Cretaceous sauropod diversity and taxonomic succession in South America

10
Cretaceous sauropod diversity and taxonomic succession in South America CaioC esar de Jesus Faria a, b, * , Bernado Gonz alez Riga c , Carlos Roberto dos AnjosCandeiro b, 1 , Thiago da SilvaMarinho d, e , Leonardo Ortiz David c , Felipe Medeiros Simbras f , Roberto Barboza Castanho g , Fellipe Pereira Muniz b, 1 , Paulo Victor Luiz Gomes da CostaPereira a a Universidade Federal do Rio de Janeiro, Programa de P os-Graduaç~ ao em Geologia, Instituto de Geoci^ encias, CCMN, Cidade Universit aria, Ilha do Fund~ ao, Av. Athos da Silveira Ramos, 274, Bloco G, 21941-916 Rio de Janeiro, RJ, Brazil b Universidade Federal de Uberl^ andia, Laborat orio de Geologia, Avenida 20, 1.600 Bairro Tup~ a, Ituiutaba, Minas Gerais, Brazil c Laboratorio de Dinosaurios, Facultad de Ciencias de Exactas y Naturales, Universidad Nacional de Cuyo, Avda. Padre Contreras 1300, (5500) Mendoza, Argentina/CONICET, IANIGLA, CCT-Mendoza, Argentina d Instituto de Ci^ encias Exatas, Naturais e Educaç~ ao (ICENE), Universidade Federal do Tri^ angulo Mineiro (UFTM), Av. Dr. Randolfo Borges Jr.1700, Univerdecidade, 38064-200 Uberaba, Minas Gerais, Brazil e Centro de Pesquisas Paleontol ogicas L. I. Price, Complexo Cultural e Cientíco de Peir opolis (CCCP/UFTM), Bairro Peir opolis, Uberaba, Minas Gerais, Brazil f Petr oleo Brasileiro S. A. (PETROBRAS), Avenida República do Chile, 330, Centro, Rio de Janeiro, RJ, Brazil g Laborat orio de Geotecnologias, Curso de Geograa, Campus Pontal, Universidade Federal de Uberl^ andia, Uberl^ andia, Minas Gerais, Brazil article info Article history: Received 9 May 2014 Accepted 21 November 2014 Available online xxx Keywords: Dinosaurs Sauropods Gondwana Biogeography abstract The South American sauropod dinosaurs fossil record is one of the world's most relevant for their abundance (51 taxa) and biogeographical implications. Their historical biogeography was inuenced by the continental fragmentation of Gondwana. The scenery of biogeographic and stratigraphic distribu- tions can provide new insight into the causes of the evolution of the sauropods in South America. One of the most important events of the sauropods evolution is the progressive replacement of Diplod- ocimorpha by the Titanosauriformes during the early Late Cretaceous. The uctuation of the sea levels is frequently related to the diversity of sauropods, but it is necessary to take into account the geological context in each continent. During the Maastrichthian, a global sea level drop has been described; in contrast, in South America there was a signicant rise in sea level (named Atlantic transgression) which is conrmed by sedimentary sequences and the fossil record of marine vertebrates. This process occurred during the Maastrichtian, when the hadrosaurs arrived from North America. The titanosaurs were amazingly diverse during the Late Cretaceous, both in size and morphology, but they declined prior to their nal extinction in the Cretaceous/Paleocene boundary (65.5Yrs). © 2014 Elsevier Ltd. All rights reserved. 1. Introduction The dinosaurs fossil records comprises diverse ndings dating back to the nineteenth century, by pioneers such as Ameghino, Lydekker, Woodward, and von Huene (Lydekker, 1893; Ameghino, 1898; Colbert, 1984; Novas, 2009; Martinelli et al., 2010; Bittencourt and Langer, 2011; Calvo et al., 2011). In South America, the most representative group of dinosaurs is Sauropoda, a clade of huge herbivores that exhibits an amazing diversity both in size and morphology. To date, 40 sauropod taxa have been found in Argentina, 10 in Brazil and one in Chile (see Appendix). In Argentina, the sauropods are represented mainly by * Corresponding author. Universidade Federal do Rio de Janeiro, Programa de P os-Graduaç~ ao em Geologia, Instituto de Geoci^ encias, CCMN, Cidade Universit aria, Ilha do Fund~ ao, Av. Athos da SilveiraRamos, 274, Bloco G, 21941-916 Rio de Janeiro, RJ, Brazil. Tel.: þ55 21 25989464, þ55 34 32715249. E-mail addresses: [email protected] (C. de Jesus Faria), bgonriga@yahoo. com.ar (B.G. Riga), [email protected] (C.R. dos AnjosCandeiro), tsmarinho@ gmail.com (T. da SilvaMarinho), [email protected] (F.M. Simbras), [email protected] (R.B. Castanho). 1 Tel.: þ55 34 32715249. Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames http://dx.doi.org/10.1016/j.jsames.2014.11.008 0895-9811/© 2014 Elsevier Ltd. All rights reserved. Journal of South American Earth Sciences xxx (2014) 1e10 Please cite this article in press as: de Jesus Faria, C., et al., Cretaceous sauropod diversity and taxonomic succession in South America, Journal of South American Earth Sciences (2014), http://dx.doi.org/10.1016/j.jsames.2014.11.008

Transcript of Cretaceous sauropod diversity and taxonomic succession in South America

lable at ScienceDirect

Journal of South American Earth Sciences xxx (2014) 1e10

Contents lists avai

Journal of South American Earth Sciences

journal homepage: www.elsevier .com/locate/ jsames

Cretaceous sauropod diversity and taxonomic succession in SouthAmerica

CaioC�esar de Jesus Faria a, b, *, Bernado Gonz�alez Riga c,Carlos Roberto dos AnjosCandeiro b, 1, Thiago da SilvaMarinho d, e, Leonardo Ortiz David c,Felipe Medeiros Simbras f, Roberto Barboza Castanho g, Fellipe Pereira Muniz b, 1,Paulo Victor Luiz Gomes da CostaPereira a

a Universidade Federal do Rio de Janeiro, Programa de P�os-Graduaç~ao em Geologia, Instituto de Geociencias, CCMN, Cidade Universit�aria, Ilha do Fund~ao,Av. Athos da Silveira Ramos, 274, Bloco G, 21941-916 Rio de Janeiro, RJ, Brazilb Universidade Federal de Uberlandia, Laborat�orio de Geologia, Avenida 20, 1.600 Bairro Tup~a, Ituiutaba, Minas Gerais, Brazilc Laboratorio de Dinosaurios, Facultad de Ciencias de Exactas y Naturales, Universidad Nacional de Cuyo, Avda. Padre Contreras 1300, (5500) Mendoza,Argentina/CONICET, IANIGLA, CCT-Mendoza, Argentinad Instituto de Ciencias Exatas, Naturais e Educaç~ao (ICENE), Universidade Federal do Triangulo Mineiro (UFTM), Av. Dr. Randolfo Borges Jr. 1700,Univerdecidade, 38064-200 Uberaba, Minas Gerais, Brazile Centro de Pesquisas Paleontol�ogicas L. I. Price, Complexo Cultural e Científico de Peir�opolis (CCCP/UFTM), Bairro Peir�opolis, Uberaba, Minas Gerais, Brazilf Petr�oleo Brasileiro S. A. (PETROBRAS), Avenida República do Chile, 330, Centro, Rio de Janeiro, RJ, Brazilg Laborat�orio de Geotecnologias, Curso de Geografia, Campus Pontal, Universidade Federal de Uberlandia, Uberlandia, Minas Gerais, Brazil

a r t i c l e i n f o

Article history:Received 9 May 2014Accepted 21 November 2014Available online xxx

Keywords:DinosaursSauropodsGondwanaBiogeography

* Corresponding author. Universidade Federal doP�os-Graduaç~ao em Geologia, Instituto de GeocienciasIlha do Fund~ao, Av. Athos da Silveira Ramos, 274, BlocoRJ, Brazil. Tel.: þ55 21 25989464, þ55 34 32715249.

E-mail addresses: [email protected] (C. de Jcom.ar (B.G. Riga), [email protected] (C.R. dosgmail.com (T. da SilvaMarinho), felipe.simbras@[email protected] (R.B. Castanho).

1 Tel.: þ55 34 32715249.

http://dx.doi.org/10.1016/j.jsames.2014.11.0080895-9811/© 2014 Elsevier Ltd. All rights reserved.

Please cite this article in press as: de Jesus FaSouth American Earth Sciences (2014), http

a b s t r a c t

The South American sauropod dinosaurs fossil record is one of the world's most relevant for theirabundance (51 taxa) and biogeographical implications. Their historical biogeography was influenced bythe continental fragmentation of Gondwana. The scenery of biogeographic and stratigraphic distribu-tions can provide new insight into the causes of the evolution of the sauropods in South America. One ofthe most important events of the sauropods evolution is the progressive replacement of Diplod-ocimorpha by the Titanosauriformes during the early Late Cretaceous. The fluctuation of the sea levels isfrequently related to the diversity of sauropods, but it is necessary to take into account the geologicalcontext in each continent. During the Maastrichthian, a global sea level drop has been described; incontrast, in South America there was a significant rise in sea level (named ‘Atlantic transgression’) whichis confirmed by sedimentary sequences and the fossil record of marine vertebrates. This process occurredduring the Maastrichtian, when the hadrosaurs arrived from North America. The titanosaurs wereamazingly diverse during the Late Cretaceous, both in size and morphology, but they declined prior totheir final extinction in the Cretaceous/Paleocene boundary (65.5Yrs).

© 2014 Elsevier Ltd. All rights reserved.

Rio de Janeiro, Programa de, CCMN, Cidade Universit�aria,G, 21941-916 Rio de Janeiro,

esus Faria), [email protected]), [email protected] (F.M. Simbras),

ria, C., et al., Cretaceous sauro://dx.doi.org/10.1016/j.jsames

1. Introduction

The dinosaurs fossil records comprises diverse findings datingback to the nineteenth century, by pioneers such as Ameghino,Lydekker, Woodward, and von Huene (Lydekker, 1893; Ameghino,1898; Colbert, 1984; Novas, 2009; Martinelli et al., 2010;Bittencourt and Langer, 2011; Calvo et al., 2011).

In South America, the most representative group of dinosaurs isSauropoda, a clade of huge herbivores that exhibits an amazingdiversity both in size and morphology. To date, 40 sauropod taxahave been found in Argentina, 10 in Brazil and one in Chile (seeAppendix). In Argentina, the sauropods are represented mainly by

pod diversity and taxonomic succession in South America, Journal of.2014.11.008

C. de Jesus Faria et al. / Journal of South American Earth Sciences xxx (2014) 1e102

Titanosauriformes, Dicraeosauridae, and Rebbachisauridae. Theyhave been recovered from Angostura Colorada, Bajo Barreal, Allen,Anacleto, Lohan Cura, Candeleros, Portezuelo, La Amarga, RioNeuquen, Cerro Barcino and Huincul formations (Martinelli et al.,2010; Navarrete et al., 2011; Ibiricu et al., 2012).

In Brazil, they are recorded mostly from rocks of the Ada-mantina, Presidente Prudente, and Marília formations of the BauruGroup (e.g., Santucci and Bertini, 2001), and their evolution duringthe breakup of Gondwana has considerable biogeographic rele-vance (Novas, 2009). Other occurrences of sauropods have beenreported in Alcantara Formation, Itapecuru Formation (both S~aoLuís-Grajaú Basin), Parecis Group (Paran�a Basin), Açu Formation(Potiguar Basin), and Quiric�o Formation (Sanfranciscana Basin)(Langer et al., 2010; Martinelli et al., 2010). Outside Argentina andBrazil, sauropods in South America have only been reported in Chilewith a single species named Atacamatitan chilensis Kellner et al.,2011 (see Appendix).

Although there are numerous papers on South American sau-ropods, few studies analize and synthesize the available informa-tion. Therefore, the aim of this work is to achieve a synthesis ofthese dinosaurs, with special focus on distribution betweennorthern and southern South American taxa, including aspects ofage and paleoenvironment context.

2. Sauropod background

Sauropods were a successful group of quadrupedal, long-neckedherbivore dinosaurs from the Late Triassic to the Cretaceous/Paleogene boundary, and, included the largest terrestrial animalsthat ever existed (Martin, 2006; Martinelli et al., 2010). Wilson andSereno (1998) defined this clade as a stem group of ‘sau-ropodomorphs more closely related to Saltasaurus than to Plateo-saurus’ with a set of unique synapomorphies such as: large nares,distal part of the tibia covered by an ascending process of theastragalus, short hind limbs in comparison with the tarsal length,and at least three sacral vertebrae. The Cretaceous record ofgondwana sauropod dinosaurs is remarkably more abundant anddiverse than the Triassic and Jurassic ones (Powell, 1986; Salgadoet al., 1997).

Among the Cretaceous sauropods, the clade Titanosauria is oneof the largest recorded in the world as well as in South America, butother groups of sauropods also occurred during the Cretaceous ofArgentina, like Dicraeosauridae and Rebbachisauridae (Fig. 1). InBrazil, the titanosaurian taxa are relatively abundant and repre-sented by Maxakalisaurus topai (Kellner et al., 2006); Ada-mantisaurus mezzalirai (Santucci and Bertini, 2006); Aeolosaurusmaximus (Santucci and Arruda-Campos, 2011); Baurutitan britoi

Fig. 1. Simplified sauropod cladogram (modified from Mannion et al., 2011).

Please cite this article in press as: de Jesus Faria, C., et al., Cretaceous sauroSouth American Earth Sciences (2014), http://dx.doi.org/10.1016/j.jsames

(Kellner et al., 2005); Gondwanatitan faustoi (Kellner and Azevedo,1999), among others.

3. Results

This overview was made with information acquired from pub-lications and some unpublished data of materials under study bythe authors. The synthesis of data in Appendix and figures is anecessary step to discuss the topic.

3.1. Notes on Cretaceous South American sauropods

Most information on the Cretaceous sauropod faunas of SouthAmerica is from Argentina (Neuqu�en and Austral basins), Brazil(Paran�a, S~ao Luís-Grajaú and Sanfranciscana basins), and Chile(Tolar Formation) (Fig. 2). It provides roughly 70% of the total re-cords of the Cretaceous sauropods in Gondwana. These basinsinclude some exceptional outcrops and well-developed strati-graphic sequences. In South America, knowledge of Cretaceoussauropods has increased in the last decade (e.g., Salgado et al., 1997;De la Fuente et al., 2007; Novas, 2009; Martinelli et al., 2010;Gonz�alez Riga, 2010) with papers published on sauropod recordsfrom the Neuqu�en Basin and Bauru Group of Early-Late Cretaceous.To date, 51 valid species have been described (see Appendix). Thesauropod fauna of Argentina, Brazil, and Chile come from strati-graphic levels of continental sequences of rocks assigned to theinterval between the Berriasian to Maastrichtian.

3.2. Lower Cretaceous

The fossil record of South American sauropods from the LowerCretaceous is relatively reduced, including 10 species (Appendix).In Argentina sauropod species from strata of the Neuqu�en and SanJorge Basins; in Brazil these dinosaurs were found in S~ao Luís-Grajaú and Sanfranciscana basins (Carvalho et al., 2003; Zaher et al.,2011).

The San Jorge Basin (Archangelsky et al., 1994; Bridge et al.,2000) is exposed in central Patagonia (Chubut Province,Argentina) and composed of thick sedimentary sequences from theEarly to Late Cretaceous that constitute the Chubut Group andsauropod-bearing Aptian-Albian Cerro Barcino Formation. In thisbasin was found and reported the somphospondylian titanosauri-form Chubutisaurus insignis (Del Corro, 1975), as well as theropods(abelisaurids and carcharodontosaurids), crocodyliforms, andtitanosaurs.

The Lower Cretaceous of the Neuqu�en Basin (Garrido, 2010) is aterrestrial dinosaur-bearing sequence known by La Amarga andLohan Cura formations. The youngest member (Barremian) of LaAmarga Formation is the Piedra Parada Member where thedicraeosaurid Amargasaurus cazaui (Salgado and Bonaparte, 1991),rebbachisaurids Zapalasaurus bonapartei (Salgado et al., 2006),Amargatitanis macni (Apesteguía, 2007) were reported. From theAptian-Albian Rayoso Formation have been reported the rebba-chisaurid Rayososaurus agrioencis (Bonaparte, 1996) have been re-ported. La Amarga Formation, recognized as Late Aptian-Albian age,sauropod record consists of somphospondylian titanosauriformAgustinia ligabuei (Bonaparte, 1999), rebbachisaurid Limaysaurustessonei (Salgado et al., 2004), Comahuesaurus windhauseni(Carballido et al., 2012), and the somphospondylan Ligabuesaurusleanzai (D'Emic, 2012). Recently, the diplodocid Leinkupal laticaudawas reported from the Bajada Colorada Formation with an esti-mated age from late Berriasian-Valanginian (Gallina et al., 2014).

The Early Cretaceous fauna from Brazil is lesser known than itsLate Cretaceous and also sparse when compared with localities ofArgentina. This rarity is due to its restricted geographic distribution

pod diversity and taxonomic succession in South America, Journal of.2014.11.008

Fig. 2. Map showing the Cretaceous units and outcrop areas approximately that carried the sauropod fauna mentioned in the text. (1) Formation, Aptian-Albian Cerro BarcinoFormation, (2) Albian-Aptian Lohan Cura Formation and La Amarga, (3) Bajo Barreal Formation, Campanian-Maastrichtian, (4) Allen Formation, Campanian-Maastrichtian, (5)Candeleros Formation, Cenomanian, and the Santonian Plottier Formation, (6) Rio Neuqu�en Formation, late Turonian-late Coniacian, (7) Pari Aike Formation, early Maastrichtian, (8)Bajo Barreal Formation, Late Cretaceous, (9) Tolar Formation, Late Cretaceous, (10) Adamantina Formation, Campanian-Maastrichtian, Aptian-Albian, (11) Adamantina Formation,Turonian-Santonian, (12) Adamantina Formation, Late Cretaceous, (13) Maastrichtian Marília Formation, (14) Aptian Quiric�o Formation, (15) Itapecuru Formation.

C. de Jesus Faria et al. / Journal of South American Earth Sciences xxx (2014) 1e10 3

and low sauropod diversity could be related to the low number ofcollections and studied localities. The nemegtosaurid titanosaurTapuiasaurus macedoi (Zaher et al., 2011) was recovered from theAptian Quiric�o Formation, Areado Group (Sanfranciscana Basin).The Albian Itapecuru Group (S~ao Luís-Grajaú Basin) is an importantdinosaur-bearing unit in northern Brazil fromwhich was found therebbachisaurid Amazonsaurus maranhensis (Carvalho et al., 2003)and other indeterminate dinosaur remains.

3.3. Late Cretaceous

3.3.1. ArgentinaThe Argentinean sauropod record comes from the Patagonia,

Neuqu�en, Austral, and Golfo San Jorge Basins (Santa Cruz, Chubut,Neuqu�en and Río Negro Provinces), central-western Argentina,Neuqu�en and Colorado Basins (Mendoza and La Pampa Provinces),and northwestern Argentina (Salta Province). The Late CretaceousBrazilian sauropod species comes from Bauru Group of the MinasGerais, Mato Grosso, and S~ao Paulo states. The unique Chileansauropod dinosaur species is known from Late Cretaceous TolarFormation (Appendix).

The Neuqu�en Basin is located in the northwestern Patagonia(Argentina) and consists of the most important dinosaur-bearingBasin from southern continents (Leanza et al., 2004; Garrido,2010; Calvo et al., 2011). A diverse and representative Gondwanasauropod species has been reported from all Late Cretaceous Neu-qu�en Group units, which comprise, according to Garrido (2010), the

Please cite this article in press as: de Jesus Faria, C., et al., Cretaceous sauroSouth American Earth Sciences (2014), http://dx.doi.org/10.1016/j.jsames

following formations deposited between the early Cenomanian andthe middle Campanian: Candeleros, Huincul, Cerro Lisandro, Por-tezuelo, Los Bastos, Sierra Barrosa, Plottier, Bajo de la Carpa, and LosColorados. Allen Formation and equivalents (Loncoche, Los Alami-tos, and Angostura Colorada) was deposited during the lateCampanian-early Maastrichtian. It is the lower unit of the MalargueGroup and unconformably overlies the Neuqu�en Group.

The record comprises the lithostrotian titanosaur Quetecsaurusrusconii (Gonz�alez Riga and David, 2014) (Cenomanian-earlyTuronian), the titanosaur Andesaurus delgadoi from the CandelerosFormation (early Cenomanian), and the Lithostrotian titanosaurArgentinosaurus huinculensis (Bonaparte and Coria, 1993) from theHuincul Formation (late Cenomanian-early Turonian).

The lithostrotian titanosaur Petrobrasaurus puestohernandezi(Filippi et al., 2011a) and rinconsaurian titanosaur Rinconsauruscaudamirus (Calvo and Gonz�alez Riga, 2003) were discovered in thePlottier Formation (Coniacian-early Santonian), the lognkosauriantitanosaur Mendozasaurus neguyelap (Gonz�alez Riga, 2003) andrinconsaurian titanosaur Muyelensaurus pecheni (Calvo et al.,2007a) were discovered in the middle-late Coniacian strata of theSierra Barrosa Formation, the lognkosaurian titanosaur Futa-lognkosaurus dukei (Calvo et al., 2007b) was discovered in the lateTuronian-early Coniacian strata of the Portezuelo Formation, andthe somphospondylian titanosauriform (or basal titanosaur afterphylogenetic criteria) Malarguesaurus florenciae (Gonz�alez-Rigaet al., 2009) was found in the early-middle Coniacian strata of theLos Bastos Formation.

pod diversity and taxonomic succession in South America, Journal of.2014.11.008

Fig. 3. Number of genera during the Cretaceous of Diplodocimorpha (Dicraeosauridsand Rebbachisaurids) and Titanosaurs (Titanosaurs and Somphospondyliantitanosauriforms).

C. de Jesus Faria et al. / Journal of South American Earth Sciences xxx (2014) 1e104

Bonitasaura salgadoi (Apesteguía, 2004), Traukutitan eocaudataJuar�ez-Valieri and (Calvo et al., 2011), and Elaltitan lilloi (Mannionand Otero, 2012) are lithostrotian titanosaurs discovered in theSantonian strata of the Bajo de la Carpa Formation.

The lithostrotian titanosaurs Antarctosaurus wichmannianus(Huene, 1929), Barrosasaurus casamiquelai (Salgado and Coria,2009), Narambuenatitan palomoi (Filippi et al., 2011b), Over-osaurus paradasorum (Coria et al., 2013), Pitekunsaurus macayai(Filippi and Garrido, 2008), and the saltasaurinae titanosaur Neu-quensaurus australis (Powell, 1986) were found in the early-middleCampanian strata of the Anacleto Formation.

Some sauropods are known from the Bajo Barreal Formation(Cenomanian-Turonian of the Chubut Group): the aeolosaurinititanosaur Aeolosaurus colhuehuapiensis (Casal et al. 2007), lithos-trotian titanosaurs Epachthosaurus sciuttoi (Powell, 1990), Drusila-saura deseadensis (Navarrete et al., 2011) and Argyrosaurus superbus(Lydekker, 1893), and the rebbachisaurid Katepensaurus goicoecheai(Ibiricu et al., 2013).

From Angostura Colorada Formation, the aeolosaurini titano-saur Aeolosaurus rionegrinus (Powell, 1987) has been reported. Thesauropod fauna from the Allen Formation (late Campanian-earlyMaastrichtian) was represented by lithostrotian titanosaurs Bona-titan reigi (Martinelli and Forasiepi, 2004), Panamericansaurusschroederi (Porfiri and Calvo, 2010), and Pellegrinisaurus powelli(Salgado, 1996), and the saltasaurinae titanosaur Rocasaurusmuniosi (Salgado and Azpilicueta, 2000).

Sauropod species dinosaurs known fromSalta Group (Salfity andZambrano, 1990; Marquillas et al., 2005) were recovered in LechoFormation (Campanian-early Maastrichtian) and comprise the sal-tasaurinae titanosaur Saltasaurus loricatus (Bonaparte and Powell,1980). New and detailed studies of Neuquensaurus improve ourtaxonomic and phylogenetic knowledge (D'Emic andWilson, 2011).

Finally, in the Austral Basin of Santa Cruz Province, lithostrotiantitanosaur Puertasaurus reuilli (Novas et al., 2005) was discovered inthe Pari Aike Formation (early Maastrichtian).

3.3.2. BrazilThe Late Cretaceous sauropods from Brazil are represented by

species assigned to the Titanosauria group. All of them have beenrecovered from the upper interval of the Bauru Group (Turonian-Maastrichtian), Paran�a Basin, and they have been found in S~aoPaulo and Minas Gerais states. The Aeolosaurini group is repre-sented by G. faustoi (Kellner and Azevedo, 1999) and Aeolosaurusmaximus (Santucci and Arruda-Campos, 2011), both from S~ao Paulostate, which also provides the Titanosauria A. mezzalirai (Santucciand Bertini, 2006) and Brasilotitan nemophagus (Machado et al.,2013), all from Campanian-Maastrichtian.

In Minas Gerais state, the main region that has providedsauropod species is the Triangulo Mineiro, where crops out theAdamantina, Uberaba, and Marília formations. The district ofPeir�opolis is the most prolific location for sauropod species, wherethe Titanosauria group is represented by B. britoi (Kellner et al.,2005), Trigonosaurus pricei (Campos et al., 2005), and Uber-abatitan ribeiroi (Salgado and Carvalho, 2008). From Prata munici-pality, in the uppermost levels of the Adamantina Formation (LateCampanian e Early Maastrichtian), was recovered the skeleton ofthe M. topai (Kellner et al., 2006), another Titanosauria.

Other localities have already provided sauropod material andtheir geology is poorly known, as the Mato Grosso state and the RioGrande do Norte state. FromMato Grosso, were recoveredmaterialsof an indeterminate Aeolosaurini (Franco-Rosas et al., 2004).

3.3.3. ChileFrom Late Cretaceous Tolar Formation of the Atacama Desert

(Antofagasta Region), northern Chile, has been recorded the first

Please cite this article in press as: de Jesus Faria, C., et al., Cretaceous sauroSouth American Earth Sciences (2014), http://dx.doi.org/10.1016/j.jsames

titanosaur species A. chilensis (Kellner et al., 2011). Chilean sauropodrecord demonstrated that this area has potential for new findings.

4. South American sauropod diversity analysis

4.1. Introduction

One of themost relevant aspects of the historical biogeography isthe influence of continental fragmentation and thefluctuation of sealevels in the evolution of terrestrial vertebrate faunas. Sauropods areamodel because theyachievedanearlyPangaeandistributionby theMiddle Jurassic and persisted until the peak of continental isolationat the end of the Cretaceous (Wilson and Sereno, 1998). The historyof South American sauropod is a complex topic. Herein, we outlinesomeaspects as a preliminary study. Fifty one sauropod species havebeen discovered in South America andmost of them are titanosaurs.During the Late Cretaceous, titanosaurs were the dominant mega-herviborous of the faunas. In contrast, in North America for mostof the Late Cretaceous the ornithischian dinosaurs were the mostabundant herbivorous vertebrates during the Late Cretaceous(Benton and Harper, 2009; Coria et al., 2012).

Among the important evolutionary events of sauropods historyone of the most remarkable is the progressive replacement of Dip-lodocimorpha by the Titanosauriformes (see citations in De laFuente et al., 2007). This aspect can be confirmed by a graphic thatshowscurves basedon thenumberof genera through time (Fig. 3). Inthe record of the Lower and Early-Late Cretaceous, rebbachisauridsare present inNorthern Patagonia (e.g.Amargasaurus,Rayososaurus)and confirm the biogeographic connection with Africa, before theformation of the Atlantic Ocean. The extinction of some Diplod-ocimorpha has been reported by some authors in southern conti-nents (e.g., Salgado et al., 2004; Coria and Salgado, 2005; Gallina andApesteguía, 2005; Calvo et al., 2006; Ibiricu et al., 2012), and thesestudies show the record of this group only until Turonian, after thatonly titanosaurs survived (Fig. 4).

Carballido et al. (2012) carried out a detailed analysis of rebba-chisaurids based on process of dispersal, extinction, and clado-genesis and retrieved a South American origin for this lineage, anda fast dispersion to Africa and Europe during the Hauter-ivianeBarremian. The close connection between South Americaand Africa and between Africa and Europe during the Barre-mianeAptian (e.g., the Apulian route; Canudo et al., 2009) lendssupport to this dispersion event and explains the presence ofrebbachisaurids in the Barremian of Europe (Carballido et al., 2012).

4.2. Tectonic events in South America and base level flutuactions

Detailed studies like the contributions of Upchurch and Barrett(2005), Barret et al. (2009), and mainly the analysis of Mannion

pod diversity and taxonomic succession in South America, Journal of.2014.11.008

Fig.

4.Cretaceo

usge

ochr

onolog

ical

saurop

odsp

eciesfrom

SouthAmerica.

C. de Jesus Faria et al. / Journal of South American Earth Sciences xxx (2014) 1e10 5

Please cite this article in press as: de Jesus Faria, C., et al., Cretaceous sauroSouth American Earth Sciences (2014), http://dx.doi.org/10.1016/j.jsames

et al. (2011) used several proxies and methods to analyze the di-versity of sauropods through time. Mannion et al. (2011) suggestedthat some diversity peaks are probably related to rises and falls insea level. However, this general hypothesis must be analyzed ineach continent, including local subsidence produced by tectonic orsedimentary processes. For example, during the Maastrichthian, aglobal sea level drop is described by Haq et al. (1987). In contrast, inthe some basins of South America, a relevant rise of sea level isconfirmed by the sedimentary geology and described as an ‘Atlantictransgression’ (Wichmann, 1927; Andresi et al., 1974; Legarretaet al., 1989; Parras and Griffin, 2013). In Northern Patagonia, anAtlantic epicontinental sea is recorded in facies of the MalargueGroup (late Campanian-Danian) and reaches a peak in the JaguelFormation (late Maastricthian). In the top of this event, limestonesof the regressive and diachronous Roca Formation from the LateMaastricthian-early Danian are recorded (Parras et al., 1998).

Otherwise, different from the eustatic fluctuations observed inArgentina, in the interior Brazilian basins of Paran�a and San-franciscana or even near the coastline of the S~ao Luís-Grajaú in thenorth and Potiguar in the northeast, the fluvial channelized con-glomerates and sandstones lithofacies, which provided most of theBrazilian sauropod species from the latest Lower to Upper Creta-ceous, are associated with the drop of the base level with differentfrequencies and controlled by allogenetic factors. These factors are,most of times, local tectonic movements on the buffer zone andsource area or also climatic changes (Catuneanu et al., 2011), whichproduced sometimes subaerial unconformities or even self paleo-environment architectural adjustments. In the case of the Brazilianbasins, for example, the continental and coastal areas were pro-gressively uplifted in an isostatic compensation response to theclockwise rotation of the Southamerican continent relative to theAfrican continent during the Neocomian and the drift of the mar-ginal basins of the Atlantic Ocean, as observed in Ponta Grossa Arch,Paran�a Basin, and also in Ferrer-Urbano Santos Arch and Rio Par-naíba-Xambioa Lineament, S~ao Luís-Grajaú Basin (Rezende andPamplona, 1970; Asmus and Guazelli, 1981; Zanotto and Szatmari,1987; Macedo, 1991; Vignol-Lelarge et al., 1994; Almeida and Car-neiro, 1998; Lima and Rossetti, 1999; Strugale et al., 2007). Theseepisodes were responsible for the creation of subaerial un-conformities and incised valley that posteriorly was filled bychannel deposits in the Lowstand System Tracts in interior basins.

This complex tectonic and sedimentary history is responsible tothe local accumulation and preservation of sauropod fossils, dis-playing the stratigraphic record not calibrated to eustatic fluctua-tions on the continental margin of South America, different fromthat observed by Mannion et al. (2011) and by us in Argentina.Furthermore, the peaks of diversity of sauropods through thegeological time related to low frequency eustatic fluctuations byMannion et al. (2011) could be an artifact of the better condition forthe accumulation and preservation in sedimentary basins. Forexample, in Bauru Group, Paran�a Basin, the presence of diversetitanosaurian sauropod species in low temporal range is unknown,although, higher frequence sauropod diversity peaks are notsampled sufficiently to improve the possible effect of smaller andlocal scale controllers on the sedimentation and accumulation ofbone bearing layers.

4.3. Depositional settings, taphonomical remarks and systematicdiversity

During the Late Cretaceous, titanosaur diversity increased anddisplayed different adaptative types. In our study (Fig. 4), we cansee how titanosaur abundance increased toward the end of theCretaceous, but it declined prior to their final extinction at theCretaceous/Paleogene (K/Pa) boundary (65.5 Mya). This decline is,

pod diversity and taxonomic succession in South America, Journal of.2014.11.008

C. de Jesus Faria et al. / Journal of South American Earth Sciences xxx (2014) 1e106

in fact, related to the fossil record and more complex studies arenecessary to confirm their causes. In Patagonia this decline of thefossil record could be related to different taphonomic process. Forexample, the change of the fluvial facies of the Neuqu�en Group tolacustrine-marine marginal facies of the Malargue Group impli-cates changes in their associated biostratinomic and fossil-diagenetic process.

From sedimentological viewpoint, 72% of the South Americansauropods have been preserved in fluvial facies, 12% in fluvial tolacustrine, 8% in lacustrine and the other 8% in marine marginalfacies (e.g. tidally flats, deltas) (Fig. 5). This record indicates thattitanosaur bones are more abundant in fluvial facies, and the studyof some sites indicates that crevasse splay facies (Gonz�alez Riga andAstini, 2007) and muddy flood plain deposits (Gonz�alez Riga et al.,2013) were prone to the preservation of these bones. In marinemarginal facies, like the Loncoche Formation from the MendozaProvince (Argentina), fossil bones are scarse but sauropod tracksare abundant and well preserved. Taphonomic aspects indicatedthat titanosaurs have capacity to walk effectively over very satu-rated substrates of tidal flats (Gonz�alez Riga, 2011).

Against this statistical data from Argentinean sedimentary ba-sins, in Brazil the sauropod fossils are preserved in facies associa-tion regarded as part of the Lowstand System Tract. It could beobserved in the Early Cretaceous the fluvial dominated lacustrinedeltaic sandstone facies of Quiric�o Formation (Aptian), AreadoGroup in Sanfranciscana Basin (Campos and Dardenne, 1997; Zaheret al., 2011), and in deltaic mounth bar sandstone facies of AptianItapecuru Group (Lima and Rossetti, 1999; Carvalho et al., 2003;Miranda and Rossetti, 2006) and deltaic conglomeratic facies ofAlbian-Cenomanian Alcantara Formation (Medeiros et al., 2007;Candeiro et al., 2011) in S~ao Luís-Grajaú Basin. In the Late Creta-ceous, channel filling conglomerates and sandstones facies andflash floods conglomeratic sandy facies of the Adamantina, Presi-dente Prudente andMarília formations (SantonianeMaastrichtian),Bauru Group, Paran�a Basin (Soares et al., 1980) and in theconglomeratic sandstones of fluvial to distal alluvial fan facies ofUtiariti Formation (Campanian-Maastrichtian), Parecis Group, Riodas Mortes Rift (Chapada Graben) in north Paran�a Basin (Weska,2006). Apparently, the only exception is in the marginal lagoonand transitional sandstones facies of the uppermost interval of AçuFormation (Cenomanian), Potiguar Basin in which this interval ofthis unit is regarded as part of a transgressive sequence (Santoset al., 2005; Pessoa-Neto et al., 2007), similar to Loncoche Forma-tion context in Argentina.

However, theoretically, the best ecological condition for hugeherbivores like sauropods must be to include paleoenvironments

Fig. 5. Sedimentary environment of the Cretaceous sauropod record in South America.

Please cite this article in press as: de Jesus Faria, C., et al., Cretaceous sauroSouth American Earth Sciences (2014), http://dx.doi.org/10.1016/j.jsames

with diverse and abundant vegetation, as it is present in fluvialand lacustrine of Neuqu�en Group and some lacustrine levels of theAllen Formation in Argentina (Garrido, 2010) and Bauru Group inBrazil (Soares et al., 1980). In contrast, these conditions aredifferent in lagoons, tidal flats, and deltas influenced by the sea ofthe Loncoche Formation (Pramparo et al., 2008). It has not beenstudied in detail the behavior preferences of titanosaus, but someauthors suggest that they showed a preference for inland terres-trial environments (Mannion, 2008; Mannion and Upchurch,2010); this hypothesis is congruent with the geological contextof findings described in this paper but will be confirmed by moredetailed taphonomic sites.

Another important factor of the titanosaur diversity during theLate Cretaceous of Patagonia is the reduction of terrestrial areascaused by the Atlantic transgressions. In the Neuqu�en Basin asustained subsidence allowed accommodation and preservation ofa succession of rather unusual coastal lagoons, estuaries, tidal flats,and deltaic to shallow-marine facies associations with mixed tide-wave influence. Evidently, these environmental conditions reducedthe land areas for the latest titanosaurs that lived in the Patagonia.The detailed study of tracksite, such as that of Titanopodus ofMendoza, suggests that titanosaurs moved through the narrowearly-Andean continental bridge across the Atlantic sea-waydeveloped in northern Patagonia (Astini et al., 2014).

Other factor during the Maastrichthian is the immigration ofhadrosaurs from North America (Brett-Surman, 1979; Gonz�alezRiga and Casadío, 2000; Coria et al., 2012). Paleoecological studiesbased on the possible interaction between both groups have notbeen published yet.

4.4. Paleobiological considerations

The South American titanosaurs exhibits a great diversity of size(from under 7 m saltasaurids to 34 m long in Argentinosaurus),shapes of necks (e.g. the amazing diversity of morphology in cer-vical vertebrae described by Gonz�alez Riga (2005), presence orabsence of dermal bones (ostederms), different pedal structures(see Gonz�alez Riga et al., 2008), and diverse skull structure andteeth (Gallina and Apesteguía, 2011; Zaher et al., 2011). Ontogenetictopics have been studied regarding embryos and osteohistology.First, the discovery of exceptionally preserved embryos, eggs, andnests in Auca Mahuevo (Neuqu�en Province, Patagonia) reveals newontogenetic and phylogenetic information (Chiappe et al., 1998,2001). Specifically, these embryos provide an opportunity to testprevious hypotheses concerning neosauropod phylogeny, forinstance, the correlation between different characters expressed inadult skulls (Salgado et al., 2005). Second, new osteohistologicalstudies promise to provide new insight into the growth strategiesin titanosaurs (e.g. Salgado, 2003; Gonz�alez Riga and Curry Rogers,2006), as in other sauropod taxa (Curry Rogers and Ericsson, 2005).These analyses will also be important for understanding evolu-tionary aspects, when the sampling of thin section of most relevantsauropods species is available. It is probable that these anatomicalstructures are related to determinate habits and behaviors as yetunknown.

5. Conclusions

This work analyzes the fossil record of South American sauropoddinosaurs, one of the most relevant records worldwide for theirabundance (51 taxa) and biogeographical implications. The his-torical biogeography of sauropods is clearly influenced by thecontinental fragmentation of Gondwana and development of theSouth Atlantic Ocean. For this, phylogenetic relationships arerecognized between South American and African sauropod faunas

pod diversity and taxonomic succession in South America, Journal of.2014.11.008

C. de Jesus Faria et al. / Journal of South American Earth Sciences xxx (2014) 1e10 7

until the formation of the Atlantic Ocean during the mid-Cretaceous. A fluctuation of sea levels is frequently related to thediversity of sauropods (Mannion et al., 2011), but this general cor-relation must be refined in each continent with the discoveries ofmore species and in different stratigraphical resolution to improve.In Late Cretaceous of Argentina, the sauropods are preserved intransgressive sequences, transitional to lacustrine or overbank finesfacies associations, with its peak in theMaastrichtian in response tothe rise of the eustatic level in South Atlantic Ocean, during its drift.In the Argentinean context, the majority of sauropods materials arepreserved in channelized to flash flood or even gravity lobesassociated with lowstand system tract context of the Braziliancontinental sequences during Early to Late Cretaceous, in responseto the progressive uplift of the South America Platform due to thedrift of the South Atlantic Ocean. One of the most importantevolutionary events of the sauropods marked in South America is

Country Taxa Taxonomic status Geological unit, age

Argentina Aeolosauruscolhuehuapiensis

Titanosauria/Aeolosaurini

Bajo Barreal Formation, CMaastrichtian

Aeolosaurus rionegrinus Titanosauria/Aeolosaurini

Angostura Colorada FormMaastrichtian

Agustinia ligabuei Titanosauria Lohan Cura Formation, ApAmargasaurus cazaui Dicraeosauridae La Amarga Formation, BarAmargatitanis macni Titanosauria La Amarga Formation, BarAndesaurus delgadoi Titanosauria Candeleros Formation, CeAntarctosauruswichmannianus

Titanosauria Anacleto Formation, Camp

Argentinosaurushuinculensis

Titanosauria Huncuil Formation, Late C

Argyrosaurus superbus Titanosauria Bajo Barreal Formation, CBarrosasauruscasamiquelai

Titanosauria Anacleto Formation, Camp

Bonatitan reigi Titanosauria Allen Formation, Campan

Bonitasaura salgadoi Titanosauria Bajo de la Carpa FormatioCathartesaura anaerobica Rebbachisauridae Huincul Formation, CenomChubutisaurus insignis Somphospondyli Cerro Barcino Formation,Comahuesauruswindhauseni

Rebbachisauridae Lohan Cura Formation, Ap

Drusilasaura deseadensis Titanosauria Bajo Barreal Formation, CEpachthosaurus sciuttoi Titanosauria Bajo Barreal Formation, CFutalognkosaurus dukei Titanosauria/

LognkosauriaPortezuelo Formation, Tur

Katepensaurus goicoecheai Rebbachisauridae Bajo Barreal Formation, CLigabuesaurus leanzai Somphospondyli Lohan Cura Formation, ApLeinkupal laticauda Diplodocoidea Bajada Colorada FormatioLimaysaurus tessonei Rebbachisauridae La Amarga Formation, BarMalarguesaurus florenciae Somphospondyli Portezuelo Formation, late

ConiacianMendozasaurus neguyelap Titanosauria/

LognkosauriaRio Neuqu�en Formation, lConiacian

Muyelensaurus pecheni Titanosauria/Rinconsauria

Portezuelo Formation, lateConiacian

Narambuenatitan palomoi Titanosauria Anacleto Formation, loweNeuquensaurus australis Titanosauria/

SaltasaurinaeAnacleto Formation, Santo

Nopcsaspondylusalarcoensis

Rebbachisauridae Candeleros Formation, Co

Overosaurus paradasorum Titanosauria/Aeolosaurini

Anacleto Formation, Camp

Panamericansaurusschroederi

Titanosauria/Aeolosaurini

Allen Formation, Campan

Pellegrinisaurus powelli Titanosauria Allen Formation, Campani

Petrobrasauruspuestohernandezi

Titanosauria Plottier Formation, Santon

Pitekunsaurus macayai Titanosauria Anacleto Formation, CampPuertasaurus reuilli Titanosauria Pari Aike Formation, early

Please cite this article in press as: de Jesus Faria, C., et al., Cretaceous sauroSouth American Earth Sciences (2014), http://dx.doi.org/10.1016/j.jsames

the progressive replacement of Diplodocimorpha by the Titano-sauriformes during the early Late Cretaceous.

Acknowledgments

This research was supported by the Facultad de Ciencias Exactasy Naturales de la Universidad Nacional de Cuyo and funded bygrants from the Consejo Nacional de Investigaciones Científicas yT�ecnicas (CONICET 713/09), the Agencia Nacional de Promoci�onCientífica y Tecnol�ogica (FONCYT PICT-2011-2591), and the Uni-versidad Nacional de Cuyo to B. Gonz�alez Riga. This contributionwas partially supported by the CNPq Candeiro by ProdutividadePesquisa CNPq fellow.

Appendix. South American sauropod species fromCretaceous.

Palaeoenvironments Reference

ampanian- Continental Fluvial Casal et al. 2007.

ation, Campanian- Continental Fluvial Powell, 1986, 2003.

tian Continental Fluvial Bonaparte, 1999.remian Continental Fluvial Salgado and Bonaparte, 1991.remian Continental Fluvial Apesteguía, 2007.nomanian Continental Fluvial Calvo and Bonaparte, 1991.anian-Maastrichtian Continental Fluvial Huene, 1929.

enomanian Continental Fluvial Bonaparte and Coria, 1993.

enomanian-Turonian Continental Fluvial Lydekker, 1893.anian Continental Fluvial Salgado and Coria, 2009.

ian-Maastrichtian Marine marginals eLacustrine

Martinelli and Forasiepi, 2004.

n, Santonian Continental Fluvial Apesteguía, 2004.anian-Coniacian Continental Fluvial Gallina and Apesteguía, 2005.

Albian-Aptian Continental Fluvial Del Corro, 1975.tian-Albian Continental Fluvial Carballido et al. 2012.

enomanian-Turonian Continental Fluvial Navarrete et al. 2011.enomanian-Turonian Continental Fluvial Powell, 1990.onian-Coniacian Continental Fluvial Calvo et al., 2007a,b,c.

enomanian-Turonian Continental Fluvial Ibiricu et al. 2013.tian-Albian Continental Fluvial Bonaparte et al. 2006.n Continental Fluvial Gallina et al., 2014.remianee Early Aptian Continental Fluvial Salgado et al. 2004.Turonian-early Continental Fluvial Gonz�alez Riga et al., 2009.

ate Turonian-late Continental Fluvial Gonz�alez Riga, 2003.

Turonian-early Continental Fluvial Calvo et al., 2007a,b,c.

r to middle Campanian Continental Fluvial Filippi et al., 2011b.nian-Campanian Continental Fluvial Lydekker, 1893.

niacian Continental Fluvial Apesteguía, 2007.

anian Continental Fluvial Coria et al., 2013.

ian-Maastrichtian Marine marginals eLacustrine

Porfiri and Calvo, 2010.

an-early Maastrichtian Marine marginals eLacustrine

Salgado, 1996.

ian Continental Fluvial Filippi et al., 2011a.

anian Continental Fluvial Filippi and Garrido, 2008.Maastrichtian Continental Fluvial Novas et al. 2005.

(continued on next page)

pod diversity and taxonomic succession in South America, Journal of.2014.11.008

(continued )

Country Taxa Taxonomic status Geological unit, age Palaeoenvironments Reference

Quetecsaurus rusconii Titanosauria Cerro Lisandro Formation, late Cenomanian-early Turonian

Continental Fluvial Gonz�alez Riga and Ortíz David,2014.

Rayososaurus agrioencis Rebbachisauridae Rayoso Formation, Aptian-Albian Continental Fluvial Bonaparte, 1996.Rinconsaurus caudamirus Titanosauria/

RinconsauriaFormation Portezuelo, late Turonian-Coniacian Continental Fluvial Calvo and Gonz�alez Riga, 2003.

Rocasaurus muniosi Titanosauria/Saltasaurinae

Allen Formation, Campanian-Maastrichtian Marine marginals eLacustrine

Salgado and Azpilicueta, 2000.

Saltasaurus loricatus Titanosauria/Saltasaurinae

Lecho Formation, Campanian-earlyMaastrichtian

Continental Fluvial Bonaparte and Powell, 1980.

Traukutitan eocaudata Titanosauria Bajo de la Carpa Formation, Senonian Continental Fluvial Ju�arez Valieri and Calvo, 2011.Zapalasaurus bonapartei Rebbachisauridae La Amarga Formation, Aptian-Albian Continental Fluvial Salgado et al., 2006.

Brazil Adamantisaurus mezzalirai Titanosauria Adamantina Formation, Campanian-Maastrichtian

Continental Fluvial eLacustrine

Santucci and Bertini, 2006.

Aeolosaurus maximus Titanosauria/Aeolosaurini

Adamantina Formation, Campanian-Maastrichtian

Continental Fluvial eLacustrine

Santucci and Arruda-Campos,2011.

Amazonsaurusmaranhensis

Diplodocoidea Itapecuru Formation, Aptian-Albian Continental Fluvial eLacustrine

Carvalho et al., 2003.

Baurutitan britoi Titanosauria Marília Formation, Maastrichtian Continental e Lacustrine Kellner et al. 2005.Brasilotitan nemophagus Titanosauria Adamantina Formation, Turonian-Santonian Continental Fluvial e

LacustrineMachado et al., 2013.

Gondwanatitan faustoi Titanosauria/Aeolosaurini

Adamantina Formation, Campanian-Maastrichtian

Continental Fluvial eLacustrine

Kellner and Azevedo, 1999.

Maxakalisaurus topai Titanosauria/Aeolosaurini

Adamantina Formation, late Cretaceous Continental Fluvial eLacustrine

Kellner et al. 2006.

Tapuiasaurus macedoi Titanosauria Quiric�o Formation, Aptian Continental e Lacustrine Zaher et al., 2011.Trigonosaurus pricei Titanosauria Marília Formation, Maastrichtian Continental e Lacustrine Campos et al. 2005.Uberabatitan ribeiroi Titanosauria Marília Formation, Maastrichtian Continental e Lacustrine Salgado and Carvalho, 2008.

Chile Atacamatitan chilensis Titanosauria Tolar Formation, late Cretaceous Continental e Fluvial Kellner et al. 2011.

C. de Jesus Faria et al. / Journal of South American Earth Sciences xxx (2014) 1e108

References

Almeida, F.F.M., Carneiro, C.D.R., 1998. Origem e evoluç~ao da Serra do Mar. Rev. Bras.Geocienc. 28 (2), 135e150.

Ameghino, F., 1898. Sinopsis Geol�ogico-paleontol�ogica. In: Segundo censo de laRepública Argentina, vol. 1. Folia, Buenos Aires, pp. 112e255.

Andreis, R.R., I~níguez Rodríguez, A.M., Lluch, J.J., Sabio, D.A., 1974. Estudio sed-imentol�ogico de las formaciones del Cret�acico superior del �area del Lago Pel-legrini (provincia de Río Negro, República Argentina). Rev. la Asoc. Geol. Argent.29, 85e104.

Apesteguía, S., 2004. Bonitasaura salgadoi: a beaked sauropod in the Late Cretaceousof Gondwana. Naturwissenschaften 91, 493e497.

Apesteguía, S., 2007. The sauropod diversity of the La Amarga Formation (Barre-mian), Neuqu�en (Argentina). Gondwana Res. 12, 533e543.

Archangelsky, S., Belossi, E.S., Jalfin, G.A., Perrot, C., 1994. Palynology and alluvialfacies from the mid-Cretaceous of Patagonia, subsurface of San Jorge Basin,Argentina. Cretac. Res. 15, 127e142.

Asmus, H.E., Guazelli, W., 1981. Descriç~ao sum�aria das estruturas da margem con-tinental brasileira e das �areas oceanicas e continentais adjacentes, hip�otesesobre o tectonismo causador e implicaç~oes para o progn�ostico de seu potencialde recursos minerais. S�erie Proj. REMAC 9, 187e269.

Astini, R., Pr�amparo, M., Gonz�alez Riga, B., Previtera, E., Carignano, A., 2014. Low-gradient coastal environments of an exceptional titanopodus sauropod tracksiteat the lattermost Cretaceous epicontinental sea way in northwest Patagonia(southern Mendoza) Argentina: sequence stratigraphic, taphonomic and pale-obiogeographic implications. In: XIX Congreso Geol�ogico Argentino. Libro deActas.

Barrett, P.M., McGowan, A.J., Page, V., 2009. Dinosaur diversity and the rock record.Proc. R. Soc. Lond. Ser. B Biol. Sci. 276, 2667e2674.

Benton, M.J., Harper, D.A.T., 2009. Introduction to Paleobiology and the Fossil Re-cords. Blackwell, p. 605.

Bittencourt, J.S., Langer, M.C., 2011. Mesozoic dinosaurs from Brazil and theirbiogeographic implications. An. Acad. Bras. Cienc. 83, 23e60.

Bonaparte, J.F., Powell, J.E., 1980. A continental assemblage of tetrapods from theUpper Cretaceous beds of El Brete, northwestern Argentina (Sauropoda-Coe-lurosauria-Carnosauria-Aves). M�emoires la Soc. G�eol. Fr. Nouv. S�erie 139, 19e28.

Bonaparte, J.F., Coria, R.A., 1993. Un nuevo y gigantesco saur�opodo titanosaurio de laFormaci�on Río Limay (Albiano-Cenomaniano) de la Provincia del Neuqu�en,Argentina. Ameghiniana 30, 271e282.

Bonaparte, J.F., 1996. Cretaceous tetrapods of Argentina. In: Arratia, G. (Ed.),Contribution of Sourthern South America to Vertebrate Paleontology, Münch-ner GeowissenschaftlicheAbhandlungen (A), München, vol. 30, pp. 73e130.

Bonaparte, J.F., 1999. An armoured sauropod from the Aptian of northern Patagonia,Argentina. Natl. Sci. Mus. Monogr. 15, 1e12.

Bonaparte, J.F., Gonz�alez Riga, B.J., Apesteguía, S., 2006. Ligabuesaurus leanzai gen. etsp. nov. (Dinosauria, Sauropoda), a new titanosaur from the Lohan Cura For-mation (Aptian, Lower Cretaceous) of Neuqu�en, Patagonia, Argentina. Cretac.Res. 27, 364e376.

Please cite this article in press as: de Jesus Faria, C., et al., Cretaceous sauroSouth American Earth Sciences (2014), http://dx.doi.org/10.1016/j.jsames

Brett-Surman, M.K., 1979. Phylogeny and palaeobiogeography of hadrosaurian di-nosaurs. Nature 277, 560e562.

Bridge, J.S., Jalfin, G.A., Georgieff, S.M., 2000. Geometry, lithofacies, and spatialdistribution of Cretaceous fluvial sandstone bodies, San Jorge Basin, Argentina:outcrop analog for the hydrocarbon-bearing Chubut Group. J. Sediment. Res. 70,341e359.

Calvo, J.O., Bonaparte, J.F., 1991. Andesaurus delgadoi gen. et sp. nov. (Saurischia-Sauropoda), titanosaurid dinosaur from the Río Limay Formation (Albian-Cen-omanian), Neuqu�en, Argentina. Ameghiniana 28, 303e310.

Calvo, J.O., Gonz�alez Riga, B.J., 2003. Rinconsaurus caudamirus gen. et sp. nov., anewtitanosaurid (Dinosauria, Sauropoda) from the Late Cretaceous of Patago-nia, Argentina. Rev. Geol. Chile 30, 333e353.

Calvo, J.O., Gandossi, P., Porfiri, J., 2006. Dinosaur faunal replacement during Cen-omanian times in Patagonia, Argentina. In: Barrett, P.M., Evans, S.E. (Eds.), NinthInternational Symposium on Mesozoic Terrestrial Ecosystems and Biota, Man-chester, pp. 17e20.

Calvo, J.O., Gonz�alez Riga, B.J., Porfiri, J.D., 2007a. A new titanosaur sauropod fromthe Late Cretaceous of Neuqu�en, Patagonia, Argentina. Arq. do Mus. Nac. 65,485e504.

Calvo, J.O., Porfiri, J.D., Gonz�alez Riga, B.J., Kellner, A.W.A., 2007b. Anatomy ofFutalognkosaurus dukei Calvo, Porfiri, Gonz�alez Riga and Kellner, 2007 (Dino-sauria, Titanosauridae) from the Neuqu�en Group (Late Cretaceous), Patagonia,Argentina. Arq. do Mus. Nac. 65, 511e526.

Calvo, J.O., Porfiri, J.D., Gonz�alez Riga, B.J., Kellner, A.W.A., 2007c. A new Cretaceousterrestrial ecosystem from Gondwana with the description of a new sauropoddinosaur. An. Acad. Bras. Cienc. 79, 529e541.

Calvo, J.O., Porfiri, J., Pol, D., Gonz�alez Riga, B.J., De la Fuente, M., Rougier, G.W., 2011.Vertebrados continentales mesozoicos. In: Relatorio de la Provincia del Neu-qu�en XVIII Congreso Geol�ogico Argentino, vol. 1, pp. 539e556.

Campos, D.D.A., Kellner, A.W., Bertini, R.J., Santucci, R.M., 2005. On a titanosaurid(Dinosauria, Sauropoda) vertebral column from the Bauru group, Late Creta-ceous of Brazil. Arq. do Mus. Nac. 63, 565e593.

Campos, J.E.G., Dardenne, M.A., 1997. Estratigrafia e sedimentaç~ao na Bacia San-franciscana: uma revis~ao. Rev. Bras. Geocienc. 29 (2), 217e226.

Candeiro, C.R.A., Fanti, F., Therrien, F., Lamanna, M.C., 2011. Continental fossil ver-tebrates from the mid-Cretaceous (AlbianeCenomanian) Alcantara Formation,Brazil, and their relationship with contemporaneous faunas from North Africa.J. Afr. Earth Sci. 60, 79e92.

Canudo, J.I., Barco, J.L., Pereda-Suberbiola, X., Ruiz-Ome~naca, J.I., Salgado, L.,Fern�andez-Baldor, F.T., Gasulla, J.M., 2009. What Iberian dinosaurs reveal aboutthe bridge said to exist between Gondwana and Laurasia in the Early Creta-ceous. Bull. la Soc. G�eol. Fr. 180, 5e11.

Carballido, J.L., Salgado, L., Pol, D., Canudo, J.I., Garrido, A., 2012. A new basal rebba-chisaurid (Sauropoda, Diplodocoidea) from the Early Cretaceous of the Neuqu�enBasin: evolution and biogeography of the group. Hist. Biol. 24, 631e654.

Carvalho, I.S., Avilla, L.S., Salgado, L., 2003. Amazonsaurus maranhensis gen. et sp.nov. (Sauropoda, Diplodocoidea) from the Lower Cretaceous (Aptian-Albian) ofBrazil. Cretac. Res. 24, 697e713.

pod diversity and taxonomic succession in South America, Journal of.2014.11.008

C. de Jesus Faria et al. / Journal of South American Earth Sciences xxx (2014) 1e10 9

Casal, G., Martínez, R.D., Luna, M., Sciutto, J.C., Lamanna, M.C., 2007. Aeolosauruscolhuehuapensis sp. nov. (Sauropoda, Titanosauria) de la Formaci�on Bajo Barreal,Cret�acico Superior de Argentina. Rev. Bras. Paleontol. 10, 53e62.

Catuneanu, O., Galloway, W.E., Kendall, C.G.StC., Miall, A.D., Posamentier, H.W.,Strasser, A., Tucker, M.E., 2011. Sequence stratigraphy: methodology andnomenclature. Newsl. Stratigr. 44 (3), 173e245.

Chiappe, L.M., Coria, R.A., 2001. Embryos skulls of titanosaur saurpodod dinosaurs.Science 293, 2444e2446.

Chiappe, L.M., Coria, R.A., Dingus, L., Jackson, F., Chinsamy, A., Foz, M., 1998.Sauropod dinosaur embryos from de Late Cretaceous of Patagonia. Nature 396,258e261.

Colbert, E.H., 1984. The Great Dinosaur Hunters and their Discoveries. Dover Pub-lications Inc., New York.

Coria, R.A., Salgado, L., 2005. Mid-cretaceous Turnover of Saurischian DinosaurCommunities: Evidence from the Neuqu�en Basin. In: Geological Society, vol.252. Special Publications, London, pp. 317e327.

Coria, R., Gonz�alez Riga, B.J., Casadia, S., 2012. Um nuevo hadros�aurido (Dinosauria,Ornithopoda) de la Formaci�on Allem, Provincia de La Pampa, Argentina. Ame-ghiniana 49, 552e572.

Coria, R.A., Filippi, L.S., Chiappe, L.M., García, R., Arcucci, A.B., 2013. Overosaurusparadasorum gen. et sp. nov., a new sauropod dinosaur (Titanosauria: Lithos-trotia) from the Late Cretaceous of Neuqu�en, Patagonia, Argentina. Zootaxa3683, 357e376.

Curry Rogers, K., Ericsson, G.M., 2005. Sauropod histology. In: Curry Rogers, K.A.,Wilson, J.A. (Eds.), The Sauropods, Evolution and Paleobiology. University ofCalifornia Press, Berkeley, pp. 303e326.

Del Corro, G., 1975. Un nuevo saur�opodo del Cret�acico Superior, Chubutisaurusinsignis gen. et sp. nov. (Saurischia, Chubutisauridae, nov.) del Cret�acico Supe-rior (Chubutiano), Chubut, Argentina. In: Actas del I� Congreso Argentino dePaleontología y Bioestratigrafía, vol. 2, pp. 229e240.

D'Emic, M.D., Wilson, J.A., 2011. New remains attributable to the holotype of Neu-quensaurus australis: implications for the taxonomy of saltasaurine sauropods.Acta Palaeontol. Pol. 56, 61e73.

D'Emic, M.D., 2012. The Early evolution of titanosauriform sauropod dinosaurs.Zool. J. Linn. Soc. 166, 624e671.

De la Fuente, M., Salgado, L., Albino, A., B�aez, A., Bonaparte, J., Calvo, J., Chiappe, L.,Codorniú, L., Coria, R., Gasparini, Z., Gonz�alez Riga, B.J., Novas, F., Pol, D., 2007.Tetr�apodos continentales del Cret�acico de la Argentina: uma sínteses actuali-zada. Associaci�on Paleontol�ogica Argentina, pp. 137e153. Publicaci�on Especial11, Ameghiniana 50� Aniversario.

Dias-Lima, R., Rossetti, D.F., 1999. An�alise faciol�ogica e estratigr�afica de dep�ositos doCret�aceo Superior, leste da Bacia do Grajaú, Maranh~ao. In: Boletim do 5�

Simp�osio sobre o Cret�aceo do Brasil, pp. 237e241.Filippi, L.S., Garrido, A.C., 2008. Pitekunsaurus macayai gen. et sp. nov., nuevo tita-

nosaurio (Saurischia, Sauropoda) del Cret�acico Superior de la Cuenca Neuquina,Argentina. Ameghiniana 45, 575e590.

Filippi, L.S., Canudo, J.I., Salgado, J.L., Garrido, A., García, R., Cerda, I., Otero, A., 2011a.A new sauropod titanosaur from the Plottier Formation (Upper Cretaceous) ofPatagonia (Argentina). Geol. Acta 9, 1e12.

Filippi, L.S., García, R.A., Garrido, A.C., 2011b. A new titanosaur sauropod dinosaursfrom the Upper Cretaceous of North Patagonia, Argentina. Acta Paleontol. Pol.56, 505e520.

Franco-Rosas, A.C., Salgado, L., Rosas, C.F., Carvalho, I.D.S., 2004. Nuevos materialesde titanosaurios (Sauropoda) en el Cret�acico Superior de Mato Grosso, Brasil.Rev. Bras. Paleontol. 7, 329e336.

Gallina, P.A., Apesteguía, S., 2005. Cathartesaura anaerobica gen. et sp. nov., a newrebbachisaurid (Dinosauria, Sauropoda) from the Huincul Formation (UpperCretaceous), Río Negro, Argentina. Rev. del Mus. Argent. Cienc. Nat. 7,153e166.

Gallina, P.A., Apesteguía, S., 2011. Cranial anatomy and phylogenetic position of thetitanosaurian sauropod Bonitasaura salgadoi. Acta Palaeontol. Pol. 56, 45e60.

Gallina, P.A., Apesteguía, S., Haluza, A., Canale, J.I., 2014. A diplodocid sauropodsurvivor from the Early Cretaceous of South America. Plos One 9 (5), e97128.

Garrido, A.C., 2010. Estratigrafía del Grupo Neuqu�en, Cret�acico Superior de laCuenca Neuquina (República Argentina): Nueva propuesta de ordenamientolitoestratigr�afico. Rev. del Mus. Argent. Cienc. Nat. Bernardino Rivadavia NuevaSer. 12, 121e177.

Gonz�alez Riga, B.J., Casadío, S., 2000. Primer registro de Dinosauria (Ornithischia,Hadrosauridae) para la provincial de La Pamapa (Argentina) y sus implicanciasplaeobiogegr�aficas. Ameghiniana 37, 341e351.

Gonz�alez Riga, B.J., 2003. A new titanosaur (Dinosauria, Sauropoda) from the UpperCretaceous of Mendoza rovince, Argentina. Ameghiniana 40, 155e172.

Gonz�alez Riga, B.J., 2005. Nuevos restos f�osiles de Mendozasaurus neguyelap (Sau-ropoda: Titanosauridae) del Cret�acico Tardío de Mendoza, Argentina. Ame-ghiniana 42, 535e548.

Gonz�alez Riga, B.J., Curry Rogers, K.A., 2006. Osteohistology of the titanosaurMendozasaurus (Dinosauria, Sauropoda): preliminary interpretations. In: 9ªCongreso Argentino de Paleontología y Bioestratigrafía , Academia Nacional deCiencias, Resúmenes, p. 84.

Gonz�alez Riga, B.J., Astini, R., 2007. Fossil preservation of large titanosaur sauropodsin overbank fluvial facies: a case study in the Cretaceous of Argentina. J. SouthAm. Earth Sci. 23, 290e303.

Gonz�alez Riga, B.J., Calvo, J.O., Porfiri, J., 2008. An articulated titanosaur fromPatagonia (Argentina): new evidences of the pedal evolution. Palaeoworld 17,33e40.

Please cite this article in press as: de Jesus Faria, C., et al., Cretaceous sauroSouth American Earth Sciences (2014), http://dx.doi.org/10.1016/j.jsames

Gonz�alez Riga, B.J., Previtera, E., Pirrone, C.A., 2009. Malarguesaurus florenciae gen.et sp. nov., a new titanosauriform (Dinosauria, Sauropoda) from the UpperCretaceous of Mendoza, Argentina. Cretac. Res. 30, 135e148.

Gonz�alez Riga, B.J., 2010. Paleobiology of South American titanosaurs. In: Calvo, J.,Porfiri, J., Gonz�alez Riga, B.J., Dos Santos, D. (Eds.), Paleontología y dinosauriosdesde America Latina, EDIUNC. Universidad Nacional de Cuyo, pp. 125e141.

Gonz�alez Riga, B.J., 2011. Speeds and stance of titanosaurs sauropods: analysis ofTitanopodus tracks from the Late Cretaceous of Mendoza, Argentina. An. Acad.Bras. Cienc. 83, 279e290.

Gonz�alez Riga, B.J., David, O., Londero, L., Calvo, S., Porfiri, J., Dos Santos, D., 2013.Hallazgo de um gigantesco titanosaurio parcialmente articulado del Cret�acicoTardio de Mendoza, Argentina. In: 1st Brazilian Dinosaur Symposium (Ituiutaba,Minas Gerais, Brasil), Abstract Book, p. 35.

Gonz�alez Riga, B., Ortíz David, L., 2014. A new titanosaur (Dinosauria, Sauropoda)from the Upper Cretaceous (Cerro Lisandro Formation) of Mendoza Province,Argentina. Ameghiniana 51, 3e25.

Haq, B.U., Hardenbol, J., Vail, P.R., 1987. Chronology of fluctuating sea levels since theTriassic. Science 235, 1156e1167.

Huene, F., 1929. Los saurisquios y ornitisquios del Cret�aceo Argentino. An. del Mus.La Plata, La Plata 3, 1e194.

Ibiricu, L.M., Casal, G.A., Lamanna, M.C., Martinez, R.D., Harris, J.D., Lacovara, K.J.,2012. The southernmost records of Rebbachisauridae (Sauropoda: Diplod-ocoidea), from early Late Cretaceous deposits in central Patagonia. Cretac. Res.34, 220e232.

Ibiricu, L.M., Casal, G.A., Martínez, R.N.D., Lamanna, M.C., Luna, M., Salgado, L., 2013.Katepensaurus goicoecheai, gen. et sp. nov., a Late Cretaceous rebbachisaurid(Sauropoda, Diplodocoidea) from central Patagonia, Argentina. J. Vert. Paleon-tol. 33, 1351e1366.

Ju�arez Valieri, R.D., Calvo, J.O., 2011. Revision of MUCPv 204, a Senonian BasalTitanosaur from Northern Patagonia. In: Calvo, Gonz�alez, Riga, Porfiri, DosSantos (Eds.), Paleontología y dinosarios desde Am�erica Latina, Paleontología ydinosarios desde Am�erica Latina, pp. 143e152.

Kellner, A.W., Azevedo, S.A.K., 1999. A new sauropod dinosaur (Titanosauria) fromthe Late Cretaceous of Brazil. Natl. Sci. Mus. Monogr. 15, 111e142.

Kellner, A.W.A., Campos, D.A., Trotta, M.N., 2005. Description of a titanosauridcaudal series from the Bauru Group, Late Cretaceous of Brazil. Arq. do Mus. Nac.63, 529e564.

Kellner, A.W.A., Campos, D.A., Azevedo, S.A.K., Trotta, M.N.F., Henriques, D.D.R.,Craik, M.M.T., Silva, H.P., 2006. On a new titanosaur sauropod from the BauruGroup, Late Cretaceous of Brazil. Bol. do Mus. Nac. 74, 1e31.

Kellner, A.W., Rubilar-Rogers, D., Vargas, A., Su�arez, M., 2011. A new titanosaursauropod from the Atacama Desert, Chile. An. Acad. Bras. Cienc. 83, 211e219.

Langer, M.C., Ezcurra, M.D., Bittencourt, J.S., Novas, F.E., 2010. The origin and earlyevolution of dinosaurs. Biol. Rev. 85 (1), 55e110.

Leanza, H.A., Apesteguía, S., Novas, F.E., De la Fuente, M.S., 2004. Cretaceousterrestrial beds from the Neuqu�en Basin (Argentina) and their tetrapod as-semblages. Cretac. Res. 25, 61e87.

Legarreta, L., Kokogi�an, D.A., Boggetti, D.A., 1989. Depositional sequences of theMalargüe Group (Upper Cretaceous-lower Tertiary), Neuqu�en Basin, Argentina.Cretac. Res. 10, 337e356.

Lydekker, R., 1893. Contributions to the study of the fossil vertebrates of Argentina.I. The Dinosaurs of Patagonia. An. del Mus. La Plata, La Plata 2, 1e14.

Macedo, J.M., 1991. Evoluç~ao tectonica da Bacia de Santos e �areas continentaisadjacentes. In: Gabaglia, G.P.R., Milani, E.J. (Eds.), Origem e evoluç~ao de baciassedimentares. PETROBR�AS, pp. 361e374.

Machado, E.B., Avilla, L.D.S., Nava, W.R., Campos, D.D.A., Kellner, A.W., 2013. A newtitanosaur sauropod from the Late Cretaceous of Brazil. Zootaxa 3701, 301e321.

Mannion, P.D., 2008. Environmental associations of sauropod dinosaurs and theirbearing on the early Late Cretaceous “sauropod hiatos”. J. Vert. Paleontol. 28,111.

Mannion, P.D., Upchurch, P., 2010. A quantitative analysis of environmental asso-ciations in sauropod dinosaurs. Paleonbiology 36, 253e282.

Mannion, P.D., Upchurch, P., Carrano, M.T., Barrett, P.M., 2011. Testing the effect ofthe rock record on diversity: a multidisciplinary approach to elucidating thegeneric richness of sauropodomorph dinosaurs through time. Biol. Rev. 86,157e181.

Mannion, P.D., Otero, A., 2012. A reapprasial of the Late Cretaceous Argentineansauropod dinosaur Argyrosaurus superbus, with a description of a new titano-saur genus. J. Vert. Paleontol. 32, 614e638.

Marquillas, R.A., Del Papa, C.E., Sabino, I.F., 2005. Sedimentary aspects and paleo-environmental evolution of a rift basin: Salta group (CretaceousePaleogene),northwestern Argentina. Int. J. Earth Sci. 54, 94e113.

Martin, J.A., 2006. Introduction to the Study of Dinosaurs, second ed. BlackwellPublishing, Atlanta, Georgia, p. 577.

Martinelli, A.G., Forasiepi, A.M., 2004. Late Cretaceous vertebrates from Bajo deSanta Rosa (Allen Formation), Río Negro province, Argentina, with thedescription of a new sauropod dinosaur (Titanosauridae). Rev. del Mus. Argent.Cienc. Nat., n.s., Buenos Aires 6, 257e305.

Martinelli, A.G., Candeiro, C.R.A., Forasiepi, A.M., Vera, E.I., Carvalho, A.A., 2010.Dinosaurios argentinos y brasileros: lista de especies v�alidas. Caminhos Geogr.11, 91e119.

Medeiros, M.A., Freire, P.C., Pereira, A.A., Santos, R.A.B., Lindoso, R.M., Coelho, A.F.A.,Passos, E.B., Sousa Jr., E., 2007. Another African dinosaur recorded in theEocenomanian of Brazil and a revision on the paleofauna of the Laje do Coringasite. In: Carvalho, I.S., Cassab, R.C.T., Schwanke, C., Carvalho, M.A.,

pod diversity and taxonomic succession in South America, Journal of.2014.11.008

C. de Jesus Faria et al. / Journal of South American Earth Sciences xxx (2014) 1e1010

Fernandes, A.C.S., Rodrigues, M.A.C., Carvalho, M.S.S., Arai, M., Oliveira, M.E.Q.(Eds.), Paleontologia: Cen�arios de Vida. Interciencia, Rio de Janeiro, Brazil,pp. 413e423.

Miranda, M.C.C., Rossetti, D.F., 2006. Reconstituiç~ao paleoambiental de dep�ositosalbianos na borda leste da bacia de Grajaú, MA. Rev. Bras. Geocienc. 36,623e635.

Navarrete, C., Casal, G., Martínez, R., 2011. Drusilasaura deseadensis gen. et sp. nov., umnuevo titanosaurio (Dinosauria-Sauropoda), de laFormaci�onBajoBarreal, Cret�acicosuperior del norte de Santa Cruz, Argentina. Rev. Bras. Paleontol. 14, 1e14.

Novas, F.E., Salgado, L., Calvo, J., Agnolin, F., 2005. Giant titanosaur (Dinosauria,Sauropoda) from the Late Cretaceous of Patagonia. Rev. del Mus. Argent. Cienc.Nat. 7, 37e41.

Novas, F.E., 2009. The Age of Dinosaurs in South America. Indiana University Press,Bloomington, p. 452.

Parras, A., Casadío, S., Pires, M., 1998. Secuencias depositacionales del GrupoMalargüe y el límite Cret�acico-Pale�ogeno, en el sur de la provincia de Mendoza,Argentina. In: Publicaci�on Especial 5 de la Asociaci�on Paleontol�ogica Argentina:Pale�ogeno de Am�erica del Sur y de la Península Ant�artica, pp. 61e69.

Parras, A., Griffin, M., 2013. Late Cretaceous (Campanian/Maastrichtian) freshwaterto restricted marine mollusc fauna from the Loncoche Formation, Neuqu�enBasin, west-central Argentina. Cretac. Res. 40, 190e206.

Pessoa-Neto, O.C., Soares, U.M., Silva, J.G.F., Roesner, E.H., Florencio, C.P.,Souza, C.A.V., 2007. Bacia Potiguar. Bol. Geocienc. Petrobras 15 (2), 357e369.

Porfiri, J.D., Calvo, J., 2010. Panamericansaurus schroederi gen. nov. sp. nov. un nuevoSauropoda (Titanosauridae-Aeolosaurini) de la Provincia del Neuqu�en,Cret�acico Superior de Patagonia, Argentina. Braz. Geogr. J. Geosci. Humanit. Res.Medium 1, 1.

Powell, J.E., 1986. Revisi�on de los titanos�auridosde Am�erica del Sur. UniversidadNacional de Tucum�an, Argentina (Unpublished PhD Dissertation).

Powell, J.E., 1987. Hallazgo de un dinosaurio hadrosaurido (Ornithischia, Ornitho-poda) en la Formaci�on Allen (Cret�acico Superior) de Salitral Moreno, Provinciade Río Negro, Argentina. In: X Congreso Geol�ogico Argentino, Actas, vol. 3,pp. 149e152.

Powell, J.E., 1990. Epachthosaurus sciuttoi (gen. et sp. nov.) un dinosaurio saur�opododel Cret�acico de Patagonia (Provincia de Chubut, Argentina). Actas del Congr.Argent. Paleontol. Bioestratigr. 1, 123e128.

Pramparo, M., Gonzalez Riga, B.J., Previtera, E., 2008. Paleoenvironmental recon-struction of a Late Cretaceous Dinosaur track site of Argentina: palynologicalevidences. In: 12th International Palynological Congress and 8th Organisationof Paleobotany Conference, Abstract, p. 227.

Rezende, W.M., Pamplona, H.R.P., 1970. Estudo do desenvolvimento do arco FerrereUrbano e Santos. Bol. T�ecnico Petrobr�as l3, 5e14.

Salfity, J.A., Zambrano, J.J., 1990. Cretacico. In: Bonaparte, J.F., Toselli, A.J.,Ace~nolaza, F.G. (Eds.), Geologia de America del Sur, Serie Correlacion Geologica,vol. 2. Universidad Nacional de Tucuman, pp. 185e284.

Salgado, L., Bonaparte, J.F., 1991. Um nuevo Sauropodo Dicraeosauridae, Amarga-saurus cazauigen. et sp. nov., de La Formaci�on La Amarga, Neocomiano de LaProvincia de Neuqu�en, Argentina. Ameghiniana 28, 333e346.

Salgado, L., 1996. Pellegrinisaurus powelli nov. gen. et sp. (Sauropoda, Titanosaur-idae) from the upper Cretaceous of Lago Pellegrini, North-western Patagonia,Argentina. Ameghiniana 33, 355e365.

Salgado, L., Coria, R.A., Calvo, J.O., 1997. Evolution of titanosaurid sauropods:phylogenetic analysis based on the postcranial evidence. Ameghiniana 34,3e32.

Salgado, L., Azpilicueta, C., 2000. Un nuevo saltasaurino (Sauropoda, Titanosaur-idae) de la provincia de Río Negro (Formaci�on Allen, Cret�acico Superior),Patagonia, Argentina. Ameghiniana 37, 259e264.

Please cite this article in press as: de Jesus Faria, C., et al., Cretaceous sauroSouth American Earth Sciences (2014), http://dx.doi.org/10.1016/j.jsames

Salgado, L., 2003. Considerations on the bony plates assigned to titanosaurs(Dinosauria, Sauropoda). Ameghiniana 40, 441e456.

Salgado, L., Garrido, A., Cocca, S., Cocca, J.R., 2004. Lower Cretaceous rebbachisauridsauropods from Cerro Aguada del Le�on (Lohan Cura Formation), Neuqu�enProvince, northwestern Patagonia, Argentina. J. Vert. Paleontol. 24, 903e912.

Salgado, L., Chiappe, L.M., Coria, R.A., 2005. Osteology of the sauropod embryosfrom the Upper Cretaceous of Patagonia. Acta Paleontol. Pol. 50, 79e92.

Salgado, L., Carvalho, I.S., Garrido, A., 2006. Zapalasaurus bonapartei, un nuevodinosaurio saur�opodo de la Formaci�on La Amarga (Cret�acico Inferior), noroestede Patagonia, Provincia de Neuqu�en, Argentina. Geobios 39, 695e707.

Salgado, L., Carvalho, I.S., 2008. Uberabatitan ribeiroi, a new titanosaur from theMarília Formation (Bauru Group, Upper Cretaceous), Minas Gerais, Brazil.Palaeontology 51, 881e901.

Salgado, L., Coria, R.A., 2009. Barrosasaurus casamiquelai gen. et sp. nov., a newtitanosaur (Dinosauria, Sauropoda) from the Anacleto Formation (Late Creta-ceous: early Campanian) of Sierra Barrosa (Neuqu�en, Argentina). Zootaxa 2222,1e16.

Santos, M.F.C.F., Florencio, C.P., Reyes-P�erez, Y.A., Bergqvist, L.P., Porpino, K.O.,Uchoa, A.F., Lima-Filho, F.P., 2005. Dinossauros na Bacia Potiguar: o registro daprimeira ocorrencia. In: Boletim de Resumos Expandidos do XXI Simp�osio deGeologia do Nordeste, vol. 19, pp. 325e328.

Santucci, R.M., Bertini, R.J., 2001. Distribuiç~ao paleogeogr�afica e biocronol�ogica dostitanossauros (Saurischia, Sauropoda) do Grupo Bauru, Cret�aceo Superior dosudeste brasileiro. Rev. Bras. Geocienc. 31, 307e314.

Santucci, R.M., Bertini, R.J., 2006. A new tatanosaur from western S~ao Paulo state,Upper Cretaceous Bauru Group, southeast Brazil. Palaeontology 49, 59e66.

Santucci, R.M., Arruda-Campos, A.C., 2011. A new sauropod (Macronaria, Titano-sauria) from the Adamantina Formation, Bauru Group, Upper Cretaceous ofBrazil and the phylogenetic relationships of Aeolosaurini. Zootaxa 3085, 1e33.

Soares, P.C., Landim, P.M.B., Fulfaro, V.J., Sobreiro Neto, A.F., 1980. Ensaio deCaracterizaç~ao Estratigr�afica do Cret�aceo no Estado de S~ao Paulo: Grupo Bauru.Rev. Bras. Geocienc. 10, 177e185.

Strugale, M., Rostirolla, S.P., Mancini, F., Portela Filho, C.V., Ferreira, F.J.F., Freitas, R.C.,2007. Structural framework and MesozoiceCenozoic evolution of Ponta GrossaArch, Paran�a Basin, southern Brazil. J. South Am. Earth Sci. 24, 203e227.

Upchurch, P., Barrett, P.M., 2005. Phylogenetic and Taxic Perspectives on SauropodDiversity. The Sauropods: Evolution and Paleobiology. University of CaliforniaPress, Berkeley, pp. 104e124.

Vignol-Lelarge, M.L.M., Soliani Jr., E., Poupeau, G., 1994. Dataç~ao pelos traços defiss~ao do domínio meridional da Serra do Mar (Arco de Ponta Grossa e Brasil).In: Congresso Brasileiro de Geologia 38, Boletim de Resumos Expandidos, vol. 2,pp. 379e380.

Weska, R.K., 2006. Uma Síntese do Cret�aceo Superior Mato-Grossense. Geociencias25 (1), 71e81.

Wilson, J.A., Sereno, P.C., 1998. Early evolution and higher-level phylogeny ofsauropod dinosaurs. J. Vert. Paleontol. 18, 1e79.

Wichmann, R., 1927. Sobre las facies lacustre senoniana de los Estratos con dino-saurios y su fauna. Boletín la Acad. Nac. Cienc. C�ordoba 30, 383e405.

Zaher, H., Pol, D., Carvalho, A.B., Nascimento, P.M., Riccomini, C., Larson, P., Juarez-Valleri, R., Pires-Domingues, R., da Silva, N.J., Campos, D.A., 2011. A completeskull of an Early Cretaceous sauropod and the evolution of advanced titano-saurians. PLoS ONE 6 (2), e16663.

Zanotto, O., Szatmari, P., 1987. Mecanismo de rifteamento da porç~ao ocidental daMargem Equatorial. Rev. Bras. Geocienc. 17, 189e195.

pod diversity and taxonomic succession in South America, Journal of.2014.11.008