Plate interactions of Laurussia and Gondwana during the formation of Pangaea — Constraints from...

17
Plate interactions of Laurussia and Gondwana during the formation of Pangaea Constraints from UPb LASFICPMS detrital zircon ages of Devonian and Early Carboniferous siliciclastics of the Rhenohercynian zone, Central European Variscides Katja Eckelmann a, , Heinz-Dieter Nesbor b , Peter Königshof c , Ulf Linnemann a , Mandy Hofmann a , Jan-Michael Lange a , Anja Sagawe a a Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, GeoPlasma Lab, Königsbrücker Landstr. 159, D-01109 Dresden, Germany b Hessisches Landesamt für Umwelt und Geologie, Abteilung Geologie und Boden, Geologischer Landesdienst, Rheingaustraße 186, 65203 Wiesbaden, Germany c Senckenberg Naturmuseen und Forschungsinstitute, Senckenberganlage 25, 60325 Frankfurt am Main, Germany abstract article info Article history: Received 24 January 2013 Received in revised form 1 May 2013 Accepted 21 May 2013 Available online xxxx Handling Editor: R.D. Nance Keywords: Gondwana provenance Laurussia provenance Variscan nappe tectonics Rheic Ocean Rhenohercynian Ocean The southern Rheinisches Schiefergebirge, which is part of the Rhenohercynian zone of the Central European Variscides, exhibits several allochthonous units: the Gießen-, and the Hörre nappe, and parts of the Frankenbach imbrication zone. These units were thrust over autochthonous and par-autochthonous volcano-sedimentary complexes of the Lahn and DillEder synclines. This paper reports a representative data set of UPb LASFICPMS ages of 1067 detrital zircon grains from Devonian and Lower Carboniferous siliciclastic sediments of the autochthonous and the allochthonous areas, respectively. The cluster of UPb ages from the allochthonous units points to a provenance in the Saxothuringian zone. Zircon populations from the Saxothuringian zone are representative of a Gondwanan hinterland and are characterized by age clusters of ~530700 Ma, ~1.82.2 Ga, ~2.52.7 Ga, and ~3.03.4 Ga. Further samples were taken from the autochthonous and par-autochthonous units of the LahnDill and Kellerwald areas. A Lower Devonian sand- stone sample from the Siegen anticline provides a reference for siliciclastic sediments derived from the Old Red Continent. These samples show a provenance representative of Laurussia with debris primarily derived from Baltica and Avalonia. UPb zircon age clusters occur at ~400450 Ma, 540650 Ma, 1.01.2 Ga, ~1.41.5 Ga, ~1.72.2 Ga, and 2.32.9 Ga. Provenance analysis and geochemical data of the Rhenohercynian zone provide new information on the evolution of magmatic arcs in the Mid-Paleozoic. The data set constrains top-SE and top-NW directed subduction of the oceanic crust of the Rheic Ocean. Subduction-related volcanism lasted from the Early Devonian to the Early Carboniferous and thus conrms the existence of the Rheic Ocean until the Early Carboniferous. The tectonic model outlined for the Rhenohercynian zone suggests a wide Rheic Ocean. © 2013 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved. 1. Introduction The Central-European part of the Variscan Orogen is one of the most signicant type areas for the continentcontinent collision between Laurussia and Gondwana that resulted in the formation of the super- continent Pangaea. Traditionally, the Central-European Variscides have been subdivided across strike from NW to SE into three zones, the Rhenohercynian, the Saxothuringian, and the Moldanubian zones, respectively (Kossmat, 1927). Later, Brinkmann (1948) included a sep- arate Mid-German Crystalline zone to this model, which is interpreted as a structural high between the Rhenohercynian and Saxothuringian zones (Fig. 1). This concept has been adapted to modern plate tectonic views in which the Variscan Orogen resulted from the accretion of peri-Gondwanan terranes or microplates by the closure of several oceans, among which the Rheic Ocean has been considered the most important. The Rhenohercynian zone, which crops out preferentially in the Rheinisches Schiefergebirge, constitutes a classical fold-and-thrust belt and is one of the structural units of the European Variscides interpreted as a collage of microplates (e.g. Matte, 1986; Franke and Oncken, 1990; Franke et al., 1990; Franke and Oncken, 1995; Franke, 2000). It is now widely accepted that the Rheinisches Schiefergebirge is part of the Avalonia terrane, which separated from Gondwana in the Early Ordovician and drifted northwards (e.g. Oncken et al., 2000; Tait et al., 2000; Torsvik and Cocks, 2004; Linnemann et al., 2008, 2010; Romer and Hahne, 2010). This resulted in the opening of the Rheic Ocean. In Late Ordovician, around 450 Ma, Avalonia collided with Gondwana Research xxx (2013) xxxxxx This paper is dedicated to Dr. Peter Bender, Marburg, Germany. Corresponding author. Tel.: +49 351 7958414424. E-mail address: [email protected] (K. Eckelmann). GR-01063; No of Pages 17 1342-937X/$ see front matter © 2013 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.gr.2013.05.018 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Please cite this article as: Eckelmann, K., et al., Plate interactions of Laurussia and Gondwana during the formation of Pangaea Constraints from UPb LASFICPMS detrital zircon ..., Gondwana Research (2013), http://dx.doi.org/10.1016/j.gr.2013.05.018

Transcript of Plate interactions of Laurussia and Gondwana during the formation of Pangaea — Constraints from...

Gondwana Research xxx (2013) xxx–xxx

GR-01063; No of Pages 17

Contents lists available at ScienceDirect

Gondwana Research

j ourna l homepage: www.e lsev ie r .com/ locate /gr

Plate interactions of Laurussia and Gondwana during the formation ofPangaea — Constraints from U–Pb LA–SF–ICP–MS detrital zircon agesof Devonian and Early Carboniferous siliciclastics of theRhenohercynian zone, Central European Variscides☆

Katja Eckelmann a,⁎, Heinz-Dieter Nesbor b, Peter Königshof c, Ulf Linnemann a, Mandy Hofmann a,Jan-Michael Lange a, Anja Sagawe a

a Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, GeoPlasma Lab, Königsbrücker Landstr. 159, D-01109 Dresden, Germanyb Hessisches Landesamt für Umwelt und Geologie, Abteilung Geologie und Boden, Geologischer Landesdienst, Rheingaustraße 186, 65203 Wiesbaden, Germanyc Senckenberg Naturmuseen und Forschungsinstitute, Senckenberganlage 25, 60325 Frankfurt am Main, Germany

☆ This paper is dedicated to Dr. Peter Bender, Marbur⁎ Corresponding author. Tel.: +49 351 7958414424.

E-mail address: [email protected] (K

1342-937X/$ – see front matter © 2013 International Ahttp://dx.doi.org/10.1016/j.gr.2013.05.018

Please cite this article as: Eckelmann, K., et alU–Pb LA–SF–ICP–MS detrital zircon ..., Gond

a b s t r a c t

a r t i c l e i n f o

Article history:Received 24 January 2013Received in revised form 1 May 2013Accepted 21 May 2013Available online xxxx

Handling Editor: R.D. Nance

Keywords:Gondwana provenanceLaurussia provenanceVariscan nappe tectonicsRheic OceanRhenohercynian Ocean

The southern Rheinisches Schiefergebirge, which is part of the Rhenohercynian zone of the Central EuropeanVariscides, exhibits several allochthonous units: the Gießen-, and the Hörre nappe, and parts of theFrankenbach imbrication zone. These units were thrust over autochthonous and par-autochthonousvolcano-sedimentary complexes of the Lahn and Dill–Eder synclines. This paper reports a representativedata set of U–Pb LA–SF–ICP–MS ages of 1067 detrital zircon grains from Devonian and Lower Carboniferoussiliciclastic sediments of the autochthonous and the allochthonous areas, respectively. The cluster of U–Pbages from the allochthonous units points to a provenance in the Saxothuringian zone. Zircon populationsfrom the Saxothuringian zone are representative of a Gondwanan hinterland and are characterized by ageclusters of ~530–700 Ma, ~1.8–2.2 Ga, ~2.5–2.7 Ga, and ~3.0–3.4 Ga. Further samples were taken from theautochthonous and par-autochthonous units of the Lahn–Dill and Kellerwald areas. A Lower Devonian sand-stone sample from the Siegen anticline provides a reference for siliciclastic sediments derived from the OldRed Continent. These samples show a provenance representative of Laurussia with debris primarily derivedfrom Baltica and Avalonia. U–Pb zircon age clusters occur at ~400–450 Ma, 540–650 Ma, 1.0–1.2 Ga, ~1.4–1.5 Ga,~1.7–2.2 Ga, and 2.3–2.9 Ga. Provenance analysis and geochemical data of the Rhenohercynian zone provide newinformation on the evolution of magmatic arcs in the Mid-Paleozoic. The data set constrains top-SE and top-NWdirected subduction of the oceanic crust of the Rheic Ocean. Subduction-related volcanism lasted from the EarlyDevonian to the Early Carboniferous and thus confirms the existence of the Rheic Ocean until the EarlyCarboniferous. The tectonic model outlined for the Rhenohercynian zone suggests a wide Rheic Ocean.

© 2013 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Central-European part of the Variscan Orogen is one of themostsignificant type areas for the continent–continent collision betweenLaurussia and Gondwana that resulted in the formation of the super-continent Pangaea. Traditionally, the Central-European Variscideshave been subdivided across strike from NW to SE into three zones,the Rhenohercynian, the Saxothuringian, and the Moldanubian zones,respectively (Kossmat, 1927). Later, Brinkmann (1948) included a sep-arate Mid-German Crystalline zone to this model, which is interpretedas a structural high between the Rhenohercynian and Saxothuringian

g, Germany.

. Eckelmann).

ssociation for Gondwana Research.

., Plate interactions of Laurusswana Research (2013), http:/

zones (Fig. 1). This concept has been adapted to modern plate tectonicviews in which the Variscan Orogen resulted from the accretion ofperi-Gondwanan terranes or microplates by the closure of severaloceans, among which the Rheic Ocean has been considered the mostimportant.

The Rhenohercynian zone, which crops out preferentially in theRheinisches Schiefergebirge, constitutes a classical fold-and-thrust beltand is one of the structural units of the European Variscides interpretedas a collage of microplates (e.g. Matte, 1986; Franke and Oncken, 1990;Franke et al., 1990; Franke and Oncken, 1995; Franke, 2000).

It is now widely accepted that the Rheinisches Schiefergebirge ispart of the Avalonia terrane, which separated from Gondwana in theEarly Ordovician and drifted northwards (e.g. Oncken et al., 2000; Taitet al., 2000; Torsvik and Cocks, 2004; Linnemann et al., 2008, 2010;Romer and Hahne, 2010). This resulted in the opening of the RheicOcean. In Late Ordovician, around 450 Ma, Avalonia collided with

Published by Elsevier B.V. All rights reserved.

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

100 km

Kammquartzite imbrication zone

autochthonous and par-autochthonous units

allochthonous units

12°10°8°

52°

51°

50°

Mid-

Germ

an

Crysta

lline

zone

Frankfurt

Kassel

Erfurt

RheinischesSchiefergebirge

Rhenohercynian

zone

Saxothuringian

zoneOdenwald

Spessart

Kellerwald

North

ern

Phyllit

zone

Harz mountains

Gießen

-Har

z nap

pe co

mplex

Gommern

seeFig. 2

Lahn and Dill-Eder syncline

Lahn-Dillarea

Laurussia

GondwanaRheic sutu

re

Fig. 1. Schematic map showing the position of the field working area (Lahn–Dill and Kellerwald areas) within the Rhenohercynian zone of the Central European Variscides (seerectangle for location of Fig. 2A, B).Map is modified after Huckriede et al. (2004).

2 K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

Baltica, which led to the closure of the Tornquist Sea. The ensuing col-lision of both Baltica and Avalonia with Laurentia closed the interven-ing Iapetus Ocean at about 420 Ma. As a result the continent Laurussia(=Old RedContinent)was formed (Kroner et al., 2007; Linnemannet al.,2008; Nance et al., 2010). According to Sánchez Martínez et al. (2007)and Nance et al. (2010), the closure of the Rheic Ocean began in theLate Silurian–Early Devonian and continued until the Early Carboniferousby successive advancing from west to east.

Several plate tectonic models exist for the Variscan orogeny. Thetwo-plate model involves the collision of Laurussia (Baltica +Avalonia + Laurentia) with West Gondwana (Amazonia + WestAfrica + Cadomia) as a result of the closure of the Rheic Ocean(e.g. Linnemann et al., 2004; Kroner et al., 2007; Linnemann et al.,2010). The multi-plate model accounts for the existence of a numberof terranes and narrow oceans between the principal plates of Laurussiaand Gondwana (e.g. Franke, 2000; Tait et al., 2000; Torsvik and Cocks,2004; von Raumer and Stampfli, 2008). Different microplates areassigned to the “Armorican Terrane Assemblage (ATA)” by Franke(1995) and are composed of Bohemia, Saxothuringia, Iberia and theArmorican Massif. ATA is believed to have separated from Gondwanaduring the Ordovician, following Avalonia in northward direction.Between Avalonia and ATA, an island arc has been proposed, whichformed during the closure of the Rheic Ocean and was accreted toAvalonia during the Early Devonian (Franke and Oncken, 1995;Franke, 2000). This arc is documented by magmatic rocks of Silurianage in the “Northern Phyllite zone” and in the “Mid-German-Crystalline zone (MGCZ)” (Altenberger et al., 1990; Sommermann,1993; Dombrowski et al., 1995; Reischmann et al., 2001).

One model for the Rhenohercynian proposes successive rifting of apassive southern margin of Laurussia during Devonian times caused bythe opening of a Rhenohercynian Ocean (e.g. Franke, 2000; Tait et al.,2000; Doublier et al., 2012). Conversely, Floyd (1982), Flick and Nesbor(1988), Oczlon (1994), Smith (1996), von Raumer and Stampfli (2008),and Zeh and Gerdes (2010) interpreted the Rhenohercynian as anactive continental margin whereby a northward dipping subductionzone triggered the opening of a Rhenohercynian back arc ocean.

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

The MGCZ, a NE–SW trending basement wedge, represents theVariscan collision zone and separates the Rhenohercynian zone(Avalonia) from the Saxothuringian zone (Armorica; Zeh andGerdes, 2010; Zeh and Will, 2010). However, Zeh and Gerdes(2010) presented provenance data that the MGCZwas not completelyArmorican, but was partly Avalonian as indicated by certain rockunits of the Ruhla Crystalline complex. Accordingly, the Spessartand the Böllstein Odenwald can be interpreted as belonging toAvalonia as well.

According to Plesch and Oncken (1999), the final Variscan conti-nental collision occurred along two suture zones, one separating theexternal Rhenohercynian zone from the Saxothuringian zone, theother separating the latter from the Tepla-Barandium part of theinternal Moldanubian zone. However, collisions occurred earlierbetween the different microcontinents of the ATA. For example,Bohemia and Saxothuringia collided with the Armorican Massif andconsequently became part of Armorica during the Late Devonian(Schäfer et al., 1997; Dörr and Zulauf, 2010). The final stage of theVariscan orogeny is primarily characterized by diorites and granites,usually of calc-alkaline composition (Altherr et al., 1999; Stein, 2001)and with a distinct subduction signature (Henes-Klaiber, 1992). Butthe rock pile was also overprinted by regional HT/LP metamorphismand segmentation in folds and thrusts (Oncken, 1997; Kroner et al.,2007). Within the Rheinisches Schiefergebirge, deformation combinedwith very low to low-grade metamorphism progressed from the SE(330 Ma) to the NW (300 Ma) in the Late Carboniferous (Ahrendt etal., 1978, 1983). The Variscan orogeny led to a crustal shortening thereof, on average, about 50% (Behrmann et al., 1991; Oncken et al., 1999).This is also suggested for the allochthonous units (Doublier et al., 2012).

Geochronological and kinematic studies (e.g. Ahrendt et al., 1983;Engel and Franke, 1983; Klügel, 1997; Plesch and Oncken, 1999;Huckriede et al., 2004) have improved our knowledge of the structur-al evolution of the Rhenohercynian fold and thrust belt. 40K/40Ar-agesof detrital muscovites from non- to low-grade metamorphic sedi-ments in the Hörre nappe provide information only about finalcooling below ~350 °C (Huckriede et al., 2004). U–Pb-ages of zircon

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

3K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

grains, on the other hand, exhibit a much higher temperature regimesince zircons equilibrate at 800 °C or higher. Therefore, the originalcrystallization age of the zircon or rather the age of the last magmaticevent survives later sedimentary or metamorphic processes. Accord-ingly, the provenance of these sediments is best deduced from thedistribution of zircon age populations.

The aim of this study is to present U–Pb LA–SF–ICP–MSages of detri-tal zircons derived from Devonian and Lower Carboniferous siliciclasticsediments of the southeastern Rheinisches Schiefergebirge. The sam-ples were collected from autochthonous to par-autochthonous andallochthonous units in order to clarify their stratigraphic, sedimentary,magmatic and plate tectonic relationships and thereby obtain a betterunderstanding of Variscan collisional tectonics and the provenance ofparticularly allochthonous units within the Rhenohercynian zone.

Lahn

Dill

W

Dillenburg

Lower Carboniferous

Lower Carboniferous

Devonian

Devonian

Lower Carboniferous

Devonian

Lower CarboniferousDevonian

Lower CarboniferousDevonian

Allochthonous units Gießen nappe

Lahn and Dill-Eder synclines

Bicken-Ense and Wildestein imbrication structure

Kammquartzite imbrication structure

Lohra nappe

Steinhorn nappe

Hörre nappe

Autochthonous to par-autochthonous units

44467

4446844441

45347

50 6040

A

Fig. 2. Geological maps of (A) the Lahn–Dill area and (B) the Kellerwald areas (modified a

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

2. Geological setting and geotectonic units

2.1. Introduction

The Rheinisches Schiefergebirge is part of the Rhenohercynian zoneof the Variscan Orogen (Fig. 1). In its eastern part, several autochtho-nous, par-autochthonous (e.g. Wachendorf, 1986; Meischner, 1991;Schwan, 1991; Bender and Königshof, 1994) and allochthonous units(e.g. Engel et al., 1983; Oczlon, 1992, 1994; Franke, 2000; Salamon,2003; Huckriede et al., 2004; Salamon and Königshof, 2010) havebeen defined, the latter having been recognized by Kossmat (1927)who was the first to propose a nappe tectonic concept for theRhenohercynian zone. In the eastern Rheinisches Schiefergebirge, sam-pleswere taken fromdifferent structural units: the Lahn–Dill area in the

10 km

etzlar

Gießen

Marburg44440

45439

45438

44442

44443

3470 80

50

40

30

20

10

5600

fter Meischner, 1966; Bender, 2006). Locations of samples are indicated by red dots.

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

Bad Wildungen

Gilserberg

Haina

Armsfeld

Jesberg

1006029834 35

64

60

56

52

4856

Autochthonous to par− autoch−thonous units

Allochthonous units

Dill− Eder syncline

Gießen nappe

Lohra nappe

Steinhorn nappe

Hörre nappe

Lower Carboniferous

Devonian

Bicken− Ense and Wildesteinimbrication structure

Kammquartziteimbrication structure

Lower Carboniferous

Devonian

Lower Carboniferous

Devonian

0 0.4 0.8 1.2 1.6 2 km

.

44352

44353

44356

44350

45360

44358

B

Fig. 2 (continued).

4 K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

southeast, and in the Kellerwald area, a partly separated region in thenortheastern Rheinisches Schiefergebirge. The Lahn–Dill area can besubdivided into the autochthon, known as Lahn syncline and Dill–Eder syncline, which are separated by the allochthon of the Hörrenappe. Southeast of the latter, more allochthonous units occur, such asthe Steinhorn nappe and the Lohra nappe as a part of the Frankenbachimbrication zone, and the Gießen nappe (Fig. 2A). Additionally, thereare several par-autochthonous units, which can be found imbricated

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

within the above mentioned autochthon and allochthon as a result ofstrong deformation and thrusting. Except for the Lahn syncline all ofthese structures extend into the Kellerwald area (Fig. 2B). The deforma-tion over the entire area shows distinctive differences: the allochtho-nous and par-autochthonous units have experienced more intensefolding and thrusting, as compared to the autochthonous areas. For de-tailed sedimentological and facies analysis we refer to the referencescited in the text. The region's detailed biostratigraphic record is beyond

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

5K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

the scope of this paper, although new and literature-derived biostrati-graphic data were used in this study. Here we refer to the short descrip-tion in the text (see below),which is essential for a better understandingof the complex structures. The general stratigraphy and geotectonicassignment of the investigated samples are shown in Table 1.

2.2. Lahn and Dill–Eder synclines

The geological record of the Lahn syncline and the Dill–Eder syn-cline generally extends from about the Middle Devonian to the endof the Early Carboniferous and the onset of the Variscan orogeny.Sedimentation in this area was generally controlled by basin develop-ment and volcanism, both reflecting the thinning of the crust due toextensional tectonics. In terms of depositional development, theLahn and Dill–Eder synclines represent a single unit with the Dill–Eder syncline in the north being more influenced by arenaceoussiliciclastic sediments derived from the Old Red Continent.

Intensive intraplate volcanism started in the early Givetian, lastingwith interruptions for about 50 Ma into the Carboniferous (Nesbor etal., 1993; Nesbor, 2004; see chapter 3). The Devonian volcanic succes-sions allowed for the overgrowth by reef limestones (so-called“Massenkalk”), which flourished during the Givetian and Frasnian.Depending on their depositional setting, reef structures are variablein their morphology and thicknesses (e.g., Königshof et al., 1991;

Table 1Stratigraphic position and source areas of the sandstones and graywackes used in this stud

Series Stage

Ea

rly

Ca

rbo

nif

ero

us

Ea

rly

De

vo

nia

n

Late

De

vo

nia

n

Sample

number

Tournaisian/

Visean

Visean

Late

Tournaisian

Tournaisian/

Visean

Tournaisian/

Visean

Visean

Tournaisian/

Visean

Famennian

Early

Famennian

Frasnian/

Famennian

Frasnian

Late Emsian

Early Emsian

Early Emsian

44352

KE−5aKellerwald

Geographic region

44468

Kamm−1Lahn−Dill area

44356

KE−9cKellerwald

44443

Heu−2Lahn−Dill area

44440

Eln−2

44442

Will−1

Lahn−Dill area

Lahn−Dill area

44353

KE−6Kellerwald

44358

KE−11

45347

Bot−1

44441

Bisch−2

Kellerwald

Lahn−Dill area

Lahn−Dill area

44350

KE−3

45438

Kirch−1

44467

Haig−1

45439

Herm−1

45360

KE−17

Kellerwald

Kellerwald

Lahn−Dill area

Lahn−Dill area

Lahn−Dill area

Lithol

grayw

grayw

grayw

grayw

grayw

grayw

grayw

grayw

grayw

grayw

sands

sands

sands

sands

sands

Early

Famennian

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

Buggisch and Flügel, 1992; Braun et al., 1994; Königshof et al., 2010).Volcanic activity and reef development led to a considerable submarinerelief in the Lahn–Dill and Kellerwald areas, resulting in widespread fa-cies variations during the Upper Devonian. Further Upper Devoniansedimentation in the Lahn and Dill–Eder synclines produced slatesand nodular calcareous slates in numerous basins, and condensed lime-stones on the swells. The slates were supplemented by thick sandstonesequences, especially in the Dill–Eder-syncline (e.g., in the ThalenbergFormation: Pirwitz, 1986; Wierich, 1999), whereas these are rare inthe Lahn syncline. Locally, minor amounts of primitive basaltic meltsended the Devonian volcanic cycle.

Crustal thinning on the southern shelf of Laurussia continued intothe Early Carboniferous resulting in a moderate increase of waterdepth in the eastern Rheinisches Schiefergebirge. This resulted in aspecial facies realm called the “Culm facies” that caused a reducedsedimentation initially characterized by black shales and cherts. Thissedimentation was later associated with intensive activity of theCarboniferous volcanic cycle. The volcanic activity was followed byargillaceous sedimentation and, subsequently, by graywackes at theend of the Lower Carboniferous. The latter ones can reach thicknessesof hundreds of meters and represent the final stage of deposition priorto the Variscan orogeny in the area of interest (for overview and refer-ences see Bender and Stoppel, 2006; Bender, 2008; Königshof et al.,2008; Nesbor, 2008; Königshof et al., 2010).

y.

ogy

acke

acke

acke

acke

acke

acke

acke

acke

acke

acke

tone

tone

tone

tone

tone

Geological/

geotectonic unit

Jesberg

Kulm syncline

Kammquartzite

imbrication structure

Gießen nappe

Hörre nappe

Hörre nappe

Lohra nappe

Gießen nappe

Dill−Eder

syncline

Siegen anticline

Steinhorn nappe

Initial geotectonic position

Armorican terrane A.

Baltica

Armorican terrane A.

Armorican terrane A.

Armorican terrane A.

Baltica

Armorican terrane A.

Armorican terrane A.

Baltica

Armorican terrane A.

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

6 K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

2.3. Hörre nappe

The sedimentary development of the Hörre nappe began in the earlyFamennian. It differs profoundly from that of coeval strata in the Lahnand Dill–Eder synclines (e.g., Bender, 1978; Bender and Homrighausen,1979; Bender, 1989, 2008). For example, volcanic rocks are notablyabsent in contrast to the entire Rhenohercynian zone where repeatedintense and sometimes explosive volcanism occurred. It is importantto note, however, that ash layers are intercalated in the sedimentarypile of some formations of the Hörre nappe, such as in the GladenbachFormation (Early Carboniferous). The succession of the Hörre nappestarts with shales overlain by sandstones and graywackes (UlmbachFormation). Occasionally detrital limestones are intercalated. The over-laying Weitershausen Formation is mainly composed of shales anddetrital, thin-bedded carbonates. These rocks are overlain by shales,quartzitic sandstones and thin-bedded graywackes of the Endbach For-mation of Early Carboniferous age. The overlyingGladenbach Formationis mainly composed of siliceous shales, alum black shales, cherts andturbiditic limestones. These sediments are succeeded by the BischoffenFormation consisting of shales with intercalations of graywackes, andfinally the Elnhausen Formation composed mainly of shales and thick-bedded graywackes (Bender, 2008).

2.4. Bicken–Ense and Wildestein imbrication structures

The Bicken–Ense and Wildestein imbrication structures have longbeen regarded as parts of the Dill–Eder syncline bordering the Hörreunit (e.g., Bender, 1997), whereby theWildestein imbrication structureis imbricated with rocks of the Hörre nappe. Because of differences intheir sedimentological records compared to adjoining rock units of thesame age and their tectonic contact (Bender et al., 1997), they are tobe considered to be par-autochthonous units. The Bicken–Ense imbrica-tion structure consists almost entirely of the Bicken Formation, whichis mainly composed of shales and fossiliferous, pelagic carbonates(e.g. cephalopod limestones) of Early Devonian (Emsian) to EarlyCarboniferous age (Bender, 1997). TheWildestein imbrication structureis composed of reddish and gray shales and siliceous shales of theWildestein Formation,which is assumed to bemainly of late Famennianage.

2.5. Kammquartzite imbrication structure

The Kammquartzite imbrication structure can be traced for morethan 300 km throughout the Rhenohercynian zone (Figs. 1, 2A, B).This and the dominance within the unit of quartzitic sandstones ofEarly Carboniferous age have been the focus of geological investigationsfor a long time (Koch, 1858; Kockel, 1958; Schriel and Stoppel, 1958;Homrighausen, 1979; Wierich and Vogt, 1997; Jäger and Gursky,2000; Huckriede et al., 2004). Originally regarded as part of the Hörreunit, the Kammquartzite imbrication structure is now considered a sep-arate tectonic unit since it can be found within the Dill–Eder syncline,theWildestein imbrication structure, the Hörre nappe, the Frankenbachimbrication zone, and beneath the Gießen nappe. Reflecting its inten-sive deformation, the quartzitic sandstone slices range in a size frommore than 100 m to less than 1 cm, embedded in a melange composedof very strongly deformed dark gray and siliceous shales.

2.6. Frankenbach imbrication zone

The Frankenbach imbrication zone, as defined by Bender (2006), hasa stratigraphical range from Early Devonian to Early Carboniferous. Itis generally strongly deformed and exhibits numerous imbricate struc-tures. The zone consists, on the one hand, of slices of autochthonousrocks typical for the Lahn and Dill–Eder synclines, although massivereef limestones (Massenkalke), which are common in the Lahn synclineand in the northern part of the Rheinisches Schiefergebirge (e.g., Pas et

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

al., 2013 and references therein), are absent. On the other hand, theallochthonous units of the Lohra and Steinhorn nappes, as well as slicesof the Hörre nappe, are intercalated in the Frankenbach imbricationzone. The par-autochthonous Kammquartzite is also imbricated locallyinto this zone.

2.7. Lohra nappe

The Lohra nappe represents an isolated allochthonous unit in theKellerwald area, whereas to the southwest in the Lahn–Dill area, itis tectonically integrated into the Frankenbach imbrication zone(Fig. 2A, B). The Lohra nappe consists of the Famennian Lohra unitcomposed of shales and cherts, with intercalations of sandstonesand graywackes, and the Kehna unit of Lower Carboniferous age com-posed of graywackes and shales.

2.8. Steinhorn nappe

The Steinhorn nappe is here defined as a new tectonic unit with anisolated allochthonous setting in the Kellerwald area (see Fig. 2A, B).Comparable to the Lohra nappe, it can be traced into the Frankenbachimbrication zone as part of the Lahn–Dill area. The Steinhorn nappe con-sists primarily of Early Devonian sandstones, graywackes (Erbsloch-Grauwacke), shales and carbonates (e.g., the Greifenstein and Schönaulimestones), which exhibit Bohemian faunal affinities (e.g. Flick, 1999).Middle/Upper Devonian sequences are represented by shales, alumshales, cherts and graywackes. Those of Early Carboniferous age arecomposed of shales, cherts and a melange unit of Devonian and LowerCarboniferous rocks. The entire sedimentological record differs fromother structural units described in this paper, and is here used to definea new tectonic unit.

2.9. Gießen nappe

The long-disputed Gießen nappe (Fig. 2A, B) was the first allochtho-nous unit established in the Rheinisches Schiefergebirge (e.g. Eder et al.,1977; Engel et al., 1983), and covers an area of about 250 km2. The rocksof the Gießen nappe consist of shales, clayish sandstones, cherts andgraywackes, with the latter predominating. At its base, condensedphyllitic shales and radiolarian cherts are imbricatedwith tectonic slicesof MORB-type metabasalts (Wedepohl et al., 1983; Grösser and Dörr,1986). The Gießen nappe sequence spans the Early Devonian to EarlyCarboniferous and can be subdivided into two structural units con-taining graywackes of different ages (Birkelbach et al., 1988; Dörr,1990). Graywackes of the smaller northern unit are of Frasnian age,whereas those of the larger southern unit are Early Carboniferous (fora detailed stratigraphic and lithologic description see Dörr, 1986).

2.10. Lower Devonian of the Siegen anticline

The Siegen anticline consists of Lower Devonian rocks which arecharacterized by generallymonotonous siliciclastic sequences deliveredfrom the Old Red Continent. Sediments of the Lochkovian are up to1000 m thick and are mainly composed of reddish mudstones and silt-stones with intercalated coarse-grained sandstones and quartzites.Siegenian (mainly Pragian) sediments (the Siegenian stage is usedherein in a traditional German sense) of the Siegen anticline comprisemore than 4000 m of mudstones, siltstones and fine-grained sand-stoneswith distinct fossiliferous horizons containing abundant plant re-mains. The lithological character of the lower Emsian sediments is verysimilar but changes in the upper Emsian due to a general transgressivetrend (Poschmann and Jansen, 2003; Mittmeyer, 2008). Shallowwater,coarse-grained quartzitic sandstones are overlain by argillaceous sedi-ments. Importantly, an intense period of volcanism is documented bynumerous intercalations of silica-rich, mainly volcaniclastic rocks inthe Lower Devonian sediments (see chapter 3).

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

Sub-Alkaline Basalt

Andesite/ Basalt

Andesite

RhyodaciteDacite

Rhyolite

ComenditePantellerite

Phonolite

Trachyte

Trachyandesite

BasaniteNephelinite

Alkali-Basalte

0.01

0.1

1

0.1 1 100.001

Nb/Y

Zr/

TiO

2

Lahn-Dill area;Givetian-Frasnianphase

Kellerwald area;Givetian-Frasnianphase

Lahn-Dill area;Famennianphase

Lahn-Dill area;Early Carboniferousphase

Kellerwald area;Early Carboniferousphase

ash and lapilli tuff; Early Devonian(Kirnbauer 1991)

ash tuff; Eifelianash tuff; Frasnian

ash tuff; EarlyCarboniferous

ash tuff; EarlyCarboniferous(Kubanek & Zimmerle1986; Dehmer et al. 1989)

Fig. 3. Classification of the volcanic rocks of the Rhenohercynian zone in the Zr/TiO2 versus Nb/Y-diagram of Winchester and Floyd (1977). For locations of samples see Tables 1–3,Electronic supplement.

7K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

3. Volcanism

Sedimentation on the southern shelf of Laurussia was accompa-nied by a wide diversity of volcanic processes. The oldest volcanicrocks are preserved in the Phyllite zone at the southern margin ofthe Rheinisches Schiefergebirge. Radiometric dating of these meta-rhyolites, -rhyodacites and -andesites shows them to be Silurian age(Sommermann et al., 1992, 1994; Meisl, 1995). Rhyodacitic to rhyolit-ic magmatism continued through the Devonian until the Visean.Widespread ignimbrites and volcanic fall out deposits of the LowerDevonian (often redeposited) can be found between the Ebbe anti-cline (Heyckendorf, 1985) in the northwest and the southern partof the Taunus (Kirnbauer, 1991) at the southern margin of theRheinisches Schiefergebirge (Figs. 3, 4). In the southeastern part ofthe Rheinisches Schiefergebirge the source of these pyroclastics,which are frequently intercalated within the siliciclastic rock pile, isuncertain. Kirnbauer (1991) proposed a source area to the NE, E or

1

10

100

1000

Cs

Rb

Ba

Th U Nb

Ta

K2O La C

eP

b Pr

Nd Sr

Sm Hf

Zr

TiO

2E

uG

dT

bD

yH

o Y Er

Tm Yb Lu

Lower Carboniferous

Frasnian

Eifelian

Early Devonian (Kirnbauer 1991)

rock

/ pr

imiti

ve m

antle

Fig. 4. Element concentrations in dacitic/rhyodacitic lapilli and ash tuffs intercalated in thesedimentary succession of the Devonian and Lower Carboniferous of the RheinischesSchiefergebirge in the order of increasing compatibility normalized to primitive mantel(Hofmann, 1988). For locations of samples see Table 3, Electronic supplement.

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

SE of the Rheinisches Schiefergebirge with deposition of the pyroclas-tic material on the outer shelf area or on the slope of the southernmargin of Laurussia.

Most of the volcanic products are well preserved because of verylow-grade metamorphic overprinting. As a result, the typical pheno-crysts in the rhyodacites (predominantly quartz and plagioclase,with some alkali feldspar and biotite) can be identified. The feldsparis generally albitized and biotite is often altered to chlorite by diage-netic and metamorphic processes. The original glassy matrix is alsocompletely altered to secondary minerals. Nevertheless, the rocktype can be classified by immobile elements (Fig. 3; Tables 1–3, seeElectronic supplement). Primary particles in the frequently coarsegrained pyroclastic deposits are often highly vesicular, and Y-shapedformer glass shards are a typical feature (Scherp, 1983).

At the beginning of the Eifelian a distinct facies change is evidentas very distal ash fall deposits occur. Nevertheless, the dacitic/rhyodacitic composition can still be identified by immobile elements.The volcanic ashes are intercalated as numerous extremely fine-grained layers within the thick pile of autochthonous sedimentaryrocks, and are therefore often overlooked (Dehmer et al., 1989). Inthe Visean, the grain size of the ash layers increases again (vanAmerom et al., 2001). Over the entire time span from the Early Devo-nian to the Early Carboniferous the mineralogical and geochemicalvariation of these pyroclastic deposits is remarkably low (Fig. 4,Table 3 Electronic supplement). But all of these rocks have beensubjected to diagenetic alteration and metamorphic overprint. Themain difficulty, however, lies in the evaluation of the intensity of con-tamination with epiclastic (sedimentary) debris and the degree towhich sorting processes during their redeposition modified theiroriginal composition. Consequently, the immobile HFSE values donot correspond definitively to those of recent fresh samples of sub-duction related dacites or rhyodacites.

While this dacitic/rhyodacitic volcanism originated far from theRheinisches Schiefergebirge, intensive intraplate volcanism startedon the subsiding southern shelf of Laurussia in the early Givetian.Hence, a Devonian and an Early Carboniferous cycle can be distin-guished (Nesbor, 1997, 2004, 2007). The Devonian cycle comprisedtwo phases, a bimodal (Givetian–Frasnian) main phase and a primi-tive basaltic (Famennian) late phase.

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

8 K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

During the Early Carboniferous continued extension on the south-ern shelf of Laurussia combined with an increasing subsidence of thecontinental crust led to a moderate increase of water depth. Theseprocesses are reflected in a change in the sedimentary environmentand renewed volcanic activity of the Early Carboniferous cycle. Thenew melts were almost entirely tholeiitic, in contrast with the Devo-nian alkali basaltic to basanitic compositions, but still exhibit intra-plate affinities. Noticeable is the increase of aluminum in picotitesenclosed in the olivine phenocryts of the basalts. This is an indicationof ascending juvenile magma from deep mantle sources.

Sills and dikes of the Devonian and Carboniferous cycles are wide-ly distributed in the Rheinisches Schiefergebirge, demonstrating thewidespread extent of the volcanic activity, well beyond the Lahn–Dill and Kellerwald areas.

4. Methods

4.1. Sample material and stratigraphy

Thirty-three samples were investigated, but only 15 representativeexamples are presented because of page limitations. The additional

Table 2Analytical results from all investigated samples.

Sample name Measured grains Concordant grains

(90-110%)

44352

(KE-5a)

Lower

Carboniferous44443

(Heu-2)

44358

(KE-11)

45347

(Bot-1)

44441

(Bisch-2)

44350

(KE-3)

45438

(Kirch-1)

44467128

(Haig-1)

45360

(KE-17)

45439

(Herm-1)

118 58

142 108

133 102

90 71

141 64

158 83

176 69

180 108

82 36

189 62

119 51

115 57

74

58 26

173 98

Total: 1925 1069

Upper

Devonian

Lower

Devonian

44356

(KE-9c)

44468

(Kamm-1)

44442

(Will-1)

44353

(KE-6)

(Eln-2)

44440

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

samples will be published separately in the context of a more regionalframework. The samples collected for U–Pb analysis from the differentstructural units (Fig. 2A, B and Table 1) are described in stratigraphicorder.

The stratigraphically oldest sample (sample # 45439 [Herm-1],Damm-Mühle Formation) of early Emsian age was taken from thenortheastern part of Steinhorn nappe in the Lahn–Dill area. This gray-wacke was formerly interpreted as being equivalent to the so-called“Erbsloch-Grauwacke” in the Kellerwald (e.g. Kupfahl, 1953; Ziegler,1957), but according to Jahnke (1971) profound facies and faunal dif-ferences separate the two. Sample # 45360 (KE-17) was taken at thetype location of the “Erbsloch-Grauwacke” in the Steinhorn nappe inthe Kellerwald area and is also of early Emsian age (Plusquellec andJahnke, 1999; Fig. 3). Sample # 44467 (Haig-1) was taken from aquartzitic sandstone (the so-called “Ems-Quarzit”) of the Siegenanticline and is of late Emsian age. It is used as a reference samplefor siliciclastic sediments derived from the Old Red Continent.

Sample # 45438 (Kirch-1) comes from the (Devonian) gray-wackes of the Gießen nappe in the Lahn–Dill area, which are coveredby siliceous shales and, according to Dörr (1986), is of Frasnian age.Equivalent rocks from the Kellerwald area (sample # 44350 [KE-3])

Youngest Oldest

Main part of all grainsgrain (in Ma) grain (in Ma)

(2σ in Ma) (2σ in Ma)

Mesoproterozoic

Mesoproterozoic

Mesoproterozoic

Mesoproterozoic

Lower Carboniferous

Paleoproterozoic

Neoproterozoic

Neoproterozoic

Neoproterozoic

Neoproterozoic

Neoproterozoic

Neoproterozoic

Neoproterozoic

Neoproterozoic

Neoproterozoic368 ± 9 3006 ± 21

432 ± 11 2873 ± 23

874 ± 26 2716 ± 23

345 ± 8 2602 ± 16

322 ± 10 3036 ± 23

330 ± 10 2350 ± 41

393 ± 8 2187 ± 17

396 ± 15 1968 ± 45

423 ± 11 2740 ± 18

413 ±13 3358 ± 65

359 ± 9 2149 ± 32

384 ± 9 2459 ± 27

419 ± 14 2008 ± 45

544 ± 14 2431 ± 49

471 ± 10 3189 ± 29

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

9K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

are also composed of graywackes and siliceous shales and are ofFrasnian/Famennian age. The oldest sample from the Hörre nappein the Lahn–Dill area (sample # 44441 [Bisch-2]), is a graywackebelonging to the Ulmbach Formation and is of early Famennian age.

Samples from Famennian sandstones of the Dill–Eder synclinehave been taken from the Lahn–Dill area (sample # 45347 [Bot-1];early Famennian) and from the Aschkoppen sandstone (Fig. 2A, B,Table 1) in the northern Kellerwald (sample # 44358 [KE-11];Famennian). Both samples are reference samples for the autochtho-nous Dill–Eder syncline.

The remaining samples are from the Lower Carboniferous: sample# 44442 (Will-1) belongs to Lohra nappe (Kehna Graywacke Forma-tion), which is a part of the Frankenbach imbrication zone. This unit islocated between the Hörre nappe and the Gießen nappe in the Lahn–

44352 (KE-5a)n=58/118

Jesberg-KulmSyncline

0.006

0.002

44468 (Kamm-1)n=102/133

KammquartziteImbric. Struct.

0.000

0.004

0.008

0.012

0.000

0.008

0.004

44356 (KE-9c)n=108/142

KammquartziteImbric. Struct.

44443 (Heu-2)n=71/90Gießen Nappe

44440 (Eln-2)n=64/141

Hörre Nappe

0.000

0.008

0.004

44353 (KE-6)n=83/158

Lohra Nappe

44442 (Will-1)n=69/176

Lohra Nappe

0.006

0.002

0.010

0.014

0.000

0.008

0.004

0.012

300

400

500

600

Carbo

nifer

ous

Devon

ian

Siluria

n

Ordov

ician

Cambr

ian

Neo

Pro

babi

lity

0.000

0.008

0.004

0.012

0.016

age

A

Fig. 5. A, B: Combined binned frequency and probability density distribution plots in theKellerwald areas. All grains are concordant in the range between 90 and 100%.

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

Dill area. Lycopsidan plant remains have been found in the Kehnagraywacke suggesting a late Tournaisian age (Kerp et al., 2006; Fig. 3).The equivalent in the Kellerwald is the Hundshausen graywacke(sample # 44353 [KE-6]), which is also of Early Carboniferous age(Bender and Stoppel, 2006).

Sample # 44440 (Eln-2) is from the Hörre nappe in the Lahn–Dillarea (Fig. 2A) and is a graywacke of Early Carboniferous age (ElnhausenFormation). This formation is the youngest sequence of theHörre nappebeginning in the Pericyclus stage (cu II), its stratigraphical extension isunknown (Bender, 1989; Entenmann, 1991; Bender et al., 1997).

Sample # 44443 (Heu-2, Fig. 2A, Table 1) is a coarse-grained gray-wacke from the Gießen nappe in the Lahn–Dill area, and is of EarlyCarboniferous age based on plant remains of Lepidodendron losseniiWeiss (Henningsen, 1962). According to Mosseichik (2007) these

0

4

8

12

3600

3200

2800

2400

2000

1600

1200800

0

4

8

12

0

4

8

12

16

20

0

4

8

12

16

202

6

10

0

4

8

122

6

10

14

prot

.

Mes

opro

t.

Paleop

rot.

Arche

an

Fre

quen

cy

16

20

(Ma)

age range of 300 and 3600 Ma from 15 representative samples of the Lahn–Dill and

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

0.000

0.008

0.004

0.012

44358 (KE-11)n=108/180Dill-EderSyncline

300

400

500

600

3600

3200

2800

2400

2000

1600

1200800

0.006

0.002

45347 (Bot-1)n=36/82Dill-EderSyncline

0.000

0.008

0.004

44441 (Bisch-2)n=62/189

Hörre Nappe

0.006

0.002

0.010 44350 (KE-3)n=51/119Gießen Nappe

0.000

0.008

0.004

45438 (Kirch-1)n=57/115Gießen Nappe

0.006

0.002

44467 (Haig 1)n=74/128Siegen

Anticline

0.000

0.008

0.004

45360 (KE-17)n=26/58

Steinhorn Nappe

0.006

0.002

0.010

45439 (Herm-1)n=98/173Steinhorn

Nappe

Carbo

nifer

ous

Devon

ian

Siluria

n

Ordov

ician

Cambr

ian

Neopr

ot.

Mes

opro

t.

Paleop

rot.

Arche

an

0.012

0.016

0

4

8

12

16

20

0

4

8

12

0

4

8

122

6

10

0

4

8

12

16

2

6

10

0

4

8

122

6

10

14

Pro

babi

lity

Fre

quen

cy

age (Ma)

B

Fig. 5 (continued).

10 K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

plants have a stratigraphic range from the late Tournaisian to theVisean. The plant is also known from a Lower Carboniferous sectionin Plauen (Vogtland) and has been described by Knaus (1994) and,earlier, by Daber (1959) as being of probable Visean age.

Two samples were taken from the complex Kammquartzite imbri-cation structure. Sample # 44468 [Kamm-1] is a quartzitic sandstone(Kammquartzite) of Early Carboniferous age from the Lahn–Dill area(Jäger and Gursky, 2000). Wierich and Vogt (1997) proposed a newformation name (“Bruchberg-Sandstein”-Formation) and placed thesandstones and quartzites in the Pericyclus stage (early Visean)based on spore assemblages. According to Jäger and Gursky (2000)deposition of the Kammquartzite Formation started at the base ofthe Visean and lasted into the late Visean. Sample # 44356 (KE-9c)of the Kammquartzite imbrication structure comes from the centralpart of the Kellerwald.

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

Another graywacke of Early Carboniferous age (sample # 44352[KE-5a]; Fig. 2B, Table 1)was collected from the “Jesberg–Kulm syncline”in the southern part of the Kellerwald. These graywackes conformablyoverlie alum shales, which are Early Carboniferous (Tournaisian toVisean) according to Jahnke and Paul (1968).

Samples used for geochemical analyses in the different units areshown in Figs. 3 and 4 and in Tables 1–3 (Electronic supplement).

4.2. U–Pb detrital zircon ages and geochemistry

Zircon concentrates were separated from 2 to 4 kg sample materi-al at the Senckenberg Naturhistorische Sammlungen Dresden (SNSD)using magnetic and heavy liquid (LST) methods. Final selection of thezircon grains for U–Pb dating was achieved by hand-picking under abinocular microscope. Zircons of all grain sizes and morphological

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

11K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

types were selected, mounted in resin blocks and polished to halftheir thickness. Cathodoluminescence (CL)-images of zircon wereproduced with a Zeiss scanning electron microscope EVO 50. Allgrains were analyzed for U, Th, and Pb isotopes by LA–SF–ICP–MStechniques at the Museum für Mineralogie und Geologie (GeoPlasmaLab, SNSD), using a Thermo-Scientific Element 2 XR sector fieldICP–MS coupled to a New Wave UP-193 Excimer Laser System. Ateardrop-shaped, low volume laser cell constructed by Ben Jähne(Dresden) and Axel Gerdes (Frankfurt/M.) was used to enable sequen-tial sampling of heterogeneous grains (e.g. growth zones) during timeresolved data acquisition. Each analysis consisted of approximately15 s background acquisition followed by 30 s data acquisition, using alaser spot-size of 25 and 35 μm, respectively. A common-Pb correctionbased on the interference- and background-corrected 204Pb signal anda model Pb composition (Stacey and Kramers, 1975) was carried out ifnecessary. The necessity of the correction is judged on whether thecorrected 207Pb/206Pb lies outside of the internal errors of themeasuredratios. Discordant analyses were generally interpreted with care. Rawdata were corrected for background signal, common Pb, laser inducedelemental fractionation, instrumental mass discrimination, and time-dependant elemental fractionation of Pb/Th and Pb/U using an Excel®spreadsheet programdeveloped by Axel Gerdes (Institute of Geosciences,Johann Wolfgang Goethe-University Frankfurt, Frankfurt am Main,Germany). Reported uncertainties were propagated by quadratic addi-tion of the external reproducibility obtained from the standard zirconGJ-1 (~0.6% and 0.5–1% for the 207Pb/206Pb and 206Pb/238U, respectively)during individual analytical sessions and the within-run precision ofeach analysis. Concordia ages (95% confidence level) were producedusing Isoplot/Ex 2.49 (Ludwig, 2001) and frequency and relative proba-bility plots made use AgeDisplay (Sircombe, 2004). The207Pb/206Pb agewas taken for interpretation for all zircons >1.0 Ga, and the 206Pb/238Uages for younger grains. Further details of the instrument settings areavailable from Table 4 (see Electronic supplement). For further detailson analytical protocol and data processing see Gerdes and Zeh (2006)and also Frei and Gerdes (2009). The uncertainty in the degree of con-cordance of Precambrian–Paleozoic grains dated by the LA–ICP–MSmethod is relatively large and results obtained from just a single analy-sis have to be interpreted with care. A typical uncertainty of 2–3% (2σ)in 207Pb/206Pb for a Late Neoproterozoic grain (e.g., 560 Ma) corre-sponds to an absolute error on the 207Pb/206Pb age of 45–65 Myr.Such a result leaves room for interpretation of concordance or slightdiscordance— the latter one could be caused by episodic lead loss, frac-tionation, or infiltration Pb isotopes by a fluid or on micro-cracks. Thus,zircons showing a degree of concordance in the range of 90–100% in thispaper are classified as concordant because of the overlap of the errorellipse with the concordia (e.g. Jeffries et al., 2003; Linnemann et al.,2007; Frei and Gerdes, 2009). Th/U ratios (Tables DR-3 to DR-9, data re-pository) were obtained from the LA–ICP–MSmeasurements of investi-gated zircon grains. U and Pb content and Th/U ratio were calculatedrelative to the GJ-1 zircon standard and are accurate to approximately10%.

Geochemical samples were analyzed at the Hessisches Landesamtfür Umwelt und Geologie (HLUG) and the GeowissenschaftlichesZentrumof the Universität Göttingen (GZG). RFA analyses were deter-mined with sequential X-ray Spectrometer SRS 3000 (Siemens) at theHLUG and the Axios X-ray Spectrometer (PANalytical) at the GZG.REE were analyzed with ICP–MS Elan 500 (Perkin Elmer) at theHLUG and with DRC II (Perkin Elmer) at the GZG.

4.3. Results

In total, we analyzed U–Th–Pb isotopes of 1925 detrital zircongrains, of which 1067 showed U–Pb ages with a degree of concordancein the range of 90–100%. Zircons were obtained from 15 arenaceoussamples of the Lahn–Dill and Kellerwald areas. Data are available inTables 5 to 19 in the data redepository (Electronic supplement).

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

Table 2 lists the results regarding measured and concordant grains,youngest and oldest age, and largest zircon population. Combinedfrequency and probability density distribution plots of each sampleare given in Fig. 5A, B.

All samples of the nappe units (Hörre-, Steinhorn-, Lohra- andGießen nappe) and of the Jesberg–Kulm syncline show a gap inMesoproterozoic ages. This is typical for a provenance in the WestAfrican craton or a related terrane (e.g. Linnemann et al., 2007). Therock units in the nappe complexes of the Lahn–Dill and Kellerwaldareas showing such zircon populations are related to the Gondwananrock units of the Saxothuringian zone. Only few single grains (up to 2grains per sample) show ages between 1.6 and 1.0 Ga. Such low inputcan be explained by long-distance along-shore transport and is not sig-nificant. All other samples have theirmain peaks in theMesoproterozoicand, hence, have a Laurussian affinity (Linnemannet al., 2012). In 3 sam-ples of the Lower Carboniferous nappe units, distinct peaks around360 Ma occur. This peak is unique and reflects the input from amagmat-ic arc source that was active during the closure of the Rheic Ocean.

The results based on the geochemical analyses have been alreadypresented in Section 3 within the framework of the volcanic develop-ment of the study area.

5. Discussion

The principal plates and microplates of Gondwanan Europe andtheir adjoining cratons show distinct differences in the timing oftectonomagmatic and metamorphic events. These orogenic and platetectonic activities are mirrored in the U–Pb zircon ages of siliciclasticsediments. Because of different geological histories, each continent ex-hibits its own particular zircon population in the archive of detritalsediments such as sandstones and graywackes. The typical zirconpopulations from cratons and microplates relevant to this paper arepresented in Fig. 6. The results are compiled fromour own and publisheddata derived fromPrecambrian andPaleozoic sandstones (Linnemannetal., 2012 and references therein). The northern margin of the RheicOcean is characterized by an Avalonian and Baltic hinterland andtherefore delivered Lower Paleozoic sediments that are characterizedby a significant population of zircon grains of Mesoproterozoic age(1600–1000 Ma) as well as those with ages of ~450 Ma and ~420 Ma.

Both latter ages originated from events caused by the closure of theTornquist Sea (Avalonia docking on Baltica at ~450 Ma) and the closureof the Iapetus Ocean (collision of Baltica + Avalonia with Laurentia at~420 Ma). In contrast, Lower Paleozoic sandstones formed at the south-ern margin of the Rheic Ocean are derived from a West African hinter-land. In this case, ages of detrital zircon populations show a distinct gapin the record of Mesoproterozoic grains. These special features of zirconpopulation patterns from sandstones from different paleocontinentssuch as Laurussia and Gondwana are a tool for the differentiation andcharacterization of siliciclastic sediments in orogenic collisional zones.Based on these requirements, we assign the provenance of theDevonianand Lower Carboniferous siliciclastics from the Lahn–Dill and Kellerwaldareas to the Rhenohercynian and Saxothuringian margins. As a result,we present a plate tectonic model based on the U–Pb ages of the detritalzircon grains obtained from the 15 investigated sandstones and gray-wackes as well as on geochemical proxies of the volcaniclastics.

The spectra of zircon ages from siliciclastic Devonian to LowerCarboniferous sediments derived from different tectonic units of theLahn–Dill and the Kellerwald areas allow a distinction of two sourceareas. The samples of sedimentary rocks of the autochthonous to par-autochthonous units show a distinct provenance from Baltica whereasthose from the allochthonous units were derived from a Gondwanansource (Fig. 5). Typical Baltican signatures have been found in theLower Devonian sandstones of the Siegen anticline, the Upper Devoniansandstones of the Dill–Eder syncline and in the “Kammquartzite” of theLower Carboniferous. The mainly Mesoproterozoic age spectrum pointsto Svecofennian and Karelian source areas. Remarkably, the signal

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

600

700

800

900

1100

1200

1300

1400

1500

1700

1800

1900

2000

2100

2200

2300

2400

2600

2700

2900

3000

3100

3300

3400

3500

BalticaAmazonia

West African Craton

Neoprot.Pz

age (Ma)

Mesoprot. Palaeoproterozoic Mesoarch. Palaeoarch.Neoarch.

Moldanubian

Saxo-ThuringianCadomia

Pz - Palaeozoic

igneous and metamorphic ages (all methods)

igneous (incl. inheritance) and metamorphic zircon

igneous (incl. inheritance) from pre-Silurian rocks/protoliths

detrital zircon Cam - CambrianOrd - Ordovician

Camb

Ord

Sil

East Avalonia(Brabant Massif)

Dev

Sil - SilurianDev - Devonian

1000

1600

2500

2800

3200

Neoprot.Pz Mesoprot. Palaeoproterozoic Mesoarch. Palaeoarch.Neoarch.

600

500

500

400

400

700

800

900

1100

1200

1300

1400

1500

1700

1800

1900

2000

2100

2200

2300

2400

2600

2700

2900

3000

3100

3300

3400

3500

age (Ma) 1600

2500

2800

1000

3200

Fig. 6. Detrital zircon age distributions for Baltica, Amazonia, East Avalonia (Brabant massif), Armorica (Saxothuringian and Moldanubian zones), and the West African craton (datacompilation from Linnemann et al., 2004; Drost et al., 2010; Linnemann et al., 2011, 2012). Note the general occurrence of Mesoproterozoic zircon ages in Baltica, Amazonia(Avalonian hinterland), and Avalonia, and the contrasting scarcity of the same zircon populations in Armorica and the West African craton.

12 K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

for Avalonia is very weak. This implies that the southern shelf ofLaurussia (Avalonia) was covered by a thick pile of debris derivedfrom Precambrian rocks of Baltica. Only few outcrops of the Avaloniaterrane must have projected through of the plain of Baltic sediments,and so were subject to erosion. Another option could be tectonicstacking, caused by plate tectonic movements (i.e., Baltica was thrustover Avalonia). But such a scenario requires the occurrence of high-grade metamorphic rocks, which are absent in the Rhenohercynianzone.

In contrast, all graywacke samples of the Hörre, Steinhorn, Lohraand Gießen nappes exhibit a gap between 1.7 and 1.0 Ga within theMesoproterozoic zircon ages. Only very few isolated zircons ofMesoproterozoic age have been detected. Altogether, the analyzed de-trital zircon populations are characteristic for Gondwana, especiallyfor the Saxothuringian terrane. These results confirm former interpreta-tions of the geotectonic history of the Hörre and Gießen nappes. Basedon the profound sedimentological differences, such as the occurrenceof graywackes as early Famennian and the absence of volcanic rocks(Bender, 1978; Bender and Homrighausen, 1979; Homrighausen,1979; Entenmann, 1991; Herbig and Bender, 1992), as well as faciesdifferences (e.g. Herbig and Bender, 1992; Groos-Uffenorde et al., 2000;Bender and Blumenstengel, 2003), the Hörre unit has been interpretedto be part of the allochthonous unit of the Hörre/Gießen nappewhichwas derived from the south of the Rheinisches Schiefergebirge(e.g. Franke, 1995; Oncken and Weber, 1995; Bender, 2006). Benderand Königshof (1994) considered the Hörre zone to be an autochtho-nous unit due to the metamorphic patterns based on conodont coloralteration of conodonts (CAI), but this interpretation has beendisproved.

Further to the east, similar rocks occur in theKellerwald and theHarzMountains, which have been assigned to the “Hörre–Gommern zone”(e.g., Stoppel, 1961; Eder et al., 1969; Bender and Homrighausen, 1979;Engel et al., 1983; Meischner, 1991; Bender, 2006; Fig. 1). This structuralunit strikes SW/NE for about 300 km and is about 5 to 15 km wide.Based on our results the “Hörre–Gommern zone” as definedbymanyau-thors (see above), is not a single structural unit because of zircon data

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

point to different provenances. The Hörre nappe clearly shows zirconsdelivered from a West African hinterland, whereas the Kammquartziteimbrication structure exhibits a Baltica signature. In contrast to theseresults, Huckriede et al. (2004) assumed a depositional setting for theHörre sediments close to the margin of Laurussia. Haverkamp et al.(1992) assigned the “Hörre–Gommern Quartzite” (=Kammquartzite)to the distal passivemargin of Laurussia. Doublier et al. (2012) proposeda pelagic facies setting for the successions of the Hörre and Gießennappes and a lower slope setting for the “Kammquartzite”. Despitesome distal turbidites present for the latter, which were deposited in anarrow channel from NE to SW (e.g. Homrighausen, 1979; Jäger andGursky, 2000), there are no convincing indications of a deepwater faciesin the “Kammquartzite”. However, there are clear indications for a shal-low water environment. Some sections within the “Kammquartzite”show prominent hummocky cross stratification. Such ripple structuresare known to occur in the lower part of a shoreline sequence, especiallyin fine grained sandstones (Reineck and Singh, 1980). Tongue-like orlobe-like small current ripple marks (lingoid ripples) can also be recog-nized, indicating a shallow water environment (see also Jäger andGursky, 2000). Additionally, fossil assemblages in the Steinhorn nappe,situated south of the Hörre nappe (Fig. 2A, B), show advice that thesediments of the allochthonous units were deposited at the northernmargin of Gondwana. For example, comparisons in the trilobite faunabetween the Suchomsty and Acanthopyge limestones in Bohemia(Chlupáč, 1983) and the Greifenstein limestone in the Steinhorn nappeshow a close affinity of the latter to the Barrandian (Flick, 1999).

The diversity of provenance and fossil assemblages in the autochtho-nous to par-autochthonous units and those of the allochthonous unitsrequire a distinct spatial separation of the source areas during theDevonian and the lower part of the Lower Carboniferous. Consequently,this period was dominated by oceans separating Laurussia fromArmorica as well as the latter one from Gondwana (Fig. 7). Based onthe results presented in this paper we conclude that subduction of awide Rheic Ocean lasted from Late Silurian until Visean times.

Prerequisite for the subduction of such an oceanic realm are differ-ent active margins in the north and in the south, as well as intra-

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

Rheic Ocean

RhenohercynianOcean

Rheic Ocean

30° S

30° N

Equator

North

America

South

Am

erica

Africa

Green-

land

Northern

Europe

South Pole

SaxothuringiaBohemia

Palaeotethys

Fig. 7. Plate-tectonic reconstruction for the Late Devonian to Early Carboniferous. Red star: Position of the autochthonous Rheinisches Schiefergebirge. Blue star: Source area of the nappeunits in the south east of the Rheinisches Schiefergebirge.

13K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

oceanic arcs such as the Frankenstein complex of the BergsträsserOdenwald (Fig. 8). However, remnants of such structures are rare ormust be detected indirectly. Thus, subduction at intra-oceanic arcs andsubduction erosionmust have played a decisive role (Nance et al., 2012).

Evidence for a wide Rheic Ocean and an active margin to the norththat was later associated with a backarc setting has been postulatedin earlier publications (Floyd, 1982; Flick and Nesbor, 1988; Oczlon,1994; Smith, 1996; von Raumer and Stampfli, 2008; Zeh and Gerdes,2010). This wide ocean was subducted through the Devonian and theearly part of the Early Carboniferous along a northward dipping sub-duction zone below Laurussia and in a southern direction below theSaxothuringian terrane (Fig. 8). Zircon analysis confirms the existenceof magmatic arcs (especially in the south) until the late Visean andless prominently in the north until the Tournaisian (Fig. 5). Our modelcontradicts the interpretation of sedimentary deposition occurring ona passive margin along the northern border of a relatively small oceanproposed by Franke and Oncken (1990, 1995), Oncken et al. (1999),Franke (2000) and Doublier et al. (2012).

The most important argument suggesting a broad Rheic Ocean isprovided by the provenance data of the allochthonous units. These cor-respond to the spectra of zircon ages derived from the Saxothuringianzone, which proves a source area located on Armorica in contradictionto the interpretation of Huckriede et al. (2004) and Doublier et al.(2012). Differences in provenance data reflecting Baltica and Armoricasources require wide separation between the two source areas duringthe Devonian and the lower part of the Early Carboniferous. Moreover,

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

all samples of Visean age exhibit an Armorican pattern of zircon ages—i.e., not only the samples from the allochthonous units, but also thosefrom the autochthonous and par-autochthonous units as well. Thereason for this reflects is the geotectonic situation during the lateEarly Carboniferous. At that time the Rheic Ocean was closed, andsedimentation into the Rhenohercynian zone was generally suppliedfrom the south. Hence, the distinction of different source areas for thegraywackes is no longer possible. Our data support the existence ofthe Rheic Ocean until the Early Carboniferous, which contradicts theresults published by, for example, Kroner et al. (2007) and Linnemannet al. (2010).

Further support for the plate tectonicmodel presented is provided bythe volcanic activity that accompanied the subduction of the RheicOcean. This activity is documented in numerous ash layers intercalatedwithin the sedimentary rock pile of the Rhenohercynian (Heyckendorf,1985; Kubanek and Zimmerle, 1986; Kirnbauer, 1991; van Ameromet al., 2001). The magma composition is characterized by predominantdacitic/rhyodacitic and minor rhyolitic melts (see Fig. 3). Such silicarich volcanism is typical of thick continental crusts above the subductedslab. Furthermore, the uniform composition of the magmas generatedover the whole time span (about 80 Ma) requires a constant process ofmelt generation that is only provided by the subduction of a large ocean.

The geodynamic development of the southern margin of Laurussiais documented by the evolution of the grain sizes of the pyroclasticdeposits. During the Lower Devonian typical fall out and ignimbritedeposits occur, often composed of coarse-grained particles. Y-shaped

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

roll back

Late Devonian

Laurussia Armorica

NorthAvalonia

Baltica SouthAvalonia

RhenohercynianOcean Rheic Ocean

Ulmbach Formation„Frasnian Gießen graywacke“

A

B Latest Devonian to Early Carboniferous

Armorica

slab break up

NorthAvalonia

Baltica SouthAvalonia

FrankensteinComplex

Elnhausen Formation„Kehna graywacke“Early Carboniferous„Gießen graywacke“Rhenohercynian

Ocean

Kamm

quar

tzite

Laurussia

Rheic Ocean

Fig. 8. Simplified geotectonic model for the (A) Late Devonian and (B) Latest Devonian to Early Carboniferous.

14 K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

shards and highly vesicular pyroclasts are common. During that timethe dacitic/rhyodacitic and rhyolitic volcanism was active in theRheinisches Schiefergebirge or nearby. Thus, the subduction zone wassituated directly at the southern margin of Laurussia. In the MiddleDevonian, extremely fine grained ash fall was deposited, which marksthe opening of the Rhenohercynian Ocean, triggered by a roll back ofthe subducted slab (von Raumer and Stampfli, 2008). As a resultAvalonia split up into a northern and a southern segment — North andSouth Avalonia (Fig. 8). Because of the increasing distance, the grainsize of the pyroclastic fall out deposits decreases. These are witnessesof highly explosive Plinian and Ultraplinian eruptions, which can betraced over wide distances. The grain size of the Visean volcanic ashesincreased again as a result of the closing of the Rhenohercynian Oceanand the approach of the subduction zone dipping beneath SouthAvalonia.

The existence of South Avalonia is demonstrated by the detrital zir-cons in the Ruhla Crystalline complex of the Mid-German Crystallinezone (MGCZ), which suggest two different source areas (Zeh andGerdes, 2010). The northern part of the Ruhla Crystalline complex ex-hibits a provenance in Avalonia, whereas the southern part has a prov-enance in Armorica. Consequently, the main suture between Avaloniaand Armoricamust lie within theMGCZ and not at the southern Taunusmargin as previously believed (e.g., Franke and Oncken, 1995; Onckenet al., 2000). Besides the northern part of the Ruhla Crystalline, theSpessart and the Böllstein Odenwald can also be interpreted as belong-ing to South Avalonia. This assumption is supported by subduction-related magmatism at the Silurian/Devonian boundary (Dombrowskiet al., 1995; Reischmann et al., 2001). Thismagmatism can be correlatedwith Silurian volcanic activity at the southernmargin of the RheinischesSchiefergebirge (Sommermann et al., 1992, 1994; Meisl, 1995).

Doublier et al. (2012) suggest that the volcanic belt of the Lahn–Dill area is separated from the volcanic evolution of the Gießen-LizardOcean (=Rhenohercynian Ocean) by a large non-volcanic beltcomprising the Bicken–Ense unit, Hörre nappe, Lindener Mark,Hessische Schieferserie and the Taunus. However, new mappings

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

shows that the volcanic rocks of the Lahn- and Dill–Eder synclineswere not only limited to their present distribution area. Rather, theirsubvolcanic dikes and sills were distributed throughout the entireautochthon of the Rheinisches Schiefergebirge. Likewise, fragments ofvolcaniclastic rocks of theGivetian–Frasnianphase are found in volcanicbreccias of a phreatomagmatic diatreme of Tertiary age in the Taunusanticline (Requadt and Weidenfeller, 2007).

At the southern rimof the Rheic Ocean subduction processes beneathArmorica are demonstrated by typical subduction-related plutonic rocksin the Mid-German Crystalline Rise (MGCZ), the Saxothuringian- andthe Moldanubian zone. These plutons often show an I-type signatureand a calc alkaline composition (e.g., Altherr et al., 1999; Stein, 2001).Their geochronological ages range from the Late Devonian/EarlyCarboniferous boundary to the earliest part of the Late Carboniferous.In addition to these active continental margins, intraoceanic islandarcs also occur, such as the Frankenstein complex of the BergsträsserOdenwald with a Late Devonian/Early Carboniferous age (Kirsch et al.,1988). The final stage of the Variscan orogeny with thrust faulting,nappe transport, and strike–slip faults leads to the present complexgeotectonic picture.

6. Conclusions

• 33 samples obtained from Devonian and Carboniferous autochtho-nous to par-autochthonous and allochthonous units of the easternRheinisches Schiefergebirge have been investigated for U–Pb detritalzircon ages. A representative selection of 15 samples is presented inthis paper in the context of their stratigraphic, sedimentary,magmaticand plate tectonic implications.

• Based on the distribution of zircon age populations, the autochthonousto par-autochthonous sediments exhibits a typical Baltica provenancewith weak Avalonian signals, whereas those of the allochthonousunits were derived from a Gondwanan source.

• Sediments of the same age of autochthonous to parautochthonous andallochthonous units show profound differences in their composition

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

15K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

and facies development. The allochthonous units such as the Lohra,Steinhorn, and Hörre nappes are characterized by the absence ofvolcanic rocks. At the base of the Gießen nappe metabasalts withMORB-type affinities occur as tectonic slices.

• Subduction-related volcanism lasted from the Early Devonian tothe Early Carboniferous with a source area outside the RheinischesSchiefergebirge. Intraplate volcanism was confined to the autochtho-nous to par-autochthonous units of the Rheinisches Schiefergebirge.

• The existence of different magmatic arcs is mirrored in the frequencydistribution of zircon grains. Based on both the provenance analysisand geochemical results, the evolution of these suggests subductionto the north as well as to the south.

• The plate tectonic model presented suggests the existence of a wideRheic Ocean and an active continental margin to the north, whichresulted in the opening of the Rhenohercynian Ocean. This was asso-ciated with extension and subsidence of the continental crust ofNorth Avalonia (=southern shelf area of Laurussia), which wasaccompanied by an intensive intraplate volcanism.

• In contrast to earlier publications (e.g., Kroner et al., 2007; Linnemannet al., 2010) the data presented here suggest the existence of the RheicOcean until the Early Carboniferous.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.gr.2013.05.018.

Acknowledgments

We are much indebted to Dr. Peter Bender (Marburg) whose bio-stratigraphic work over the past decades and whose knowledge of theregional geology provided the background for this study. This paper istherefore dedicated to him. We thank Gerhard Wörner (University ofGöttingen) who performed the geochemical analysis of the Kellerwaldsamples. We also acknowledge the support by Ms. Schaffner andMr. Hoeßle (both HLUG) for preparing the geological maps. We grate-fully acknowledge constructive reviews by Sonia Sánchez Martínez(Madrid) and Daniel Pastor Galan (Utrecht). Furthermore, we arethankful for the critical comments by Heiner Flick (Marktoberdorf).All comments helped to improve the paper. We also thank JohnnyWaters (Boone, USA) for his careful language check. Finally, we thankthe Editor-in-Chief and the Associate Editor who provided the possibil-ity to publish this paper.

References

Ahrendt, H., Hunziker, J.C., Weber, K., 1978. K/Ar-Altersbestimmungen an schwach-metamorphen Gesteinen des Rheinischen Schiefergebirges. Zeitschrift derDeutschen Geologischen Gesellschaft 129, 229–247.

Ahrendt, H., Clauer, N., Hunziker, J.C., Weber, K., 1983. Migration of folding and meta-morphism in the Rheinisches Schiefergebirge deduced from K–Ar and Rb–Sr agedeterminations. In: Martin, H., Eder, F.W. (Eds.), Intracontinental Fold Belts.Springer, Berlin, Heidelberg, New York, pp. 323–338.

Altenberger, U., Besch, T., Mocek, B., Zaipeng, Y., Yong, S., 1990. Geochemie undGeodynamik des Böllsteiner Odenwaldes. Mainzer GeowissenschaftlicheMitteilungen19, 183–200.

Altherr, R., Henes-Klaiber, U., Hegner, E., Satir, M., Langer, G., 1999. Plutonism in theVariscan Odenwald (Germany): from subduction to collision. International Journalof Earth Sciences 88, 422–443.

Behrmann, J., Drozdzewski, K., Heinrichs, T., Huch, M., Meyer, W., Oncken, O., 1991.Crustal-scale balanced cross sections through the Variscan fold belt, Germany:the central EGT-segment. Tectonophysics 196, 1–21.

Bender, P., 1978. Die Entwicklung der Hörre-Zone im Devon und Unterkarbon.Zeitschrift der Deutschen Geologischen Gesellschaft 129, 131–140.

Bender, P., 1989. Die Hörre und ihre Stellung im östlichen Rheinischen Schiefergebirge.Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, NeueFolge 71, 347–356.

Bender, P., 1997. Paläozoikum der Bickener- und Wildestein-Schuppe. In: Bender, P.,Lippert, H.-J., Nesbor, H.D. Geologischen Karte von Hessen 1:25.000, Blatt 5216Oberscheld, 2. Auflage, Erläuterungen. Hessisches Landesamt für Bodenforschung,Wiesbaden, 91–111.

Bender, P., 2006. Geologische Karte der Hörre (zwischen Dill und Lahn) und derFrankenbacher Schuppenzone, 1:40.000. Hessisches Landesamt für Umwelt undGeologie, Wiesbaden.

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

Bender, P., 2008. Lahn- und Dill-Mulde. In: Deutsche Stratigraphische Kommission(Ed.), Stratigraphie von Deutschland VIII, Devon. Schriftenreihe der DeutschenGesellschaft für Geowissenschaften, 52, pp. 221–246.

Bender, P., Blumenstengel, H., 2003. Ostracoden aus der Weitershausen Formation(Oberdevon, Hörre, Rheinisches Schiefergebirge). Geologisches Jahrbuch Hessen131, 191–201.

Bender, P., Homrighausen, R., 1979. Die Hörre-Zone, eine Neudefinition auflithostratigraphischer Grundlage. Geologica et Palaeontologica 13, 257–260.

Bender, P., Königshof, P., 1994. Regional maturation patterns of the Devonian strata inthe eastern Rheinisches Schiefergebirge (Lahn–Dill area) based on conodont col-our alteration (CAI). Courier Forschungsinstitut Senckenberg 168, 335–345.

Bender, P., Stoppel, D., 2006. Der Ost- und Südostrand des Rheinischen Schiefergebirges:Lahn-Dill-Gebiet, Kellerwald, Taunus. In: Deutsche Stratigraphische Kommission(Ed.), Stratigraphie von Deutschland VI, Unterkarbon (Mississippium). Schriftenreiheder Deutschen Gesellschaft für Geowissenschaften, 41, pp. 358–378.

Bender, P., Lippert, H.-J., Nesbor, H.D., 1997. Geologischen Karte von Hessen 1:25.000,Blatt 5216 Oberscheld, 2. Auflage, Erläuterungen. Hessisches Landesamt fürBodenforschung, Wiesbaden, 1–421.

Birkelbach, M., Dörr, W., Franke, W., Michel, H., Stibane, F., Weck, R., 1988. Diegeologische Entwicklung der östlichen Lahnmulde (Exkursion C am 7. April 1988).Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, NeueFolge 70, 43–74.

Braun, R., Oetken, S., Königshof, P., Kornder, L., Wehrmann, A., 1994. Development andbiofacies of reef-influenced carbonates (Central Lahn Syncline, RheinischesSchiefergebirge). Courier Forschungsinstitut Senckenberg 169, 351–386.

Brinkmann, R., 1948. Die Mitteldeutsche Schwelle. Geologische Rundschau 36, 56–66.Buggisch, W., Flügel, E., 1992. Mittel- bis oberdevonische Karbonate auf Blatt Weilburg

(Rheinisches Schiefergebirge) und in Randgebieten: Initialstadien der Riffentwicklungauf Vulkanschwellen. Geologisches Jahrbuch Hessen 120, 77–97.

Chlupáč, I., 1983. Trilobite assemblages in the Devonian of the Barrandian area andtheir relations to palaeoenvironments. Geologica et Palaeontologica 17, 45–73.

Daber, R., 1959. Die Mittel-Visé-Flora der Tiefbohrung von Doberlug-Kirchhain.Geologie 8 (Beihefte 26), 1–83.

Dehmer, J., Hentschel, G., Horn, M., Kubanek, F., Nöltner, T., Rieken, R., Wolf, M.,Zimmerle, W., 1989. Die vulkanisch-kieselige Gesteinsassoziation am Beispiel derunterkarbonischen Kieselschiefer am Ostrand des Rheinischen Schiefergebirges.Geologie–Petrologie–Geochemie. Geologisches Jahrbuch Hessen 117, 79–138.

Dombrowski, A., Henjes-Kunst, F., Höhndorf, A., Kröner, A., Okrusch, M., Richter, P., 1995.Orthogneisses in the Spessart Crystalline Complex, Northwest Bavaria: Siluriangranitoid magmatism at an active continental margin. Geologische Rundschau 84,399–411.

Dörr, W., 1986. Stratigraphie, Stoffbestand und Fazies der Gießener Grauwacke(östliches Rheinisches Schiefergebirge). (Dissertation) Universität Gießen.

Dörr, W., 1990. Stratigraphie, Stoffbestand und Fazies der Gießener Grauwacke(östliches Rheinisches Schiefergebirge). Geologische Abhandlungen Hessen 91, 1–94.

Dörr, W., Zulauf, G., 2010. Elevator tectonics and orogenetic collapse of a Tibetan-styleplateau in the European Variscides: the role of the Bohemian shear zone. Interna-tional Journal of Earth Sciences 99, 299–325.

Doublier, M.P., Potel, S., Franke, W., Roache, T., 2012. Very low-grade metamorphism ofRheno-Hercynian allochthons (Variscides, Germany): facts and tectonic conse-quences. International Journal of Earth Sciences 101, 1229–1252.

Drost, K., Gerdes, A., Jeffries, T., Linnemann, U., Storey, C., 2010. Provenance ofNeoproterozoic and early Paleozoic siliciclastic rocks of the Teplá–Barrandianunit (Bohemian Massif): evidence from U–Pb detrital zircon ages. Gondwana Re-search 19, 213–231.

Eder, W., Engel, W., Uffenorde, H., 1969. Stratigraphische und fazielle Gliederungdes Quarzit-Zuges im Kellerwald (Mitteldevon bis Unterkarbon; RheinischesSchiefergebirge). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen133, 223–244.

Eder, W., Engel, W., Franke, W., 1977. Gießener Grauwacke (Aufschlüsse 15 bis 17). In:Bender, P., Eder, W., Engel, W., Franke, W., Langenstrassen, F., Walliser, O.H.,Witten, W. (Eds.), Exkursion A. Paläogeographische Entwicklung des östlichenRheinischen Schiefergebirges, demonstriert an einem Querschnitt. ExkursionführerGeotagung '77 Göttingen, I, pp. 49–53.

Engel, W., Franke, W., 1983. Flysch sedimentation: its relationship to tectonism in theEuropean Variscides. In: Martin, H., Eder, F.W. (Eds.), Intracontinental Fold Belts.Springer, Berlin, Heidelberg, New York, pp. 289–322.

Engel, W., Franke, W., Grote, C., Weber, K., Ahrendt, H., Eder, F.W., 1983. Nappe tectonics inthe southeastern part of the Rheinisches Schiefergebirge. In: Martin, H., Eder, F.W.(Eds.), Intracontinental Fold Belts. Springer, Berlin, Heidelberg, New York, pp. 267–287.

Entenmann, W., 1991. Feinstratigraphie und Sedimentologie der Elnhausen-Schichten(Unterkarbon) der Hörre-Zone. Geologica et Palaeontologica 25, 79–85.

Flick, U., 1999. Die Trilobiten von Greifenstein/Hörre - Ableger einer böhmischen Fauna imRheinischen Schiefergebirge. Jahrbücher des Nassauischen Vereins für Naturkunde120, 23–50.

Flick, H., Nesbor, H.-D., 1988. Der Vulkanismus in der Lahnmulde. Jahresberichte undMitteilungen des Oberrheinischen Geologischen Vereins, Neue Folge 70, 411–475.

Floyd, P.A., 1982. Chemical variation in Hercynian basalts relative to plate tectonics.Journal of the Geological Society of London 139, 505–520.

Franke, W., 1995. Rhenohercynian foldbelt: autochthon and nonmetamorphic nappeunits — stratigraphy. In: Dallmeyer, D., Franke, W., Weber, K. (Eds.), Pre-PermianGeology of Central and Eastern Europe. Springer, Berlin, pp. 33–39.

Franke, W., 2000. The mid-European segment of the Variscides: tectonostratigraphicunits, terrane boundaries and plate tectonic evolution. In: Franke, W., Haak, V.,Oncken, O., Tanner, D. (Eds.), Orogenic Processes: Quantification and Modellingin the Variscan Belt. Geological Society London, Special Publication, 179, pp. 35–61.

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

16 K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

Franke, W., Oncken, O., 1990. Geodynamic evolution of the northcentral Variscides — acomic strip. In: Freeman, R., Giese, P., Mueller, S. (Eds.), The European Geotraverse.European Science Foundation, pp. 187–194.

Franke, W., Oncken, O., 1995. Zur prädevonischen Geschichte des RhenohercynischenBeckens. Nova Acta Leopoldina, Neue Folge 71, 53–72.

Franke, W., Bortfeld, R.K., Brix, M., Drozdzewski, G., Dürbaum, H.J., Giese, P., Janoth, W.,Jödicke, H., Reichert, Ch., Scherp, A., Schmoll, J., Thomas, R., Thünker, M., Weber, K.,Wiesner, M.G., Wong, H.K., 1990. Crustral structure of the Rhenish Massif: resultsof deep seismic reflection lines DEKORP 2-North and 2-North-Q. GeologischeRundschau 79, 523–566.

Frei, D., Gerdes, A., 2009. Precise and accurate in situ U–Pb dating of zircon with highsample throughput by automated LA–SF–ICP–MS. Chemical Geology 261, 261–270.

Gerdes, A., Zeh, A., 2006. Combined U–Pb and Hf isotope LA–(MC–) ICP–MS analysis ofdetrital zircons: comparison with SHRIMP and new constraints for the provenanceand age of an Armorican metasediment in Central Germany. Earth and PlanetaryScience Letters 249, 47–61.

Groos-Uffenorde, H., Lethiers, F., Blumenstengel, H., 2000. Ostracodes and Devonianstratigraphy. Courier Forschungsinstitut Senckenberg 220, 99–111.

Grösser, J., Dörr, W., 1986. MOR-Type-Basalte im östlichen Rheinischen Schiefergebirge.Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 12, 705–712.

Haverkamp, J., von Hoegen, J., Kramm, U., Walter, R., 1992. Application of U–Pb-systems from detrital zircons for palaeogeographic reconstructions — a casestudy from the Rhenohercynian. Geodinamica Acta 5, 69–82.

Henes-Klaiber, U., 1992. Zur Geochemie der variskischen des Bergsträßer Odenwaldes.(Ph.D. thesis) Universität Karlsruhe.

Henningsen, D., 1962. Untersuchungen über Stoffbestand und Paläogeographie derGießener Grauwacke. Geologische Rundschau 51, 600–626.

Herbig, H.-G., Bender, P., 1992. A eustatically driven calciturbidite sequence from theDinantian II of the eastern Rheinisches Schiefergebirge. Facies 27, 245–262.

Heyckendorf, K., 1985. Die unterdevonischen Lenne-Vulkanite im nordöstlichenRheinischen Schiefergebirge: Beiträge zur Stratigraphie, Paläogeographie, Petrographieund Geochemie. Mitteilungen aus dem Geologisch-Paläontologischen Institut derUniversität Hamburg 68, 1–52.

Hofmann, A.W., 1988. Chemical differentiation of the earth: the relationship betweenmantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90,297–314.

Homrighausen, R., 1979. Petrographische Untersuchungen an sandigen Gesteinen derHörre-Zone (Rheinisches Schiefergebirge, Oberdevon-Unterkarbon). GeologischeAbhandlungen Hessen 79, 1–84.

Huckriede, H., Wemmer, W., Ahrendt, H., 2004. Palaeogeography and tectonic structureof allochthonous units in the German part of the Rheno-Hercynian Belt (CentralEuropean Variscides). International Journal of Earth Sciences 93, 414–431.

Jäger, H., Gursky, H.-J., 2000. Alter, genese und Paläogeographie der Kammquarzit For-mation (Vise) im Rhenoherzynikum – neue Daten und neue Deutungen. Zeitschriftder Deutschen Geologischen Gesellschaft 151, 415–439.

Jahnke, H., 1971. Fauna und Alter der Erbslochgrauwacke (Brachiopoden undTrilobiten, Unterdevon. Rheinisches Schiefergebirge und Harz). Göttinger Arbeitenzur Geologie und Paläontologie 9, 1–105.

Jahnke, H., Paul, J., 1968. Das Alter der Grauwacken im südlichen Kellerwald (Oberdevonund Unterkarbon, Rheinisches Schiefergebirge). Notizblatt des HessischenLandesamtes für Bodenforschung zu Wiesbaden 96, 68–84.

Jeffries, T.E., Fernandez-Suarez, J., Corfu, F., Alonso, G.G., 2003. Advances in U–Pb geo-chronology using a frequency quintupled Nd:YAG based laser ablation system(lambda = 213 nm) and quadrupole based ICP–MS. Journal of Analytical AtomicSpectrometry 18, 847–855.

Kerp, H., Kampe, A., Schultka, S., van Amerom, H.W.J., 2006. Makrofloren. In: DeutscheStratigraphische Kommission (Ed.), Stratigraphie von Deutschland VI, Unterkarbon(Mississippium). Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften,41, pp. 271–293.

Kirnbauer, T., 1991. Geologie, Petrographie und Geochemie der Pyroklastika des UnterenEms/Unterdevon (Porphyroide) im südlichen Rheinischen Schiefergebirge. GeologischeAbhandlungen Hessen 92, 1–228.

Kirsch, H., Kober, B., Lippolt, H.J., 1988. Age of intrusion and rapid cooling of theFrankensteingabbro (Odenwald, SW-Germany) evidenced by Ar 40/Ar 39 andsingle-zircon Pb 207/Pb measurements. Geologische Rundschau 77, 693–711.

Klügel, T., 1997. Geometrie und Kinematik einer variszischen Plattengrenze – der Südranddes Rhenoherzynikums im Taunus. Geologische Abhandlungen Hessen 101, 1–215.

Knaus, J.M., 1994. Triphyllopteris collombiana: a clarification of the generic conceptbased on rediscovered specimens from Kossberg bei Plauen, Germany, and areassignment of the North American species of Triphyllopteris to Genselia gen.nov. International Journal of Plant Sciences 155, 97–116.

Koch, C., 1858. Paläozoische Schichten und Grünsteine in den Herzoglich-Nassauischen Ämtern Dillenburg und Herborn, unter Berücksichtigung allgemeinerLagerungsverhältnisse in angrenzenden Ländertheilen. Jahrbücher des NassauischenVereins für Naturkunde 13, 85–329.

Kockel, C., 1958. Schiefergebirge und Hessische Senke um Marburg/Lahn. Sammlunggeologischer Führer, 37. Bornträger, Berlin.

Königshof, P., Gewehr, B., Kornder, L., Wehrmann, A., Braun, R., Zankl, H., 1991.Stromatoporen-Morphotypen aus einem zentralen Riffbereich (Mitteldevon) inder südwestlichen Lahnmulde. Geologica et Palaeontologica 25, 19–35.

Königshof, P., Flick, H., Nesbor, H.-D., Schäfer, A., Stets, J., 2008. Rheno-Hercynian Zone. In:Königshof, P., Linnemann, U. (Eds.), The Rheno-Hercynian, Mid-German Crystalline-Zone and Saxo-Thuringian Zones (Central European Variscides). 20th InternationalSenckenberg-Conference and 2nd Geinitz-Conference, From Gondwana to Laurussiato Pangaea, Dynamics of Oceans and Supercontinents, Final Meeting of IGCP 497 and499. Excursion Guide. Senckenberg, Frankfurt am Main, Dresden, pp. 11–78.

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

Königshof, P., Nesbor, H.-D., Flick, H., 2010. Volcanism and reef development inthe Devonian: a case study from the Lahn syncline, Rheinisches Schiefergebirge(Germany). Gondwana Research 17, 264–280.

Kossmat, F., 1927. Gliederung des varistischen Gebirgsbaus. Abhandlungen desSächsischen Geologischen Landesamts 1, 1–39.

Kroner, U., Hahn, T., Romer, R.L., Linnemann, U., 2007. The Variscan orogeny in theSaxo-Thuringian zone — heterogenous overprint of Cadomian/Palaeozoic peri-Gondwana crust. In: Linnemann, U., Nance, R.D., Kraft, P., Zulauf, G. (Eds.), The Evolu-tion of the Rheic Ocean: From Avalonian–Cadomian Active Margin to Alleghenian–Variscan collision. Geological Society of America, Special Paper, 423, pp. 153–172.

Kubanek, F., Zimmerle, W., 1986. Tuffe und kieselige Tonschiefer aus dem tieferenUnterkarbon der Bohrung Adlersberg (West-Harz). Geologisches Jahrbuch D 78,207–268.

Kupfahl, H.G., 1953. Untersuchungen im Gotlandium und Unterdevon des Kellerwaldesund bei Marburg. Notizblatt des Hessischen Landesamtes für Bodenforschung zuWiesbaden 81, 96–128.

Linnemann, U., McNaughton, N.J., Romer, R.L., Gehmlich, M., Drost, K., Tonk, C., 2004.West African provenance for Saxo-Thuringia (Bohemian Massif): did Armoricaever leave pre-Pangean Gondwana? — U–Pb-SHRIMP zircon evidence and theNd-isotopic record. International Journal of Earth Sciences 93, 683–705.

Linnemann, U., Gerdes, A., Drost, K., Buschmann, B., 2007. The continuum betweenCadomian Orogenesis and opening of the Rheic Ocean: constraints from LA–ICP–MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringianzone, NE Bohemian massif, Germany). In: Linnemann, U., Nance, R.D., Kraft, P.,Zulauf, G. (Eds.), The Evolution of the Rheic Ocean: From Avalonian–CadomianActive Margin to Alleghenian–Variscan Collision. Geological Society of America,Special Paper, 423, pp. 61–96.

Linnemann, U., Pereira, F., Jeffries, T.E., Drost, K., Gerdes, A., 2008. The Cadomian orog-eny and the opening of the Rheic Ocean: the diachrony of geotectonic processesconstraints by LA–ICP–MS U–Pb zircon dating (Ossa-Morna and Saxo-ThuringianZones, Iberian and Bohemian Massifs). Tectonophysics 461, 21–43.

Linnemann, U., Hofmann, M., Romer, R.L., Gerdes, A., 2010. Transitional stages betweenthe Cadomian and Variscan Orogenies: basin development and tectonomagmaticevolution of the southern margin of the Rheic Ocean in the Saxo-ThuringianZone (North Gondwana shelf). In: Linnemann, U., Romer, R.L. (Eds.), Pre-MesozoicGeology of Saxo-Thuringia — From the Cadomian Active Margin to the VariscanOrogeny. Schweizerbart Science Publishers, Stuttgart, pp. 59–98.

Linnemann, U., Ouzegane, K., Drareni, A., Hofmann, M., Becker, S., Gärtner, A., Sagawe,A., 2011. Sands of West Gondwana: an archive of secular magmatism and plate in-teractions — a case study from the Cambro-Ordovician section of the Tassili OuanAhaggar (Algerian Sahara) using U–Pb-LA–ICP–MS detrital zircon ages. Lithos123, 188–203.

Linnemann, U., Herbosch, A., Liégeois, J.-P., Pin, C., Gärtner, A., Hofmann, M., 2012. TheCambrian to Devonian Odyssey of the Brabant Massif within Avalonia: a reviewwithnew zircon ages, geochemistry, Sm–Nd isotopes, stratigraphy and palaeogeography.Earth-Science Reviews 112, 126–154.

Ludwig, K.R., 2001. Users Manual for Isoplot/Ex rev. 2.49. Berkeley GeochronologyCenter Special Publication, 1a 1–56.

Matte, Ph., 1986. Tectonics and plate tectonics model for the Variscan Belt of Europe.Tectonophysics 126, 329–374.

Meischner, D., 1966. Der geologische Bau des Kellerwaldes. Habilitationsschrift,Universität Göttingen.

Meischner, D., 1991. Kleine Geologie des Kellerwaldes (Exkursion F). Jahresberichte undMitteilungen des Oberrheinischen Geologischen Vereins, Neue Folge 73, 115–142.

Meisl, S., 1995. Igneous activity. In: Dallmeyer, R.D., Franke, W., Weber, K. (Eds.), Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin, pp. 118–131.

Mittmeyer, H.G., 2008. Unterdevon der Mittelrheinischen und Eifeler Typ-Gebiete (Teile vonEifel, Westerwald,Hunsrück und Taunus). In: Deutsche Stratigraphische Kommission(Ed.), Stratigraphie vonDeutschlandVIII, Devon. Schriftenreihe der Deutschen Gesell-schaft für Geowissenschaften, 52, pp. 139–203.

Mosseichik, Yu.V., 2007. Correlation of Visean floral successions from the EquatorialBelt. Doklady Earth Sciences 415, 701–704.

Nance, R.D., Gutiérrez-Alonso, G., Keppie, J.D., Linnemann, U., Brendan Murphy, J.,Quesada, C., Strachan, R.A., Woodcock, N., 2010. Evolution of the Rheic Ocean.Gondwana Research 17, 194–222.

Nance, R.D., Gutierrez-Alonso, G., Keppie, D., Linnemann, U., Murphy, J.B., Quesada, C.,Strachan, R.A., Woodcock, N.H., 2012. A brief history of the Rheic Ocean. Geosci-ence Frontiers 3 (2), 125–135.

Nesbor, H.-D., 1997. Petrographie der vulkanischen Gesteine. in: Bender, P., Lippert, H.-J.,Nesbor, H.D. Geologischen Karte von Hessen 1:25,000, Blatt 5216 Oberscheld, 2.Auflage, Erläuterungen. Hessisches Landesamt für Bodenforschung, Wiesbaden,159–207.

Nesbor, H.-D., 2004. Paläozoischer Intraplattenvulkanismus im östlichen RheinischenSchiefergebirge – Magmenentwicklung und zeitlicher Ablauf. Geologisches JahrbuchHessen 131, 145–182.

Nesbor, H.-D., 2007. Paläozoischer Vulkanismus im Lahn-Dill-Gebiet – südlichesRheinisches Schiefergebirge (Exkursion E am 12 April 2007). Jahresberichte undMitteilungen des Oberrheinischen Geologischen Vereins, Neue Folge 89, 193–216.

Nesbor, H.-D., 2008. Bimodaler Vulkanismus im Devon des Rheinischen Schiefergebirges.In: Deutsche Stratigraphische Kommission (Ed.), Stratigraphie von DeutschlandVIII, Devon. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 52,pp. 247–251.

Nesbor, H.-D., Buggisch, W., Flick, H., Horn, M., Lippert, H.-J., 1993. Vulkanismus imDevon des Rhenoherzynikums. Fazielle und paläogeographische Entwicklungvulkanisch geprägter mariner Becken am Beispiel des Lahn-Dill-Gebietes.Geologisches Jahrbuch Hessen 98, 3–87.

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018

17K. Eckelmann et al. / Gondwana Research xxx (2013) xxx–xxx

Oczlon, M.S., 1992. Gondwana and Laurussia before and during the Variscan Orogeny inEurope and related areas. Heidelberger Geowissenschaftliche Abhandlungen 53, 1–56.

Oczlon, M.S., 1994. North Gondwana origin for exotic Variscan rocks in the Rhenohercynianzone of Germany. Geologische Rundschau 83, 20–31.

Oncken, O., 1997. Transformation of a magmatic arc and an orogenic root duringoblique collision and its consequences for the evolution of the European Variscides(Mid-German crystalline rise). Geologische Rundschau 86, 2–10.

Oncken, O., Weber, K., 1995. Structure. In: Dallmeyer, R.D., Franke, W., Weber, K. (Eds.),Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin, pp. 50–58.

Oncken, O., Winterfeld, C., Dittmar, U., 1999. Accretion and inversion of a rifted passivemargin— the Late Palaeozoic Rhenohercynian fold and thrust belt. Tectonics 18, 75–91.

Oncken, O., Plesch, A., Weber, K., Ricken, W., Schrader, S., 2000. Passive margin detach-ment during arc–continent collision (Central European Variscides). In: Franke, W.,Haak, V., Oncken, O., Tanner, D. (Eds.), Orogenic Processes: Quantification andModelling in the Variscan Belt. The Geological Society of London, Special Publica-tion, 179, pp. 199–216.

Pas, D., DaSilva, A.C., Cornet, P., Bultynck, P., Königshof, P., Boulvain, F., 2013. Sedimen-tary development of a continuous Middle Devonian to Mississippian section fromthe fore-reef fringe of the Brilon Reef Complex (Rheinisches Schiefergebirge,Germany). Facies 57. http://dx.doi.org/10.1007/s10347-012-0351-z.

Pirwitz, K., 1986. Die Sandsteinfächer des höchsten Oberdevons der Dillmulde (Thalenberg-Formation) am SE-Rand des Siegerländer Blocks – Stratigraphische, petrographischeund sedimentologische Untersuchungen und deren paläogeographische Deutung.(Dissertation) Universität Marburg.

Plesch, A., Oncken, O., 1999. Orogenic wedge growth during collision — constraints onmechanics of a fossil wedge from its kinematic record (Rhenohercynian FTB, CentralEurope). Tectonophysics 309, 117–139.

Plusquellec, Y., Jahnke, H., 1999. Les tabules de L'Erbsloch-grauwacke (Emsien Inferieurdu Kellerwald) et le problem des affinites paleogeographiques de l'allochthone“Giessen-Harz”. Abhandlungen der Geologischen Bundesanstalt 54, 435–451.

Poschmann, T., Jansen, U., 2003. Lithologie und Fossilführung einiger Profile in denSiegen-Schichten des Westerwaldes (Unter-Devon, Rheinisches Schiefergebirge).Senckenbergiana Lethaea 83, 157–183.

Reineck, H.E., Singh, I.B., 1980. Depositional Sedimentary Environments. Springer, BerlinHeidelberg, New York 1–549.

Reischmann, T., Anthes, G., Jaeckel, P., Altenberger, U., 2001. Age and origin of theBöllsteiner Odenwald. Mineralogy and Petrology 72, 29–44.

Requadt, H., Weidenfeller, M., 2007. Geologischen Karte von Rheinland-Pfalz 1:25.000,Blatt 5713 Katzenelnbogen, 2. Auflage, Erläuterungen. Landesamt für Geologie undBergbau Rheinland-Pfalz, Mainz, 1–240.

Romer, R.L., Hahne, K., 2010. Life of the Rheic Ocean: scrolling through the shale record.Gondwana Research 17, 408–421.

Salamon, M., 2003. Grobklastische Beckensedimente (Olisthostrome) des oberenMitteldevons im Lahn-Dill-Gebiet – Zeugen einer aktiven Rift-Tektonik. GeologischeAbhandlungen Hessen 111, 1–209.

Salamon, M., Königshof, P., 2010. Middle Devonian olistostromes in the Rheno-Hercynian (Rheinisches Schiefergebirge) — an indication of back arc rifting on apassive margin of Laurussia? Gondwana Research 17, 281–291.

Sánchez Martínez, S., Arenas, R., Díaz García, F., Martínez Catalán, J.R., Gómez-Barreiro,J., Pearce, J., 2007. Careón ophiolite, NW Spain: suprasubduction zone setting forthe youngest Rheic Ocean floor. Geology 5, 53–56.

Schäfer, J., Neuroth, H., Ahrendt, H., Dörr, W., Franke, W., 1997. Accretion and exhumationat a Variscan active margin, recorded in the Saxothuringian flysch. GeologischeRundschau 86, 599–611.

Scherp, A., 1983. Unterdevonische Schmelztuffe im rechtsrheinischen Schiefergebirge.Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1983, 47–58.

Schriel, W., Stoppel, D., 1958. Acker-Bruchberg und Kellerwald – Stratigraphie undTektonik. Zeitschrift der Deutschen Geologischen Gesellschaft 110, 260–292.

Please cite this article as: Eckelmann, K., et al., Plate interactions of LaurussU–Pb LA–SF–ICP–MS detrital zircon ..., Gondwana Research (2013), http:/

Schwan,W., 1991. GeologiedesAcker-Bruchberg-Ilsenburg-Zuges (Oberharz)–DerzeitigerForschungsstand und Diskussion der Probleme. Zentralblatt für Geologie undPaläontologie Teil 1 (7), 787–850.

Sircombe, K.N., 2004. AGEDISPLAY: an EXCEL workbook to evaluate and display univar-iate geochronological data using binned frequency histograms and probabilitydensity distributions. Computers and Geosciences 30, 21–31.

Smith, A.G., 1996. Some aspects of the Phanerozoic paleogeographic evolution ofEurope. Zeitschrift der Deutschen Geologischen Gesellschaft 147, 147–168.

Sommermann, A.E., 1993. Zirkonalter aus dem Granit der Bohrung Saar 1.Berichte derDeutschen Mineralogischen Gesellschaft, Beihefte zum. European Journal of Min-eralogy 5, 145.

Sommermann, A.-E., Meisl, S., Todt, W., 1992. Zirkonalter von 3 verschiedenenMetavulkaniten aus dem Südtaunus. Geologisches Jahrbuch Hessen 120, 67–76.

Sommermann, A.-E., Anderle, H.-J., Todt, W., 1994. Das Alter des Quarzkeratophyrs derKrausaue bei Rüdesheim am Rhein (Bl. 6013 Bingen, Rheinisches Schiefergebirge).Geologisches Jahrbuch Hessen 122, 143–157.

Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by atwo-stage model. Earth and Planetary Science Letters 26, 207–221.

Stein, E., 2001. The geology of the Odenwald crystalline complex. Mineralogy andPetrology 72, 7–28.

Stoppel, D., 1961. Geologie des südlichen Kellerwaldgebirges. Abhandlungen desHessischen Landesamtes für Bodenforschung 34, 1–114.

Tait, J.A., Schätz, M., Bachtadse, V., Soffel, H., 2000. Palaeomagnetism and Palaeozoicpaleogeography of Gondwana and European terranes. In: Franke, W., Haak, V.,Oncken, O., Tanner, D. (Eds.), Orogenic Processes: Quantification and Modellingin the Variscan Belt. Geological Society London, Special Publication, 179, pp. 21–34.

Torsvik, T.H., Cocks, L.R.M., 2004. Earth geography from 400 to 250 Ma: a palaeomagnetic,faunal and facies review. Journal of the Geological Society of London 161, 555–572.

Van Amerom, H.W.J., Heggemann, H., Herbig, H.-G., Horn, M., Korn, D., Nesbor, H.-D.,Schrader, S., 2001. Das Grauwacken-Profil (Ober-Viseum) des SteinbruchsDainrode im Kellerwald (NW Hessen). Geologisches Jahrbuch Hessen 129, 5–25.

Von Raumer, J.F., Stampfli, G.M., 2008. The birth of the Rheic Ocean — Early Palaeozoicsubsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461,9–20.

Wachendorf, H., 1986. Der Harz – variszischer Bau und geodynamische Entwicklung.Geologisches Jahrbuch A 91, 3–67.

Wedepohl, K.H., Meyer, K., Muecke, G.K., 1983. Chemical composition and genetic rela-tions of meta-volcanic rocks from the Rhenohercynian Belt of Central Europe. In:Martin, H., Eder, F.W. (Eds.), Intracontinental Fold Belts. Springer, Berlin, Heidel-berg, New York, pp. 231–256.

Wierich, F., 1999. Orogene Prozesse im Spiegel synorogener Sedimente –

Korngefügekundliche Liefergebietsanalyse siliziklastischer Sedimente im Devon desRheinischen Schiefergebirges. Marburger Geowissenschaften 1, 1–244.

Wierich, F., Vogt, A.W., 1997. Zur Verbreitung, Biostratigraphie und Petrographieunterkarbonischer Sandsteine des Hörre-Gommern-Zuges im östlichen RheinischenSchiefergebirge. Geologica et Palaeontologica 31, 97–142.

Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma se-ries and their differentiation products using immobile elements. Chemical Geology20, 325–343.

Zeh, A., Gerdes, A., 2010. Baltica- and Gondwana derived sediments in the Mid-GermanCrystalline Rise (Central Europe): implications for the closure of the Rheic Ocean.Gondwana Research 17, 254–263.

Zeh, A., Will, T.M., 2010. The Mid-German crystalline zone. In: Linnemann, U., Romer,R.L. (Eds.), Pre-Mesozoic Geology of Saxo-Thuringia — From the Cadomian ActiveMargin to the Variscan Orogeny. Schweizerbart Science Publishers, Stuttgart,pp. 195–220.

Ziegler, W., 1957. Das Marburger Gotlandium. Notizblatt des Hessischen Landesamtesfür Bodenforschung zu Wiesbaden 85, 67–74.

ia and Gondwana during the formation of Pangaea— Constraints from/dx.doi.org/10.1016/j.gr.2013.05.018