Wk2Coord Chem- Intro
-
Author
basofi-habibi -
Category
Documents
-
view
15 -
download
2
Embed Size (px)
description
Transcript of Wk2Coord Chem- Intro
-
Coordination Chemistry
-
Kimia Koordinasi :Kimia Koordinasi :Cabang ilmu kimia yang mempelajari tentang senyawakoordinasi
Senyawa koordinasi :Senyawa yang tersusun atas satu atom pusat (biasanyalogam atau kelompok atom seperti VO2, TiO, dll) dan ligan(sejumlah anion atau molekul netral yang mengelilingi atom(sejumlah anion atau molekul netral yang mengelilingi atom atau kelompok atom pusat tersebut)
Ditinjau dari asam-basa Lewis, atom pusat dlm senyawakoordinasi berperan sebagai asam, sedangkan ligansebagai basa Lewissebagai basa Lewis
-
Sif t k di i d t di dik i d iSifat senyawa koordinasi dapat diprediksi dari Sifat ion pusatnya, dan Sifat ligan Sifat ligan
Jumlah muatan kompleks ditentukan dari penjumlahan Ju a uata o p e s d te tu a da pe ju a amuatan ion pusat dan ligan yang membentuk kompleks.
Spesies kompleks dapat berupa non-ionik, kation dan anion, bergantung pada muatan penyusunnya
-
Why Study Transition Metals and Their C dCompounds
Many biomolecules contain transition metals that are yinvolved in the functions of these biomolecules
Vitamin B12 contains Co Hemoglobin myoglobin and cytochrome C are iron Hemoglobin, myoglobin, and cytochrome C are iron
complexes Chlorophyll is a magnesium complex
Transition metals and their compounds have many useful applications Transition metal compounds are used as pigmentsp p g
TiO2 = white PbCrO4 = yellow Fe4[Fe(CN)6]3 (prussian blue)= blue
Transition metal compounds are used in many industrial processes
-
To understand the uses and applications ofTo understand the uses and applications of transition metals and their compounds, we need to understand their chemistry.
-
Periodic TablePeriodic Table
d block transition elements
f bl k i i lf block transition elements
-
d-Block Transition Elements
IIIB IVB VB VIB VIIB IB IIBVIIIB
d Block Transition Elements
Sc Ti V Cr Mn Fe Co Ni Cu Zn
IIIB IVB VB VIB VIIB IB IIB
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
La Hf Ta W Re Os Ir Pt Au Hg
M t h ti ll i d d b h ll iMost have partially occupied d subshells in common oxidation states
-
Electronic ConfigurationsgElement Configuration
Sc [Ar]3d14s2
Ti [Ar]3d24s2[ ]V [Ar]3d34s2
Cr [Ar]3d54s1Cr [Ar]3d54s1
Mn [Ar]3d54s2
[Ar] = 1s22s22p63s23p6[ ] p p
-
Electronic ConfigurationsgElement Configuration
Fe [Ar] 3d64s2
Co [Ar] 3d74s2Co [Ar] 3d 4sNi [Ar] 3d84s2
C [Ar]3d104s1Cu [Ar]3d104s1
Zn [Ar]3d104s2
[Ar] = 1s22s22p63s23p6[ ] p p
-
Electronic Configurations of Transition Metal Ions
Electronic configuration of Fe2+
Transition Metal Ions
Electronic configuration of Fe
Fe 2e- Fe2+
-
Electronic Configurations of Transition Metal Ions
Electronic configuration of Fe2+
Transition Metal Ions
Electronic configuration of Fe
Fe 2e- Fe2+[Ar]3d64s2
valence ns e-s removed first
-
Electronic Configurations of Transition Metal Ions
Electronic configuration of Fe2+
Transition Metal Ions
Electronic configuration of Fe
Fe 2e- Fe2+[Ar]3d64s2 [Ar]3d6
valence ns e-s removed first
-
Electronic Configurations of Transition Metal Ions
Electronic configuration of Fe3+
Transition Metal Ions
Electronic configuration of Fe
Fe 3e- Fe3+
-
Electronic Configurations of Transition Metal Ions
Electronic configuration of Fe3+
Transition Metal Ions
Electronic configuration of Fe
Fe 3e- Fe3+[Ar]3d64s2
valence ns e-s removed first, then n-1 d e-s
-
Electronic Configurations of Transition Metal Ions
Electronic configuration of Fe3+
Transition Metal Ions
Electronic configuration of Fe
Fe 3e- Fe3+[Ar]3d64s2 [Ar]3d5
valence ns e-s removed first, then n-1 d e-s
-
Electronic Configurations of Transition Metal Ions
Electronic configuration of Co3+
Transition Metal Ions
Electronic configuration of Co
Co 3e- Co3+
-
Electronic Configurations of Transition Metal Ions
Electronic configuration of Co3+
Transition Metal Ions
Electronic configuration of Co
Co 3e- Co3+[Ar]3d74s2
valence ns e-s removed first, then n-1 d e-s
-
Electronic Configurations of Transition Metal Ions
Electronic configuration of Co3+
Transition Metal Ions
Electronic configuration of Co
Co 3e- Co3+[Ar]3d74s2 [Ar]3d6
valence ns e-s removed first, then n-1 d e-s
-
Electronic Configurations of Transition Metal Ions
Electronic configuration of Mn4+
Transition Metal Ions
Electronic configuration of Mn
Mn 4e-Mn4+
-
Electronic Configurations of Transition Metal Ions
Electronic configuration of Mn4+
Transition Metal Ions
Electronic configuration of Mn
Mn 4e-Mn4+[Ar]3d54s2
valence ns e-s removed first, then n-1 d e-s
-
Electronic Configurations of Transition Metal Ions
Electronic configuration of Mn4+
Transition Metal Ions
Electronic configuration of Mn
Mn 4e-Mn4+[Ar]3d54s2 [Ar]3d3
valence ns e-s removed first, then n-1 d e-s
-
Coordination Chemistryy Transition metals act as Lewis acids
Form complexes/complex ionsForm complexes/complex ionsFe3+(aq) + 6CN-(aq) Fe(CN)63-(aq)
Lewis acid Lewis base Complex ion
Ni2+(aq) + 6NH3(aq) Ni(NH3)62+(aq)Lewis acid Lewis base Complex ion
Complex contains central metal ion bonded to one or more molecules or anionsmolecules or anions
Lewis acid = metal = center of coordination
Lewis base = ligand = molecules/ions covalently bonded toLewis base ligand molecules/ions covalently bonded to metal in complex
-
Transition metals act as Lewis acids Form complexes/complex ionsForm complexes/complex ions
Fe3+(aq) + 6CN-(aq) [Fe(CN)6]3-(aq)Lewis acid Lewis base Complex ion
Ni2+(aq) + 6NH3(aq) [Ni(NH3)6]2+(aq)Lewis acid Lewis base Complex ion
Comple ith a net charge comple ionComplex with a net charge = complex ion
Complexes have distinct properties
-
Coordination compoundCoordination compound Compound that contains 1 or more complexes
Example Example [Co(NH3)6]Cl3 [Cu(NH3)4][PtCl4][Cu(NH3)4][PtCl4] [Pt(NH3)2Cl2]
-
Coordination sphereCoordination sphere Metal and ligands bound to it
Coordination number Coordination number number of donor atoms bonded to the central
metal atom or ion in the complexmetal atom or ion in the complex Most common = 4, 6 Determined by ligands Determined by ligands
Larger ligands and those that transfer substantial negative charge to metal favor lower coordination numbersnumbers
-
Complex charge = sum of charges h l d h li d
[Fe(CN)6]3-
on the metal and the ligands
[Fe(CN)6]
-
Complex charge = sum of charges h l d h li d
[Fe(CN)6]3-
on the metal and the ligands
[Fe(CN)6]
+3 6( 1)+3 6(-1)
-
Neutral charge of coordination compound = sum of h l li d d b l i i
[Co(NH3)6]Cl2
charges on metal, ligands, and counterbalancing ions
[Co(NH3)6]Cl2
neutral compoundp
-
Neutral charge of coordination compound = sum of h l li d d b l i i
[Co(NH3)6]Cl2
charges on metal, ligands, and counterbalancing ions
[Co(NH3)6]Cl2
+2 6(0)+2 6(0) 2(-1)
-
Classification of coordination compound
Ligands
Classification of coordination compound
Ligands classified according to the number of donor
atoms Examples
monodentate = 1 bidentate = 2 tetradentate = 4
chelating agents
hexadentate = 6 polydentate = 2 or more donor atoms
-
LigandsLigands
MonodentateMonodentate Examples:
H O CN- NH NO - SCN- OH- X- (halides) CO H2O, CN , NH3, NO2 , SCN , OH , X (halides), CO, O2-
Example Complexesp p [Co(NH3)6]3+
[Fe(SCN)6]3-
-
Ligandsg Bidentate
ExamplesExamples oxalate ion = C2O42-
ethylenediamine (en) = NH2CH2CH2NH2y ( ) 2 2 2 2 ortho-phenanthroline (o-phen)
Example Complexesp p [Co(en)3]3+
[Cr(C2O4)3]3-
[Fe(NH3)4(o-phen)]3+
-
Ligandsgoxalate ion ethylenediamine
O O 2- CH2 CH2CC
O O
CH2H2N
CH2NH2* *O O
CHortho-phenanthroline
* **
*N CH CHCHN CD A
** CH
CHHC
HCN
CC
C
C
Donor Atoms
CHCH
-
LigandsLigandsoxalate ion ethylenediamine
CH
CC
OM
M NM N
-
LigandsLigands
-
LigandsLigands
HexadentateHexadentate ethylenediaminetetraacetate (EDTA) =
(O2CCH2)2N(CH2)2N(CH2CO2)24-(O2CCH2)2N(CH2)2N(CH2CO2)2 Example Complexes
[Fe(EDTA)]-1[Fe(EDTA)] [Co(EDTA)]-1
-
Ligands
EDTA
Ligands
CH2C CH2 C
OO
O O
EDTA
* *CH2N
CH2CCH2 N
CH2 CO O* ***
CH2C CH2 C
OO
OO* *
OO
Donor AtomsDonor Atoms
-
LigandsEDTA
LigandsO
H
C
H
C
NM
NM
-
LigandsEDTA
-
Common Geometries of Complexes
Coordination Number Geometryy
22
Linear
-
Common Geometries of Complexes
Coordination Number Geometryy
22
LinearExample: [Ag(NH3)2]+
-
Common Geometries of ComplexesCoordination Number Geometry
44tetrahedral(most common)(most common)
square planarsquare planar(characteristic of metal ions with 8 d e-s)
-
Common Geometries of ComplexesCoordination Number Geometry
44tetrahedral
Examples: [Zn(NH3)4]2+, [FeCl4]-
square planarsquare planarExample: [Ni(CN)4]2-
-
Common Geometries of ComplexesCoordination Number Geometry
66
octahedral
-
Common Geometries of ComplexesCoordination Number Geometry
66
Examples: [Co(CN)6]3-, [Fe(en)3]3+
octahedral
-
Porphyrin, an important chelating agent found inchelating agent found in
nature
N
NH NH
N
-
Metalloporphyrin
N2+
N NFe2+
N
-
Myoglobin, a protein that stores O2 in cells 2
-
Coordination Environment of Fe2+ in Oxymyoglobin and Oxyhemoglobiny y g y g
-
Ferrichrome (Involved in Fe transport in bacteria)bacteria)
-
Berdasarkan pada jenis ikatan koordinasi yang terbentuk ligan dapat dikelompokkan sebagai :terbentuk, ligan dapat dikelompokkan sebagai :-Ligan yg tdk punya elektron yang sesuai untukikatan dan orbital kosong shg ikatan yangikatan dan orbital kosong shg ikatan yang terbentuk hanya , seperti H-, NH3, SO32- atauRNH22-Ligan yang memiliki 2 atau 3 pasang elektronnonbonding,seperti N3-, O2-, F-, Cl-, Br-, I-, OH-, S2-, g p 3NH2-, H2O, R2S, R2O dan NH2-Ligan yg memiliki orbital -anti ikatan kosongdgn energi rendah dapat menerima elektron ygorientasinya sesuai dari logam spt CO, R3P, R3As, B I CN dBr-, I-, CN-, py dan acac
-
- Ligan yg tidak ada pasangan elektron nonbonding nya tetapiiliki l kt ik t ti lk lki b dmemiliki elektron ikatan-, seperti alkena, alkina, benzena dan
anion siklopentadienil- Ligan yg dapat membentuk 2 ikatan dengan 2 atom logam
t i h d k di b t k j b t Mi l OH Cl Fterpisah dan kemudian membentuk jembatan. Misalnya OH-, Cl-, F-, NH2-, O2-, CO, SO42- dan O2-
Jenis logamBerdasarkan konfigurasinya:- Ion dengan konfigurasi sama dengan konfigurasi gas mulia
ion ini dpt membentuk ikatan mulai dari bersifat ionik sampai kovalen sesuai dengan kenaikanmuatan ionnyamuatan ionnya
- Ion dengan 18 elektronion dg konfigurasi ns2 np6 nd10 juga simetri scr spherical termasuk logam-logam transisi dankeadaan oksida negatifkeadaan oksida negatif
- Ion pasangan inert (ns2)- Ion logam transisi (ndx, x = 1-9)
-
Nomenclature of Coordination C d IUPAC R lCompounds: IUPAC Rules
The cation is named before the anionThe cation is named before the anion When naming a complex:
Li d d fi t Ligands are named first alphabetical order
Metal atom/ion is named last Metal atom/ion is named last oxidation state given in Roman numerals follows in
parenthesesparentheses Use no spaces in complex name
-
Nomenclature: IUPAC RulesNomenclature: IUPAC Rules
The names of anionic ligands end with theThe names of anionic ligands end with the suffix -o
ide suffix changed to o -ide suffix changed to -o -ite suffix changed to -ito
ate suffix changed to ato -ate suffix changed to -ato
-
Nomenclature: IUPAC RulesNomenclature: IUPAC RulesLigand Name
bromide, Br- bromo
chloride, Cl- chloro
cyanide, CN- cyano
hydroxide, OH- hydroxo
oxide, O2- oxo
fluoride, F- fluoro
-
Nomenclature: IUPAC RulesNomenclature: IUPAC RulesLigand Name
carbonate, CO32- carbonato
oxalate, C2O42- oxalato
sulfate, SO42- sulfato
thiocyanate, SCN- thiocyanato
thiosulfate, S2O32- thiosulfato
Sulfite, SO32- sulfito
-
Nomenclature: IUPAC RulesNomenclature: IUPAC Rules
Neutral ligands are referred to by the usualNeutral ligands are referred to by the usual name for the molecule
Example Example ethylenediamine
Exceptions Exceptions water, H2O = aqua ammonia, NH3 = amminea o a, 3 a e carbon monoxide, CO = carbonyl
-
Nomenclature: IUPAC Rules Greek prefixes are used to indicate the number
of each type of ligand when more than one is y gpresent in the complex di-, 2; tri-, 3; tetra-, 4; penta-, 5; hexa-, 6
If the ligand name already contains a Greek prefix, use alternate prefixes: bis-, 2; tris-, 3; tetrakis-,4; pentakis-, 5; hexakis-, 6 The name of the ligand is placed in parentheses
-
Nomenclature: IUPAC RulesNomenclature: IUPAC Rules
If a complex is an anion its name endsIf a complex is an anion, its name ends with the -ate
appended to name of the metal appended to name of the metalExample [Co(NO ) ]3- ; heksanitritokobaltat(III)[Co(NO2)6]3- ; heksanitritokobaltat(III)
-
Nomenclature: IUPAC RulesTransition
MetalName if in Cationic
ComplexName if in Anionic
ComplexSc Scandium ScandateSc Scandium ScandateTi titanium titanateV vanadium vanadateCr chromium chromateMn manganese manganateFe iron ferrateCo cobalt cobaltateNi i k l i k l tNi nickel nickelateCu Copper cuprateZn Zinc zincateZn Zinc zincate
-
IsomerismIsomerism
IsomersIsomers compounds that have the same composition
but a different arrangement of atomsbut a different arrangement of atoms Major Types
structural isomers structural isomers stereoisomers
-
Structural IsomersStructural Isomers
Structural IsomersStructural Isomers isomers that have different bonds
-
Structural IsomersStructural Isomers
Coordination-sphere isomersCoordination sphere isomers differ in a ligand bonded to the metal in the
complex as opposed to being outside thecomplex, as opposed to being outside the coordination-sphere
-
Coordination-Sphere IsomersCoordination Sphere Isomers
ExampleExample[Co(NH3)5Cl]Br vs. [Co(NH3)5Br]Cl
-
Coordination-Sphere IsomersCoordination Sphere Isomers
ExampleExample[Co(NH3)5Cl]Br vs. [Co(NH3)5Br]Cl
C id i i ti i t Consider ionization in water[Co(NH3)5Cl]Br [Co(NH3)5Cl]+ + Br-
[Co(NH ) Br]Cl [Co(NH ) Br]+ + Cl-[Co(NH3)5Br]Cl [Co(NH3)5Br] + Cl
-
Coordination-Sphere IsomersCoordination Sphere Isomers
ExampleExample[Co(NH3)5Cl]Br vs. [Co(NH3)5Br]Cl
C id i it ti Consider precipitation
[Co(NH ) Cl]Br(aq) + AgNO (aq) [Co(NH ) Cl]NO (aq) + AgBr(aq)[Co(NH3)5Cl]Br(aq) + AgNO3(aq) [Co(NH3)5Cl]NO3(aq) + AgBr(aq)
[Co(NH3)5Br]Cl(aq) + AgNO3(aq) [Co(NH3)5Br]NO3(aq) + AgCl(s)
-
Structural IsomersStructural Isomers
Linkage isomersLinkage isomers differ in the atom of a ligand bonded to the
metal in the complexmetal in the complex
-
Linkage IsomersLinkage Isomers
ExampleExample [Co(NH3)5(ONO)]2+ vs. [Co(NH3)5(NO2)]2+
-
Linkage IsomersLinkage Isomersgg
-
Linkage IsomersLinkage Isomers
ExampleExample [Co(NH3)5(SCN)]2+ vs. [Co(NH3)5(NCS)]2+
Co-SCN vs. Co-NCS
-
StereoisomersStereoisomers
StereoisomersStereoisomers Isomers that have the same bonds, but
different spatial arrangementsdifferent spatial arrangements
-
StereoisomersStereoisomers
Geometric isomersGeometric isomers Differ in the spatial arrangements of the
ligandsligands
-
Geometric Isomers
cis isomer trans isomerPt(NH ) ClPt(NH3)2Cl2
-
Geometric Isomers
cis isomer trans isomer[Co(H O) Cl ]+[Co(H2O)4Cl2]
-
StereoisomersStereoisomers
Geometric isomersGeometric isomers Differ in the spatial arrangements of the
ligandsligands Have different chemical/physical properties
different colors melting points polaritiesdifferent colors, melting points, polarities, solubilities, reactivities, etc.
-
StereoisomersStereoisomers
Optical isomersOptical isomers isomers that are nonsuperimposable mirror
imagesimages said to be chiral (handed) referred to as enantiomers
A substance is chiral if it does not have a plane of symmetry
-
Example 1
mirroor plane
cis-[Co(en)2Cl2]+
-
i i 180Example 1
rotate mirror image 180
180 180
-
nonsuperimposableExample 1
cis-[Co(en)2Cl2]+
-
enantiomersExample 1
cis-[Co(en)2Cl2]+
-
Example 2
mirrror planne
trans [Co(en) Cl ]+trans-[Co(en)2Cl2]+
-
Example 2i i 180rotate mirror image 180
180
trans [Co(en) Cl ]+trans-[Co(en)2Cl2]+
-
Example 2Superimposable not enantiomersSuperimposable-not enantiomers
trans [Co(en) Cl ]+trans-[Co(en)2Cl2]+
-
Properties of Optical IsomersProperties of Optical Isomers
EnantiomersEnantiomers possess many identical properties
solubility melting point boiling point color solubility, melting point, boiling point, color, chemical reactivity (with nonchiral reagents)
different in: interactions with plane polarized light
-
Optical IsomersOptical Isomers
polarizing filter plane
l i d li hpolarized light
light source
unpolarized light
(random vibrations)(vibrates in one plane)
-
Optical IsomersOptical Isomers
optically active sample in solution
polarizing filter plane polarized
light in solutionlight
rotated polarizedrotated polarized light
-
Optical IsomersOptical Isomers
optically active sample in solution
polarizing filter plane polarized
light in solutionlight
Dextrorotatory (d) = right rotation
rotated polarized
Levorotatory (l) = left rotation
Racemic mixture = equal rotated polarized
lightamounts of two enantiomers; no net rotation
-
Properties of Optical Isomers Enantiomers
possess many identical propertiesp y p p solubility, melting point, boiling point, color, chemical
reactivity (with nonchiral reagents) different in:
interactions with plane polarized lightti it ith hi l t reactivity with chiral reagents
Example
d-C4H4O62-(aq) + d,l-[Co(en)3]Cl3(aq)d C4H4O6 (aq) d,l [Co(en)3]Cl3(aq) d-[Co(en)3](d-C4H4O62- )Cl(s) + l-[Co(en)3]Cl3(aq) +2Cl-
(aq)
-
Properties of transition metal complexes:Properties of transition metal complexes: usually have color
dependent upon ligand(s) and metal iondependent upon ligand(s) and metal ion many are paramagnetic
due to unpaired d electronsp degree of paramagnetism dependent on ligand(s)
[Fe(CN)6]3- has 1 unpaired d electron[F F ]3 h 5 i d d l t [FeF6]3- has 5 unpaired d electrons