c4dt01392a1.pdf - The Royal Society of Chemistry

10
S1 SUPPORTING INFORMATION for Mixed-ligand ruthenium polypyridyl complexes as apoptosis inducers in cancer cells, the cellular translocation and the important role of ROS-mediated signaling Zhennan Zhao, Zuandi Luo, Wenjie Zheng, * Qiong Wu, Yanxian Feng, Tianfeng Chen * Department of Chemistry, Jinan University, Guangzhou, 510632, China. * Corresponding author: Room 643, Department of Chemistry, Jinan University, Guangzhou 510632, China. Tel: +86 20-85225962; Fax: +86 20 85221263. E-mail: [email protected], [email protected] Disclosure of Potential Conflicts of Interest No potential conflicts of interest were disclosed. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Transcript of c4dt01392a1.pdf - The Royal Society of Chemistry

S1

SUPPORTING INFORMATION

for

Mixed-ligand ruthenium polypyridyl complexes as apoptosis

inducers in cancer cells, the cellular translocation and the important

role of ROS-mediated signaling

Zhennan Zhao, Zuandi Luo, Wenjie Zheng,* Qiong Wu, Yanxian Feng,

Tianfeng Chen*

Department of Chemistry, Jinan University, Guangzhou, 510632, China.

* Corresponding author: Room 643, Department of Chemistry, Jinan University,

Guangzhou 510632, China. Tel: +86 20-85225962; Fax: +86 20 85221263.

E-mail: [email protected], [email protected]

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2014

S2

Ru(bbp)pipCl+

Ru(bbp)(m- opip)Cl++Na

Ru(bbp)(o- opip)Cl+

Ru(bbp)(p- opip)Cl2+

Ru(bbp)(p- opip)Cl+

Figure S1. MS analysis of a series of ruthenium (II) complexes

S3

NN

N

N

N

RuCl

NN

N NH

122' 3

4

54'5'

a

b

c

d

e

kj

i

f

g

h

3'

66'

e,g4,4’

5,5’f,d,h

6,6’

b,j

3,3’

1,2,2’

c,i

a,k

Figure S2. 1H NMR spectrum of 1.

S4

c,i

e,g4,4’,5,5’ b,j

d,h

3,3’,6,6’

a,k

N-H

1,2,2’

f

NN

N

N

N

RuCl

NN

N NH

122' 3

4

54'

5'

a

b

c

d

e

k

j

i

f

g

h

3'

66'

OH

6.06.57.07.58.08.59.09.510.010.511.0f1 (ppm)

c,i

e,g4,4’,5,5’ b,j

d,h

3,3’,6,6’

a,k

N-H

1,2,2’

f

NN

N

N

N

RuCl

NN

N NH

122' 3

4

54'

5'

a

b

c

d

e

k

j

i

f

g

h

3'

66'

OH

6.06.57.07.58.08.59.09.510.010.511.0f1 (ppm)

b,j,5,5’ 4,4’

Figure S3. 1H NMR spectrum of 2.

S5

NN

N

N

N

RuCl

NN

N NH

122' 3

4

54'

5'

a

b

c

d

e

k

j

i

f

g

h

3'

66'

OH

5.86.06.26.46.66.87.07.27.47.67.88.08.28.48.68.89.09.29.49.69.810.210.611.011.411.8f1 (ppm)

0

200

400

600

800

1000

1200

1400

600

180

2000

2200

2400

2600

2800

3000

3200

eN-H

3,3’,6,6’

b,j

c,i,f d

4,4’5,5’h,d

1,2,2’

ka

NN

N

N

N

RuCl

NN

N NH

122' 3

4

54'

5'

a

b

c

d

e

k

j

i

f

g

h

3'

66'

OH

5.86.06.26.46.66.87.07.27.47.67.88.08.28.48.68.89.09.29.49.69.810.210.611.011.411.8f1 (ppm)

0

200

400

600

800

1000

1200

1400

600

180

2000

2200

2400

2600

2800

3000

3200

eN-H

3,3’,6,6’

b,j

c,i,f d

4,4’5,5’h,d

1,2,2’

ka

NN

N

N

N

RuCl

NN

N NH

122' 3

4

54'

5'

a

b

c

d

e

k

j

i

f

g

h

3'

66'

OH

5.86.06.26.46.66.87.07.27.47.67.88.08.28.48.68.89.09.29.49.69.810.210.611.011.411.8f1 (ppm)

0

200

400

600

800

1000

1200

1400

600

180

2000

2200

2400

2600

2800

3000

3200

eN-H

3,3’,6,6’

b,j

c,i,f d

4,4’5,5’h,d

1,2,2’

ka

h,d

b,j 5,5’ 4,4

Figure S4. 1H NMR spectrum of 3.

S6

5.56.06.57.07.58.08.59.09.510.010.511.0f1 (ppm)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200sample13-1301181h nmr of sample13

e,g5,5’4,4’

b,j,

6,6’,ha,k

c,i3,3’

12,2’,f

dN-H

NN

HN

N

HN

Ru

ClNN

N NH

122' 3

45

4'5'

ab

c

d

e

kj

i

fgh OH

3'

66' NN

N

N

N

RuCl

NN

N NH

122' 3

4

54'

5'

a

b

c

d

e

k

j

i

f

g

h

3'

66'

OH

Figure S5. 1H NMR spectrum of 4.

S7

300 400 500 600 7000.0

0.2

0.4

0.6

0.8

0 h 6 h 12 h 24 h

300 400 500 600 700

0.2

0.4

0.6

0 h 6 h 12 h 24 h

300 400 500 600 7000.0

0.2

0.4

0.6

0.8

0 h 6 h 12 h 24 h

300 400 500 600 7000.0

0.2

0.4

0.6

0.8

0 h 6 h 12 h 24 h

Wavelength (nm)

Abs

orba

nce

Wavelength (nm)

Abs

orba

nce

Wavelength (nm)

Abs

orba

nce

Wavelength (nm)

Abs

orba

nce

A

C D

B

Figure S6. UV-Vis absorption spectra of Ru complexes (20 μM) (A) 1, (B) 2, (C) 3, (D) 4 in PBS buffer during incubation at 25 ℃.

S8

410 420 430 440 450

200

400

600

Ru (1) Ru (2) Ru (3) Ru (4)

Inte

nsity

Wavelength (nm)Figure S7. Emission spectra recorded on excitation of 20 μM PBS solutions of 1~4 at 381 nm.

S9

300 400 500 600 700 800

0.2

0.4

0.6

0.8

0 1 2 3 4 50.00.20.40.60.81.0

Wavelength (nm)

(a-f

) / (

b-f

)

Abs

orba

nce

[DNA]/[1]10-2

300 400 500 600 7000.0

0.2

0.4

0.6

0 1 2 3 4 50.00.20.40.60.81.0

Wavelength (nm)

(a-f

) / (

b-f

)

Abs

orba

nce

[DNA]/[2]10-2

300 400 500 600 700

0.2

0.4

0.6

0.8

0 1 2 3 4 50.00.20.40.60.81.0

Wavelength (nm)

Abs

orba

nce

[DNA]/[3]10-2

(a-f

) / (

b-f

)

(a-f

) / (

b-f

)300 400 500 600 700

0.2

0.4

0.6

0.8

0 1 2 3 4 50.00.20.40.60.81.0

Wavelength (nm)

Abs

orba

nce

[DNA]/[4]10-2

A B

DC

Figure S8. Changes in absorption spectra of Ru complexes (20 μM) in Tris-HCl/KCl buffer (10 mM Tris-HCl, 100 mM KCl, pH= 7.2 ) with increasing concentrations of pu 27 DNA. Arrows show spectral changes upon increasing DNA concentrations. In the inset: plot of (εa- εf)/(εb- εf) vs [DNA]/[Ru] and the non-linear fit of the titration data. (A) 1, (B) 2, (C) 3, (D) 4.

S10

0 1 2 31.0

1.2

1.4

1.6

410 420 430 440 450200

400

600

800

I/I 0

Inte

nsity

[DNA]/[1]10-2

Wavelength (nm)

0 1 2 31.0

1.1

1.2

1.3

410 420 430 440 450

200

400

600

I/I 0

Inte

nsity

[DNA]/[3]10-2

Wavelength (nm)

0 1 2 31.0

1.2

1.4

410 420 430 440 450200

400

600

800

I/I 0

Inte

nsity

[DNA]/[2]10-2

Wavelength (nm)

410 420 430 440 450200

400

600

800

1 2 31.0

1.2

1.4

I/I 0

[DNA]/[4]10-2In

tens

ity

Wavelength (nm)

A

C D

B

Figure S9. Changes in emission spectra (λex= 380 nm) of Ru complexes (20 μM) in Tris-HCl/KCl buffer (10 mM Tris-HCl, 100 mM KCl, pH= 7.2 ) with increasing concentrations of pu 27 DNA. Arrows show spectral changes upon increasing DNA concentrations. In the inset: plot of I/I0 vs [DNA]/[Ru] and the non-linear fit of the titration data. (A) 1, (B) 2, (C) 3, (D) 4.