file · Web viewBukti dari sekolah Pythagoras tersebut tersaji pada gambar di bawah....

23
25 Macam Pembuktian Teorema Pythagoras Siapa yang belum mendengar “Teorema Pythagoras”? sejak di sekolah dasar kita telah diperkenalkan dengan sifat yang terdapat pada segitiga siku-siku tersebut. Sebagai tambahan wawasan dan pengetahuan bagi para guru, berikut ini disajikan penjelasan singkat mengenai sejarah teorema Phytagoras serta 25 cara membuktikannya. Teorema Pythagoras merupakan salah satu teorema yang telah dikenal manusia sejak peradaban kuno. Nama teorema ini diambil dari nama seorang matematikawan Yunani yang bernama Pythagoras. Pythagoras lahir di pulau Samos, Yunani, sekitar tahun 570 SM. Sesuai dengan nasehat gurunya Thales, Pythagoras muda mengunjungi Mesir sekitar tahun 547 SM dan tinggal di sana. Bangsa Mesir kuno telah mengetahui bahwa segitiga dengan panjang sisi 3, 4 dan 5 akan membentuk sebuah sudut siku-siku. Mereka menggunakan tali yang diberi simpul pada beberapa tempat dan menggunakannya untuk membentuk sudut siku-siku pada bangunan- bangunan mereka termasuk piramid. Diyakini bahwa mereka hanya mengetahui tentang segitiga dengan sisi 3, 4 dan 5 yang membentuk segitiga siku-siku, sedangkan teorema yang berlaku secara umum untuk segitiga siku-siku belum mereka ketahui. Di Cina, Tschou-Gun yang hidup sekitar 1100 SM juga mengetahui teorema ini. Demikian juga di Babylonia, teorema ini telah dikenal pada masa lebih dari 1000 tahun sebelum Pythagoras. Sebuah keping tanah liat dari Babilonia pernah ditemukan dan memuat naskah yang kira-kira berbunyi sebagai berikut: “ 4 is length and 5 the diagonal. What is the breadth ?” Pythagoras-lah yang telah membuat generalisasi dan membuat teorema ini menjadi populer. Secara singkat teorema Pythagoras berbunyi: Pada sebuah segitiga siku-siku, kuadrat sisi miring (sisi di depan sudut sikusiku) sama dengan jumlah kuadrat sisi-sisi yang lain . 1. Pembuktian dari Sekolah Pythagoras

Transcript of file · Web viewBukti dari sekolah Pythagoras tersebut tersaji pada gambar di bawah....

25 Macam Pembuktian Teorema Pythagoras

 Siapa yang belum mendengar “Teorema Pythagoras”? sejak di sekolah dasar kita telah

diperkenalkan dengan sifat yang terdapat pada segitiga siku-siku tersebut. Sebagai tambahan wawasan dan pengetahuan bagi para guru, berikut ini disajikan penjelasan singkat mengenai sejarah teorema Phytagoras serta 25 cara membuktikannya.

Teorema Pythagoras merupakan salah satu teorema yang telah dikenal manusia sejak peradaban kuno. Nama teorema ini diambil dari nama seorang matematikawan Yunani yang bernama Pythagoras. Pythagoras lahir di pulau Samos, Yunani, sekitar tahun 570 SM. Sesuai dengan nasehat gurunya Thales, Pythagoras muda mengunjungi Mesir sekitar tahun 547 SM dan tinggal di sana.

Bangsa Mesir kuno telah mengetahui bahwa segitiga dengan panjang sisi 3, 4 dan 5 akan membentuk sebuah sudut siku-siku. Mereka menggunakan tali yang diberi simpul pada beberapa tempat dan menggunakannya untuk membentuk sudut siku-siku pada bangunan-bangunan mereka termasuk piramid. Diyakini bahwa mereka hanya mengetahui tentang segitiga dengan sisi 3, 4 dan 5 yang membentuk segitiga siku-siku, sedangkan teorema yang berlaku secara umum untuk segitiga siku-siku belum mereka ketahui.     Di Cina, Tschou-Gun yang hidup sekitar 1100 SM juga mengetahui teorema ini. Demikian juga di Babylonia, teorema ini telah dikenal pada masa lebih dari 1000 tahun sebelum Pythagoras. Sebuah keping tanah liat dari Babilonia pernah ditemukan dan memuat naskah yang kira-kira berbunyi sebagai berikut: “4 is length and 5 the diagonal. What is the breadth?”

Pythagoras-lah yang telah membuat generalisasi dan  membuat teorema ini menjadi populer. Secara singkat teorema Pythagoras berbunyi:Pada sebuah segitiga siku-siku, kuadrat sisi miring (sisi di depan sudut sikusiku) sama dengan jumlah kuadrat sisi-sisi yang lain.

1.    Pembuktian dari Sekolah PythagorasSifat pada segitiga siku-siku ini sebenarnya telah dikenal berabad-abad sebelum masa Pythagoras, seperti di Mesopotamia, juga Cina. Tetapi catatan tertulis pertama yang memberi bukti berasal dari Pythagoras. Bukti dari sekolah Pythagoras tersebut tersaji pada gambar di bawah.Perhatikan bahwa:

 Luas daerah hitam pada gambar (1) adalah a2 + b2

Luas daerah hitam pada gambar (2) adalah c2

Dengan demikian a2 + b2 = c2

2.    Pembuktian lain menggunakan diagram PythagorasBukti berikut ini lebih sederhana tetapi menggunakan sedikit manipulasi aljabar. Keempat segitiga siku-siku yang kongruen disusun membentuk gambar di bawah ini.

Dengan menghitung luas bangun bujur sangkar yang terjadi melalui dua cara akan diperoleh:(a + b)                     =          c2 + 4. ½ aba2 + 2ab + b2          =          c2 + 2 aba2 + b2                     =          c2

3.    Bukti dari Astronom India Bhaskara (1114 - 1185)

Bukti berikut ini pertama kali terdapat pada karya Bhaskara (matematikawan India, sekitar abad X). Bangun ABCD di atas berupa bujursangkar dengan sisi c. Di dalamnya dibuat empat buah segitiga siku-siku dengan panjang sisi a dan b.Dengan konstruksi bangun tersebut, maka:Luas PQRS + 4  x luas ABQ    =      luas ABCD(b – a)2 + 4 x ½ . ab                 =      c2

b2 – 2ab + a2 + 2ab                   =      c2

a2 + b2                                       =      c2

4.    Pembuktian Teorema Pythagoras oleh Presiden J. A. GarfieldPembuktian ini berasal dari J. A. Garfield pada tahun 1876. Luas daerah trapesium di bawah ini dapat dihitung dengan dua cara sehingga teorema Pythagoras dapat dibuktikan sebagai berikut.

Luas trapesium       =          (alas + atas)/2. tinggi               =          (a + b)/2. (a + b)Di lain pihak, luas trapesium          =          2. ½ ab + ½ c2

Sehingga, (a + b)/2. (a + b)            =          2. ½ ab + ½ c2

a2 + 2ab + b2                                  =          2ab + c2

a2 + b2                                             =          c2

5.    Bukti menggunakan Garis Tinggi dan Sifat Segitiga Sebangun (Pembuktian Baskhara yang Kedua)Perhatikan gambar berikut:

Segitiga ABC sebangun dengan segitiga ACD sehingga b/c = c1/c atau b2 = c . c1 ... (1)Segitiga ABC sebangun dengan segitiga CBD sehingga a/c = c2/a atau a2 = c . c2 ... (2)Dari (1) dan (2) diperoleh:a2 + b2 = c . c1 + c . c2

a2 + b2 = c (c1 + c2)a2 + b2 = c . ca2 + b2 = c2

6.    Bukti menggunakan TransformasiMisal segitiga ABC siku-siku di C. Putarlah segitiga ABC sejauh 900 berlawanan arah dengan putaran jarum jam dengan pusat rotasi C. Akan diperoleh segitiga A’B’C’ yang berimpit dengan segitiga ABC.

½ a2                        =          (1)½ b2                                =          (2) + (3)------------------------------------ +½ a2 + ½ b2             =          (1) + (2) + (3)                               =          [(1) + (2)] + (3)                               =          ½ cx + ½ cy                               =          ½ c (x + y)                               =          ½ c.c                               =          ½ c2

Dengan mengalikan dua pada setiap ruas maka akan diperoleh a2 + b2 = c2

7.    Bukti dengan Dasar Perbandingan lagi

Diberikan segitiga ABC yang siku-siku di C. Kalikan setiap sisi dengan c. Lalu bentuk dua segitiga sebangun dengan ABC seperti pada gambar di atas. Dengan perbandingan sisi pada segitiga-segitiga sebangun akan diperoleh panjang sisi-sisi yang lain pada bangun di samping. Dari konstruksi tersebut jelas c2 = a2 + b2.Bukti sejenis ini terdapat pula dalambeberapa buku dan publikasi, seperti oleh Birkhoff.

8.    Bukti dengan “Bayangan”Perhatikan bahwa kelima gambar di bawah ini memuat daerah gelap dengan luas yang sama (menggunakan konsep kesamaan luas bangun-bangun datar).

9.    Bukti dengan “Putaran”

Perhatikan proses dari diagram di atas.Luas daerah gambar awal   =   a2 + b2 + 2. ½ . abLuas daerah gambar akhir  =    c2 + 2. ½. Ab

Oleh karena transformasi di atas tidak mengubah ukuran, maka kedua daerah tersebut sama luasnya, sehingga dengan mengurangi masing-masing oleh ab atau mengambil kedua bangun segitiga siku-siku akan diperoleh:a2 + b2 = c2 (Sumardyono, 2003)

10.    Bukti dengan cara “Geser, Potong, lalu Putar”Perhatikan bukti geometris berikut ini, dengan cara menggeser, memotong, dan memutar.

(Sumardyono, 2004)

11.    Bukti dari EuclidBukti berikut ini pertama kali diberikan oleh Euclid. Perhatikan gambar di bawah ini.

DBQE        =          NLBD ..... kedua bangun konruen                   =          MLBC...... alas sama-sama BL dengan tinggi tetap BD                   =          SRBC ...... alas sama-sama BC dengan tinggi tetap BR                   =          a2

ADEP         =          KNDA..... kedua bangun konruen                   =          KMCA ..... alas sama-sama AK dengan tinggi tetap AD                   =          UTCA ...... alas sama-sama AC dengan tinggi tetap AU                   =          b2

c2    = BDQE + ADEP       =     a2     +    b2

12.    Bukti dari Leonardo da VinciDiberikan segitiga siku-siku ABC. Buatlah segitiga JHI kongruen dengan ABC. Maka segiempat ABHI, JHBC, ADGC, dan EDGF adalah kongruen.

Bukti teorema Pythagoras dilakukan sebagai berikut:Luas ADGC + luas EDGF = luas ABHI + luas JHBC                 Luas ADEFGC = luas ABCJHIKedua bangun memuat dua segitiga yang kongruen dengan segitiga ABC, sehingga:Luas ADEFGC – 2. Luas ABC     =          luas ABCJHI – 2. Luas ABCLuas ABED + luas BCGF             =          luas ACJI

13.    Bukti dengan cara “Tambah lalu Geser”Susunlah empat segitiga siku-siku yang kongruen dengan segitiga ABC seperti pada gambar sebelah kiri, lalu tambahkan sebuh bujur sangkar dengan luas b – a.

Maka diperoleh:Luas KMNPQR     =          luas KSQR + luas MNP                               =          a2 + b2

Kemudian pindahkan segitiga 1 dan 4 sehingga membentuk bangun di sebelah kanan. Bangun yang terbentuk adalah bujur sangakar dengan sisi c, sehingga luasnya c2. (Sumardyono, 2003)

14.    Bukti dari Liu Hui (pada 3 Masehi)Bukti berikut bersifat geometris. Tetapi Anda dengan mudah dapat membuktikannya secara aljabar.

15.    Bukti dari Tsabit ibn QorraBukti berikut berasal dari Tsabit ibn Qorra (836-901) dan merupakan generalisasi Teorema Pythagoras. Diberikan sebarang segitiga ABC. Buatlah titik A’ dan B’ pada AB sedemikian sehingga < BA’C = < AB’C = < CAB’ (untuk gambar atas <CAB’ tumpul dan untuk gambar bawah < CAB’ lancip). Dengan demikian tampak bahwa segitiga ABC, segitiga CBA’ dan segitiga ACB’ saling sebangun.

Kesebangunan ini mengakibatkan:AC/BA = A’B/CB (pandang segitiga CBA’ dan ABC )AC/AB = AB’/AC (pandang segitiga ACB’ dan ABC)

Sehingga akan diperoleh BC2 + AC2 = AB(A’B + AB’)Apabila sudut C siku-siku maka A’ = B’ dan Teorema Pythagoras terpenuhi.

                                          16.    Bukti dari Pappus

Bukti berikut berasal dari Pappus (sekitar 300 M) dan merupakan suatu generalisasi. Buat sebarang segitiga ABC. Lalu buat sebarang jajargenjang CADE (di sisi CA) dan sebarang jajargenjang CBFG (di sisi BC). Kemudian panjang DE dan FG hingga bertemu, katakan di H. Kemudian lukis AL dan BM sejajar dan sama panjang dengan HC. Maka:Luas CADE    =          luas CAUH     =          luas SLARLuas CBFG                 =          luas CBVH     =          luas SMBR--------------------------------------------------------------------------- +Luas CADE + luas CBFG                              =          luas ABMLBila segitiga ABC adalah segitiga siku-siku (dengan sudut siku-siku di C) serta jajargenjang di sisi CA dan BC merupakan bujursangkar, maka akan diperoleh Teorema Pythagoras.

17.    Pembuktian dengan Segitiga Sama SisiBuat segitiga siku-siku dengan panjang sisi a, b, dan c.

Kemudian buat segitiga sama sisi dengan panjang a, b, dan c di setiap sisi-sisinyasehinggaakan tampak seperti gambar berikut.

Dari gambar di atas,diketahui bahwa luas segitiga sama sisi pada sisi miring sama dengan jumlah segitiga sama sisi lainnya.Untuk segitiga dengan panjang sisi k, l, dan m maka luas segitiga tersebut adalah

18.    Pembuktian dengan Identitas Trigonometri PythagorasBuat segitiga siku-siku dengan panjang sisi a, b, dan, c seperti gambar berikut.Kemudian dengan menggunakan trigonometri untuk menentukan sinus dan cosinus sudut Ө yaitu sebagai berikut.

Hubungan antara sinus dan cosinus dinamakan sebagai identitas trigonometri Pythagoras yang mendasar. Sehingga pada trigonometri kita ketahui bahwa

Hubungan antara sinus dan cosinus dinamakan sebagai identitas trigonometri Pythagoras yang mendasar. Sehingga pada trigonometri kita ketahui bahwa.

19.    Pembuktian denan Persamaan DifferensialPertama gambar segitiga siku-siku ABC seperti gambar berikut

b diperpanjang ke titik D yaitu sisi db, c juga diperpanjang dengan sisi dc. Terdapat dua sisi segitiga yang sebangun yaitu segitiga AED (EA tegak lurus terhadap sisi miring) dan segitiga

ABC seperti gambar berikut.oleh karena itu rasio atau perbandingan sisi-sisi pada segitiga tersebut harus sama, yaitu:

Dapat ditulis sebagai berikut

Perhatikan gambar, apabila b = 0, maka a harus berhimpit terhadap c. Artiya a = c. Maka konstanta = c2 = a2 sehingga c2 = b2 + a2 terbukti.

20.    Pembuktian Thabit Ibn QurraBuat persegi panjang dengan panjang a dan b, kemudian disusun berdampingan seperti gambar berikut.

Luas bangun di atas adalah persegi besar dan persegi kecil yaitu a2 + b2.Persegi di atas kita gabungkan, kemudian buat garis sedemikian rupa sehingga akan tampak seperti gambar di bawah, dimana sisi c menjadi sisi miring.

Selanjutnya segitiga kita potong dan tempatkan di bagian lain yaitu samping kanan dan bagian atas sehingga akan tampak seperti gambar berikut.

Bangun yang terbentuk adalah sbuah bujur sangkar dengan luas c2.

21.    Pembuktian John KawamuraPembuktian ini ditemukan oleh siswa SMA yang dilaporkan oleh Chris Davis, guru geometrinya di Head-Rouce School, Oakland, CA.

Kedua diagonal tegak lurus memiliki panjang c, sehingga daerah yang sama dengan c2/2 sehinggac2/2 = Luas bangun ABCD                    = Luas BCD + Luas ABD        = a.a/2 + b.b/2 c2 = a2 + b2 terbukti

22.    Pembuktian Tao Tong

ABC dan BED dua buah segitiga yang kongruen. E pada AB.Luas ABD = BD.AF/2 = DE.AB/2Berdasarkan gambar di atas diperoleh(c-x)/2 = b.b/2.x = CF  (diperoleh dari kesamaan BD dan AC pada segitiga BFC dan ABC).

x = a2/223.    Pembuktian dengan beberapa segitiga yang sebangun.

Berdasarkan gambar di atas diperolehy/b = b’/c, x/a = a’/c + cx = aa’ + bb’maka cc’ = aa’ + bb’

24.    Pembuktian dengan dua trapesium yang kongruenPembuktianini ditemukan oleh seorang siswa SMA, Jamie deLemos.

Kuas dari trapesium tersebut adalah(2a+2b)/2.(a+b)Di lain pihak2.a.b/2 + 2b.a/2 + 2.c2/2Dari dua persamaan tersebut diperoleh:a2 + b2 = c2

25.    Pembuktian dari weininjieda dari Cina

Misal CE = BC = a, CD =AC =b, F titik potong DE dan AB.Segitiga CED kongruen dengan segitiga ABC, misal DE = AB = c.AC tegak lurus dengan BDBE tegak lurus dengan AD, dan ED tegak lurus dengan AB. Maka diperolehLuas segitiga ABD = Luas segitiga ABE + Luas segitiga ACD + luas segitiga BCEAkan diperoleh persmaanc(c+EF) = EF. C + b2 + a2

yang bentuk sederhananyac2 = b2 + a2

 Daftar Pustaka: Anonim. (tanpa tahun). Pythagorean Theorem. [Online]. Tersedia: http://www.cut-the-knot.org/pythagoras/index.shtml . [29 Desember 2013]

Sumardyono.(tanpa tahun). Pembuktian Teorema Pythagoras. [Online]. Tersedia:http://p4tkmatematika.org/file/ARTIKEL/Artikel%20Matematika/Bukti%20Teo%20Pyth%20Euclid_revisi%20terbaru.pdf . [28 Desember 2013]

Tasrudin.(tanpa tahun). 15 macam-macam pembuktian teorema Pythagoras. [Online]. Tersedia :http://www.slideshare.net/landolphin5/savedfiles?s_title=15-macam-pembuktian-teorema-pythagoras-27405761&user_login=TARSUDINN . [28 Desember 2013]  

Ulya, Dinal. (tanpa tahun). Pembuktian teorema Pythagoras dari Euclid. [Online]. Tersedia: http://www.slideshare.net/dinalulya29/pembuktian-teorema-pythagoras-dari-euclid. [29 Desember 2013]

Utari, Rahma siska. (tanpa tahun). Pembuktian Teorema Pythagoras oleh Kelompok 1.[Online]. Tersedia:  http://www.slideshare.net/AmaBustam/20-pembuktian-teorema-pythagoras-oleh-kelompok-1. [29 Desemeber 2013].

Wagner,  Donald B, (2004). A proof of the Pythagorean Theorem by Liu Hui.[Online]. Tersedia:   http://donwagner.dk/Pythagoras/Pythagoras.html

Bukti Teorema Pythagoras18 Mei 2010msihabudin Tinggalkan komentar Go to comments    Teorema Pythagoras berbunyi pada suatu segitiga siku-siku berlaku sisi miring kuadrat sama dengan jumlah kuadrat sisi-sisi lainnya. Secara umum, jika segitiga ABC siku-siku di C maka teorema Pythagoras dapat dinyatakan  .

Teorema Pythagoras ini adalah teorema yang sangat terkenal. Teorema ini akan sering digunakan dalam menghitung luas bangun datar. Selain digunakan dalam perhitungan pada bangun datar, perhitungan pada dimensi 3 atau yang lain juga sering menggunakan teorema Pythagoras. Banyak buku-buku menuliskan teorema ini sebagai  . Dengan c adalah sisi miring. Bukti dari teorema ini sangat bermacam-macam. Sangat banyak cara untuk membuktikan teorema Pythagoras ini. Di sini akan diberikan beberapa bukti teorema Pythagoras. Dari bukti yang sangat mendasar sampai bukti yang cukup rumit. Kebanyakan bukti teorema Pythagoras adalah pengembangan dari bukti-bukti inti (bukti-bukti dasar).

   Bukti 1  

   Disediakan 4 buah segitiga siku-siku. Perhatikan gambar di atas. 4 segitiga di atas adalah segitiga yang sama. Mempunyai sisi-sisi a, b dan c. dan sisi c merupakan sisi miring dari segitiga tersebut. Ketiga segitiga disampingnya adalah hasil rotasi 90, 180 dan 270 derajat dari segitiga pertama.

Luas masing-masing segitiga yaitu  . Sehingga luas 4 segitiga tersebut adalah  .

Segitiga-segitiga tersebut kita atur sedemikian sehingga membentung persegi dengan sisi c seperti gambar berikut.

  

   Perhatikan gambar hasil susunan 4 segitiga tersebut. gambar tersebut membentuk sebuah persegi dengan sisi c. dan didalamnya ada persegi kecil. Panjang sisi persegi kecil tersebut adalah  .

Secara langsung kita dapat menentukan luas persegi besar tersebut, yaitu  . Dan secara tidak langsung, luas persegi besar dengan sisi c tersebut adalah sama dengan luas 4 segitiga ditambah luas persegi kecil yang mempunyai sisi  . Sehingga diperoleh,

  

    Bukti 2 

     Perhatikan gambar. Gambar tersebut adalah gambar 2 persegi. Persegi yang besar adalah sebuah persegi yang mempunyai panjang sisi a, dan persegi kecil mempunyai panjang sisi yaitu b.

Luas persegi yang besar tentunya adalah  . Dan luas persegi kecil adalah  . Sehingga luas bangun diatas adalah 

   

   Kedua persegi tersebut kita gabungkan. Dan kita buat garis sedemikian sehingga seperti pada gambar. Sisi c menjadi sisi miring dari segitiga tersebut. kemudian kita potong segitiga-segitiga tersebut. dan kita pindahkan ke bagian atas dan samping kanan seperti pada gambar berikut.

    

  Luas persegi dengan sisi c tersebut tentunya adalah  . Karena 2 persegi pada awal tadi adalah sama dengan 1 persegi besar dengan sisi c diatas, maka tentunya luas 2 persegi pertama sama dengan luas persegi besar dengan sisi c tersebut.

sehingga, 

      Bukti 3   

   Gambar tersebut adalah gambar sebuah trapesium yang dibentuk dari 3 segitiga. Luas trapesium tersebut adalah  . dicari menggunakan rumus luas trapesium. Yaitu setengah dikalikan dengan jumlah sisi yang sejajar dikali tinggi trapesium. Mencari luas bangun datar diatas dapat juga menggunakan jumlah luas segitiga (perhatikan gambar). yaitu

   .

 Luas yang dihitung adalah tetap. Yaitu bentuk trapezium tersebut. sehingga haruslah kedua luas yang dicari dengan langkah yang berbeda itu harus sama. Diperoleh,