TRANSPORMASI

60

description

TRANSPORMASI. LAPLACE. Ditemukan oleh Piere Simon Maequis de Laplace tahun (1747-1827) seorang ahli astronomi dan matematika Prancis Menurut; fungsi waktu atau f(t) dapat ditranspormasi menjadi fungsi komplek atau F(s) Dimana s bilangan komplek dari s = s + j 2 p f atau s + j  - PowerPoint PPT Presentation

Transcript of TRANSPORMASI

Page 1: TRANSPORMASI
Page 2: TRANSPORMASI

• Ditemukan oleh Piere Simon Maequis de Laplace tahun (1747-1827) seorang ahli astronomi dan matematika Prancis

• Menurut; fungsi waktu atau f(t) dapat ditranspormasi menjadi fungsi komplek atau F(s)– Dimana s bilangan komplek dari s = + j2f

atau + j = frekuensi neper = neper/detik = frekuensi radian = radian/detik

Page 3: TRANSPORMASI

• Hasil TL dari f(t) di beri nama F(s)• Tanda TL diberikan dengan £ atau L, dan

fungsinya di tulis

f(t): nilai komplek dari fungsi sebuah fariabel tF(s): Nilai komplek dari fungsi sebuah fariabel s

)]([)( tfLsF

Page 4: TRANSPORMASI

Inverse Transformasi Laplace

• Inverse (Bilateral) Transform

• NotationF(s) = L{f(t)} variable t tersirat untuk Lf(t) = L-1{F(s)} variable s tersirat

untuk L-1

dtetfsFtfL ts ).()()]([

0

sFtf L

Page 5: TRANSPORMASI

Contoh: Transpormasi Laplace

1. f(t) = A– Jawab

dteAALtfL ts .)()]([

0

0][ ste

sA

sA

sA

eesA

)10(]11[ 0

Page 6: TRANSPORMASI

Contoh 2. f(t) = At Jawab

Dibantu dengan formula integral partsiel yaitu

dteAtAtL st

0

.][

dtetA st

0

.

VUUVUV ''

Page 7: TRANSPORMASI

00

..][ stst dets

AdtetAAtL

2

0

00

)10(10

][1)100(

.1].[

sA

ssA

ess

A

dteets

A

st

stst

Page 8: TRANSPORMASI

• Contoh 3 f(t) = e-at

jawab

0

)(

0

.][

dte

dteeeL

tsa

statat

sa

sa

esa

tsa

1

)10()(

1)(

10

)(

Page 9: TRANSPORMASI

• Contoh 4 : f(t) = t.e-at

dteetetL statat

..].[0

0)(

0)(

0

)(0

)(

0

)(

][)(

1].[)(

1

].[)(

1

.

tsatsa

tsatsa

sa

esa

etsa

dteetsa

dtet

Page 10: TRANSPORMASI

0)( )( tsat etLim

2)(1

)10()(

1)00()(

1].[

sa

sasaetL at

Page 11: TRANSPORMASI

5. f(t) = Sin(t)6. f(t) = Cos (t)7. f(t) = Sin(t+)8. f(t) = e-at. Sin(t)

Page 12: TRANSPORMASI

• Contoh 9;

• f(0+) artinya harga nol untuk fungsi, jika didekati dari arah positif

dtdftf )(

)0()(.)}(.)0(0{

.][

)(][

00

0

0

fsFssFsf

dtefsfe

dfe

dtedtdf

dtdfL

stst

st

st

Page 13: TRANSPORMASI

• Contoh 10; dttftf )()(

00

0

)(])([1

})({)([

dttfedttfes

dtdttfedttfL

st

st

st

)(1])(0[1

)(1}])({[1

0

0

sFs

dttfs

sFs

dttfes

st

Page 14: TRANSPORMASI

s

dttf

ssF

sFs

tfs

)0(

0

])()(

)(1)](1

0intarg])( )0( padafungsiegralahartinyadttf

)0(])( 1

)0( fditulisdapatdttf

Page 15: TRANSPORMASI

f(t) L(f) f(t) L(f)1 1 1/s 7 cos t

2 t 1/s2 8 sin t

3 t2 2!/s3 9 cosh at

4 tn

(n=0, 1,…)

10 sinh at

5 ta

(a positive)

11 eat cos t

6 eat 12 eat sin t

1

!ns

n

1

)1(

as

a

as 1

1

!ns

n

1

)1(

as

a

as 1

22 ss

22 s

22 ass

22 asa

22)(

asas

22)(

as

Page 16: TRANSPORMASI

Some useful Laplace transforms

f(t) F(s)=L[f(t)]

ntate

)t( 1)t(u

t

)atsin()atcos()at(sh)at(ch

)1n(s/!n

2s/1

)as/(1 )as/(a 22 )as/(s 22 )as/(a 22 )as/(s 22

s/1

Page 17: TRANSPORMASI

Some useful Laplace transforms

f(t) F(s)=L[f(t)]

)atsin(ebt ]a)bs/[(a 22

)bs)(as/(1 ]a)bs/[()bs( 22 )atcos(ebt

ba )ab/()ee( atbt

ba )bs)(as/(s )ab/()aebe( atbt

Page 18: TRANSPORMASI

sFt fsFtf LL2211 and

? 22112211 sFasFatfatfa L

sFasFadtetfadtetfa

dtetfatfatfatfaLstst

st

2211

0 220 11

0 22112211

L F(s)f(t)

Laplace Transform Properties• Linear atau Nonlinear?

• Linear operator

Page 19: TRANSPORMASI

contoh

• Seperti gambar disamping, muatan awal kapasitor = 0. Tentukan persamaan arusnya;

CR

V

Page 20: TRANSPORMASI

• Transpormasi Laplace

vdtiC

RI

CqRIV

1

sV

sf

sCIRI

vdtiC

RI

SS

0

.

1

1

)0,0(0)0(0

1

qtidtf

Page 21: TRANSPORMASI

CRSR

VI

CRSR

VI

sCRs

VI

sV

sCRI

sV

sCI

RI

s

s

s

s

sS

.1

1.1

.1

.1.

)(

)(

)(

)(

)()(

Page 22: TRANSPORMASI

• Pembalikan transpormasi laplace

CRSR

VCR

SRVI s

.1

1.1

1

1

1)(

1

• Lihat tabel

RCt

t eRVI

)(

Page 23: TRANSPORMASI

Contoh 2

• Gambar RL seperti gambar disamping, jika saklar s di on-kan maka tentukan persamaan arunya

Page 24: TRANSPORMASI

• Persamaan rangkaian

VRIdtdiL

• Transpormasi Laplace

VRIdtdiL

VRIdtdiL

.

)0,0,0)0(,)0( )()( itisVRIisIL ss

Page 25: TRANSPORMASI

• Transpormasi dari cos t

Page 26: TRANSPORMASI

Laplace transformDefinition of function f(t)

0

stdte)t(f)s(F)]t(f[L

Examples

20

st

0

st

0

st

s1dtte)]t(tu[L

s1dte)]t(u[L

1dte)t()]t([L

• f(t)=0 for t<0• defined for t>=0• possibly with discontinuities• f(t)<Mexp(t)[exponential order]• s: real or complex

t

f(t)

Definition of Laplace transform

Page 27: TRANSPORMASI

Laplace transform

0

stdte)t(f)s(F)]t(f[L Examples

1dte)t()]t([L0

st

0st

0

st00 edte)tt()]tt([L

f(t)Diract)t(

t

f(t)

)tt( 0

0t

Page 28: TRANSPORMASI

Laplace transform

0

stdte)t(f)s(F)]t(f[L Examples

s1

sedtedte)t(u)]t(u[L

0

st

0

st

0

st

)]t(u

f(t)Heaviside

t

f(t)

t)]tt(u 0

0ts

es

e)]tt(u[L0

0

st

t

st

0

Page 29: TRANSPORMASI

Laplace transform

0

stdte)t(f)s(F)]t(f[L Examples

20

st

0

st

0

st

sadte

sa

satedtate)]t(r[L

0t,at)t(r f(t)Ramp

t

Page 30: TRANSPORMASI

Laplace transform properties•Linearity

)]t(f[L)s(F 11

)]t(f[L)s(F 22

tstanConsc,c 21

)s(F.c)s(F.c)]t(f[L.c)]t(f[L.c

)]t(f.c)t(f.c[L

2211

2211

2211

Page 31: TRANSPORMASI

Laplace transform properties

• Translation

)as(F)]t(fe[L at a) if F(s)=L[f(t)]

)as(Fdte)t(fdte])t(fe[)]t(fe[L t)as(

0

st

0

atat

Example4s

s)]t2(Cos[L 2

5s2s1s

4)1s(1s)]t2(Cose[L 22

t

Page 32: TRANSPORMASI

Laplace transform properties

• Translation

b) if g(t) = f(t-a) for t>a = 0 for t<a

)s(Fe)]t(g[L as

due)u(fedue)u(fdte])at(f)]t(g[L su

0

as)au(s

0

st

0

at

f(t) g(t)

Example 443

s6

s!3]t[L

2t,0)t(g2t,)2t()t(g 3

4

s2

se6)]t(g[L

Page 33: TRANSPORMASI

Laplace transform properties

•Change of time scale )as(F

a1)]t.a(f[L

)as(F

a1

adue)u(fdte])t.a(f)]t.a(f[L a

su

0

st

0

Example

1s1)]t(Sin[L 2

9s3

13s

131)]t3(Sin[L

22

Page 34: TRANSPORMASI

• Derivatives

)0(f)s(F.s)]t(f[L]dtdf[L)]t('f[L

Laplace transform properties

)

0

st0

st

0

st 0(f)s(sFdt)t(fse)t(fedtfe)]t('f[L

)0(f)s(F.s)]t('f[L

Page 35: TRANSPORMASI

• Derivatives

)0(f)s(F.s)]t(f[L]dtdf[L)]t('f[L

)0('f)0(f.s)s(F.s])t(f[L)]t("f[L 2

Laplace transform properties

)1n()1(2n1nn

)n()0(f.....)0(fs)0(fs)s(Fs)]t(f[L

)1i(n

1i

inn)n(

)0(f.s)s(Fs])t(f[L

•If discontinuity in a

)]a(f)a(f[e)0(f)s(F.s)]t('f[L as

)a(f)a(f

Page 36: TRANSPORMASI

• Derivatives examplesLaplace transform properties

22s)]t(Sin[L

22ss)]t(Cos[L

dt)]t(Sin[d1)t(Cos

2222 ss

)s(s)0(Sin)]t(Sin[Ls)]t(Cos[L

)t(Cosdt

)]t[sin(d

)t(Sindt

)]t(Cos[d

dt

)]t(Cos[d1)t(Sin

)s()0(Cos)]t(Cos[Ls)]t(Sin[L 22

Page 37: TRANSPORMASI

Remarques sur la dérivation

Deux cas à prévoirdt

)t(df)t(u dt)]t(f)t(u[d

0

st dtdt

)t(dfe]dt

)t(df)t(u[L

0

st0

st dt)t(fse]e)t(f[]dt

)t(df)t(u[L

En intégrant par parties

)0(f)s(sF]dt

)t(df)t(u[L

dt)t(df)t(u

dt)t(du)t(f

dt)]t(f)t(u[d

a)

b)

)0(f)]0(f[L)]t()t(f[L]dt

)t(du)t(f[L

)s(sF]dt

)]t(f)t(u[d[L Si f(t) et toutes ses dérivées sont nulles pour t<0, alors on

peut ne pas tenir compte des valeurs initiales pour étudier le comportement

Page 38: TRANSPORMASI

t

0s

)s(F]du)u(f[L

)s(F)0(g)]t(g[sL)]t(g[L

)t(f)t(g

t

0

]du)u(f)t(g

Laplace transform properties

• Integral

)]t(f[L)s(F

Page 39: TRANSPORMASI

Laplace transform properties

Multiplication by t

dt)t(fe[dsd)s(F

ds)s(dF

0

st'

Leibnitz’s rule

)]t(tf[Ldt])t(tf[e]dt)t(fe[sds

)s(dF

0

stst

0

)s(F)]t(tf[L '

More general

ds)s(Fd)1()]t(ft[L

nnn

Page 40: TRANSPORMASI

Laplace transform properties

Division by t

t)t(f)t(g )t(tg)t(f

)s(Fds

)s(dGds

)]t(g[dL)]t(f[L

s

s

du)u(fdu)u(f)s(G

s

du)u(f]t

)t(f[L

Page 41: TRANSPORMASI

• Periodic function )t(f)Tkt(f k,t

sT

T

0

st

e1

dte)t(f)s(F)]t(f[L

Laplace transform properties

.......dt)t(fedt)t(fedt)t(fe)s(F)]t(f[LT3

T2

stT2

T

stT

0

st

.......du)T2u(fedu)Tu(fedt)t(fe)s(F)]t(f[LT

0

)T2u(sT

0

)Tu(sT

0

st

.......du)u(feedu)u(feedt)t(fe)s(F)]t(f[LT

0

susT2T

0

susTT

0

st

]dt)t(fe[e)s(F)]t(f[LT

0

st

0n

nsT

sT0n

nsT

e11e

Page 42: TRANSPORMASI

Hint

sT0n

nsT

e11e

p1

p1ps1nn

0q

qn

1nn

1nn432n

n432n

p1)p1(s

pp...........ppppps

p...........pppp1s

p1p1ps

1nn

0q

qn

p1

1ps0q

q

1p

Page 43: TRANSPORMASI

Laplace transform properties

Sine and cosine are periodic functions )t(jSin)t(Cose tj

dtedtee)]t(Sin[jL)]t(Cos[L]e[L0

t)sj(

0

sttjtj

sT

T

0

t)sj(

tj

e1

dte]e[L

]1e[sj

1]1ee[sj

1esj

1dte sTsTTjT0

t)sj(T

0

t)sj(

22tj

sjs

)js)(js(js

js1]e[L

Page 44: TRANSPORMASI

Laplace transform propertiesExample

t1

-10 1 2 3

f(t)

)2s(th

s1)s(F

Page 45: TRANSPORMASI

Laplace transform properties

Periodic function

dtedtedte)t(f1

0

st1

0

stT

0

st

s)e1(

s)1e(e1e]e

s1[e

s1[dte)t(f

2ssss2

1

st1

0

stT

0

st

)e1(s)e1(

)e1)(e1(s)e1)(e1(

)e1(s)e1()s(F s

s

ss

ss

s2

2s

)2s(th

s1

)ee(se

)ee(e)s(F2s

2s

2s

2s

2s

2s

Page 46: TRANSPORMASI

Laplace transform propertiesExample

1

t

0 1 2 3

)e1(se

s1)s(F s

s

2

Page 47: TRANSPORMASI

Laplace transform properties

)e1(s1

se

s1

se

sedtte s

2

s

22

ss1

0

st

1

02

sts1

0

st1

0

st1

0

st

se

sedte

s1

stedtte

)e1(se

s1

e1

dtte)s(F s

s

2s

1

0

st

Page 48: TRANSPORMASI

•Limit behaviourInitial value

Laplace transform properties

)0(f)s(sF)]t(f[L

s

0]dt)t(fe[Lim0

stExponential order

}s)]{s(sFlim[}0t)]{t(f[Lim

0t)0(f)]t(f[Lim

s)0(f)]s(sF[Lim

Page 49: TRANSPORMASI

•Limit behaviourFinal value

}0s)]{s(sFlim[}t)]{t(f[Lim

Laplace transform properties

)0(f)s(sF)]t(f[L

)]0(f)p(f][plim[dt)t(fdt)t(fe]0s[Lim00

st

Page 50: TRANSPORMASI

Laplace transform applications

C

R

e0.(t) v(t)

RC circuit

0)0(v

)t(vdtdvRC)t(e

Equation describing the circuit

Laplace transform ]RCs1)[s(V)s(V)s(RCsV)s(E

RCs1)s(E)s(V

Page 51: TRANSPORMASI

Laplace transform applicationsRCs1

)s(E)s(V

)t(e)t(e 0

Impulse function

0e)s(E RCs1e)s(V 0

RCt

Impulse response

CRt

0 eRCe)t(v

RCe0

CRt

e

RCe

)RC1s(

1)s(V 0

)1RCs(se)s(sV 0

s

0s

Page 52: TRANSPORMASI

Laplace transform applications

RCs1)s(E)s(V

)t(ue)t(e 0

Step function

se)s(E 0 )RCs1(s

e)s(V 0

)RC1s(

ese)s(V 00

]e1[eeee)t(v CRt

0CR

t

00

e0

RC

0e63,0

]e1[e)t(v crt

0

Page 53: TRANSPORMASI

Laplace transform applications

Step function and initial conditions v(0) 0

RCs1)0(RCv

)RCs1(se)s(V 0

)RC1s(

e)0(vse)s(V 00

CRt

00 e]e)0(v[e)t(v

)0(RCv]RCs1)[s(V)s(V)]0(v)s(sV[RC)s(E

crt

00 e]e)0(v[e)t(v

0e

)0(v

1RCs]e)0(v[RCse)s(sV 0

0

Page 54: TRANSPORMASI

Laplace transform applicationsRCs1

)s(E)s(V

t)t(r)t(e

Ramp function

2s1)s(E

)RCs1(s1)s(V 2

)RC1s(

RCs

RCs1)s(V 2

CRt

RCeRCt)t(v

RC

CRt

)t(v

CRt

e1dtdv

)1RCs(s)RC(RC

s1)s(sV

2

Page 55: TRANSPORMASI

RC1s

v

)RC1s(RC

)s(E)s(V 0

seE)s(E

as0

(Heaviside)

crt

0cr

at

0 ev]e1[E)at(u)t(v

)at(uE)t(e 0

Laplace transform properties

a

0E

t

RC1s

v

)RC1s(sRC

eE)s(V 0as

0

RC1s

v]

RC1s

1s1[eE)s(V 0as

0

Page 56: TRANSPORMASI

crt

0cr

at

0 ev]e1[E)t(v

crt

0ev)t(v

at

a t

0E

0v

Laplace transform properties

crt

0cr

at

0 ev]e1[E)at(u)t(v

at

Page 57: TRANSPORMASI

RC1s

sv

)RC1s(RC

eE)s(sV 0as

0

Laplace transform properties

Limits

s )0(vv)s(sV 0

Initial value

0s )(vE)s(sV 0

Final value

Page 58: TRANSPORMASI

e(t)E(s)

v(t)V(s)

R

CRC1a,

as)s(aE

)RC1s(RC

)s(E)s(V

Harmonic analysis

)tsin(e)t(e 0 220 s

e)s(E

)22

0

s)(as(ae)s(V

)s

CBsas

A(ae)s(V 220

22

22

22

aaC

a1B

a1A

)s

ss

aas

1(a

ae)s(V 2222220

Laplace transform properties

Page 59: TRANSPORMASI

)s

ss

aas

1(a

ae)s(V 2222220

)]tcos()tsin(RC

1e[a

ae)t(v CRt

220

Laplace transform properties

RC)(tg2)RC(1

1)(Cos

]e)sin()t)[sin((Cose)t(v CRt

0

Forced Transient

Page 60: TRANSPORMASI