activation is typically found for, e.g., dynamic mechanical re­laxation processes of polymers, which ere be°t described by tbe WLP­theory /57, and, in fact, the type of the WLP­equ4tion,log a ? ­* ­С­СШТ )/(с„+М?), holds for the pbotochromic relaxation pro­106

, » -"I 1 I

/ • -' d ^ o X O '

-"I 1 I

/ • -

•ж

-"I 1 I

/ • -

'•'/

-"I 1 I

/ • -

- / a -X , 1 , 1 . i._. IKIIM , -

сева as shown in the WLP­plot (Fig. 2). The numerical values of the constants C. and C» differ from the "universal" values but for a given faoily of polynere a given set of parameters la sufficient for different chromopnoreo such as azo compounds and epiropyrons (of. /32). The deviations of the parameters can be diecueeed on the basis of an unequal distribution of free volume throught the matrix caused by photochromie foreign moleculee, i.e., a local change of the packing density around the cbromophore. It has to be nentioned In this context that the relative amount of the two sinultaneoua relaxation proceeaes observed in the polymer glass le temperature dependent and can be correlated with restrictions In the fluctuat­ion of the free voluaei this teoperaturs dependence leeds to a new reference temperature in the glassy state at which the contribution of cooperative translation»! motions of chain segments to the fluc­tuation in the free volume is widely frozen in /32*

In summary the following essential conoluaions can be dratm from the characteristic features of the isomerization behaviour of the azo chromophores outlined above» a И » reactivity of pbotoreactive molecules in a polymer matrix le related to particular chain seg­mental mot ions, b) l'ba form of the WLP­equetion describee the tem­perature dependency of the relaxation process of chroaophorea. o) Photochrome noleculee are suitable probes to detect particular ootions in solid polymers as wall as changes of the overall chain segmental mobility and thus the structure and morphology of poly­mers tft 87.

B e f e r e u o e e 1. Eisenbach C D . Uakromol. Chem., 179» 2489 (1978). 2. Eisenbacb C D . Polymer, 21, 117? (19BO). 3. Eleenbach C D . Ber. Buneeng. Phys. Chem. 84» 680 (19Э0). 4. Eisenhaob C D . Polyou Bull., 2, 1б9 (1980). 5. SmetB G., Evens Q. Pure Appl. Chem., Suppl* Macroawl. СЬеш**

B t 357 (197Э). 6. Killiama H.L., Iflndel R.P., Perry J.D.» J. Аш. СЬещ. Soc, 77*

3701 (1955). 7. Eisenbach C D . Polym. Bull.* 1, 517 (1979). 8. Eiaenbach c.D. Hakromol. Cham., Rapid Commun., Л, 287 (1980).

SPPECT OP IHORGAHIC СОКМШГОЭ ДО IOB EXCHAIQB PROCESSES ОЯ DYHUCC IDSOHPTIOH OF I0LUCR1OMUDES 1H P0R0&3 KSDIA l.J.Lakatos, J. Lakatos­Szabo*

Petroleum Engineering НяовагсЬ. laboratory of the Hungarian Academy of Scienceв l^skolc­Egyetemvyros, P.O. Box 2. Hungary H­3515

Toe improvement of the arecl and vertical swsop efficiency of conventional waterfloodljig пав a central role in enhanced oil re­covery. One widespread aathod Ли? that purpose is the mobility control by dilute •оиаопв solutions of polyacrylaaldeB. Toe papers dealing with the flow phenomena of polymer eolutlone in porous media attribute a decisive role to the adsorption of polyaorylamidee in the displacement meebaniem. Therefore in the Pet* Eng, Res, Lab. of HAS much attention пае been devoted to the study of factors which nay effact the adsorption of polyners is a roclc/oil/water system.

On the basis of the results of the laboratory studies it can be concluded that

a the absorbed amount slightly decreases with increasing rela­tive molecular mass of the polymer and strongly decreases wl'.h in­ex­easing degree of hydrolysis?

b) up to the critical polymer concentretion the amount of adsor­bed polymer is independent of the polymer concentration, and above this value it increaseв owing to neohanlcal polymer retention

a) with increasing concentration of dissolved inorganic salts the adsorbed amount also inoreeeea;

d) the adsorption behaviour of hydrolyrod polymers due to the structural differences depend on the salt concentration to a grea­ter extent than of unbydrolyzed polymers da;

e) the bi­ and multivalent cations influence the adsorbed amount more seriously than the monovalent metals do]

f ) preinjection of monovalent netel halogenidua through elimi­nation of bi­ and multivalent cations from the rock surface by ion exchange may decrease the adsorbed polymer amounti

g) singe the ion exchange capacity le different for monovalent metal (Ha*» K +

, Li* halogenldes, their effect on adsorption is also different;

h) preinjaction or joint application or silicates and phosphates may decrease considerably the polymer retention through formation of hardly dissociable Ca end Ug compound on the rock surfacet

109

I) in polymer flooding under approximately compatible coali­tions with uaual polymer and aalt conetntrfttiona, the interaction of toe roolc and the freely floating polymer coile is dominant in the sorption phenomena]

Я in programmed flooding or In tbo caae of low per* slas/ooll else ratio, tbo adsorbed polymer file ia « multilayer» which oan be attributed to the simultaneous effect of the adsorption of coil aggregate», chain penetration of rando* coile and aaohanloal polymer retention.

Que to the simultaneous nature of sorption phenomena, and me* cbanlcal polymer retention, the exact description of adsorption processes in natural porous rooks under dynamic conditions la at pre Bent wry aomplioetedi

THERMAL ИЕСОмТОЗШОК 07 OXEUS «TO QXKTUUD 2

Zs. Hunyadi­ZoltAn, L,2alotai, Т.Вбговв, F.maVta Central Research Institute for Chemiatry, Hungarian Academy of Sciences, Budapest, Hungary

Kinetic data for axeten and varloua substituted oxetana ape available today. However, the reported Arrneniua parameters see* to involve certain inoG­nslstencles. "bow* Arrnenlua parameter* (i.e. A factors Around 10 1

*'5 e~ 1 and aotivation energies Its»

than 250 kJ mol" 1

) *в well ae "high** kinetic paraajetew (i.e. I factors of about Ю 1 5 a""

1 and activation anerglea around or above 250 kj шо1" 1

) vara publiened. The order of magnitude difference In the A fectora la difficult to aluoidete, provided that all coapounde d«oanpqse by the ваше m*chanlem.

ID this study, the decomposition of oxetan and oxetan­2.2­d2

were investigated at "high pressures" and in the preaaur* depen­dent range. The experimental results were analysed by the Kaaael (BBS) and Жлгсив (ввХ*) tuaorie*.

Qxetan and otttsn­d. were found to decompoee In clean unlaole» oulex reaotions into ethylene and formaldehyde, "High ргеввиге" first order rate ooefflolents were determined at preaeurea of P 0 7 kPa over the temperature range of 670­760 s, A leaat­afua* res treatment of the oxetan decomposition data yield»

logOt /a"1

) ­15­42+ 0,31 ­ (259­5 + 3­8) xj И(>1­1

/ВУ n 10 The rate coeffioienta for oxetan­d, deoompoaition fits the equation

lcgOc /a"1

) ­ 15.54 + 0.16 ­ (362.8 + 1,9) kJ mol"1

/** П 10

110

IhO "High pressure" kinetlo results obtained for oxeton decom­position Is this study are compared with literature data in the following Table,

logU /a"1

) EA/kJ mol"1

10*1» / в "1

«t 713 X R«f«T«QO«B

15.42 ± 0.31 15.71 i 0.31

14.79

Z59.5 ± 3.8 263.7 • 3.5

251.0

2.56 2.46

2.52

ТЬ1в VOX­lE

Holbroolc mnd Scott Л7 Biitklr and Walters £ /

The rate coefficients originating fro» tne three source* show гвшегквЬке good agreement, however, tne comparison of the Arrhenias parametera la not satisfying at all. It ia obviou» that theoretical and experimental information ether *&ш V measurements AS • funct­ion of T are required. Such iuforoatioBoaa be expected from the pressure dependence of the firet order rata coffleent.

Experimental fall­off curves were determined at varicue tempe­raturee ia the pressure ranee from 7 * dow to TO P* both for oxeten and for oxotan­dg decoecwitioa. Interpretation of tbe fail* ­off plots by the ЗПК theory required the Kaaeel parsieiw» Of S

K " ( 8

' a

K • 19 and Bj • 17 if ArxheniuB parameters obtained In

this work, reported by Holbrook and Scott / V and published by Bittker and Waiters /27, reepectiTely, were used. Unfortunately there is no accurate theoretical nethod available which could predict the KBBBBI parsmever, thus the ВШЕ theory le net suitable either to eupport or to reject any of the reported Arrheniu* pa­rameters.

Hereupon a more sophisticated treatment known aa Ш Ш (Нагой*) theory wna used in the analysis or the fall­off data. Transition state sodelfl were aesumed It accordance with the Arrheniae parame­ters for oxetan decomposition obtained In this work, reported by Holdbrook and Scott / V and published by Bittker and Walter», res­pectively. Baaed on these three transition state models, Н Ш fall­off curveв were calculated. Comparison of the theoretical and experimental results proved that the transition state wodall which was constructed to fit the Arrbenlua parameters determined in thie work pave excellent agreement with the experimental fall­off data*

R e f e r e n c e s 1. Holbrook K.A.. Seott Н.Л. J.CS, Paraday I, Hi 1*49 (1975). 2. Bittker D.A., Walters W*JU J. Amer. Chen. S e c , 7£, 2У2.6 (1959).

111

COMPATIBILITY OP POLZACRtfLAHIDBS ABD CAEEOK DIOXIDE .1,J.LaketOB, j, Lalcatoa­Szabo

Petroleum Engineering Research Laboratory of the Hungarian Academy of Sciences Miakolo­EgyetsmTaroe, P*0. Box 2. Hungary H­3515

In layered reservoirs the sweep efficiency of CO­ injection Is extremely poor on account of the nigh mobility of the displacement phase. Го overcooe with this problem a logical Idea «en of the .joint application of COg injection and polyaer flooding. The enhan­ced mobility control by polynsrs can be eucceded, however. If there is no doubt about the therael stability of polymer »olutione. ТЬегеГогь an extensive program was launched in the Fat. Sag. Лее. Lab, of HAS to study the stability of poiyaorylamlde Qolutlone In presence of C0„.

The studies were focussed on hydrcllzsd and imhydrolized polyac­ralamidea. The degradation process «as followed by the change of the dynamic viscosity end the screen feetor,. After the thermal treat­ment the flow characteristics (ЭЕ, KKF, t , 0 and VR.) we»* deter­rained at 90 °C for both the original and the degraded solutions,

Ths results of /the laboratory investigations can be euaterized as followst

1. The polys cry lantidea and their solutions show higher degra­dation in presence of CO­ then in 0­ containing ayaten.

2, The stability of polymer solutions depends primarily on degree of hydrolysis and practloaly does not depend on the mole­cular mass of the polymer.

3. The degradation of the polymer solutions is slightly in* fluenced by C0 £ pressure or saturation In absence of formation rock.

4. The stability la decreasing with the teopersture In presence of CO», but the change la smaller than expected.

5. The inorganic electrolytes iaprove the chemical stability of polyacrylamidea*

6. The stability of unbydrollzed polyaaryleolde in presence of I[ CO­ is independent on salt content.

7. The presence of crude oil doea not lnfouence the polymer stability in C0„ atmosphere.

a. The partially hydrollaed polyacrylamldes ebow a higher degra­dation in presence of formation rook than In absence of them.

9. The preaenoe of rook baa no any noticeable effeot on stabi­lity of unhydrolised polymer and its solutions. 112

10* The rook .Influences the stability of polymer solution through dissolution of some rock constituents in presence of COg.

11* It is advantageous if the polymer solution contains mono­ralant salts (Мл* or K +

) in a oonoaatration which assures equilib­rlua eolation straoture, r±t. nterlr spherical coll configuration,

12* The •llalnatlsn of slralent oatlona by silicates can lead to a prolonged stabilltttlon reaofiag or reducing to* unfalourable вхвваа salt affeot*

Угош the aapecta of practical application of the polymer flood­ing it is conoloded that high releculer weight unhyuroliced or slightly (5­10*) bydrolised polyaorrlauldes'oust be used if the polymer can get into contact with CO. containing system.

113

Алфавитной AlroWl М­ 94 Anderheggen Б. 67 Androeita В. 75 imbruz V. 58,102 Arnold K. ICE ЛтегЪнсЬ ­ Poacbot II.T. 13 Balerew Ohr, 28 Barton D.H.H, 39 bait, K. 21,47,68 Bachine* К. 22 Back 1 . 1 . 55 Bereea T. 110 B a r t i n i I . 59 Bertot t . I . 18,19 Beitoneaff M^l. 83 Bidden ML 52 B i l l e t O. 25.62 Вогояа'Ь. 25 Boeqaez A. 7? Buobtele J . 89 Badlu T. 79 СгшЪ! 2 . ЕЙ Caeida J .E . 13 C a u l e t t i c . 40 Сегвак J . 81 « a l i o 6 . fil Dascaleacu 2* 54 DeVid K­ 27 Davidson J .T ­ 96 De Fi l lppo D. £1,95 Doganello G. 94 Desmseau С 93 Davoto G. 52 Dia С 94 Dolanaky J . 21 Dorlug M ­ I 0 ° Durif A. 13

Eieenbach. C D , 107 Emons H.­H. 46 Btoameau J . 90 Fabr i tchnyl F . 3 . 93 ?eh4r 2». 104 F e l t s A. 96 P r e i s e r B . 83.105 Pujlnaeo I . 60

указатель Purlani A. 66 Pur lea i C, 40 Саго J . 26 Cennaro 0 ­ 9 4 Gil la rd R­D. 42 Grlgoratou A. 16 СГшзае В. 69 Hagenmuller P . 35,90.93 Hale Б. 6В Haley Ь, 27 Hanelik X. 22 Havllca J . 58 Hemiig B, 63 Hertz H.G. 51 Hunyadi ­ Zoltan 2e . 110 Ivony K. 25 Janaurfek 2. 21 Jordanov R. 74 Kaiflulie J . 16 KancljCr E. 58 Keehiwabara К. ЗЙ Katcbalova I . 104 Kataaroa B. 16 Klngary V.D. 73 KIBB L. 77 K&ler H3 6Л E e l d l t z L. 28 Krabbes G. 101 Kuiroa V. 61

1аад I . 98 iAIcatoe I . J . 109 bakatce X.J. 112 I*katoa­Seal» J . 109,112 bepadatn C I , 54 Ucocc ia S. 66 btndbere в > 3 4

Idea С 54 Ifioat C.35 ludwlg V, 96

Uagearu V. 54 Marcu Gh. 79 Karta P . 110 Наеавсез! X. 52 M a t B r S. 35

Uattogao G» 40 Merle J.p. 69 Mink G. 19 Ulye a. 32 НайГ С [04 Ifagy I . 27 Heooc J . 89 Oppiicion H. 101 Pep I . S . 18 P a u l i i p . 102 Paul ik J . 102 Phi l ipp B, 50 P 1шш Н. 52 Pador B. 19 Poiiblaoo R. 92 P o n t i o e l l i G. 52 Proahiske V. 31 Protalcy A J , 93 Pumgor E. 104 Kaau J . ­И.Зб RebOTslc O, 63 Raid A.? . 45 Russo U.V. 66

Saocani L. 39 Sel to K, 32 S a r t o r i G. 66 Sehe lUar P. 63 SgemallotU A. 65 Slder ia Б. 16 SlEtlonescu B.C* 56 Sinionesou CaZ* 56 Sinon J , 75

Skrlranak J . 61 Sobczyk L. 17 Spaaaova U, 30 S t l b r 8, 21 Stott«v« o . 28 subr t J . 22 Szajani B, 25 S Z A W A . 84 S a f e l y в . 18,19 TalaMr J . 104 T a r a n t a l l l p . 85 laxsagoa J.H. 90 T3lgy«**y J . 24

Topfer Б. 76 Toth A. 18 Toth. K, 104 Trendafelov D, 30 Trzeoiak А.И. 46

. Uhlig E. 100 Urbanova' Ы. 31 Vararfhyl M.L. 77 vfltuleacu R. 79 Vavreoka P . 98 Villenaure 0 . 35 Viable J , 81 Wagenjir R. 63 Wedd A.G. 43 Wiaker W. 71 Winona r ? .L . 42

ZaJcharova I .A. 68 Zalo te l L. 22*110 Zapla ta l V. 31 Zelei B. 19 Zl&koaafel J . J . 45 Zlatova I . 30 Zotmohen IT, 76 Балр Б. 12 Гера Э. 5 Гшшаль Г. 4 Евдокимов В.И. 12 Захаров А.А. I I Кеиер X. 9 Кноп К. 7

Коннолович В. 5 Нургулвсву И.Г. 3 Нгувн З ш 10 Нова* 3 . 4,10

Рожнжтовска­Давидовнч Я. S Саанч П. Э

Тонг Нуан Ч$т 10

Цивадза А.С. 9 Цишары&нн Г. 4

lasiurKM И.С. I I ЩуОрт Я. I I

С о д е р ж а н и е Стр.

Савич. П. Некоторые вопросы физической хкыии фазовых перехо­дов > 3

Мургуйеску И.Г. Уравнения состояния для жидких, металлов..* 3 Новак 3., Циммерманн Г., Гюншель Г. Выбор рациональных пу­

тей подготовки исходного сырья для пиролиза 4 Конколовнч В., Гера Э., Рокнятовска­Давидович Я. Термодина­

мические свойства и химическая реактивность халатных комплек­сов некоторых переходных элементов, 5

Кноп К. Некоторые аспекты использования новых азотных удоб­рения . 7

Цйвадзе A.D.» Келлер X. Лазерные спектры HP координационных соединений металлов с дкцианемидом и трщканмвтакидом»...... 9

Нгуен Зак, Тонг Куан Чунг. Кинетика и механизм парофазного гидрохлорирования ацетилена на ртутном .катализаторе ю

Шубрт Я­, Захаров АЛ., Шаппыгнн И.С. Исследование реакцион­ной способности мелкодисперсных порошков а­т — Fej0 3 tf

Баяр Б. (Улан­Батор, IfflP),"Евдокимов В.И.(г.Москва). Хемо­сорбцня хлора на окислах металлов. i iz

Durif Л., Averbuch­Pouchot И.Т. Hew trends 1л phosphate chemistry: phosphate­tellurates and phospho­chrotoates........ J3

Gasida J.E. Progress in pesticide taetabolien, degradati­on and mode of action. J3

Katsaroa IT., Grigoratou A., Xaloulis P., Sideris E. Com­plexes of adenosine­S'­monophosphate and cytldene­5»­toono­sphoephate with transition metal ions , 16

Sobczyk L, Spectroscopic, dielectric and NQR studies of strongly hydrogen bonded complexes ,. J7

Bertotl I., Pap I.S., loth A,, Sz&eiy I. Comparative tbennograviiiietric study on the chlorination reactions of various metal oxides * •••> « IS

Szekely I., Podor В., Bert64i I., Kink G., Zelei B. US ans XB. studies on the chlorination reaction of various Do­tal oxides 19

Stfbr В., Base K., Janousen 2., Dolaneky* J. Synthesis and reactions of new 9­10 atom carbaboranes 21

Snbrt J., Hanslu: I.» Bechine K., Zaple­fcal V. Transfor­mation of synthetic jf­PeOOH in water and iron(It) sulphate solutions .­ > 22

^Slgyeeey J. Sadioaotive kryptonateo ia environment pollution control* ...................... 24

Szajtani В., Ivony Katalin, Borosa L. Resolution of race­116

Die mixtures of aaino acids by incobilizad aajlnoacylase: preparation, characterization and practical application or a new immobilised form of pis kidney eminoacylase 25

Gazo Jan. Equatorial­axial interactions as a manifest tatIon of the mutual influence of llgando.,,..,,,........*... 26

Hagy I., David K„, Halmy L. Diagnostic value of paeudo» cholinesterase isoenzymes and other aerum essymes in chro­nic liver diseases 27

Eolditz Ь* Hesctlona of solid halogen complexes 27 Balarew Chr., Stoilova D. Relation between the crystal

structures of eome salts of the type MeCOCOCH^jg'nHgO and their ability to foro nixed crystals or double salts (Ме

й + = Ug, Ca» Hn, Co, Hi, Cu, 2n, Cd) 28 Trandafelov D., Zlateva I., Spassova M. A complex for­

mation and в dehydration In the acetate ayetеда In water and water­alcohol solution*1

.. • 30 Proobizia V. f Zapletal V., Urbanovn M. A new synthesis

of boron hydrides ., . ­.•­ 31 Saitp Kazuo, XaBhiwabara Kazuo, Miya Sln'ya. Kinetic

studies of eubetitutlon reactions of olefins on square plbnar platinun(H) complexes It solution..... 32

Liadberg B. Structural studies on the capsular poly­saccharides froa streptococcus pneumoniae types 1,4 and. 12F r­.., 34

Нвцегади11ег P., Н^ви J.­M., bucat C., Mater s„, Ville­neuve G. Ionlo conductivity of fluorite­type fluorides....,,, ^°

Barton Д.Н.Д. The invention of neit reactions and rea­gents for organic synthesis ., 39

Sacconl 1, Metal assisted reactions of tertiary phoapni­nea ITI+'L transition metals and some ancillary Uganda 39

Furlani C , Uattogno C , Cauletti 0. Some recent achie­vements in the knowledge of the electronic structure of coordination compounds from photoelectron spectroscopic techniques ., 40

Gillard R.D., ViaasT P.L. Inorgajiic optical activity 42 Wedd A.G. Molybdenum­95 nuclear magnetic resonance pro­

perties of molybdenum­oxo, ­eulur and ­selenium species 43. Held A.F, Chemical, thermodynamic and solid state aspects

of the metallurgical processing of bauxite, sulphide огов and llmenite». >•••**...... ....•.•••...,.. 45

Traeciek A.M., Zioltonski J.J. Studies on metal complex

catalysed doecapesition of organic hydroperoxides by HUB. method. ­ 46

Base K. Syntheses and reactions of neir 9­10 vertex azaboranea,. 47

Emons H.­H. Some Investigations of binary molten salt mixtures , 48

Philip? B. Effect of different pretreatments on degra­dation of cellulose and lignocellulose by enzymatic and sold hydrolysiev. 50

Hertz E.G. Electrolyte solutions, positional and velo­city correlations.«... 51

Hertz H.G» Electrochemistry, о reformulation of the basic principles »....., 51

Blddau M., Devoto Q., Uassacesi II., Pinna ft., Ponti­calll Q. Pslladium(II) and plstinum(II) complexaa with banzoxazola and imidazole derivatives. . 52

LepSdatu C.I, The concept of electronegativity in Slater's theory of the atom... 54

liica C , Ysgearu V., Daacaleaou 2. Uetal­oomplex elec­trodes. Deterstination of oyanidea 1л waters 54

Beolc M.I, Kinetics r mechanise* and design of oligo­osolllatory reactioDB. 55

Slnlonsson C.I., Simionesou B.C. Polymer synthesis in cold plasma confiltioi», , , 56

Havlica J#, Kanol­fr E,, Ambruz V. Phase equilibria in the system СвСГрОд­Са^е­О­ at low partial oxygen pressure.. 58

Bertini I. Paramagnetic metal ions as probse in mstallo­proteins. ^

Fajlnaga, Isitiro. Пая flow coulametric method slth the column electrode ­ a con^outer controlled analyser system for the trace metal analysis.,.' , 6o

Billet H. Separation process design under the espeot of energy sarins...... 62

Hennig Я.j, Seheioler P., Rehorelc D,, Wegener R. Photo­catalytic «/otans, Tbe coupled photorsdox systeo /5oCHH 3) 5OH a7* +*/6ro 4~j'toH f g^o 6 3

Kohier B. Actual developments la the concept of element­ . homologous оокроипйв*.......... .,.,,.,.......«,.,...... 64

yarlani A., Sartori G r f Busso U.V., Idcoccla 3, Plati­num acetyiidee as models of intermediates In the oligome­rization and polymerisation reactions of acetylenes,......... 66

Hale г. Vapour­liquid equilibria in chesical engineering.. 68 Base K., )5t£br B*« ZaJcnarore l.A, Syntheses of new ple­

na

tlnum complexes with heteroborane ligondo. .* 66 Grunze H, Preperation of Inorganic phosphorus compounds

by means of "positional eyntheHis" or with the help of "structural reorganization" 69

Wlefcor V7. On the influence of the formation conditions of the chemica] behaviour and anion­constitution of the oaloiumhydrogenaillcate Hobqimorite". 71

Kingery W.D. Magnesium oxide as a solvent ­ conducti­vity; diffusion; reactions 73

Jordanov B. On some neir applications of pyrazolone for determination of traces of elements. 74

Simon J., Androslta B. Application of thermal analysis in flame retardation research 75

Kiss L., varsanyi H.L., Bosquez A. Paeeivity of copper in scidio sulphate electrolytes* 77

Topfer E., Zonnchen 41. Studies on the recovery of valuable associated minerals from tin ores*.,,,.., 76

Marcu Gh,f Vstuleacu Rodico, Budiu T. Hew heteroyoli­tungfltatos with transition metals '£1(IY) and Hi(II) as heteroatoms 79

Oernafc J, atppTiiuentBl analysis end diagnosis of two­phase chemical engineering systems. .. . 81

Kudraa V. t Skrivsnek J.T Vlc'ek J. Application of sto­chastic differential equations for deecription of nonideal flow mixers and reactors ..*.... BI

Preiser Ы. Current ehallengeo in the Universities­ * analytical chemistry curriculum.. 63

Bestougeff Ы.Д. Structure of asphaltenea end their place in the organic chemistry classification................ 83

Szjfnto A. General problems of pesticide researcn.. • 34 Cambi В., Ciullo tS., Sgamellottl A.. Tarentelli P. Theo­

retical inveatigationa on ionized states............... ..... 60 Anderaeggen E. Modern technologies for production of

blast­furnace coke from high­volatile coal........ ...... 67 Herio J.P* La mesure de la repartition grsnulaire par

diffraction d'un faiseeau laser: application aux clnente.... 69 lemec J.t Buchtole J. Угосеввэя of fast beatin­ of

black coala and the innovation of industrial proceaaes of coal degaaification in Czechoslovakia... 89

Stonrneau J., Taraacon J.V., Hagenmullar P. The rare­earth borocarbides ­ preparation and physical properties.... 90

Poilblanc H. Be» p*ogreea in tha chemistry of multi­centered transition metal complex&s. 92

П9

Fabritchnyi P.E., Ъстяаки 0., Protsxy А.Н., Begen­muller P. Characterization by Hoaabauer resonance of Sil?*' impurities localis:ed зп the aorfcce oi cr^Oa.» 93

Atrolui И., ВецапвНо G., Die G., Gennaro 0. 3elscti»e hydrogenatioji of polyenes to monoenaa, catalyzed by ruthe­nium complexes.......... , 94

Ke filicpo D, An eleotroonemical and JCP3 study of tie Interactions be Иговп sea* sulphurated inhibitors and paar­litio steel Hire, Some preliBrtaary reeulte rea*r4in|[ nickel and c­otnl*».. ­ ,, 95

Davidaovi J.P. iJhemlcal mechanisms relevant to coal combuetlcs In a fluidlaed bed • , 96

Hemeo J#, I*ng I., VaTweica P. Ihe characterisation of co.il liquids Ъг nuclear magnetic reiemanoe spaotrucepy.. 96

luditig if., Pelte A. !The phase diagram ?b3e­GeSe2 and inveatigatioos ia the ternary eyetea PbSff­G*Sr­C*3#£.....,,. 98

Ubllg E. , Doring H. Complex formation by pyrldll eub­stituted benzene sulfonamides*...• ,t ;..... 100

КгвЪЪвв G., Оррвгшвпс. В* Chemical transport reaction* in systems containing several coexisting phaeeo and phases with a bcnegeneitr range ; transport of the binary and ter­nary molybdenum sulphides Uocfg* l b

sS

3 « a n d PbHOgSg.....,..«. Ю Х

Paolli F., Pattllk J,» Arnold H. Kinetics and mechanism of tbennal reactions occurring under convenviottal and quasi isothermal. ­ quasi lsobarlo aonditiona *.*...*. X02

Sungor £., loth K., Kagy Q.» Feh^r Z B . Flaw­through analytical channels and their applications. £04

Ketcbalova L., Talaber J. Sew method for the prepara­tion of corundmn­apintil oomroaitas.. ...... X04

Preiser H. Ktcetics of eolvent extraction of metal chelates ...» X05

Eleenbach С И . Sew understanding of pnotoreections in bolx polymers... « JOG

lexatou I.J., Lekatos­Szaho J. Effect of Inorganic compounds and Ion exchange processes on dynamic adsorption of polyacryl­amiuoB in porous media *.......*•••** JQO

Hunyedi­Zoltan. ZB., Zalotai Ь., Screes 2., MaVta P. Ther­mal decomposition of oxetan and oietaa­D_. ... .....>«,• JJQ

Leiatos I.J. r lekatofl­Szebo J. CcqpetiMlitr of poly­aerylamides end carbon dioxide, . HZ

\ указатель •••••••••••••••» ••••••• ц $

Бесплатно

I