Wk2Coord Chem- Intro

90
Coordination Chemistry

description

kimia kordinasi

Transcript of Wk2Coord Chem- Intro

  • Coordination Chemistry

  • Kimia Koordinasi :Kimia Koordinasi :Cabang ilmu kimia yang mempelajari tentang senyawakoordinasi

    Senyawa koordinasi :Senyawa yang tersusun atas satu atom pusat (biasanyalogam atau kelompok atom seperti VO2, TiO, dll) dan ligan(sejumlah anion atau molekul netral yang mengelilingi atom(sejumlah anion atau molekul netral yang mengelilingi atom atau kelompok atom pusat tersebut)

    Ditinjau dari asam-basa Lewis, atom pusat dlm senyawakoordinasi berperan sebagai asam, sedangkan ligansebagai basa Lewissebagai basa Lewis

  • Sif t k di i d t di dik i d iSifat senyawa koordinasi dapat diprediksi dari Sifat ion pusatnya, dan Sifat ligan Sifat ligan

    Jumlah muatan kompleks ditentukan dari penjumlahan Ju a uata o p e s d te tu a da pe ju a amuatan ion pusat dan ligan yang membentuk kompleks.

    Spesies kompleks dapat berupa non-ionik, kation dan anion, bergantung pada muatan penyusunnya

  • Why Study Transition Metals and Their C dCompounds

    Many biomolecules contain transition metals that are yinvolved in the functions of these biomolecules

    Vitamin B12 contains Co Hemoglobin myoglobin and cytochrome C are iron Hemoglobin, myoglobin, and cytochrome C are iron

    complexes Chlorophyll is a magnesium complex

    Transition metals and their compounds have many useful applications Transition metal compounds are used as pigmentsp p g

    TiO2 = white PbCrO4 = yellow Fe4[Fe(CN)6]3 (prussian blue)= blue

    Transition metal compounds are used in many industrial processes

  • To understand the uses and applications ofTo understand the uses and applications of transition metals and their compounds, we need to understand their chemistry.

  • Periodic TablePeriodic Table

    d block transition elements

    f bl k i i lf block transition elements

  • d-Block Transition Elements

    IIIB IVB VB VIB VIIB IB IIBVIIIB

    d Block Transition Elements

    Sc Ti V Cr Mn Fe Co Ni Cu Zn

    IIIB IVB VB VIB VIIB IB IIB

    Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

    La Hf Ta W Re Os Ir Pt Au Hg

    M t h ti ll i d d b h ll iMost have partially occupied d subshells in common oxidation states

  • Electronic ConfigurationsgElement Configuration

    Sc [Ar]3d14s2

    Ti [Ar]3d24s2[ ]V [Ar]3d34s2

    Cr [Ar]3d54s1Cr [Ar]3d54s1

    Mn [Ar]3d54s2

    [Ar] = 1s22s22p63s23p6[ ] p p

  • Electronic ConfigurationsgElement Configuration

    Fe [Ar] 3d64s2

    Co [Ar] 3d74s2Co [Ar] 3d 4sNi [Ar] 3d84s2

    C [Ar]3d104s1Cu [Ar]3d104s1

    Zn [Ar]3d104s2

    [Ar] = 1s22s22p63s23p6[ ] p p

  • Electronic Configurations of Transition Metal Ions

    Electronic configuration of Fe2+

    Transition Metal Ions

    Electronic configuration of Fe

    Fe 2e- Fe2+

  • Electronic Configurations of Transition Metal Ions

    Electronic configuration of Fe2+

    Transition Metal Ions

    Electronic configuration of Fe

    Fe 2e- Fe2+[Ar]3d64s2

    valence ns e-s removed first

  • Electronic Configurations of Transition Metal Ions

    Electronic configuration of Fe2+

    Transition Metal Ions

    Electronic configuration of Fe

    Fe 2e- Fe2+[Ar]3d64s2 [Ar]3d6

    valence ns e-s removed first

  • Electronic Configurations of Transition Metal Ions

    Electronic configuration of Fe3+

    Transition Metal Ions

    Electronic configuration of Fe

    Fe 3e- Fe3+

  • Electronic Configurations of Transition Metal Ions

    Electronic configuration of Fe3+

    Transition Metal Ions

    Electronic configuration of Fe

    Fe 3e- Fe3+[Ar]3d64s2

    valence ns e-s removed first, then n-1 d e-s

  • Electronic Configurations of Transition Metal Ions

    Electronic configuration of Fe3+

    Transition Metal Ions

    Electronic configuration of Fe

    Fe 3e- Fe3+[Ar]3d64s2 [Ar]3d5

    valence ns e-s removed first, then n-1 d e-s

  • Electronic Configurations of Transition Metal Ions

    Electronic configuration of Co3+

    Transition Metal Ions

    Electronic configuration of Co

    Co 3e- Co3+

  • Electronic Configurations of Transition Metal Ions

    Electronic configuration of Co3+

    Transition Metal Ions

    Electronic configuration of Co

    Co 3e- Co3+[Ar]3d74s2

    valence ns e-s removed first, then n-1 d e-s

  • Electronic Configurations of Transition Metal Ions

    Electronic configuration of Co3+

    Transition Metal Ions

    Electronic configuration of Co

    Co 3e- Co3+[Ar]3d74s2 [Ar]3d6

    valence ns e-s removed first, then n-1 d e-s

  • Electronic Configurations of Transition Metal Ions

    Electronic configuration of Mn4+

    Transition Metal Ions

    Electronic configuration of Mn

    Mn 4e-Mn4+

  • Electronic Configurations of Transition Metal Ions

    Electronic configuration of Mn4+

    Transition Metal Ions

    Electronic configuration of Mn

    Mn 4e-Mn4+[Ar]3d54s2

    valence ns e-s removed first, then n-1 d e-s

  • Electronic Configurations of Transition Metal Ions

    Electronic configuration of Mn4+

    Transition Metal Ions

    Electronic configuration of Mn

    Mn 4e-Mn4+[Ar]3d54s2 [Ar]3d3

    valence ns e-s removed first, then n-1 d e-s

  • Coordination Chemistryy Transition metals act as Lewis acids

    Form complexes/complex ionsForm complexes/complex ionsFe3+(aq) + 6CN-(aq) Fe(CN)63-(aq)

    Lewis acid Lewis base Complex ion

    Ni2+(aq) + 6NH3(aq) Ni(NH3)62+(aq)Lewis acid Lewis base Complex ion

    Complex contains central metal ion bonded to one or more molecules or anionsmolecules or anions

    Lewis acid = metal = center of coordination

    Lewis base = ligand = molecules/ions covalently bonded toLewis base ligand molecules/ions covalently bonded to metal in complex

  • Transition metals act as Lewis acids Form complexes/complex ionsForm complexes/complex ions

    Fe3+(aq) + 6CN-(aq) [Fe(CN)6]3-(aq)Lewis acid Lewis base Complex ion

    Ni2+(aq) + 6NH3(aq) [Ni(NH3)6]2+(aq)Lewis acid Lewis base Complex ion

    Comple ith a net charge comple ionComplex with a net charge = complex ion

    Complexes have distinct properties

  • Coordination compoundCoordination compound Compound that contains 1 or more complexes

    Example Example [Co(NH3)6]Cl3 [Cu(NH3)4][PtCl4][Cu(NH3)4][PtCl4] [Pt(NH3)2Cl2]

  • Coordination sphereCoordination sphere Metal and ligands bound to it

    Coordination number Coordination number number of donor atoms bonded to the central

    metal atom or ion in the complexmetal atom or ion in the complex Most common = 4, 6 Determined by ligands Determined by ligands

    Larger ligands and those that transfer substantial negative charge to metal favor lower coordination numbersnumbers

  • Complex charge = sum of charges h l d h li d

    [Fe(CN)6]3-

    on the metal and the ligands

    [Fe(CN)6]

  • Complex charge = sum of charges h l d h li d

    [Fe(CN)6]3-

    on the metal and the ligands

    [Fe(CN)6]

    +3 6( 1)+3 6(-1)

  • Neutral charge of coordination compound = sum of h l li d d b l i i

    [Co(NH3)6]Cl2

    charges on metal, ligands, and counterbalancing ions

    [Co(NH3)6]Cl2

    neutral compoundp

  • Neutral charge of coordination compound = sum of h l li d d b l i i

    [Co(NH3)6]Cl2

    charges on metal, ligands, and counterbalancing ions

    [Co(NH3)6]Cl2

    +2 6(0)+2 6(0) 2(-1)

  • Classification of coordination compound

    Ligands

    Classification of coordination compound

    Ligands classified according to the number of donor

    atoms Examples

    monodentate = 1 bidentate = 2 tetradentate = 4

    chelating agents

    hexadentate = 6 polydentate = 2 or more donor atoms

  • LigandsLigands

    MonodentateMonodentate Examples:

    H O CN- NH NO - SCN- OH- X- (halides) CO H2O, CN , NH3, NO2 , SCN , OH , X (halides), CO, O2-

    Example Complexesp p [Co(NH3)6]3+

    [Fe(SCN)6]3-

  • Ligandsg Bidentate

    ExamplesExamples oxalate ion = C2O42-

    ethylenediamine (en) = NH2CH2CH2NH2y ( ) 2 2 2 2 ortho-phenanthroline (o-phen)

    Example Complexesp p [Co(en)3]3+

    [Cr(C2O4)3]3-

    [Fe(NH3)4(o-phen)]3+

  • Ligandsgoxalate ion ethylenediamine

    O O 2- CH2 CH2CC

    O O

    CH2H2N

    CH2NH2* *O O

    CHortho-phenanthroline

    * **

    *N CH CHCHN CD A

    ** CH

    CHHC

    HCN

    CC

    C

    C

    Donor Atoms

    CHCH

  • LigandsLigandsoxalate ion ethylenediamine

    CH

    CC

    OM

    M NM N

  • LigandsLigands

  • LigandsLigands

    HexadentateHexadentate ethylenediaminetetraacetate (EDTA) =

    (O2CCH2)2N(CH2)2N(CH2CO2)24-(O2CCH2)2N(CH2)2N(CH2CO2)2 Example Complexes

    [Fe(EDTA)]-1[Fe(EDTA)] [Co(EDTA)]-1

  • Ligands

    EDTA

    Ligands

    CH2C CH2 C

    OO

    O O

    EDTA

    * *CH2N

    CH2CCH2 N

    CH2 CO O* ***

    CH2C CH2 C

    OO

    OO* *

    OO

    Donor AtomsDonor Atoms

  • LigandsEDTA

    LigandsO

    H

    C

    H

    C

    NM

    NM

  • LigandsEDTA

  • Common Geometries of Complexes

    Coordination Number Geometryy

    22

    Linear

  • Common Geometries of Complexes

    Coordination Number Geometryy

    22

    LinearExample: [Ag(NH3)2]+

  • Common Geometries of ComplexesCoordination Number Geometry

    44tetrahedral(most common)(most common)

    square planarsquare planar(characteristic of metal ions with 8 d e-s)

  • Common Geometries of ComplexesCoordination Number Geometry

    44tetrahedral

    Examples: [Zn(NH3)4]2+, [FeCl4]-

    square planarsquare planarExample: [Ni(CN)4]2-

  • Common Geometries of ComplexesCoordination Number Geometry

    66

    octahedral

  • Common Geometries of ComplexesCoordination Number Geometry

    66

    Examples: [Co(CN)6]3-, [Fe(en)3]3+

    octahedral

  • Porphyrin, an important chelating agent found inchelating agent found in

    nature

    N

    NH NH

    N

  • Metalloporphyrin

    N2+

    N NFe2+

    N

  • Myoglobin, a protein that stores O2 in cells 2

  • Coordination Environment of Fe2+ in Oxymyoglobin and Oxyhemoglobiny y g y g

  • Ferrichrome (Involved in Fe transport in bacteria)bacteria)

  • Berdasarkan pada jenis ikatan koordinasi yang terbentuk ligan dapat dikelompokkan sebagai :terbentuk, ligan dapat dikelompokkan sebagai :-Ligan yg tdk punya elektron yang sesuai untukikatan dan orbital kosong shg ikatan yangikatan dan orbital kosong shg ikatan yang terbentuk hanya , seperti H-, NH3, SO32- atauRNH22-Ligan yang memiliki 2 atau 3 pasang elektronnonbonding,seperti N3-, O2-, F-, Cl-, Br-, I-, OH-, S2-, g p 3NH2-, H2O, R2S, R2O dan NH2-Ligan yg memiliki orbital -anti ikatan kosongdgn energi rendah dapat menerima elektron ygorientasinya sesuai dari logam spt CO, R3P, R3As, B I CN dBr-, I-, CN-, py dan acac

  • - Ligan yg tidak ada pasangan elektron nonbonding nya tetapiiliki l kt ik t ti lk lki b dmemiliki elektron ikatan-, seperti alkena, alkina, benzena dan

    anion siklopentadienil- Ligan yg dapat membentuk 2 ikatan dengan 2 atom logam

    t i h d k di b t k j b t Mi l OH Cl Fterpisah dan kemudian membentuk jembatan. Misalnya OH-, Cl-, F-, NH2-, O2-, CO, SO42- dan O2-

    Jenis logamBerdasarkan konfigurasinya:- Ion dengan konfigurasi sama dengan konfigurasi gas mulia

    ion ini dpt membentuk ikatan mulai dari bersifat ionik sampai kovalen sesuai dengan kenaikanmuatan ionnyamuatan ionnya

    - Ion dengan 18 elektronion dg konfigurasi ns2 np6 nd10 juga simetri scr spherical termasuk logam-logam transisi dankeadaan oksida negatifkeadaan oksida negatif

    - Ion pasangan inert (ns2)- Ion logam transisi (ndx, x = 1-9)

  • Nomenclature of Coordination C d IUPAC R lCompounds: IUPAC Rules

    The cation is named before the anionThe cation is named before the anion When naming a complex:

    Li d d fi t Ligands are named first alphabetical order

    Metal atom/ion is named last Metal atom/ion is named last oxidation state given in Roman numerals follows in

    parenthesesparentheses Use no spaces in complex name

  • Nomenclature: IUPAC RulesNomenclature: IUPAC Rules

    The names of anionic ligands end with theThe names of anionic ligands end with the suffix -o

    ide suffix changed to o -ide suffix changed to -o -ite suffix changed to -ito

    ate suffix changed to ato -ate suffix changed to -ato

  • Nomenclature: IUPAC RulesNomenclature: IUPAC RulesLigand Name

    bromide, Br- bromo

    chloride, Cl- chloro

    cyanide, CN- cyano

    hydroxide, OH- hydroxo

    oxide, O2- oxo

    fluoride, F- fluoro

  • Nomenclature: IUPAC RulesNomenclature: IUPAC RulesLigand Name

    carbonate, CO32- carbonato

    oxalate, C2O42- oxalato

    sulfate, SO42- sulfato

    thiocyanate, SCN- thiocyanato

    thiosulfate, S2O32- thiosulfato

    Sulfite, SO32- sulfito

  • Nomenclature: IUPAC RulesNomenclature: IUPAC Rules

    Neutral ligands are referred to by the usualNeutral ligands are referred to by the usual name for the molecule

    Example Example ethylenediamine

    Exceptions Exceptions water, H2O = aqua ammonia, NH3 = amminea o a, 3 a e carbon monoxide, CO = carbonyl

  • Nomenclature: IUPAC Rules Greek prefixes are used to indicate the number

    of each type of ligand when more than one is y gpresent in the complex di-, 2; tri-, 3; tetra-, 4; penta-, 5; hexa-, 6

    If the ligand name already contains a Greek prefix, use alternate prefixes: bis-, 2; tris-, 3; tetrakis-,4; pentakis-, 5; hexakis-, 6 The name of the ligand is placed in parentheses

  • Nomenclature: IUPAC RulesNomenclature: IUPAC Rules

    If a complex is an anion its name endsIf a complex is an anion, its name ends with the -ate

    appended to name of the metal appended to name of the metalExample [Co(NO ) ]3- ; heksanitritokobaltat(III)[Co(NO2)6]3- ; heksanitritokobaltat(III)

  • Nomenclature: IUPAC RulesTransition

    MetalName if in Cationic

    ComplexName if in Anionic

    ComplexSc Scandium ScandateSc Scandium ScandateTi titanium titanateV vanadium vanadateCr chromium chromateMn manganese manganateFe iron ferrateCo cobalt cobaltateNi i k l i k l tNi nickel nickelateCu Copper cuprateZn Zinc zincateZn Zinc zincate

  • IsomerismIsomerism

    IsomersIsomers compounds that have the same composition

    but a different arrangement of atomsbut a different arrangement of atoms Major Types

    structural isomers structural isomers stereoisomers

  • Structural IsomersStructural Isomers

    Structural IsomersStructural Isomers isomers that have different bonds

  • Structural IsomersStructural Isomers

    Coordination-sphere isomersCoordination sphere isomers differ in a ligand bonded to the metal in the

    complex as opposed to being outside thecomplex, as opposed to being outside the coordination-sphere

  • Coordination-Sphere IsomersCoordination Sphere Isomers

    ExampleExample[Co(NH3)5Cl]Br vs. [Co(NH3)5Br]Cl

  • Coordination-Sphere IsomersCoordination Sphere Isomers

    ExampleExample[Co(NH3)5Cl]Br vs. [Co(NH3)5Br]Cl

    C id i i ti i t Consider ionization in water[Co(NH3)5Cl]Br [Co(NH3)5Cl]+ + Br-

    [Co(NH ) Br]Cl [Co(NH ) Br]+ + Cl-[Co(NH3)5Br]Cl [Co(NH3)5Br] + Cl

  • Coordination-Sphere IsomersCoordination Sphere Isomers

    ExampleExample[Co(NH3)5Cl]Br vs. [Co(NH3)5Br]Cl

    C id i it ti Consider precipitation

    [Co(NH ) Cl]Br(aq) + AgNO (aq) [Co(NH ) Cl]NO (aq) + AgBr(aq)[Co(NH3)5Cl]Br(aq) + AgNO3(aq) [Co(NH3)5Cl]NO3(aq) + AgBr(aq)

    [Co(NH3)5Br]Cl(aq) + AgNO3(aq) [Co(NH3)5Br]NO3(aq) + AgCl(s)

  • Structural IsomersStructural Isomers

    Linkage isomersLinkage isomers differ in the atom of a ligand bonded to the

    metal in the complexmetal in the complex

  • Linkage IsomersLinkage Isomers

    ExampleExample [Co(NH3)5(ONO)]2+ vs. [Co(NH3)5(NO2)]2+

  • Linkage IsomersLinkage Isomersgg

  • Linkage IsomersLinkage Isomers

    ExampleExample [Co(NH3)5(SCN)]2+ vs. [Co(NH3)5(NCS)]2+

    Co-SCN vs. Co-NCS

  • StereoisomersStereoisomers

    StereoisomersStereoisomers Isomers that have the same bonds, but

    different spatial arrangementsdifferent spatial arrangements

  • StereoisomersStereoisomers

    Geometric isomersGeometric isomers Differ in the spatial arrangements of the

    ligandsligands

  • Geometric Isomers

    cis isomer trans isomerPt(NH ) ClPt(NH3)2Cl2

  • Geometric Isomers

    cis isomer trans isomer[Co(H O) Cl ]+[Co(H2O)4Cl2]

  • StereoisomersStereoisomers

    Geometric isomersGeometric isomers Differ in the spatial arrangements of the

    ligandsligands Have different chemical/physical properties

    different colors melting points polaritiesdifferent colors, melting points, polarities, solubilities, reactivities, etc.

  • StereoisomersStereoisomers

    Optical isomersOptical isomers isomers that are nonsuperimposable mirror

    imagesimages said to be chiral (handed) referred to as enantiomers

    A substance is chiral if it does not have a plane of symmetry

  • Example 1

    mirroor plane

    cis-[Co(en)2Cl2]+

  • i i 180Example 1

    rotate mirror image 180

    180 180

  • nonsuperimposableExample 1

    cis-[Co(en)2Cl2]+

  • enantiomersExample 1

    cis-[Co(en)2Cl2]+

  • Example 2

    mirrror planne

    trans [Co(en) Cl ]+trans-[Co(en)2Cl2]+

  • Example 2i i 180rotate mirror image 180

    180

    trans [Co(en) Cl ]+trans-[Co(en)2Cl2]+

  • Example 2Superimposable not enantiomersSuperimposable-not enantiomers

    trans [Co(en) Cl ]+trans-[Co(en)2Cl2]+

  • Properties of Optical IsomersProperties of Optical Isomers

    EnantiomersEnantiomers possess many identical properties

    solubility melting point boiling point color solubility, melting point, boiling point, color, chemical reactivity (with nonchiral reagents)

    different in: interactions with plane polarized light

  • Optical IsomersOptical Isomers

    polarizing filter plane

    l i d li hpolarized light

    light source

    unpolarized light

    (random vibrations)(vibrates in one plane)

  • Optical IsomersOptical Isomers

    optically active sample in solution

    polarizing filter plane polarized

    light in solutionlight

    rotated polarizedrotated polarized light

  • Optical IsomersOptical Isomers

    optically active sample in solution

    polarizing filter plane polarized

    light in solutionlight

    Dextrorotatory (d) = right rotation

    rotated polarized

    Levorotatory (l) = left rotation

    Racemic mixture = equal rotated polarized

    lightamounts of two enantiomers; no net rotation

  • Properties of Optical Isomers Enantiomers

    possess many identical propertiesp y p p solubility, melting point, boiling point, color, chemical

    reactivity (with nonchiral reagents) different in:

    interactions with plane polarized lightti it ith hi l t reactivity with chiral reagents

    Example

    d-C4H4O62-(aq) + d,l-[Co(en)3]Cl3(aq)d C4H4O6 (aq) d,l [Co(en)3]Cl3(aq) d-[Co(en)3](d-C4H4O62- )Cl(s) + l-[Co(en)3]Cl3(aq) +2Cl-

    (aq)

  • Properties of transition metal complexes:Properties of transition metal complexes: usually have color

    dependent upon ligand(s) and metal iondependent upon ligand(s) and metal ion many are paramagnetic

    due to unpaired d electronsp degree of paramagnetism dependent on ligand(s)

    [Fe(CN)6]3- has 1 unpaired d electron[F F ]3 h 5 i d d l t [FeF6]3- has 5 unpaired d electrons