Research on arbuscular mycorrhizae in Mexico: an historical synthesis and future prospects

16
Noé Manuel Montaño & Alejandro Alarcón & Sara Lucía Camargo-Ricalde & Laura Verónica Hernández-Cuevas & Javier Álvarez-Sánchez & Ma. del Carmen A. González-Chávez & Mayra E. Gavito & Irene Sánchez-Gallen & José Ramos-Zapata & Patricia Guadarrama & Ignacio E. Maldonado-Mendoza & Silvia Castillo-Argüero & Rosalva García-Sánchez & Dora Trejo & Ronald Ferrera-Cerrato Received: 23 February 2012 / Accepted: 14 August 2012 / Published online: 30 August 2012 # Springer Science+Business Media B.V. 2012 Abstract This review analyzes the historical development and advances of the research on arbuscular mycorrhizal fungi (AMF) in Mexico, as well as the prospects for future research. AMF-research has been focused on studying both diversity and functionality in several ecosystems of Mexico, but mainly in the tropical dry and rainy ecosystems, and the agricultural systems. In Mexico, 95 species of AMF have been recorded, representing 41% of the known species worldwide. The functional effects of AMF colonization have been examined in approximately 10% of the known host plants, but greenhouse studies continue to dominate over those conducted under field conditions. Even though research to date has been at the organismic level, further effort is needed due to the high plant diversity in Mexico. Studies on AMF biomass under field conditions and more taxonomic determination are required based on morpholog- ical features, biochemical determinations (fatty acids) and molecular tools. In addition, ecophysiological and ecologi- cal in situ studies would help in understanding the relation- ships among AMF, soil fauna, nutrients, and host plants. The contribution of AMF to ecosystemic processes is a priority line of research that requires an integrated approach (inter- and multidisciplinary) in order to define the role of AM symbioses for biogeochemical models. The creation of N. M. Montaño (*) : S. L. Camargo-Ricalde Departamento de Biología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, AP 55-535 México, DF, México e-mail: [email protected] A. Alarcón : M. d. C. A. González-Chávez : R. Ferrera-Cerrato Colegio de Postgraduados, Carretera México-Texcoco km. 36.5, Montecillo 56230 Estado de México, México L. V. Hernández-Cuevas Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Carretera Texmelucan-Tlaxcala, km 10.5, Ixtacuixtla, Tlaxcala 90122, México J. Álvarez-Sánchez : I. Sánchez-Gallen : S. Castillo-Argüero Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria 04510 DF, México M. E. Gavito Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, AP 27-3, Morelia, Michoacán 58090, México J. Ramos-Zapata Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, km 15.5 de la Carretera Mérida-Xmatkuil AP 4-116, Itzimná Mérida, Yucatán, México P. Guadarrama Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán 97356, México I. E. Maldonado-Mendoza CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Boulevard Juan de Dios Bátiz Paredes No. 250, Guasave, Sinaloa CP 81101, México R. García-Sánchez Laboratorio de Zonas Áridas, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, AP 09230 México, DF, México D. Trejo Facultad de Ciencias Agrícolas, Universidad Veracruzana campus Xalapa, Circuito Aguirre Beltrán s/n, Zona Universitaria 91090, Xalapa, Veracruz, México Symbiosis (2012) 57:111126 DOI 10.1007/s13199-012-0184-0 Research on arbuscular mycorrhizae in Mexico: an historical synthesis and future prospects

Transcript of Research on arbuscular mycorrhizae in Mexico: an historical synthesis and future prospects

Noé Manuel Montaño & Alejandro Alarcón & Sara Lucía Camargo-Ricalde &

Laura Verónica Hernández-Cuevas & Javier Álvarez-Sánchez &

Ma. del Carmen A. González-Chávez & Mayra E. Gavito & Irene Sánchez-Gallen &

José Ramos-Zapata & Patricia Guadarrama & Ignacio E. Maldonado-Mendoza &

Silvia Castillo-Argüero & Rosalva García-Sánchez & Dora Trejo & Ronald Ferrera-Cerrato

Received: 23 February 2012 /Accepted: 14 August 2012 /Published online: 30 August 2012# Springer Science+Business Media B.V. 2012

Abstract This review analyzes the historical developmentand advances of the research on arbuscular mycorrhizalfungi (AMF) in Mexico, as well as the prospects for futureresearch. AMF-research has been focused on studying bothdiversity and functionality in several ecosystems of Mexico,but mainly in the tropical dry and rainy ecosystems, and theagricultural systems. In Mexico, 95 species of AMF havebeen recorded, representing 41% of the known speciesworldwide. The functional effects of AMF colonizationhave been examined in approximately 10% of the knownhost plants, but greenhouse studies continue to dominateover those conducted under field conditions. Even though

research to date has been at the organismic level, furthereffort is needed due to the high plant diversity in Mexico.Studies on AMF biomass under field conditions and moretaxonomic determination are required based on morpholog-ical features, biochemical determinations (fatty acids) andmolecular tools. In addition, ecophysiological and ecologi-cal in situ studies would help in understanding the relation-ships among AMF, soil fauna, nutrients, and host plants.The contribution of AMF to ecosystemic processes is apriority line of research that requires an integrated approach(inter- and multidisciplinary) in order to define the role ofAM symbioses for biogeochemical models. The creation of

N. M. Montaño (*) : S. L. Camargo-RicaldeDepartamento de Biología, División de Ciencias Biológicas y de laSalud, Universidad Autónoma Metropolitana-Iztapalapa,AP 55-535 México, DF, Méxicoe-mail: [email protected]

A. Alarcón :M. d. C. A. González-Chávez : R. Ferrera-CerratoColegio de Postgraduados,Carretera México-Texcoco km. 36.5,Montecillo 56230 Estado de México, México

L. V. Hernández-CuevasCentro de Investigación en Ciencias Biológicas,Universidad Autónoma de Tlaxcala,Carretera Texmelucan-Tlaxcala, km 10.5,Ixtacuixtla, Tlaxcala 90122, México

J. Álvarez-Sánchez : I. Sánchez-Gallen : S. Castillo-ArgüeroDepartamento de Ecología y Recursos Naturales,Facultad de Ciencias, Universidad Nacional Autónoma de México,Circuito exterior, Ciudad Universitaria 04510 DF, México

M. E. GavitoCentro de Investigaciones en Ecosistemas,Universidad Nacional Autónoma de México,AP 27-3,Morelia, Michoacán 58090, México

J. Ramos-ZapataDepartamento de Ecología Tropical, Campus de CienciasBiológicas y Agropecuarias, Universidad Autónoma de Yucatán,km 15.5 de la Carretera Mérida-Xmatkuil AP 4-116,Itzimná Mérida, Yucatán, México

P. GuadarramaUnidad Multidisciplinaria de Docencia e Investigación,Facultad de Ciencias, Universidad Nacional Autónoma de México,Sisal, Yucatán 97356, México

I. E. Maldonado-MendozaCIIDIR Unidad Sinaloa, Instituto Politécnico Nacional,Boulevard Juan de Dios Bátiz Paredes No. 250,Guasave, Sinaloa CP 81101, México

R. García-SánchezLaboratorio de Zonas Áridas, Facultad de Estudios SuperioresZaragoza, Universidad Nacional Autónoma de México,AP 09230 México, DF, México

D. TrejoFacultad de Ciencias Agrícolas,Universidad Veracruzana campus Xalapa,Circuito Aguirre Beltrán s/n, Zona Universitaria 91090,Xalapa, Veracruz, México

Symbiosis (2012) 57:111–126DOI 10.1007/s13199-012-0184-0

Research on arbuscular mycorrhizae in Mexico: an historicalsynthesis and future prospects

a Mexican mycorrhizal research network has and will helpto identify the main challenges. Generating similar researchprotocols, and sharing databases and experience will assistmycorrhizologists working under the diverse financial andecological contexts that is to be found in Mexico and LatinAmerica.

Keywords Arbuscular mycorrhizal fungi diversity .

Mexico . Mycorrhizal Research . Symbiosis .

AMF in ecosystems

1 Introduction

Arbuscular mycorrhizal fungi (AMF; Glomeromycota phy-lum) are ubiquitous and an ancient symbiotic association(~460 millon years). They form a mutualistic symbiosis witharound 80% of land plants (Smith and Read 2008; Brundrett2009) and constitute a significant part of the soil microbialbiomass and organic carbon in many ecosystems (Wilson etal. 2009), accounting from 5 to 50% of total microbial bio-mass in agricultural soils (Olsson et al. 1999). AMF play amajor role in influencing soil physical properties, and thenutrition of plants. These fungi also help reduce environmen-tal stress and diseases caused by root pathogens, and are animportant microbial component in the rhizosphere (Smith andRead 2008; Johnson 2010). Thus, AMF are critical for plantadaptation in terrestrial ecosystems, and essential for soilrehabilitation/restoration or for sustainability of tropical agro-ecosystems (Sieverding 1991; Alarcón et al. 2007; Alarcón etal. 2012). Plant-soil interactions and ecosystem functioningcannot be understood without considering AMF as a part ofthose processes linked to nutrient cycling and energy fluxes.Surprisingly, their role at the ecosystem level has received litteattention (Rillig 2004).

AMF research has advanced considerably in countriessuch as France, Australia, Sweeden, United Kingdom, Den-mark, Canada, United States, and Spain. It has led to thedevelopment of specific AMF-techniques which have beenadopted worldwide (Koide and Mosse 2004). AMF-studiesin Latin American countries have been limited due to re-stricted financial support and the lack of sufficiently quali-fied scientists to explore the high biodiversity in thesecountries. Mexico is one of the 12 megadiverse countries(CONABIO 2009), with nearly 10% of the known vascularplants being found here. Part of the reason is its heterogeoustopography that leads to diverse environments (Challenger1998; Toledo and Ordóñez 1998). Even though botanicaland ecological knowledge in Mexico is well developed(Martínez et al. 2006; CONABIO 2009), studies focusingon AMF diversity are still incipient (Alarcón et al. 2012).

In Mexico, AMF-studies have evaluated ecophysiologicaland ecological responses of plants; nevertheless, taxonomic

and in situ-ecophysiological aspects, as well as their role in thebiogeochemical cycles or in relation to soil fertility, produc-tivity, carbon sequestration/reservoirs, plant diversity and foodprovision, have received less attention. The high number ofecosystems and plant diversity reported for Mexico suggestthat, this country is underexplored as an AMF diverse hotspot.Thus, there is an urgent need for more AMF research. Indeedcomparative studies using similar techniques to those recentlydeveloped in other countries around the world (Estey 1994;Saito and Marumoto 2002; Wang and Zhao 2008; Li et al.2010; Turrini and Giovannetti 2012) should be completed.Even more important, the AMF isolated from agro- and nat-ural eco-systems plant species in Mexico (including endemicsor those whose centre of origin is Mexico), are a key source ofnative AMF germplasm. Such germplasm may possess adap-tive adventages for use in tropical and subtropical environ-ments where there is a need for sustainable agriculture,horticulture and forestry, biological conservation, ecologicalrestoration, or biotechnological development. In Mexico andother Latin American countries, it is critical to generate basicand applied knowledge about AMF diversity and distribution(biogeography), as well as their functional role to variousplant species and plant communities. This review paper ana-lyzes the historical development and advances of research onarbuscular mycorrhizae (AM) in Mexico and defines someprioritary lines of research as well as future prospects.

2 Historical overview

The systematic knowledge on AMF is relatively young.Formal studies of this symbiosis only started in Canada inthe mid 1960s (Estey 1994) while in Mexico AMF researchfirst began at the end of 1970’s. Research on this topicincreased significantly from 1980 to the present. The firststudies on mycorrhizal fungi in Mexico were performed bypioneer researchers such as Teófilo Herrera, María Valdez,Gastón Guzmán, Lucía Varela, and Ronald Ferrera-Cerrato(Camargo-Ricalde 2009). Since then, seven National Sym-posia on Mycorrhizal Symbioses have been organized inMexico from 1996 to May 2012, and around 250 research-ers (including graduated students) have participated. In ad-dition, a scientific network has been created for maintainingcommunication and colaboratiion among researchers. Othermajor achievements have been four Iberoamerican Meetingson Mycorrhizal Symbioses, and the foundation of the Mex-ican Society of Mycorrhizal Symbiosis (Sociedad Mexicanade la Simbiosis Micorrízica A.C. [SOMESIMI]). The mainobjectives of this scientific society are: 1) To strength theeducation and research on mycorrhizal symbiosis, 2) Toestablish collaborative research between Mexican and inter-national scientists, 3) To organize workshops via which newAMF-methods can be transferred to Mexican researchers

112 N.M. Montaño et al.

with the help of internationally recognized specialists, 5) Tohelp train graduate students with the ability to carry outresearch on ecological and/or biotechnological problemsrelated to AMF. In the last years several books on AMFhave been published (Alarcón and Ferrera-Cerrato 2000;Álvarez-Sánchez and Monroy 2008; Montaño et al. 2008a;Varela et al. 2008; Álvarez-Sánchez 2009; Monroy andGarcía-Sánchez 2009), and recently SOMESIMI has active-ly participated in the formation of the National Subsystem ofMicrobial Genetic Resources (SUBNARGEM; http://subnargem.wordpress.com/), the youngest microbiologi-cal network in Mexico.

Research on AMF in Mexico is mainly to be found incongress proceedings, book chapters, theses, and dissertations.Recently papers on AMF studies realized in Mexico are in-creasingly being published in international books and indexedscientific journals (Fig. 1). The main research centers focusedon AMF are located near Mexico City, but several emergingresearch groups are being set up in other parts of the country(Table 1). These research groups now have individual andgroup collaboration nationally and with researchers from other

countries such as Australia, Canada, Denmark, France, Nor-way, Spain, United States, and the United Kingdom. Most ofthe Mexican researchers currently direct their efforts to AMFstudy in aspects such as mycorrhizal inoculum production,taxonomy, biotechnological practices, and to analyze theireffects on plant species in different Mexican agro- andecosystems.

3 Advances of arbuscular mycorrhizal research

3.1 Taxonomy and diversity of AMF in Mexico

A study on AMF richness in Mexico (Varela and Trejo 2001)estimated that only 34% of the 32 federated states had beenexplored but reported that 44 AMF species had been foundwhich represented around 24% of the worldwide species. Inaddition only about 0.5% of the cultivated plants (12 species)have been analysed from six of the 10 vegetation types rec-ognized for Mexico (Rzedowski 1978). These percentages arelow if we consider that the Mexican flora consists of 23,522

0

100

200

300

400

500

600

700

1970-1979 1980-1984 1985-1989 1990-1994 1995-2000 2001-2005 2006-2009 2010-2011

Tota

l num

ber

of A

MF

pape

rs

a)

0

5

10

15

20

25

30

35

40

45

1970-1979 1980-1984 1985-1989 1990-1994 1995-2000 2001-2005 2006-2009 2010-2011

Num

ber

of A

MF

pap

ers

in I

SI

Year of publication

b)

52%

24%

16%

8%

Congress reports

Thesis and dissertations

Book chapters and booksIndexed juornals (ISI-web and others)

3% 5%

32%

38%

22% Phytoremediation and molecular biologyTaxonomy

Physiology

Ecology

Agriculture

Fig. 1 Number of articlespublished on arbuscularmycorrhizal fungi by Mexicanauthors. (a) Total number ofpapers in books, congressreports, indexed national andinternational journal. (b)Number of papers found inCurrent Contents (InternationalScience Citation Index, ISI-web) by Mexican authors thatincluded the term “arbuscularmycorrhizae, and Mexico” from1970 to 2011 in different issues

Arbuscular mycorrhizal research in Mexico 113

species and is worldwide ranked in fifth place (Toledo andOrdóñez 1998). Four of the fivemost importantMexican plantfamilies (Asteraceae, Fabaceae, Poaceae and Cactaceae) formarbuscular mycorrhizae. As mentioned earlier Mexico is partof the Mesoamerican biodiversity hotspot (Myers et al. 2000)and it is the origin center for important cultivated plant speciessuch as corn (Zea mays), squash (Cucurbita spp.), amaranthus(Amaranthus hypocondriacus L.), cacao (Theobroma cacaoL.), vanilla (Vanila plannifolia Jacks ex. Andrews), and beans(Phaseolus vulgaris L.) (Hernández-Xolocotzi 1998). Cur-rently we estimate 95 known species of AMF in Mexico, ofwhich only 28 species were from natural ecosystems, 21 fromagroecosystems, and 46 were found in both systems (Tables 2and 3). The greatest species richness is in the Trans-MexicanVolcanic Belt (TMVB) and the Sierra de Los Tuxtlas (SLT)ecoregions, where two and seven AMF species appear to beendemic, respectively (Varela et al. 2008). The main efforts toassess AMF diversity in Mexico have been in the tropicalhumid and dry forests. In fact, the AMF in these humid forestsis better known than in the Mexican Plateau (Altiplano Cen-tral) or the temperate forests. Also, the Southeast ecoregions,the Great Plains and the California Mediterranean areas havescarcely been explored. The highest numbers of AMF speciesare recorded from the agricultural extensive systems, thegrasslands, the xerophytic shrublands, and the tropical dryand humid forests with lower numbers being recorded inmarine shore vegetation (e.g. the mangroves) and the temper-ate cloud forests.

In Mexico, most of the taxonomic studies are based onmorphological descriptions of AMF spores and the applica-tion of molecular tools is needed to complement these. Mex-ican AMF diversity information is of special relevance as: 1)Six of the 235 species, actually recognized in Glomeromy-cota, were described for the frist time from Mexican speci-mens (Acaulospora foveata, A. scrobiculata, A. spinosa,Glomus constrictum, Gl. clavisporum, and Gl. halonatum),2) Data distribution indicates that two of these species (A.foveata and A. spinosa) are restricted to the American Conti-nent, 3) 15 species of genus Acaulospora are reported inMexico, representing 39% of the total species (38) of thisgenus worldwide, and 4) In most of the AMF diversity studies

in Mexico, more than 50% of the identified species do notcoincide with descriptions in worldwide keys of previouslyknown species. Thus data suggest that Mexico is a high AMFdiversity reservoir linked to plant and ecosystem diversity.

3.2 Structure and function of AMF community in tropicalrain forest

Deforestation of tropical forests causes fragmentation intovegetation patches or in secondary forests (Velázquez et al.2001; Guevara et al. 2004). In Mexico, there are few reportson the negative impact of fragmentation and land use changeson AMF and their role in the growth of tropical plant species(Álvarez-Sánchez et al. 2007, 2009; Sánchez-Gallen et al.2009). However, there is some information on the ecologicalrole of AMF during restoration and regeneration in one trop-ical rain forest that has been studied over 15 years in LosTuxtlas, Veracruz, indicating that the AM have critical effectsat individual and community levels for plant establishmentand success in this ecosystem.

At the individual plant level, the role of AMF on thedevelopment of plant species under shade house conditionshas been studied using the light demanding (Heliocarpusappendiculatus) and the shade tolerant (Stemmadeniadonnell-smithii) species (Martínez-Ramos 1994; Guadarramaet al. 2004a, b); as well as on tropical palm species suchas Astrocaryum mexicanum (Núñez-Castillo and Álvarez-Sánchez 2003) and Desmoncus orthacanthos (Ramos-Zapataet al. 2006a, b, 2011a).

The size of the forest fragments affects the variety ofplants established in them (Benítez-Malvido and Martínez-Ramos 2003; Arroyo-Rodríguez and Mandujano 2006), anda description of AMF-community in relation to landscapetransformations is critical to overcome these constraints inthe restoration or regeneration of tropical rain forests. Therecorded AMF-commmunity at Los Tuxtlas was found to becomposed by 18 fungal species belonging to four generaAcaulospora, Glomus, Gigaspora, and Scutellospora(Guadarrama and Álvarez-Sánchez 1999). The highest AMFrichness was reported during dry season, and greater sporenumbers were found in pasture areas (Ramírez-Gerardo et al.

Table 1 Research Mexican institutions on arbuscular mycorrhizal fungi

Colegio de Postgraduados (Soil Microbiology Department), Universidad Veracruzana (Benefical Microorganisms Laboratory), Escuela Nacional deCiencias Biológicas, Instituto Politécnico Nacional (Microbiology Department), Centro de Investigación en Ciencias Biológicas at the UniversidadAutónoma de Tlaxcala (Laboratory of Mycorrhizae), Universidad Nacional Autónoma de México (Laboratory of Ecology at the Facultad de Ciencias,Centro de Investigaciones en Ecosistemas, Instituto de Geología, Instituto de Ecología, Laboratory of Mycology-Instituto de Biología), UniversidadAutónoma del Estado de México (Centro de Investigación y Estudios Avanzados en Recursos Bióticos at the Facultad de Ciencias), Instituto deInvestigaciones Forestales y Agrícolas at Uruapan Michoacán, Facultad de Biología at the Universidad Michoacana de San Nicolás de Hidalgo,Facultad de Ciencias Forestales at the Universidad Autónoma de Nuevo León, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Centrode Investigaciones y Estudios Avanzados (CINVESTAV), Universidad de Guanajuato (Facultad de Ciencias Agropecuarias), Universidad AutónomaMetropolitana, D.F., Mexico (Unidad Iztapalapa: Biology Department, and in Unidad Xochimilco: Department of Hombre y su Ambiente), Institutode Ecología A.C., Xalapa Veracruz, CIIDIR-Instituto Politécnico Nacional (Unidades: Sinaloa and Oaxaca), Department of Tropical Biology at theUniversidad Autónoma de Yucatán, among others.

114 N.M. Montaño et al.

Table 2 Arbuscular mycorrhizal fungi species recorded from Mexico in not transformed ecosystems classified per vegetation types according toRzedowski (1978)

Xerophyticshrublands(1,2,3,5,6)

Grasslands(1,4,7,8,9)

Primary dry tropicalforests (4,7,9)

Secondary drytropical forest (4,7)

Primary humidtropical forests (1,8)

Humid Cloudforest (1)

Marine ShoreVegetation (1)

Ambisporaappendicula

Ambisporaappendicula

Ambisporaappendicula

Ambisporaappendicula

Acaulospora delicata Acaulosporascrobiculata

Acaulosporascrobiculata

Am. gerdemanni Acaulosporadelicata

Am. gerdemanii Acaulosporadelicata

A. excavata Gigasporaramisporophora

Archaeospora Ar.trappei

A. denticulata Acaulosporadelicata

A. foveata A. foveata Glomus albidum

Acaulosporadelicata

A. dilatata A. dilatata A. laevis A. kentinensis Gl. etunicatum

A. denticulata A. excavata A. mellea A. mellea A. mellea Gl. geosporum

A. laevis A. foveata A. rehmii A. morrowiae A. morrowiae Gl. globiferum

A. mellea A. kentinensis A. scrobiculata A. scrobiculata A. rehmii Gl. pustulatum

A. morrowiae A. mellea Entrophosporainfrequens

Entrophosporainfrequens

A.scrobiculata Gl. sinuosum

A. rehmii A. morrowiae Gigasporadecipiens

Gigaspora decipiens A. spinosa Racocetra fungida

A. scrobiculata A. rehmii G. gigantea G. gigantea A. undulata

A. spinosa A. scrobiculata G. ramisporophora G. ramisporophora Entrophosporainfrequens

A. sporocarpia A. spinosa Diversisporaspurca

Scutellosporadipurpurascens

Gigasporaramisporophora

Intrasporaschenckii

A. undulata Glomusclaroideum

S. erythropa G. rosea

Entrophospora.infrequens

Entrophosporainfrequens

Gl. clarum S. pellucida Scutellosporascutata

Gigaspora decipiens Gigaspora decipiens Gl. clavisporum Pacispora scintillans Glomus albidum

G. gigantea G. ramisporophora Gl. fulvum Glomus aggregatum Gl. ambisporum

Scutellosporacalospora

Scutellosporapellucida

Gl. geosporum Gl. claroideum Gl. constrictum

S. pellucida Racocetra persica Gl. glomerulatum Sclerocystisclavispora

Gl. fasciculatum

Racocetra fulgida Diversispora spurca Gl. intraradices Gl. coremioides Gl. geosporum

R. gregaria Pacisporachimonobambusae

Gl. fulvum Gl. macrocarpum

Paraglomusoccultum

Paraglomusoccultum

Gl. geosporum Gl. pustulatum

Glomus aggregatum Glomus albidum Gl. microaggregatum Gl. rubiforme

Gl. cerebriforme Gl. ambisporum Gl. sinuosum Gl. viscosumGl. claroideum Sclerocystis

clavisporaGl. tenebrosum

Gl. constrictum Gl. fasciculatum Gl. tortuosum

Gl. coremioides Gl. geosporum Gl. verruculosumGl. deserticola Gl. glomerulatum

Gl. etunicatum Gl. halonatum

Gl. geosporum Gl. macrocarpum

Gl. intraradices Gl. microaggregatum

Gl. microaggregatum Gl. monosporum

Gl. mosseae Gl. pustulatum

Sclerocystisrubiformis

Sclerocystisrubiformis

S. sinuosa S. sinuosa

Total 39 34 19 26 23 1 9

References: (1) Varela and Trejo 2001; (2) Hernández-Cuevas et al. 2003; (3) Pezzani et al. 2006; (4) Guadarrama et al. 2007; (5) Aguilera-Gómezet al. 2008; (6) García-Sánchez et al. 2008; (7) Gavito et al. 2008; (8) Varela et al. 2008; (9) Aguilar-Fernández et al. 2009

Arbuscular mycorrhizal research in Mexico 115

Table 3 Arbuscular mycorrhi-zal fungi species recorded fromMexico in transformedecosystems

References: (1) Varela and Trejo2001; (2) Bárcenas et al. 2007;(3) Guadarrama et al. 2007; (4)Gavito et al. 2008; (5) Varela etal. 2008; (6) Aguilar-Fernándezet al. 2009

Agricultural extensive systems (1,3,4,5,6) Fruit Orchards (1,2) Agroforestry system (5)

Ambispora appendicula Acaulospora delicata Acaulospora delicata

Acaulospóra bireticulata A. foveata A. excavata

A. colombiana A. laevis A. foveata

A. delicata A. scrobiculata A. kentinensis

A. denticulata A. spinosa A. mellea

A. excavata Scutellospora scutata A. morrowiae

A. foveata Racocetra gregaria A. rehmii

A. kentinensis R. verrucosa A. scrobiculata

A. lacunosa Glomus constrictum A. spinosa

A. laevis Gl. geosporum A. undulata

A. mellea Sclerocystis rubiformis Entrophospora infrequens

A. morrowiae S. sinuosa Gigaspora ramisporophora

A. rehmii Gl. spinuliferum Pacispora chimonobambusae

A. scrobiculata Gl. tortuosum P. franciscana

A. spinosa Glomus albidum

A. splendida Gl. ambisporum

A. undulata Gl. constrictum

Entrophospora infrequens Gl. fasciculatum

Gigaspora decipiens Gl. geosporum

G. gigantea Gl. macrocarpum

G. margarita Gl. pustulatumScutellospora calospora

S. dipurpurascens

S. gilmorei

S. pellucida

S. scutata

Pacispora chimonobambusae

P. franciscana

Paraglomus occultum

Glomus albidum

Gl. claroideum

Gl. clavisporum

Gl. constrictum

Gl. coremioides

Gl. diaphanum

Gl. etunicatum

Gl. fasciculatum

Gl. fulvum

Gl. geosporum

Gl. macrocarpum

Gl. microaggregatum

Gl. mosseae

Gl. pansihalos

Gl. pustulatum

Sclerocystis rubiformis

S. sinuosa

Gl. tenebrosum

Total 47 14 21

116 N.M. Montaño et al.

1997). These studies indicate a significant influence of soilproperties and changes in vegetation structure on theAMF-community. In addition, the community of AMFwas studied by comparing different land uses (maize crop,pasture, agroforestry, and forest) and deforested sites. 59AMF-species were recorded and there were significantdifferences in species richness among the sites and landuses. Overall, the sites with medium disturbance level hadthe highest diversity, while maize crops exhibited thelowest AMF diversity (Varela et al. 2008).

3.3 Tropical deciduous forest

The tropical dry forest (TDF) is the most abundant tropicalvegetation in Mexico and is severely endangered by humanimpacts (Miles et al. 2006). It covers about 60% of the totaltropical forest area (Trejo and Dirzo 2000), and has approxi-mately 20% of the country’s plant species including severalendemics (Rzedowski 1978) The 1,200 plant species (Lott1993) with their numberous strategies to store water andnutrients (Maass et al. 2002) provide a great diversity ofpartners for the mycorrhizal fungi. In tropical dry forestsundisturbed there is a delicate equilibrium between resourcesand environmental conditions favoring the development ofmycorrhizal symbiosis. The arbuscular mycorrhizal associa-tion in the TDF of Mexico has been studied by Huante et al.(1993), Rincón et al. (1993), Allen et al. (1998), Allen et al.(2003), Allen et al. (2005), Gavito et al. (2008), Guadarramaet al. (2008), Vargas et al. (2010), and Vieyra et al. (2010).These studies recorded mycorrhizal associations in 60 plantspecies from TDF in Chamela (Jalisco), El Edén (QuintanaRoo), and Nizanda (Oaxaca). However less than 10% of theplant species have been examined in this ecosystem, and littleinformation has been gathered about propagule dynamics insuccessional forests developed on abandoned agriculturalfields or pastures that were originally TDF.

Some of the common TDF plant species have been inno-culated with AMF and most responded positively (Huante etal. 1993; Rincón et al. 1993; Allen et al. 1998; Allen et al.2003; Allen et al. 2005; Gavito et al. 2008; Guadarrama et al.2008; Vargas et al. 2010). Some plants showed a preferencefor particular AMF although generally there seems to be lowplant-fungus specificity. A complete survey sensu Janos(2007) is still missing but Gavito et al. (2008) found nopreference between eight plant species and three or six AMFcommunities when inoculation was done under conditionswhere there was no water stress. However, there has been noevaluation, under realistic field or greenhouse conditions, toexamine the effects of abiotic and biotic stresses which maydrastically influence the outcome of plant-AMF interactions(Allen et al. 2005; Vargas et al. 2010).

Forest conversion to agriculture or pasture land by slash-and burn practice has had a large impact on the TDF

landscapes in Mexico in recent decades with annual conver-sion rates amounting to 1.4% (Trejo and Dirzo 2000). Thisconversion results in nutrient loss, lower water availability,lower microbial activity and a lower proportion of soil mac-roaggregates. The impact results from the combined effectsof combustion, lixiviation, erosion and loss of biodiversity(Giardina et al. 2000; Maass et al. 2002; Jaramillo et al.2003). The slash-and-burn practice has in the short term onlya small and transient effect on AMF (Aguilar-Fernández etal. 2009), but there is a long-term impact on the AMFcommunities in converted forests (Cicero-Canto et al.2004; Allen et al. 1998; Guadarrama et al. 2007; Gavito etal. 2008; Ramos-Zapata et al. 2011a). While Glomus andAcaulospora species (Allen et al. 1998; Guadarrama et al.2007; Gavito et al. 2008) are dominant in forests, pasturesand secondary forests, the number of AMF species maychange or not in spite of the fact that there are alwayschanges in the plant composition. How important this is forthe functioning of AMF associations in field conditions isstill little understood.

Macroggregates, which predominate in primary forestsoils, have been found highly reduced in pastures (Cotlerand Ortega-Larrocea 2006; García-Oliva et al. 2006). AMFare important contributors to soil aggregation through theirexternal mycelium and associated enzymatic activities andinteractions with other soil biota. Initial studies suggest alarge contribution and influence of mycorrhiza in plantdiversity, soil fertility, soil aggregation, soil enzymatic ac-tivities and soil microbial community composition (Gavitoet al. unpublished results). Clearly, the most important taskfor the years to come is to move from the traditional inven-tory and plant growth promotion research to more holisticand functional questions that will allow us to understandbetter this ecosystem. Only then will we be able to providesound advice on the best conservation practices for pro-tected areas on the sustainable use of managed areas.

3.4 Arid and semiarid ecosystems

AMF are especially important to arid and semiarid eco-systems, because they confer a strong drought toleranceto host plants and to improve plant efficiency for nutrientuptake in low fertility soils. Arbuscular mycorrhizae in-crease phosphorus uptake to host plants since this nutri-ent exists as an insoluble form (calcium phosphate) thatlimits plant growth at these dry environments (Montañoet al. 2008b). In Mexico, aproximately 60% of the landsurface is composed of arid and semiarid ecosystems,which support a diversity of near 6,000 plant speciesincluding endemics (3600 spp). These environments arecomposed of grasslands and tropical shrublands, which arealso severely endangered due extensive livestock activity,grazing and vegetation removal (Toledo and Ordóñez 1998).

Arbuscular mycorrhizal research in Mexico 117

It has been postulated that AMF are essential components ofthe desert plant-soil systems and that they are critical for thesurvival and establishment of plants under stress conditions,as well as in ecological restoration practices (Carrillo-Garciaet al. 1999; Montaño et al. 2008b).

The studies on AMF in Mexican arid and semiarid eco-systems have been done in two Biosphere Reserves: Tehua-cán-Cuicatlán Valley in Puebla-Oaxaca, and Mapimi inSouthern of Chihuahuan desert. The natural areas in theseecosystems have also been more explored than the agricul-tural areas and most experiments have been conducted un-der greenhouse conditions. However, the mycorrhizal statusof several plants has also been examined at field conditions(Camargo-Ricalde et al. 2003; Pezzani et al. 2006). Themain botanical families reported as mycorrhizal in the aridand semiarid zones of Mexico are the Poaceae, Legumino-sae (Fabaceae), Agavaceae, and Cactaceae; although otherplant families in the Sonoran Desert in the Baja Californiaregion are also reported to be mycorrhizal (Bashan et al.2007; Bethlenfalvay et al. 2008).

The presence of arbuscular mycorrhizae was reported in45 plant species (21 species are endemic to Mexico, andnine are endemic to the Valley) from semiarid tropicalshrubs in the Tehuacán-Cuicatlán Valley (Puebla). Thearbuscular mycorrhizal condition of 37 of these plant spe-cies was reported for the first time (Camargo-Ricalde et al.2003; Montesinos-Navarro et al. 2012). In addition, García-Sánchez et al. (2008) reported arbuscular mycorrhizal colo-nization in 32 plant species from xeric shrubs in the Mez-quital Valley (Hidalgo) while Pezzani et al. (2006, 2008)found AMF associations in six grass species at the Chihua-huan Desert, in contrast to greater number of plants (78)from the Sonoran Desert, Baja California, Mexico werefound with AMF associations (Bethlenfalvay et al. 2008).Some plant species such as Prosopis laevigata, P. articulata,Olneya tesota, Neobuxbaumia tetetzo, Mimosa luisana, M.texana var. filipes, M. biuncifera, and M. polyantha exhibithigh diversity and abundance of AMF spores in the soilunder their canopies (Carrillo-Garcia et al. 1999; Camargo-Ricalde and Dhillion 2003; Camargo-Ricalde and Esperón-Rodriguez 2005; Reyes-Quintanar et al. 2008; Montaño etal. 2008b; García-Sánchez et al. 2012; Montesinos-Navarroet al. 2012). The beneficial effects of AMF resulting fromimproved growth and P nutrition and have been documentedin Mexico for seedlings of the above mentioned Mimosaspecies (Camargo-Ricalde et al. 2010).

Common plant species in arid and semiarid ecosystemssuch as Fouquieria columnaris, Opuntia albicarpa, O. strep-tacantha, Pachycereus pringlei, Proposis laevigata, Acaciafarnesiana, Agave angustifolia, A. salmiana, and Mimosaspp. proved to be highly responsive to AMF inoculationwhich enhanced growth and nutrition (Carrillo-Garcia et al.2000; Rojas-Andrade et al. 2003; González-Monterrubio et

al. 2005; Monroy et al. 2007; Bashan et al. 2007; Estrada-Luna and Davies 2008; Robles et al. 2008; Monroy andGarcía-Sánchez 2009; Ochoa-Meza et al. 2009; Camargo-Ricalde et al. 2010). A positive association between AMFand the grass species Bouteloua curtipendula and B. graciliswas also documented in the Mezquital Valley and in LosLlanos de Ojuelos (Jalisco), respectively (Medina-Roldan etal. 2008; Montaño et al. 2008b). The AMF genera reportedas frequent in all these studies of arid and semiarid ecosys-tems were Acaulospora, Gigaspora, Scutellospora, Ambis-pora, and Glomus (Hernández-Cuevas et al. 2003; Montañoet al. 2004; Pezzani et al. 2006; Bashan et al. 2007; Ortega-Larrocea et al. 2001, 2007; García-Sánchez et al. 2008;Aguilera-Gómez et al. 2008; Monroy and García-Sánchez2009; Montesinos-Navarro et al. 2012). In spite of having abetter knowledge about plant diversity in arid and semiaridecosystems from Mexico, further studies on the diversity andfunction of AMF in these environments are still required asless than 7% of plant species have been examined for theirmycorrhizae.

3.5 Arbuscular mycorrhizae associated to coastal dunevegetation

Mexico has 11,123 km of coastline where are found plantcommunities include coastal dune vegetation, mangroveforests, and spiny-deciduous dry forests. There are alsotransition areas of wetlands where aquatic and terrestrialenvironments converge. Examples of these communitiesare mangroves, “petenes” (Mayan name that describes veg-etated islands surrounded by marshes), marshes, salineplains, wet grasslands, and palm groves. Unfortunatelyfew ecological studies have been performed for understand-ing as these plant communities are linked to AMF in Mexico(Guadarrama et al. 2012).

AMF association in the coastal vegetation in Mexico hasmainly been conducted in three regions: West coast of BajaCalifornia, the central areas of the coast of Veracruz (Gulf ofMexico), and several sites along the north coast of Yucatan.These basically reported the status of AM colonization inroots of coastal shrubs and herbs; although some studiesalso gave information such as richness and abundance ofAMF-spores. A total of ten AMF species belonging toAcaulospora, Gigaspora, Glomus, Racocetra, and Scutello-spora genera were identified from the dune plants analyzedbut this represents less than 12% (73 species) of the 655plant species reported for the coastal dune vegetation ofBaja California, the Gulf of Mexico and the Mexican Ca-ribbean (Rose 1981; Castillo and Moreno-Casasola 1998).As 67% of the plant species exhibited AM colonization,further research is clearly needed. There appears to be apositive relationship between AMF inoculation and hostplant biomass (Corkidi and Rincón 1997a, b; 1998). The

118 N.M. Montaño et al.

influence of disturbance, temporary variations in wateravailability or flowering phenology on AMF populationshas also been investigated (Carrillo et al. 2004; Ramos-Zapata et al. 2011b). Some species such a Lotus spp. andHaplopappus venetus exhibited high colonization at theflowering stage, while others as Atriplex julacea and Camis-sonia californica only developed it at as seeds matured atthe end of the reproductive season, suggesting that distinctpatterns of seasonality of the AMF in dune may be related tophenology of the host plant (Sigüenza et al. 1996).

Plant communities at the Mexican coastal dunes are cur-rently threatened by disturbance resulting from the negativeimpact of tourism activities, wood extraction, hunting andfishing activities. AMF are thought to be a critical componentof these plant communities and studies must focus on AMF-community structure and diversity, as well as on elucidatinghow it changes depending on the specific plant association.There is a need to identify specific AMF species that providesignificant benefits to plants, so that they can be used for therestoration of coastal areas of Mexico (Guadarrama et al.2012; Ramos-Zapata et al. 2011b).

3.6 Agricultural systems

Agriculture in Mexico may be divided into three classes: a)intensive with high technological inputs, b) low input appli-cation, and c) subsistence. Subsistence agriculture is themost predominant in humid-topical areas, based on farmer’sknowledge and the rational use of natural resources. Thesubsistence system in Tamulté de las Sabanas, Tabasco, ischaracterized by rotations of Stizolobium deringianum(legume) with the Cucurbita sp. and Zea mays association,without fertilizers, pesticide applications, and cultivated un-der no tillage (NT). In this system, corn yields were between2.5 and 3.2 t ha−1; whereas, under conventional monocul-ture the yield was 0.78 t ha−1. Predominant mycorrhizalfungal species in this traditional system were A. morrowiae(synonymous A. longula), A. rehmii, Glomus constrictum,and Gl. pulvinatum. González-Chávez et al. (1990) sug-gested that S. deringianum was also able to establish sym-biosis with Rhizobium, so biological N and P uptake wereinvolved in the nutrient cycle in this system.

In subsistence crop systems, the soil is disturbed as littleas possible and mycorrhizal weeds are kept where necessaryto maintain the inoculum potential of native AMF (Gavitoand Varela 1993; 1995). Using these systems, colonizationrates from 50% to 62% were found in the low-input plots, incomparison to very variable but lower colonization (36% to27%) in intensive systems or monoculture systems (Michel-Rosales and Valdés 1996). Mycorrhizal colonization wasfound to be three times greater in pasture-corn rotation(from 1 to 4 years) than in long fallow (30 years) corncultivation (Alvárez-Solís and Anzueto 2004). These

findings have important implications for the managementof traditional agroecosystems and show that the use of cropspecies can result in a more diverse AMF community whichshould potentially increase crop production in the long-term(Ramos-Zapata et al. 2012). The agricultural areas of Atla-camulco (State of Mexico) are characterized by andisols (pH4.5–5, available-P <4 mg kg−1) and used for corn cultivationbeing fertilized with ammonium sulfate (110 kg ha−1) andsuperphosphate (70 kg ha−1). Montaño et al. (2001) foundthat AMF colonization was reduced in corn and wheatgenotypes characterized as more efficient in N and P utili-zation, in comparison to less efficient genotypes, as well asunder high rates of fertilization. The identified AMF speciesfor this soil type have been Acaulospora foveata, A. spinosa,Glomus constrictum, Gl. halonatum and Sclerocystis clavis-pora (Berch et al. 1989). Likewise, in agricultural areaslocated in the Mezquital Valley, Mexico, after 90 years ofcontinuos wastewater irrigation a clear depletion in thenumber of AMF spores was found where there were highconcentrations of available P and heavy metals in the soil(Ortega-Larrocea et al. 2001; 2007).

Mycorhizal studies of medicinal plants and papaya andcoffee plantations revealed that: (a) in medicinal plants, therewas a positive effect of AMF on the accumulation of antineo-plastic alkaloids in leaves of Catharanthus roseus (L.) G.Don. (De la Rosa-Mera et al. 2011), and (b) there was anincrease in the growth and survival of papaya and coffeeplants inoculated with AMF native consortia (Alarcón et al.2007; Trejo et al. 2011). The study by Trejo et al. (2011)demonstrated that high agricultural inputs in coffee planta-tions negatively influenced AMF spore and species abun-dance, as well the effectiveness of AMF on plant growth.The AMF inoculum has most effect on plant growth underfield conditions in intermediate-input agricultural plantations,which was also found to have the highest number of AMFspecies. More research on other medicinal plants and planta-tions are needed.

Reports indicate that nutrient transfer (N and P) betweenmaize and beans occurs via hyphae networks under inter-cropping systems. This suggests that an exchange of un-identified stimulatory substances originating from theassociated plant root zones modifying the mycorrhiza-mediated growth effects (Guzmán-Plazola et al. 1992). Till-age typically drives the dynamics of root colonization byAMF and their diversity in agricultural soils. It has a stronginfluence on concentrations of glomalin related soil proteins(GRSP, Alguacil et al. 2008; 2011). Recently, González-Chávez et al. (2010) reported that non tillage treatmentsexhibited higher concentrations of both labile C (MB 0

microbial biomass and HWESC 0 hot water extractable soilcarbohydrates) and recalcitrant compounds (GRSP) thanthose under conventional tillage. Indeed, the total-GRSPwere approximately 3–5 higher than the easily extracted-

Arbuscular mycorrhizal research in Mexico 119

GRSP, 10 times greater than the microbial biomass and 12–15 times higher than the WESC. This suggests that theproduction and maintenance of these recalcitrant fungalproducts are a feasible option of C sequestration and, con-sequently may contribute to the mitigation of CO2 emissionsto the atmosphere (Wilson et al. 2009; Báez-Pérez et al.2010). Aspects linked to C sequestration in agroecosystemsare a new and recent issue for mycorrhizal research inMexico. The variety of Mexican agroecosystems offersgreat opportunities for the study of ancient production sys-tems not found elsewhere in the world.

3.7 Phytoremediation

AMF can enhance plant adaptation and survival in soilscontaminated with heavy metals, pesticides, or petroleumhydrocarbons. These fungi can alleviate abiotic stress andimprove plant growth via enhanced nutrient and water up-take (Estrada-Luna et al. 2000; Smith and Read 2008), aswell as by stimulating or modifying specific plant physio-logical mechanisms leading to better adaptation (Augé2001; Porcel et al. 2003). Phytoremediation has emergedas an alternative to the removal of toxic contaminants (Cd,Cr, Pb, As, Ni) from soil and more attention has beendirected to assessing the role of AMF in enabling plants toavoid toxicity or improving the amount of harvestable planttissues (Meharg and Cairney 2000; González-Chávez et al.2002a, b; González-Chávez et al. 2006; Fernández et al.2008). The participation of glomalin in the sequestration ofheavy metals has been reported in Mexico. Between 0.36 and4.74 mg g−1 of glomalin has been quantified in slag metalresidues and it sequestered Cd (González-Chávez et al. 2004,2009). This fungal glycoprotein should be considered forbiostabilization of polluted soils, and AMF colonized plantsused for the remediation of mine residues. Mexican metaltailings are located in Zacatecas (Zacatecas), Temascaltepec(Mexico State), Inguarán (Michoacán), Zimapán (Hidalgo),and Taxco (Guerrero). Almost all plant roots collected in thesesites are associated to AMF (González-Chávez et al. 2009;Ortega-Larrocea et al. 2010). These studies illustrate the valueof using a range of AMF colonized plants for the phytoreme-diation of contaminated soils.

Research focusing on the evaluation of AMF role duringphytoremediation of petroleum hydrocarbons (PH) and poly-cyclic aromatic hydrocarbons (PAH)-contaminated soils hasbeen conducted in Mexico (Alarcón et al. 2004). Increasedmycorrhizal root colonization has been reported when kero-sene levels were reduced in the rhizosphere through theproliferation and the activity of hydrocarbonoclastic free-living N2-fixing bacteria (Hernández-Acosta et al. 2000).To date, few ecological studies have evaluated the naturaloccurrence of AMF in the rhizosphere of plants establishedat PH-contaminated sites in Mexico. However, AMF-species

such as Gigaspora margarita, Acaulospora delicata, A.laevis, Ambispora gerdemannii, Glomus ambisporum, Gl.sinuosum, Gl. citricola, and Scutellospora heterogamawere reported from chronically petroleum-contaminatedsoils at Veracruz and Tabasco states (Alarcón et al.2006; Franco-Ramírez et al. 2007). For AMF-species suchas S. heterogama, Gl. ambisporum or Gl. mosseae, thenegative effects of either crude oil or increasing concen-trations of PAH such as benzo[a]pyrene (BaP), and phen-anthrene, have been related to significantly reduced sporegermination and hyphal length (Franco-Ramírez et al.2007). In contrast, G. margarita was able to germinatewhen exposed to 100 μg g−1 of benzo[a]pyrene (Alarcónet al. 2006).

With respect to the contribution of AMF to the phytor-emediaton performance of some plant species in PH-contaminated systems, the inoculation of G. margarita toEchinochloa polystachya did not enhance the dissipation ofBaP from the rhizosphere but this PAH did not affect my-corrhizal colonization adversely (Alarcón et al. 2006). Thebenefits for the dissipation of PH (crude oil or diesel) inLolium multiflorum or Meliliotus albus have been demon-strated following inoculation with Glomus intraradices orwith the mycorrhizal consortium Glomus Zac-19 respective-ly (Alarcón et al. 2008; Hernández-Ortega et al. 2012).Indeed, AMF enabled better physiological responses toplants established on PH-contaminated soils and the benefitsstemmed from increased photosyntethic activity, water useefficiency, improved antioxidant activity, nitrate reductaseactivity and nutrimental status (Alarcón et al. 2007, 2008).A double inoculation of hydrocarbonoclastic microorgan-isms and AMF to L. multiflorum further enhanced PH deg-radation in the soil (Alarcón et al. 2008).

3.8 Current status of AM molecular research in Mexico

The research groups that study AMF in Mexico includeagronomists and plant ecologists, but molecular tools arestill not widely used. In the last decade young Mexicanresearchers have worked in European or US research labson various molecular aspects of plant and AMF biology.These newcomers are able to apply modern techniques butin Mexico, the current tendency is to allocate researchmoney to solve questions on agricultural and environmentalissues and molecular techniques are useful tools to answerthose questions rapidly and more easily. The followingexamples illustrate this.

Arsenic (As) is a pollutant found at mine tailings, ordisposal sites, and causes health problems for thousands ofMexicans in regions such as Zimapan in the state of Hidal-go, Mexico. A multidisciplinary group in Mexico wasformed 5 years ago and collaborated with a US group tostudy arsenate transport mechanisms in AMF. They worked

120 N.M. Montaño et al.

together to understand how plant and AMF biodiversity caninfluence the rate of mine tailings remediation at Zimapan(Ortega-Larrocea et al. 2010). Recently, in collaborationwith scientists at the Boyce Thompson Institute in Ithacaat NY, the group has developed an in vitro system usingtransformed carrot roots colonized by Glomus intraradices(Maldonado-Mendoza et al. 2001; Gómez-Leyva et al.2008) and shown that arsenate is probably taken up byAMF hyphae using a high affinity phosphate transporter(GiPT). They have described a novel gene from Gl. versi-forme that could work as an arsenite efflux pump (GvArsA).They suggest that AMF may also have an As exclusionmechanism that could explain the As tolerance of mycorrhi-zal plants (González-Chávez et al. 2011).

Jasmonic acid (JA) is a long distance wound signal thatcan activate the synthesis and accumulation of defense-related proteins in tomato, which can limit insect herbivory.The possible role of JA in the establishment of arbuscularmycorrhizae has been studied using a tomato mutant line inwhich the prosystemin-mediated responses 2 (spr2) is sup-pressed resulting in severely reduced levels of JA. An in-crease in colonization was observed in mycorrhizal spr2plants when they were supplied with exogenous methyljasmonate. This supports its role as a positive regulator ofthe symbiosis (Tejeda-Sartorius et al. 2008).

The molecular signaling involved in plant defenseresponses induced by arbuscular mycorrhiza is anotherissue that could be elucidated by using a transcriptomicapproach (Liu et al. 2007). Bean and tomato are used asplant models in Mexico due to their high economicalimportance. It has been found that Gl. intraradices in-duced a systemic resistance to shoot diseases caused byXanthomonas campestris pv vesicatoria in tomato and toSclerotinia sclerotiorum in bean. These findings are inaccordance to the study of defense genes induced in theMedicago truncatula/Gl. intraradices association whichmay be responsible for increased resistance to X. cam-pestris pv alfalfae (Liu et al. 2007).

Molecular tools have also been used to explore AMFdiversity in tropical dry ecosystems. These have shown that103 diferent DNA-Operational Taxonomics Units (OTU)sequences of Glomus are associated with 130 plant speciesfrom the semiarid Valley of Tehuacán-Cuicatlán, Puebla andOaxaca (Montesinos-Navarro et al. 2012). Sixteen uncultur-able morphospecies of Glomus and one of Scutellosporawere found to establish symbioses with native plants ofthe tropical dry forest in Chamela, Jalisco (Vieyra et al.2010). This shows the value of molecular biology for thestudy of natural ecosystems and revealed the great AMFdiversity in Mexico. An important challenge is to incorpo-rate molecular techniques into ecological/agricultural AMresearch in Mexico to enhance AMF identification in natu-ral/agricultural ecosystems.

4 Priority issues of research on AMF in Mexico

Mycorrhizal research using an ecosystem approach hasnot been well developed in Mexico. The ecophysiologicalrole of AM symbiosis into ecosystems is a critical chal-lenge. Researchers should be encouraged to explore indepth the AMF-diversity of each ecosystem, especiallynatural areas and protected areas. The taxonomic identityof AMF should be based both on morphological criteriaand molecular analysis. In addition, genetic and function-al diversity of the AMF should be investigated sinceeach fungal species or strain may play a different rolein biogeochemistry cycles or plant benefit. The resultsshould show whether single AMF species or consortiaare most valuable when employed in agriculture, forestry,or for remediation/restoration. It is imperative to carryout explorations and inventories of AMF in undisturberd,transformed or endangered ecosystems due to the rapidland use changes that is occurring in Mexico.

Mexico lacks of an official collection (in vivo or in vitrocultures) of native AMF for providing inocula or fungi fornational and international researchers. Another importantconcerns is that undergraduate and graduate training is re-quired which focuses on both traditional and molecularapproaches in order to produce skilled taxonomists whocan reliably identify members of the complex Glomeromy-cota. Technological advances have contributed greatly toAMF knowledge but there is no national program to developprocesses for the propagation and massive production ofAMF inocula that can guarantee its quality, and which couldbenefit plant species used in agriculture, horticulture andforestry. It is also necessary to set up governmental regula-tions for allowing and monitoring the introduction of for-eign inocula for long-term evaluation and comparison withnative AMF-inocula.

The use of signature fatty acids, stable isotopes,glomalin quantification, nuclear magnetic resonance(NMR), as well as microscopic and molecular techni-ques, is an important challenge for AMF studies inMexico. The equipment for many of these techniquesis not widely available in research institutions in Mex-ico. It could be acquired via international collaborationor national interdisciplinary projects. These approachescould allow us to increase our taxonomic AMF knowl-edge linked to biogeochemical cycles, and create mapsof the distribution of mycorrhizal communities with thehelp of geographic information systems. This would bea novel line of research in Mexico. AMF-researchersface limited federal funding (0.42% GDP) and this isa major obstacle to the future development of science inMexico and elsewhere in Latin America where it rangesfrom 0.1 to 1.3% of GDP. An important endeavor is toincrease the currently small pool of mycorrhizologists in

Arbuscular mycorrhizal research in Mexico 121

Mexico, by involving both undergraduate and graduatestudents in research projects.

5 Conclusion remarks

Because of its high diversity of vascular plants and ecosys-tems, Mexico is ranked in the fifth in the world and third interms of the number of endemic species. It is also one of themost important centers with respect to plant domestication(e.g. maize, cacao, and squash). Thus, AMF diversity inMexico may be greater than so far reported (95 AMFspecies). It is probable that many AMF species that remainto be discovered will be exclusive to Mexico and new toscience. These AMF species could significantly contributeto the ecological functionality of agroecosystems and natu-ral ecosystems, which are, in fact, an important source ofAMF germoplasm useful for other ecosystems aroundworld.

In Mexico, AMF research is currently generatingbasic but significant knowledge on: 1) The inventoryof AMF species in national agro-/ecosystems, 2) Theidentification of AMF new to science, 3) The evaluationof both presence and effect of AMF association in avariety of plants (cultivated and wild), 4) The identifi-cation of particular AMF microsites, for example underthe canopy of wild plants species of natural ecosystemsor in cultivated plants grown under different agroeco-systems. The study of native AMF species (single orconsortia) may reveal a) Which AMF inocula may beapplied to improve management practices in agricultureand horticulture, b) The value of inoculating plants forbiological conservation and ecological restoration purposes,and c)How biotechnological technics using AMFmay best beapplied in agriculture, horticulture and forestry.

Finally, in Mexico the use of mycorrhizal inocula isrelatively recent and is constrained due to the obligatebiotrophic nature of AMF, and the insufficient financialsupport for the production of inoculants. Other aspectshave to be addressed such as the role of AMF associ-ation in altering plant nutrition by nutrients other than P(i.e. N, Mg, K), soil structure (soil aggregates), biogeo-chemical processes (e.i. N and P cycling, C fluxes andsequestration, pollutants, etc.), AMF biogeography, andsoil food webs, all them strengthened by an increase inmolecular biology studies is also needed. The synthesisof all these aspects will enable us to get a better understandingof AMF diversity and the role of these fungi in Mexicanecosystems.

Acknowledgments Special thanks to Lucia Varela for her significantcontributions on the study of mycorrhizal symbiosis in Mexico, and toEduardo Chimal, Claudia De la Rosa-Mera, Ma. Jesús Sánchez-Colín†,

and Susana Adriana Montaño-Arias for their inputs. We also thank thecritical comments of four anonymous reviewers and David Richardsonwho helped us to considerably improve the manuscript for publication.N.M. Montaño acknowledges Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Mexico, for a PROMEP-SEP fellowship.

References

Aguilar-Fernández M, Jaramillo VJ, Varela L, Gavito ME (2009)Short-term consequences of slash-and-burn practices on thearbuscular mycorrhizal fungi of a tropical dry forest. Mycorrhiza19:179–186

Aguilera-Gómez LI, Rivas-Manzano IV, Ocampo-Jiménez O, Olalde-Portugal V (2008) Los Glomales de las planicies del Desierto deSonora. In: Montaño NM, Camargo-Ricalde SL, García-SánchezR, Monroy A (eds) Arbuscular mycorrhizae in arid and semiaridecosystems. DF, México: Mundi-Prensa, INE-SEMARNAT,UAM-Iztapalapa, FES-Zaragoza-UNAM, pp 85–96

Alarcón A, Ferrera-Cerrato R (2000) Ecología, Fisiología y Biotecno-logía de la Micorriza Arbuscular. D.F. Mexico: IRENAT-Colegiode Postgraduados y Mundi Prensa, 702 pp

Alarcón A, Davies FT Jr, Autenrieth RL, Reed DW, Zuberer DA(2004) Glomus intraradices enhances growth and gas exchangeof Lolium perenne seedlings in petroleum-contaminated soil.Hortscience 39:770

Alarcón A, Delgadillo-Martínez J, Franco-Ramírez A, Davies FT Jr,Ferrera-Cerrato R (2006) Influence of two polycyclic aromatichydrocarbons on spore germination, and phytoremediation poten-cial of Gigaspora margarita-Echynochloa polystachya symbiosisin benzo(a)pyrene-polluted substrate. Rev Int Cont Amb 22:39–47

Alarcón A, Pérez-Moreno J, Ferrera-Cerrato R (2007) Mycorrhizae intropical agriculture. In: Hamel Ch, Plenchette Ch (eds) Mycorrhi-zae in crop production. The Howorth Press, pp 197–238

Alarcón A, Davies FT Jr, Autenrieth RL, Zuberer DA (2008) Arbus-cular mycorrhiza and petroleum-degrading microorganisms en-hanced phytoremediaton of petroleum-contaminated soil. Inter JPhytorem 10:251–263

Alarcón A, Hernández-Cuevas LV, Ferrera-Cerrato R, Franco-RamírezA (2012) Diversity and agricultural aplications of arbuscularmycorrhizal fungi in Mexico. Biofertil & Biopestici 3:1–15

Alguacil MM, Lumini E, Roldán A, Salinas-García JR, Bonfante P,Bianciotto V (2008) The impact of tillage practices on arbuscularmycorrhizal fungal diversity in subtropical crops. Ecol Appl18:527–536

Alguacil MM, Roldán A, Salinas-García JR, Querejeta JI (2011) Notillage affects the phosphorus status, isotopic composition andcrop yield of Phaseolus vulgaris in a rain-fed farming system. JSci Food Agric 91:268–272

Allen EB, Rincón E, Allen MF, Péréz-Jiménez A, Huante P (1998)Disturbance and seasonal dynamics of mycorrhizae in a tropicaldeciduous forest in Mexico. Biotropica 30:261–274

Allen EB, Allen MF, Egerton-Warburton L, Corkidi L, Gómez-PompaA (2003) Impacts of early- and late-seral mycorrhizae duringrestoration in seasonal tropical forest, Mexico. Ecol Appl13:1701–1717

Allen MF, Allen EB, Gómez-Pompa A (2005) Effects of mycorrhizaland nontarget organisms on restoration of a sesonal tropical forestin Quintana Roo, Mexico: factors limiting tree establishment. RestEcol 13:325–333

Álvarez-Sánchez J (2009) Ecología de micorrizas arbusculares y res-tauración de ecosistemas. D.F. Mexico: Facultad de Ciencias,UNAM, pp 361

122 N.M. Montaño et al.

Álvarez-Sánchez J, Monroy A (2008) Técnicas de estudio de lasasociaciones micorrízicas y sus implicaciones en la restauración.D.F. México: SEMARNAT-CONACYT. Facultad de Ciencias,UNAM, pp 232

Álvarez-Sánchez J, Guadarrama P, Sánchez-Gallen I, Olivera D (2007)Restauración de ambientes deteriorados derivados de la selvahúmeda: el uso de los hongos micorrizógenos arbusculares. BolSoc Bot Mex 80:59–68

Álvarez-Sánchez J, Sánchez-Gallen I, Guadarrama P (2009) Ecophys-iological traits of tropical rain forest seedlings under arbuscularmycorrhization: implications in ecological restoration. In: VarmaA, Kharkwal AC (eds) Symbiotic fungi, soil biology. Springer,Heidelberg, pp 293–308

Alvárez-Solís JD, Anzueto MJ (2004) Actividad microbiana del suelobajo diferentes sistemas de producción de maíz en los Altos deChiapas, México. Agrociencia 38:13–22

Arroyo-Rodríguez V, Mandujano S (2006) The importance of tropicalrain forest fragments to the conservation of plant species diversityin Los Tuxtlas, Mexico. Biodivers Conserv 15:4159–4179

Augé R (2001) Water relations, drought and mycorrhizal symbiosis.Mycorrhiza 11:3–42

Báez-Pérez A, González-Chávez MC, Etchevers-Barra JD, Prat C,Hidalgo-Moreno C (2010) Glomalin and carbon sequestration incultivated tepetates. Agrociencia 44:517–529

Bárcenas A, Almaraz C, Reyes L, Varela L, Lara B, Guillén A, CarreónY, Aguirre S, Chávez A (2007) Diversity of arbuscular mycorrhi-zal fungi on avocado orchards from Michoacan. Viña del Mar,Chile: Proceedings VI World Avocado Congress

Bashan Y, Khaosaad T, Salazar BG, Ocampo JA, Wiemken A, Oehl F,Vierheilig H (2007) Mycorrhizal characterization of the boojumtree, Fouquieria columnaris, an endemic ancient tree from BajaCalifornia Peninsula, Mexico. Trees 21:329–335

Benítez-Malvido J, Martínez-Ramos M (2003) Impact of forest frag-mentation on understory plant species richness in Amazonia.Conserv Biol 17:389–400

Berch SM, Ferrera-Cerrato R, González-Chávez MC (1989) Vesicular-arbuscular mycorrhizal fungi from corn fields in Atlacomulco,Mexico. Mycologia 81:933–935

Bethlenfalvay GJ, Bashan Y, Carrillo-García A, Stutz JC (2008) Mycor-rhizae as biological components of resource islands in the SonoranDesert. In: Montaño NM, Camargo-Ricalde SL, García-Sánchez R,Monroy A (eds) Arbuscular mycorrhizae in arid and semiarid eco-systems. DF, México: Mundi-Prensa, INE-SEMARNAT, UAM-Iztapalapa, FES-Zaragoza-UNAM, pp 97–108

Brundrett MC (2009) Mycorrhizal associations and other means ofnutrition of vascular plants: understanding the global diversityof host plants by resolving conflicting information and developingreliable means of diagnosis. Plant Soil 320:37–77

Camargo-Ricalde SL (2009) Mycorrhizae. COSMOS, Encyclopedia ofScience and Technology in Mexico. Volume Biological Sciences.D.F., Mexico: CONACYT, UAM and ICyTDF, pp 110–113

Camargo-Ricalde SL, Dhillion SS (2003) Endemic Mimosa species canserve as mycorrhizal “resource islands”within semiarid communitiesof the Tehuacán-Cuicatlán Valley, Mexico. Mycorrhiza 13:129–136

Camargo-Ricalde SL, Esperón-Rodriguez M (2005) Efecto de la het-erogeneidad espacial y estacional del suelo sobre la abundancia deesporas de hongos micorrizógenos arbusculares en el valle semi-árido de Tehuacán-Cuicatlán, México. Rev Biol Trop 53:339–352

Camargo-Ricalde SL, Dhillion SS, Jiménez-González C (2003) My-corrhizal perennials of the “matorral xerófilo” and the “selva bajacaducifolia” communities in the semiarid Tehuacán-CuicatlánValley, Mexico. Mycorrhiza 13:77–83

Camargo-Ricalde SL, Montaño NM, Reyes-Jaramillo I, Jiménez-Gon-zález C, Dhillion SS (2010) Effect of mycorrhizae on seedlings ofsix endemic Mimosa L. species (Fabaceae-Mimosoideae) from thesemi-arid Tehuacán-Cuicatlán Valley, México. Trees 24:67–78

Carrillo L, Ramos-Zapata JA, Orellana R (2004) Micorrizas vesículo-arbusculares en plantas pioneras de la duna costera del estado deYucatán. In: Frías JT, Olalde V, Ferrera-Cerrato R (eds) Avancesen el conocimiento de la biología de las micorrizas. Universidadde Guanajuato, Guanajuato, pp 206–213

Carrillo-Garcia A, Leon De La Luz JL, Bashan Y, Bethlenfalvay GJ(1999) Nurse plants, mycorrhizae, and plant establishment in adisturbed area of the Sonoran Desert. Rest Ecol 7:321–335

Carrillo-Garcia A, Bashan Y, Bethlenfalvay GJ (2000) Resource-islandsoils and the survival of the giant cactus, cardon, of Baja Califor-nia Sur. Plant Soil 218:207–214

Castillo S, Moreno-Casasola P (1998) Análisis de la flora de dunascosteras del Litoral Atlántico de México. Acta Bot Mex 45:55–80

Challenger A (1998) Utilización y conservación de los ecosistemasterrestres de México: pasado, presente y futuro. Agrupación SierraMadre, S.C. México

Cicero-Canto S, Guerrero-González L, Ramos-Zapata J (2004)Impacto de la roza, tumba y quema sobre la población de hongosmicorrícicos arbusculares. In: Frías JT, Olalde V, Ferrera-CerratoR (eds) Avances en el conocimiento de la biología de las micorri-zas. Universidad de Guanajuato, Guanajuato, pp 227–236

CONABIO (2009) Capital natural de México, vol. II: Estado de con-servación y tendencias de cambio. Comisión Nacional para elConocimiento y Uso de la Biodiversidad, México. http://www.biodiversidad.gob.mx

Corkidi L, Rincón E (1997a) Arbuscular mycorrhizae in a tropical sanddune ecosystem on the Gulf of Mexico I. Mycorrhizal status andinoculum potential along a successional gradient. Mycorrhiza7:9–15

Corkidi L, Rincón E (1997b) Arbuscular mycorrhizae in a tropical sanddune ecosystem on the Gulf of Mexico II. Effects of arbuscularmycorrhizal fungi on the growth of species distributed in differentearly successional stages. Mycorrhiza 7:17–23

Corkidi L, Rincón E (1998) Micorrizas arbusculares de un ecosistemade dunas costeras del Golfo de México. In: Zulueta R, EscalonaMA, Trejo D (eds) Avances de la Investigación Micorrícica enMéxico. Universidad Veracruzana, Xalapa, pp 42–49

Cotler H, Ortega-Larrocea MP (2006) Effect of land use on soil erosionin a tropical dry forest ecosystem, Chamela watershed, Mexico.Catena 65:107–117

De la Rosa-Mera CJ, Ferrera-Cerrato R, Alarcón A, Sánchez-Colín MJ,Muñoz-Muñiz OD (2011) Arbuscular mycorrhizal fungi and po-tassium bicarbonate enhance the foliar content of the vinblastinealkaloid in Catharanthus roseus. Plant Soil 349:367–376

Estey RH (1994) A history of mycology in Canada. Can J Bot 72:751–766

Estrada-Luna A, Davies Jr FT (2008) Nutrient status and growth ofmicropropagated prickly-pear cactus (Opuntia albicarpa Scheinvarcv “Reyna”) plantlets colonized with three-selected endomycorrhizaisolates. In: Montaño NM, Camargo-Ricalde SL, García-Sánchez R,Monroy A (Eds) Arbuscular mycorrhizae in arid and semiaridecosystems. DF, México: Mundi-Prensa, INE-SEMARNAT,UAM-Iztapalapa, FES-Zaragoza-UNAM, pp 203–217

Estrada-Luna A, Davies FT Jr, Egilla JN (2000) Mycorrhizal fungienhancement of growth and gas exchange of micropropagatedguava plantlets (Psidium guajava L.) during ex vitro acclimatiza-tion and plant establishment. Mycorrhiza 10:1–8

Fernández FO, Carrillo-Gonzalez R, Vangronsveld J, González-ChávezMC (2008) Arbuscular mycorrhizal fungi and Zn Accumulation inthe metallophytic plant Viola calaminaria (Gingins.) Lej. RevChapingo Ser Hortic 14:355–360

Franco-Ramírez A, Ferrera-Cerrato R, Varela L, Pérez-Moreno J,Alarcón A (2007) Arbuscular mycorrhizal fungi in chronicallypetroleum-contaminated soils in Mexico and the effects of petro-leum hydrocarbons on spore germination. J Basic Microbiol47:378–383

Arbuscular mycorrhizal research in Mexico 123

García-Oliva F, Gallardo JF, Montaño NM, Islas P (2006) Soil carbonand nitrogen dynamics followed by a forest to pasture conversionin western Mexico. Agrofor Syst 66:93–100

García-Sánchez R, Monroy-Ata A, Chimal SE (2008) Hongos micor-rizógenos arbusculares asociados a diferentes plantas y matorralesdel Valle del Mezquital, Hidalgo, México. In: Montaño NM,Camargo-Ricalde SL, García-Sánchez R, Monroy A (eds) Arbus-cular mycorrhizae in arid and semiarid ecosystems. DF, México:Mundi-Prensa, INE-SEMARNAT, UAM-Iztapalapa, FES-Zaragoza-UNAM, pp 47–60

García-Sánchez R, Camargo Ricalde SL, García-Moya E, Luna-Cavazos M, Romero-Manzanares A, Montaño NM (2012) Proso-pis laevigata and Mimosa biuncifera, jointly influence plant di-versity and soil fertility in a Mexican semiarid ecosystem. Intern JTrop Biol Conserv 60:87–103

Gavito M, Varela L (1993) Seasonal dynamics of mycorrhizal associ-ations in maize fields under low input agriculture. Agric EcosysEnviron 45:275–282

Gavito M, Varela L (1995) Response of criollo maize to single andmixed species inocula of arbuscular mycorrhizal fungi. Plant Soil176:101–105

Gavito ME, Pérez-Castillo D, González-Monterrubio CF, Vieyra-Hernández T, Martínez-Trujillo M (2008) High compatibilitybetween arbuscular mycorrhizal fungal communities and seed-lings of different land use types in a tropical dry ecosystem.Mycorrhiza 19:47–60

Giardina C, Sanford L Jr, Døckersmith IC (2000) Changes in soilphosphorus and nitrogen during slash-and-burn clearing of a drytropical forest. Soil Sci Soc Am J 64:399–405

Gómez-Leyva JF, Lara-Reyna J, Hernández-Cuevas LV,Martínez-SorianoJP (2008) Specific polymerase chain reaction-based assay for theidentification of the arbuscular mycorrhizal fungus Glomus intra-radices. J Biol Sci 8:563–569

González-Chávez MC, Ferrera Cerrato R, García Espinoza R, MartínezGarza A (1990) Nitrogen biological fixation in an agroecosystemwith low external energy income at Tamulte de las Sabanas,Tabasco State. Agrociencia 1:133–153

González-Chávez MC, Dodd JC, Harris P, Meharg A (2002a)Arsenate resistance in arbuscular mycorrhizal associations:implications for phosphorus nutrition of plants. New Phytol155:163–171

González-Chávez MC, D’Haen J, Vangrosveld J, Dodd J (2002b)Cooper sorption and accumulation by the extraradical myceliumof three arbuscular mycorrhizal fungi isolated from the samepolluted soil. Plant Soil 240:287–297

González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA(2004) Role of glomalin, protein produced by hypha of arbuscularmycorrhizal fungi in the sequestration of potentially toxic ele-ments. Environ Pollut 130:317–323

González-Chávez MC, Vangronsveld J, Colpaert J, Leyval C (2006)Mycorrhizal arbuscular fungi and heavy metals: tolerance mech-anisms and potential use in bioremediation. In: Prasad MNV,Sajwan KS, Naidu R (eds) Trace elements in the environment:biogechemistry, biotechnology and bioremediation. CRC Press,Boca Raton, pp 211–234

González-Chávez MC, Carrillo-González R, Gutiérrez-Castorena MC(2009) Natural attenuation in a slag heap contaminated withcadmium: the role of plants and arbuscular mycorrhizal fungi. JHazard Mater 161:1288–1298

González-Chávez MC, Aitkenhead-Peterson JA, Gentry TJ, ZubererD, Hons F, Loeppert R (2010) Soil microbial community, C, N,and P responses to long-term tillage and crop rotation. Soil TillageRes 106:285–293

González-Chávez MC, Ortega-Larrocea MP, Carrillo-González R,López-Meyer M, Xoconostle-Cázares B, Gómez SK, HarrisonMJ, Figueroa-López MA, Maldonado-Mendoza IE (2011)

Arsenate induces the expression of fungal genes involved in astransport in arbuscular mycorrhizal. Fungal Biology 115:1197–1209

González-Monterrubio CF, Monroy A, García EM, Orozco MS (2005)Influencia de los hongos micorrizógenos en el desarrollo deplátulas de Opuntia streptacantha Lem. sometidas a sequía, encondiciones de invernadero. TIP Rev Esp Cien Quim Biol 8:5–10

Guadarrama P, Álvarez-Sánchez J (1999) Abundance of arbuscularmycorrhizal fingi spores in different environments in a tropicalrain forest, Veracruz, Mexico. Mycorrhiza 8:267–270

Guadarrama P, Álvarez-Sánchez J, Briones O (2004a) Effects of arbus-cular mycorrhizal fungi on seedling growth and competition oftwo pioneer tropical species. Euphytica 138:113–121

Guadarrama P, Álvarez-Sánchez J, Estrada A (2004b) Phosphorusdependence in seedlings of a tropical pioneer tree: the role ofarbuscular mycorrhizae. J Plant Nut 27:1–16

Guadarrama P, Camargo-Ricalde SL, Hernández-Cuevas L, Castillo-Argüero S (2007) Los hongos micorrizógenos arbusculares de laregión de Nizanda, Oaxaca, México. Bol Soc Bot Mex 81:131–137

Guadarrama P, Castillo-Argüero S, Ramos-Zapata JA, Camargo-Ricalde SL, Alvarez-Sánchez FJ (2008) Propagules of arbuscularmycorrhizal fungi in a secondary dry forest of Oaxaca Mexico. IntJ Trop Biol 56:269–277

Guadarrama P, Ramos-Zapata JA, Salinas-Peba L, Hernández-CuevasL, Castillo S. (2012). La vegetación de dunas costeras y suinteracción micorrízica en Sisal, Yucatán: una propuesta de res-tauración. In: Sánchez AJ, Chiappa-Carrara X, Brito PR (eds).Recursos acuáticos costeros del sureste: tendencias actuales eninvestigación y estado del arte. Vol II. Fondo Mixto CONACyT-Yucatán, RECORECOS, Universidad Nacional Autónoma deMéxico, Sisal Yucatán, México, pp 131–152

Guevara S, Laborde J, Landgrave R (2004) La deforestación. In:Guevara S, Laborde J, Sánchez-Ríos G (eds) Los Tuxtlas, elpaisaje de la sierra. Instituto de Ecología A.C., Xalapa, pp 85–109

Guzmán-Plazola R, Ferrera-Cerrato R, Bethlenfalvay G (1992) Papelde la endomicorriza V-A en la transferencia de exudados radicalesentre frijol y maíz sembrados en asociación bajo condiciones decampo. Terra Lat 10:236–248

Hernández-Acosta E, Ferrera-Cerrato R, Fernández-Linares L, RodríguezR (2000) Ocurrencia de la micorriza arbuscular y bacteriasfijadoras de N atmosférico en un suelo contaminado porhidrocarburos. In: Alarcón A, Ferrera-Cerrato R (eds) Ecología,fisiología y biotecnología de lamicorriza arbuscular.Mexico,MundiPrensa, pp 251–260

Hernández-Cuevas L, Castillo S, Guadarrama-Chávez P, Martínez Y,Romero MA, Sánchez-Gallén I (2003) Hongos micorrizógenosarbusculares del Pedregal San Ángel. DF, México: Las Prensas deCiencias, Facultad de Ciencias, UNAM, pp 82

Hernández-Ortega HA, Alarcón A, Ferrera-Cerrato R, Zavaleta-Mancera HA, Lopez Delgado HA, Mendoza-Lopez Ma R(2012) Arbuscular mycorrhizal fungi on growth, nutrient status,and total antioxidant activity of Melilotus albus during phytore-mediation of a diesel-contaminated substrate. J Environ Manag(Special Issue) 95:S319–S324

Hernández-Xolocotzi E (1998) Aspects of plant domestication in Mex-ico: a personal view. In: Ramamoorthy TP, Bye R, Lot A, Fa J(eds) Diversidad biológica de México: orígenes y distribución.Instituto de Biología, UNAM, México, pp 733–753

Huante P, Rincón E, Allen EB (1993) Effect of vesicular-arbuscularmycorrhizae on seedling growth of four tree species from thetropical deciduos forest in Mexico. Mycorrhiza 2:141–145

Janos DP (2007) Plant responsiveness to mycorrhizas differs fromdependence upon mycorrhizas. Mycorrhiza 17:75–91

Jaramillo VJ, Kauffman JB, Rentería-Rodríguez LY, Cummings DL,Ellingson LJ (2003) Biomass, carbon and nitrogen pools in Mex-ican tropical dry forest landscapes. Ecosystems 6:609–629

124 N.M. Montaño et al.

Johnson NC (2010) Resource stoichiometry elucidates the structureand function of arbuscular mycorrhizas across sacles. New Phytol185:631–647

Koide R, Mosse B (2004) A history of research on arbuscular mycor-rhiza. Mycorrhiza 14:145–163

Li Y, Jiao H, Xu L, Zhao H, Liu R (2010) Advances in the study ofcommunity structure and function of arbuscular mycorrhizal fun-gi. Acta Ecol Sinica 30:1089–1096

Liu J, Maldonado-Mendoza IE, Lopez-Meyer M, Cheung F, Town C,Harrison MJ (2007) The arbuscular mycorrhizal symbiosis isaccompanied by local and systemic alterations in gene expressionand an increase in disease resistance in the shoots. Plant J 50:529–544

Lott EJ (1993) Annotated checklist of the vascular flora of the Chamelabay region, Jalisco Mexico. Occ Pap Cal Acad Sci 148:60–67

Maass JM, Jaramillo VJ, Martínez-Yrizar A, García-Oliva F, Pérez-Jiménez A, Sarukhán J (2002) Aspectos Funcionales del Ecosis-tema de Selva Baja Caducifolia en Chamela, Jalisco. In: NogueraFA, Vega JH, García-Aldrete AN, Quesada M (eds) HistoriaNatural de Chamela, Mexico City, México: Instituto de Biología,UNAM, pp 525–551

Maldonado-Mendoza IE, Dewbre GL, Harrison MJ (2001) A phos-phate transporter gene (GiPT) from the extra-radical mycelium ofan arbuscular mycorrhizal fungus, Glomus intraradices, is regu-lated in response to phosphate in the environment. Mol PlantMicrob Inter 14:1140–1148

Martínez ML, Manson RH, Balvanra P, Dirzo R, Soberón J, García-Barrios L, Martínez-Ramos M, Moreno-Casasola P, RosenzweigL, Sarukhán J (2006) The evolution of ecology in Mexico: facingchallenges and preparing for the future. Front Ecol Environ4:259–267

Martínez-Ramos M (1994) Regeneración natural y diversidad de espe-cies arbóreas en selvas húmedas. Bol Soc Bot Mex 54:179–224

Medina-Roldan E, Arredondo JT, Huber-Sannwald E, Chapa-Vargas L,Olalde-Portugal V (2008) Grazing effects on fungal root sym-bionts and carbon and nitrogen storage in a shortgrass steppe inCentral Mexico. J Arid Environ 72:546–556

Meharg A, Cairney JW (2000) Co-evolution of mycorrhizal symbiontsand their hosts to metal-contaminated environments. Adv EcolRes 30:69–112

Michel-Rosales A, Valdés M (1996) Arbuscular mycorrhizal coloniza-tion of lime in different agroecosystems of the dry tropics. My-corrhiza 6:105–109

Miles L, Newton A, DeFries RS, Ravilious C, May I, Blith S, Kapos V,Gordon JE (2006) A global overview of the conservation status oftropical dry forest. J Biogeog 33:491–505

Monroy A, García-Sánchez R (2009) Plantas y hongos: micorrizasarbusculares, un mutualismo esencial en zonas semiáridas. Méx-ico DF: FES-Zaragoza UNAM, pp 98

Monroy A, Estevez J, García-Sánchez R, Rios-Gómez R (2007) Esta-blecimiento de plátulas mediante el uso de micorrizas y de islas derecursos en un matorral xerófilo deteriorado. Bol Soc Bot Mex80:49–57

Montaño NM, Quiroz V, Cruz-Flores G (2001) Arbuscular mycorrhizalcolonization and mineral fertilization of corn and wheat genotypescultivated in an Andosol. Terra Lat 19:337–344

Montaño NM, Ochoa G, Varela L, García-Sánchez R (2004) Presenciay abundancia de hongos endomicorrícicos bajo mezquite (Proso-pis laevigata) en agostaderos semiáridos del Valle del Mezquital,México. In: Frías JT, Olalde-Portugal V, Ferrera-Cerrato R (eds)Avances en el Conocimiento de la Biología de las Micorrizas.Universidad de Guanajuato, Guanajuato, pp 108–122

Montaño NM, Camargo-Ricalde SL, García-Sánchez R, Monroy A(2008a) Arbuscular mycorrhizae in arid and semiarid ecosystems.DF, México: Mundi-Prensa, INE-SEMARNAT, UAM-Iztapalapa,FES-Zaragoza-UNAM, pp 495

Montaño NM, García-Sánchez R, Morales-Gómez F, Ochoa G (2008b)Arbuscular mycorrhizae in Mesquite fertile islands in two semi-arid shrubs: their effect on Bouteloua curtipendula morphologicaldevelopment. In: Montaño NM, Camargo-Ricalde SL, García-Sánchez R, Monroy A (eds) Arbuscular mycorrhizae in arid andsemiarid ecosystems. DF, México: Mundi-Prensa, INE-SEMARNAT, UAM-Iztapalapa, FES-Zaragoza-UNAM, pp 185–202

Montesinos-Navarro A, Segarra-Moragues JG, Valeinte-Banuet A,Verdú M (2012) The network structure of plant-arbuscular my-corrhizal fungi. New Phytol 194:536–547

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J(2000) Biodiversity hotspots for conservation priorities. Nature403:853–858

Núñez-Castillo O, Álvarez-Sánchez J (2003) Arbuscular mycorrhizaeof the palm Astrocaryum mexicanum in disturbed and undisturbedstands of a Mexican tropical forest. Mycorrhiza 13:271–276

Ochoa-Meza A, Esqueda M, Fernández-Valle R, Herrera-Peraza R(2009) Seasonal variation of arbuscular mycorrhizal fungi associ-ated with Agave angustifolia haw. at the Sonoran Sierra, Mexico.Rev Fitotec Mex 32:189–199

Olsson PA, Thingstrup I, Jakobsen I, Baath E (1999) Estimation of thebiomass of arbuscular mycorhizal fungi in a linseed field. SoilBiol Biochem 31:1879–1887

Ortega-Larrocea MP, Siebe C, Bécard G, Méndez I, Webster R (2001)Impact of a century of wastewater irrigation on the abundance ofarbuscular mycorrhizal spores in the soil of Mezquital Valley ofMexico. Appl Soil Ecol 16:149–157

Ortega-Larrocea MP, Siebe C, Estrada A, Webster R (2007) Mycorrhi-zal inoculum potential of arbuscular mycorrhizal fungi in soilsirrigated with wastewater for various lengths of time, as affectedby heavy metals and available P. Appl Soil Ecol 37:129–138

Ortega-Larrocea MP, Xoconostle-Cázares B, Maldonado-Mendoza IE,Carrillo-González R, Hernández-Hernández J, Díaz Garduño M,López-Meyer M, Gómez-Flores L, González-Chávez MC (2010)Plant and fungal biodiversity from metal mine wastes underremediation at Zimapan, Hidalgo, Mexico. Environ Pollut158:1922–1931

Pezzani F, Montaña C, Guevara R (2006) Associations between arbus-cular mycorrhizal fungi and grasses in the successional context ofthe two-phase mosaic in the Chihuahuan Desert. Mycorrhiza16:285–295

Pezzani F, Guevara R, Hernández-Cuevas L, Montaña C (2008) My-corrhizal interactions in mapimi biosphere reserve: arbuscularmycorrhizae fungi associated with grasses from the Chihuahuandesert. In: Montaño NM, Camargo-Ricalde SL, García-SánchezR, Monroy A (eds) Arbuscular mycorrhizae in arid and semiaridecosystems. DF, México: Mundi-Prensa, INE-SEMARNAT,UAM-Iztapalapa, FES-Zaragoza-UNAM, pp 109–122

Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities inmycorrhizal soybean plants under drought stress and their possi-ble relationship to the process of nodule senescence. New Phytol157:135–143

Ramírez-Gerardo M, Álvarez-Sánchez J, Guadarrama-Chávez P,Sánchez-Gallén I (1997) Estudio de hongos micorrizógenosarbusculares bajo árboles remanentes en un pastizal tropical.Bol Soc Bot Mex 61:15–20

Ramos-Zapata J, Orellana R, Allen E (2006a) Establishment of Des-moncus orthacanthos Martius (Arecaceae): effect of inoculationwith arbuscular mycorrhizae. Int J Trop Biol 54:65–72

Ramos-Zapata J, Orellana R, Allen E (2006b) Mycorrhizal dynamics anddependence ofDesmoncus orthacanthosMartius (Arecaceae). Inter-ciencia 31:364–370

Ramos-Zapata J, Guadarrama P, Navarro-Alberto J, Orellana R (2011a)Arbuscular mycorrhizal propagules in soils from a tropical forestand an abandoned cornfield in Quintana Roo, Mexico: visual

Arbuscular mycorrhizal research in Mexico 125

comparison of most-probable-number estimates. Mycorrhiza21:139–144

Ramos-Zapata J, Zapata-Trujillo R, Ortíz-Díaz JJ, Guadarrama P(2011b) Arbuscular mycorrhizas in a tropical coastal dune systemin Yucatan, Mexico. Fungal Ecol 4:256–261

Ramos-Zapata J, Marrufo-Zapata D, Guadarrama P, Carrillo-SánchezL, Hernández-Cuevas L, Caamal-Maldonado A (2012) Impact ofweed control on arbuscular mycorrhizal fungi in a tropical agro-ecosystem: a long-term experiment. Mycorrhiza. doi:10.1007/s00572-012-0443-1

Reyes-Quintanar KC, Alarcón A, Ferrera-Cerrato R, Rodríguez-ZaragozaS (2008) Micoorganisms associated with the rizosphere of a Neo-buxbaumia tetetzo population, established in an arid zone of Puebla,México. In:Montaño NM, Camargo-Ricalde SL, García-Sánchez R,Monroy A (eds) Arbuscular mycorrhizae in arid and semiarid eco-systems. DF, México: Mundi-Prensa, INE-SEMARNAT, UAM-Iztapalapa, FES-Zaragoza-UNAM, pp 137–150

Rillig M (2004) Arbuscular mycorrhizae and terrestrial ecosystemprocesses. Ecol Let 7:740–754

Rincón E, Huante P, Ramírez Y (1993) Influence of vesicular-arbuscular mycorrhizas on biomass production in Pachycereuspecten-aboriginum (Cactaceae). Mycorrhiza 3:79–81

Robles C, Robles ML, Monroy FB (2008) Growth and nutrition of theAgave angustifolia Haw. in presence of arbuscular mycorrhizae. In:Montaño NM, Camargo-Ricalde SL, García-Sánchez R, Monroy A(Eds) Arbuscular mycorrhizae in arid and semiarid ecosystems. DF,México: Mundi-Prensa, INE, UAM-Iztapalapa, FES-Zaragoza-UNAM, pp 217–233

Rojas-Andrade R, Cerda-Garcia-Rojas CM, Frias-Hernandez JT,Dendooven L, Olalde-Portugal V, Ramos-Valdivia A (2003)Changes in the concentration of trigonelline in a semi-arid legumi-nous plant (Prosopis laevigata) induced by an arbuscular mycorrhi-zal fungus during the presymbiotic phase. Mycorrhiza 13:49–52

Rose SL (1981) Vesicular-arbuscular endomycorrhizal associations ofsome desert plants of Baja California. Can J Bot 59:1056–1060

Rzedowski J (1978) Vegetación de México. Limusa, Mexico City, p 432Saito M, Marumoto T (2002) Inoculation wiht arbuscular mycorrhizal

fungi: the status quo in Japan and the future prospects. Plant Soil244:273–279

Sánchez-Gallen I, Álvarez-Sánchez J, Guadarrama P (2009) Restau-ración y el uso de los hongos micorrizógenos arbusculares: unestudio de caso en una selva húmeda. In: Álvarez-Sánchez J (ed)Ecología de micorrizas arbusculares y restauración de ecosiste-mas. México: Facultad de Ciencias, Universidad Nacional Autón-oma de México, pp 237–258

Sieverding E (1991) Vesicular-arbuscular mycorrhiza management intropical agrosystems. Deutsche Gesellschaft für TechnischeZusammenarbeit (GTZ) GmbH, Eschborn, Germany

Sigüenza C, Espejel I, Allen EB (1996) Seasonality of mycorrhizae incoastal sand dunes, Baja California. Mycorrhiza 6:151–157

Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, SanDiego, p 785

Tejeda-Sartorius M, Martínez O, Délano-Frier JP (2008) Jasmonic acidinfluences mycorrhizal colonization in tomato plants by modify-ing the expression of genes involved in carbohydrate partitioning.Physiol Plantarum 133:339–353

Toledo VM, Ordóñez MJ (1998) El panorama de la biodiversidad deMéxico: una revisión de los hábitats terrestres. In: RamamoorthyTP, Bye R, Lot A, and Fa J (eds) Diversidad biológica de México:orígenes y distribución. Mexico City: Instituto de Biología,UNAM, pp 739–757

Trejo I, Dirzo R (2000) Deforestation of seasonally dry tropical forest:a national and local analysis in Mexico. Biol Conserv 94:133–142

Trejo D, Ferrera-Cerrato R, García R, Varela L, Lara L, Alarcón A(2011) Efectividad de siete consorcios nativos de hongos micor-rízicos arbusculares en plantas de café en condiciones de inver-nadero y campo. Rev Chilena Hist Nat 84:23–31

Turrini A, Giovannetti M (2012) Arbucular mycorrhizal fungi in nationalparks, nature reserves and protected areas worldwide: a strategicperspective for their in situ conservation. Mycorrhiza 22:81–97

Varela L, Trejo D (2001) Los hongos micorrizógenos arbuscularescomo componentes de la biodiversidad del suelo en México. ActaZool Mexicana Número Especial 1:39–51

Varela L, Estrada-Torres A, Álvarez-Sánchez J, Sánchez-Gallen I(2008) Catálogo ilustrado de hongos micorrizógenos arbuscularesde la Reserva de la Biosfera de Los Tuxtlas. (CD-Room) México:SEMARNAT-CONACYT. GEF. TSBF. CIAT. Instituto de Ecolo-gía, A.C. Facultad de Ciencias, Universidad Nacional Autónomade México

Vargas R, Hasselquist N, Allen EB, Allen MF (2010) Effects of anhurricane disturbance on aboveground forest structure, arbuscularmycorrhizae and belowground carbon in a restored tropical forest.Ecosystems 13:118–128

Velázquez A, Mas JF, Mayorga R, Palacio JL, Bocco G, Gómez-Rodríguez G, Luna L, Trejo I, López-García J, Palma M, PeraltaA, Prado-Molina J, González-Medrano F (2001) El InventarioForestal Nacional Mexicano 2000. Ciencias 64:12–19

Vieyra MT, Gavito ME, Martínez-Trujillo M (2010) Caracterización delas comunidades de hongos micorrízicos arbusculares de unbosque tropical seco caducifolio. Ciencia Nicolaita No. Esp: 1–7

Wang FY, Zhao YS (2008) Biodiversity of arbuscular mycorrhizalfungi in China: a review. Adv Environ Biol 2:31–39

Wilson GWT, Rice CW, Rillig M, Springer A, Hertnett DC (2009) Soilaggregation and carbon sequestration are tightly correlated withthe abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Let 12:452–461

126 N.M. Montaño et al.