Tugas Kimia Dasar Imansyah

download Tugas Kimia Dasar Imansyah

of 13

Transcript of Tugas Kimia Dasar Imansyah

  • 7/29/2019 Tugas Kimia Dasar Imansyah

    1/13

    KNALPOT MOTOR

    Kali ini kita akan membahas tentang bagaimana membuat sebuah sistem

    pembuangan.

    Knalpot Motor

    Tujuan knalpot adalah membuang semua gas sisa pembakaran di dalam

    silinder. Pada mesin motor ,knalpot diseting sedemikian hingga momentum gas sisa

    pembakaran dan gelombang tekanan membantu menyeruput gas bersih di intake

    porting masuk ke dalam silinder Sehingga efisiensi volumetrik meningkat. Bahkan

    bisa mencapai diatas 100 %. Proses overlaping yang lebar pada noken as racing dan

    kekuatan langkah hisap memungkinkan semua ini terjadi.

    Pembuangan pada motor juga sangat berpengaruh pada tenaga yang

    dihasilkan oleh kuda besi kita. Kenaikan yang tenaga yang dihasilkan dengan

    penggantian knalpot mencapai 0,5 DK atau lebih, tergantung knalpot yang kita

    gunakan. Untuk itu penggunaan knalpot semi racing ataupun racing sangatberpengaruh pada tenaga yang dihasilkan. Mengapa saya bilang knalpot semi racing?

    Karena pada dasarnya knalpot racing yang beredar di pasaran merupakan knalpot

    yang dibuat dari spek motor standart. Tips ringan dalam memiih knalpot. Untuk anda-

    anda yang suka touring sebaiknya memilih knalpot dengan ukuran silinder yang

  • 7/29/2019 Tugas Kimia Dasar Imansyah

    2/13

    panjang dengan tujuan agar ruang bakar mesin tidak cepat panas. Dengan silinder

    panjang RPM mesin anda tidak terlalu dipacu dan anda akan mendapatkan top speed

    yang maksimal. Untuk anda yang berada di jalanan yang rapat sebiaknya memakai

    knalpot dengan silender yang pendek, dengan tujuan agar akselerasi motor anda

    menjadi cepat dan anda cepat dapat top speed dibandingkan dengan knalpot

    bersilencer panjang, namun top speed silinder panjang lebih daripada silinder pendek.

    Desaign Requirement

    Fungsi : Sebagai saluran gas buang

    Constrain : Tahan terhadap karat

    Dapat menahan tekanan

    Dapat tahan terhadap temperature tertentu

    Objective : Desainnya minimalis sehingga biasa digunakan pada kendaraan

    bermotor. Semurah mungkin agar dapat dijangkau oleh semua

    lapisan masyarakat

    Free variable : Steel

    Aluminium

    Knalpot Racing

  • 7/29/2019 Tugas Kimia Dasar Imansyah

    3/13

    INERTIA TUNING

    Disadari atau tidak, gas sisa pembakaran memiliki bobot, jadi jika kita

    membuat gas bergulir maka ini akan berlanjut bahkan hingga setelah klep buangmenutup. Ketika kecepatan bertambah, waktu untuk mesin membuang gas sisa

    pembakaran akan semakin singkat. Disini dibutuhkan aksi hisapan dari knalpot untuk

    membantu mengosongkan silinder dengan cepat.

    Knalpot AHAU pada Jupiter Z

    ACOUSTICAL TUNING

    Gas buang bergerak dengan pulsa tertentu. Bentuk dasar leher knalpotnya

    yang menyebabkan munculnya inersia gas buang, sekarang kita harus bisa

    menentukan panjang pipa serta diameter dalam pipa. Ini adalah point penting dimana

    akustikal tuning berlangsung. Exhaust gas dikeluarkan dari mesin dengan kecepatan

    sekitar 100 meter per detik. Tetaapi gelombang di dalam pipa knalpot mampu

    menyebabkan kecepatan bertamabah hingga 500 m/s. disinilah poin desain knalpot,

    bagaimana meningkatkan kemampuan cylinder scavenging dan meningkatkan

    cylinder filling dengan campuran bahan bakar dan udara.

  • 7/29/2019 Tugas Kimia Dasar Imansyah

    4/13

    Leher Knalpot

    Setelah busi mengeluarkan percikan bunga api diruang bakar, maka akan

    terjadi langkah usaha, namun ketika langkah usaha sedang berlangsung, klep buang

    mulai terangkat dan gas terhisap menuju sistem pembuangan, terciptalah gelombang

    tekanan yang bergulung dengan kecepatan tinggi menuju ujung pipa. Setelah gas

    terbuang di atmosfer, gelombang positif berbalik dan menciptakan tekanan negatif -

    hisapan- yang mundur melalui knalpot masuk ke dalam silinder.

  • 7/29/2019 Tugas Kimia Dasar Imansyah

    5/13

    Aluminium alloys

    DescriptionThe Material

    Aluminum was once so rare and precious that the Emperor Napoleon III of France had a setof cutlery made from it that cost him more than silver. But that was 1860; today, nearly 150

    years later, aluminum spoons are things you throw away - a testament to our ability to beboth technically creative and wasteful. Aluminum, the first of the 'light alloys' (withmagnesium and titanium), is the third most abundant metal in the earth's crust (after ironand silicon) but extracting it costs much energy. It has grown to be the second mostimportant metal in the economy (steel comes first), and the mainstay of the aerospaceindustry.Composition

    Al + alloying elements, e.g. Mg, Mn, Cr, Cu, Zn, Zr, LiImage

    _Caption

    Aluminum can formed both by casting and by deformation.

    General propertiesDensity 2500 - 2900 kg/m^3Price 1.322e4 - 2.143e4 IDR/kg

    Mechanical propertiesYoung's Modulus 68 - 82 GPaElastic Limit 30 - 500 MPaTensile Strength 58 - 550 MPaElongation 1 - 44 %Hardness - Vickers 12 - 150.5 HVEndurance Limit 21.6 - 157 MPaFracture Toughness 22 - 35 MPa.m^1/2

    Thermal propertiesThermal conductor or insulator? Good conductor

    Thermal Conductivity 76 - 235 W/m.KThermal Expansion 21 - 24 strain/CSpecific Heat 857 - 990 J/kg.KMelting Point 474.9 - 676.9 CMaximum Service Temperature 120 - 210 C

    Electrical propertiesElectrical conductor or insulator? Good conductor

    Optical propertiesTransparency Opaque

    Eco propertiesProduction Energy 184 - 203 MJ/kgCO2 creation 11.6 - 12.8 kg/kgRecycle True

    Supporting informationTypical uses

    Aerospace engineering; automotive engineering - pistons, clutch housings, exhaustmanifolds; die cast chassis for household and electronic products; siding for buildings; foil forcontainers and packaging; beverage cans; electrical and thermal conductors.

    LinksReferenceProcessUniverse

  • 7/29/2019 Tugas Kimia Dasar Imansyah

    6/13

    Producers

    92/8 Aluminium bronze, 1/2 hard (wrought) (UNSC61000)GeneralDesignationCopper Alloy: CuAl8(1/2h) (UNS C61000)UNS Number C61000Density 7900 - 8100 kg/m^3Price 2.33e4 - 2.383e4 IDR/kgCO2 creation * 4.6 - 5.08 kg/kgProduction Energy * 73.1 - 80.8 MJ/kgRecycle Fraction * 0.4 - 0.5TradenamesCOWLES, English manufacture (UK); AMBRALOY 928, The American Brass Co. (); HILLS-MCCANNA NO. 48, McCanna Inc. (USA); SM-3090, Svenska Metallverken A.B. (SWEDEN);CERRO W25, Cerro Manganese Bronze Limited (UK); AMPCO-TRODE 7, Ampco Metal, Inc.(USA); CUPRALINOX C, Le Bronze Industriel (FRANCE); CERRO W26, Cerro Manganese

    Bronze Limited (UK); ORANIUM BRONZE M.H, Manufacturer unknown (); SEMALLOYNO. 3331, Semi-Alloys, Inc. (USA); COWLES B, American manufacture (USA); DELTA CA13,Delta (Manganese Bronze) Ltd. (UK); IMI 757, IMI plc (UK); ;

    CompositionComposition (Summary)Cu/8AlBase Cu (Copper)

    Al (Aluminium) 8 %

  • 7/29/2019 Tugas Kimia Dasar Imansyah

    7/13

    Cu (Copper) 92 %

    MechanicalBulk Modulus * 135 - 140.4 GPaCompressive Strength 230 - 250 MPaElongation 30 - 35 %

    Elastic Limit 230 - 250 MPaEndurance Limit * 199 - 207 MPaFatigue Strength Model (Stress Range) * 189.4 - 217.1 MPaParameters: Stress Ratio = -1, No. of Cycles = 1e7

    Fracture Toughness * 47.5 - 50 MPa.m^1/2Hardness - Vickers 130 - 140 HVIzod Toughness * 186 - 372 kJ/m^2Loss Coefficient * 6.4e-5 - 7.6e-5Modulus of Rupture 230 - 250 MPaPoisson's Ratio 0.34 - 0.35Shape Factor 28Shear Modulus * 46.3 - 48.1 GPaTensile Strength 480 - 510 MPa

    Young's Modulus 125 - 130 GPa

    ThermalMaximum Service Temperature 300 - 310 CMelting Point 1032 - 1045 CMinimum Service Temperature -273 CSpecific Heat 394.4 - 396.6 J/kg.KThermal Conductivity 74 - 78 W/m.KThermal Expansion 16.5 - 17.5 strain/C

    ElectricalResistivity 11.5 - 13.2 ohm.cm

    DurabilityFlammability Very GoodFresh Water Very GoodOrganic Solvents Very Good

    Oxidation at 500C AverageSea Water Very GoodStrong Acid PoorStrong Alkalis Very GoodUV Very Good

    Wear Very GoodWeak Acid GoodWeak Alkalis Very Good

    NotesStandards with Similar CompositionsThe following information is taken from ASM AlloyFinder 3 - see link to References table forfurther information.DIN 2.092 (Germany)

    DIN AlBz8 (Germany)DIN CuAl8 (Germany)ISO 1634 CuAl8 (Switzerland)ISO 1637 CuAl8 (Switzerland)ISO 428 CuAl8 (Switzerland)

    Typical Uses

  • 7/29/2019 Tugas Kimia Dasar Imansyah

    8/13

    Tubes & components for condensers; heat exchangers for brine, acids & salts; chemical &paper-making plant; chains & slings; marine equipment; non-magnetic components; coins;

    jewellery; hard-facing and overlaying electrodes.Other Notes(s)=soft; (1/2 h)=half hard; (h)=hard; (xh)=extra hard; (hr) = hot rolled; (w)=soln heat-trtd;

    (wh)=soln heat-trtd & work hdnd; (wp)=soln heat-trtd & precip hdnd; (whp)=precip hdndafter cold-wkng; (wph)=work hdnd after precip hdng.Reference SourcesData compiled from multiple sources. See links to the References table.

    LinksReferenceShapeStructural SectionsProducersProcessUniverse

    Aluminium BronzeGeneral

    DesignationCopper Alloy: Aluminium BronzeDensity 7300 - 8200 kg/m^3Price 2.138e4 - 2.401e4 IDR/kgCO2 creation * 4.78 - 5.28 kg/kgProduction Energy * 75.9 - 83.9 MJ/kgRecycle Fraction * 0.4 - 0.5

    CompositionComposition (Summary)Cu/5-20 AlBase Cu (Copper)

    Al (Aluminium) 5 - 20 %Cu (Copper) 80 - 95 %

    MechanicalBulk Modulus 109 - 145 GPaCompressive Strength 128 - 530 MPaElongation 8 - 65 %Elastic Limit 128 - 530 MPaEndurance Limit 165 - 275 MPaFracture Toughness 27 - 68 MPa.m^1/2Hardness - Vickers 87.5 - 250 HVLoss Coefficient * 1.5e-5 - 2.5e-4Modulus of Rupture 128 - 530 MPaPoisson's Ratio 0.34 - 0.35Shape Factor 26Shear Modulus 37 - 50 GPaTensile Strength 360 - 800 MPa

    Young's Modulus 100 - 134 GPa

    ThermalMaximum Service Temperature 247 - 392 CMelting Point 1036 - 1066 CMinimum Service Temperature -270 - -160 CSpecific Heat 390 - 402 J/kg.KThermal Conductivity 60 - 86 W/m.KThermal Expansion 14.5 - 19.5 strain/C

  • 7/29/2019 Tugas Kimia Dasar Imansyah

    9/13

    ElectricalResistivity 9.33 - 52.5 ohm.cm

    DurabilityFlammability Very GoodFresh Water Very Good

    Organic Solvents Very GoodOxidation at 500C AverageSea Water Very GoodStrong Acid PoorStrong Alkalis Very GoodUV Very Good

    Wear Very GoodWeak Acid GoodWeak Alkalis Very Good

    NotesTypical UsesHigh strength corrosion-resistant parts for marine and chemical use, pumps, valve gears,chains die-cast components for autos, condensers, heat exchangers for brine, acid and salts,

    coins, jewelleryReference SourcesData compiled from multiple sources. See links to the References table.

    LinksReferenceShapeStructural SectionsProducersProcessUniverse

  • 7/29/2019 Tugas Kimia Dasar Imansyah

    10/13

    Cast magnesium alloy (AM50)GeneralDesignationMg alloy: AM50 (cast)Density 1800 - 1810 kg/m^3

    Price 4.906e4 - 5.607e4 IDR/kgCO2 creation * 22.4 - 24.7 kg/kgProduction Energy * 356 - 393 MJ/kgRecycle Fraction 0.7 - 0.8

    CompositionComposition (Summary)Mg/5Al/.3MnBase Mg (Magnesium)

    Al (Aluminium) 5 %Mg (Magnesium) 94.7 %Mn (Manganese) 0.3 %

    MechanicalBulk Modulus 33 - 40 GPa

    Compressive Strength * 120 - 130 MPaElongation 6.5 - 7.5 %Elastic Limit 120 - 130 MPaEndurance Limit * 85 - 100 MPaFatigue Strength Model (Stress Range) * 84.08 - 100.4 MPaParameters: Stress Ratio = -1, No. of Cycles = 1e7

    Fracture Toughness * 16 - 17 MPa.m^1/2Hardness - Vickers * 36 - 38.5 HVLoss Coefficient * 3e-3 - 8e-3Modulus of Rupture * 120 - 130 MPaPoisson's Ratio 0.3 - 0.31Shape Factor 30Shear Modulus 15 - 18 GPaTensile Strength 195 - 200 MPa

    Young's Modulus 40 - 45 GPa

    ThermalMaximum Service Temperature * 150 - 180 CMelting Point 440 - 625 CMinimum Service Temperature -273 CSpecific Heat 1050 - 1060 J/kg.KThermal Conductivity 61 - 63 W/m.KThermal Expansion 25.9 - 26.2 strain/C

    ElectricalResistivity 12.3 - 12.6 ohm.cm

    DurabilityFlammability Very Good

    Fresh Water Very GoodOrganic Solvents Very GoodOxidation at 500C Very PoorSea Water PoorStrong Acid PoorStrong Alkalis GoodUV Very Good

    Wear AverageWeak Acid Average

  • 7/29/2019 Tugas Kimia Dasar Imansyah

    11/13

    Weak Alkalis Very Good

    NotesTypical UsesSeat frames, instrument panels, brackets and wheels.Reference Sources

    Data compiled from multiple sources. See links to the References table.LinksReferenceShapeStructural SectionsProducersProcessUniverse

    Nickel-Iron-Chromium Alloy, "INCOLOY 800", spr.temper wireGeneralDesignationUnified Numbering System (USA): N08800UNS Number N08800Density 7850 - 8050 kg/m^3Price 7.009e4 - 1.402e5 IDR/kgCO2 creation * 6.55 - 7.23 kg/kgProduction Energy * 104 - 115 MJ/kgRecycle Fraction * 0.7 - 0.9

    CompositionComposition (Summary)

  • 7/29/2019 Tugas Kimia Dasar Imansyah

    12/13

    30-35Ni/>39.5Fe/19-23Cr/

  • 7/29/2019 Tugas Kimia Dasar Imansyah

    13/13

    Typical UsesHeat treating equipment; Petrochemical pyrolysis tubing and piping systems; Sheathing forelectrical heating elements; Food-processing equipment;

    WarningAll nickel compounds should be regarded as toxic. Some can cause cancer and/or foetal

    abnormalities.Other NotesINCOLOY is a registered tradename of the INCO group of companies.

    As of September 1999 , INCONEL, INCOLOY, MONEL, NIMONIC, INCO-WELD, NILO,BRIGHTRAY, CORRONEL and UDIMET have become registered trademarks of SpecialMetals CorporationReference SourcesData compiled from multiple sources. See links to the References table.

    LinksReferenceShapeStructural SectionsProducersProcessUniverse