Teori Dasar Listrik

48
LAPORAN UPGRADING 2010 Oleh : Aviyudi Isra Hirary Rahmat Hidayat Rahmi Wahyuni LABORATORIUM KONVERSI ENERGI ELEKTRIK JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS ANDALAS PADANG 2012 I. Hukum coulomb

Transcript of Teori Dasar Listrik

Page 1: Teori Dasar Listrik

LAPORAN UPGRADING

2010

Oleh :

Aviyudi

Isra Hirary

Rahmat Hidayat

Rahmi Wahyuni

LABORATORIUM KONVERSI ENERGI ELEKTRIK

JURUSAN TEKNIK ELEKTRO

FAKULTAS TEKNIK

UNIVERSITAS ANDALAS

PADANG

2012

I. Hukum coulomb

Hasil eksperimen coulomb dinyatakan bahwa :

r = jarak antar muatan

Page 2: Teori Dasar Listrik

=muatan pertama

=muatan kedua

Gaya coulomb berdasarkan letak muatannya

1) muatan-muatan segaris

Untuk menghitung resultan gayanya

2) muatan-muatan tidak segaris

Untuk menghitung resultan gayanya

II. Percobaan oersted

Orang pertama yang menyelidiki bahwa di sekitar kawat yang daliri arus listrik terdapat medan magnet adalah H.C. Oersted pada tahun 1820.

Page 3: Teori Dasar Listrik

Kesimpulan dari Percobaan Oersted adalah1.Disekitar kawat penghantar yang dialiri arus listrik timbul medan magnet.2.Arah medan magnet ditentukan oleh arah arus listrik yang mengalir dalam kawat penghantar.

Arah medan magnet yang ditimbulkan dapat ditentukan dengan menggunakan aturan tangan kanan. Ibu jari menunjukkan arah arus listrik (I) dan keempat jari menunjukkan arah medan magnet (B).

Contoh aplikasi dari percobaan oersted Interaksi medan magnet dengan kumparan yang dilalui arus blistrik memungkinkan dikontruksi alat-alat ukur besaran-besaran listrik, misalnya arus listrik, beda potensial, muatan yang dipindahkan dari dan ke kapasitor, daya dan tenaga listrik. Disamping alat-alat ukur listrik interaksi antara medan magnet dan arus listrik juga digunakan dalam motor arus searah.

III. FLUKS

Fluks atau garis-garis gaya magnet dan listrik, merupakan garis khayal di sekitar magnet dan muatan listrik yang dapat menentukan besar kuat medan magnet dan medan listrik.

Dimana : fluks magnet (weber)

B = medan magnet (tesla)

A= luas permetukaan (m2)

1 tesla = 1 wb/m2

Garis fluks magnet memancar dari kutub utara ke kutub selatan, dan kembali ke kutub utara melalui bagian dalam magnet tersebut.

Jika dua magnet kutub yang sama didekatkan maka akan timbul gaya tolak menolak, dan sebaliknya bila dua kutub yang berbeda didekatkan maka akan timbul gaya tarik menarik.

Jika sebuah bahan seperti kertas dan kaca ditempatkan di lintasan fluks maka tidak ada perubahan dalam penyebaran fluks, tetapi bila bahannya seperti besi, maka lintasan fluks tersebut akan melewati besi tersebut.

Page 4: Teori Dasar Listrik

IV. Gaya Lorentz

Medan magnet adalah daerah sekitar yang ditembus oleh garis gaya magnet.

Fluksi magnetic adalah jumlah garis gaya dalam medan magnet

Garis gaya magnet garis yang memancar dari kutub utara ke kutub selatan

dan tidak pernah memotong.

Induksi elektromagnetik adalah peristiwa dihasilkannya arus listrik akibat

adanya perubahan medan magnetik dan arus induksi adalah arus yang

dihasilkan dari induksi elektromagnetik.

Arus listrik timbul karena adanya perubahan jumlah garis gaya magnet yang

mengakibatkan pada ujung-ujung kumparan timbul beda potensial, dan beda

potensial ini disebut GGL induksi

Gaya Lorentz gaya yang ditimbulkan oleh muatan listrik yang bergerak atau

oleh arus listrik yang berada dalam suatu medan magnet (B).

“apabila kawat dialiri arus listrik maka akan menimbulkan medan magnet

disekitarnya. Bila penghantar berarus diletakkan di dalam medan magnet maka

pada pengahantar akan timbul gaya yang disebut gaya Lorentz”

Gaya Lorentz dapat timbul dengan syarat :

a. Ada kawat penghantar yang dialiri arus

b. Penghantar berada dalam medan magnet

Jadi, persamaannya :

Page 5: Teori Dasar Listrik

F adalah gaya lorentz (N)

B adalah kuat medan magnet (Tesla)

I adalah kuat arus listrik (A)

L adalah panjang penghantar (m)

Kesimpulannya : bila sebuah penghantar atau konduktor dialiri arus

dalam sebuah medan magnet maka akan timbul gaya.

Gaya Lorentz ( FL ) , arus listrik ( I ) dan medan magnet ( B ) adalah

besaran vector maka peninjauan secara matematik besar dan arah gaya Lorentz

ini hasil perkalian vector ( cros-product ) dari I dan B.

FL = I x B

Besarnya gaya Lorentz dapat dihitung dengan rumus FL = I.B sinθ

Rumus ini berlaku untuk panjang kawat 1 meter. Perhitungan diatas adalah gaya

Lorentz yang mempengaruhi kawat tiap satuan panjang. Jadi jika panjang kawat

= ℓ , maka besar gaya Lorentz dapat dihitung dengan rumus :

FL = I . ℓ . B . Sin θ

FL = gaya Lorentz dalam newton ( N )

I = kuat arus listrik dalam ampere ( A )

ℓ = panjang kawat dalam meter ( m )

B = kuat medan magnet dalam Wb/m2 atau tesla ( T )

θ = sudut antara arah I dan B

Dari rumus di atas ternyata jika besar sudut θ adalah :

Θ =90o , arah arus listrik dan medan magnet ( I dan B ) saling tegak lurus maka

FL mencapai maksimum

Page 6: Teori Dasar Listrik

Θ = 00 , arah arus listrik dan medan magnet ( I dan B ) saling sejajar maka FL =

0 atau kawat tidak dipengaruhi gaya Lorentz

Hubungan antara FL , I dan B dapat lebih mudah dipelajari dengan menggunakan kaidah

tangan kiri. Yaitu dengan mengangan-angankan jika ibu jari, jari telunjuk dan jari

tangah kita bentangkan saling tegak lurus, maka :

Ibu jari : menunjukan arah gaya Lorentz ( FL ) Arah gaya Lorentz

Jari telunjuk : menunjukkan arah medan magnet ( B )

Jari tengah : menunjukkan arah arus listrik ( I )

Catatan :

Aturan ini dapat juga menggunakan kaidah tangan kanan, yaitu dengan

mengangan-angankan jika Ibu jari, Jari Telunjuk dan Jari tengah kita bentangkan

saling tegak lurus, maka Jari tengah menunjuk arah gaya Lorentz, jari telunjuk

menunjuk arah medan magnet dan Ibu jari menunjuk arah arus listrik.

Keterangan:

F = gaya (Newton)

B = medan magnet (Tesla)

q = muatan listrik ( Coulomb)

v = arah kecepatan muatan (m/t)

Gambar 1. Gaya Lorentz.

Sebuah partikel bermuatan listrik yang bergerak dalam daerah medan magnet homogen

akan mendapatkan gaya. Gaya ini juga dinamakan gaya Lorentz. Gerak partikel akan

Page 7: Teori Dasar Listrik

menyimpang searah dengan gaya lorentz yang mempengaruhi. Arah gaya Lorentz pada

muatan yang bergerak dapat juga ditentukan dengan kaidah tangan kanan dari gaya

Lorentz (F) akibat dari arus listrik, I dalam suatu medan magnet B. Ibu jari, menunjukan

arah gaya Lorentz . Jari telunjuk, menunjukkan arah medan magnet ( B ). Jari tengah,

menunjukkan arah arus listrik ( I ). Untuk muatan positif arah gerak searah dengan arah

arus, sedang untuk muatan negatif arah gerak berlawanan dengan arah arus.

Jika besar muatan q bergerak dengan kecepatan v, dan I = q/t maka persamaan gaya

adalah:

FL = I . ℓ . B sin θ

= q/t . ℓ . B sin θ

= q . ℓ/t . B sin θ

= q . v . B sin θ

*Karena ℓ/t = v

Sehingga besarnya gaya Lorentz yang dialami oleh sebuah muatan yang bergerak dalam

daerah medan magnet dapat dicari dengan menggunakan rumus :

F = q . v . B sin θ

Keterangan:

F = gaya Lorentz dalam newton ( N )

q = besarnya muatan yang bergerak dalam coulomb ( C )

v = kecepatan muatan dalam meter / sekon ( m/s )

B = kuat medan magnet dalam Wb/m2 atau tesla ( T )

θ = sudut antara arah v dan B

Bila sebuah partikel bermuatan listrik bergerak tegak lurus dengan medan magnet

homogen yang mempengaruhi selama geraknya, maka muatan akan bergerak dengan

lintasan berupa lingkaran. Sebuah muatan positif bergerak dalam medan magnet B

(dengan arah menembus bidang) secara terus menerus akan membentuk lintasan

lingkaran dengan gaya Lorentz yang timbul menuju ke pusat lingkaran. Demikian juga

untuk muatan negativ.

Contoh penerapan gaya Lorentz pada kehidupan sehari-hari adalah alat ukur listrik, kipas

dll.

Page 8: Teori Dasar Listrik

V. Hukum faraday

1. Jika sebuah penghantar memotong garis-garis gaya dari suatu medan magnetik

(flux) yang konstan, maka pada penghantar tersebut akan timbul tegangan

induksi.

2. Perubahan flux medan magnetik didalam suatu rangkaian bahan penghantar,

akan menimbulkan tegangan induksi pada rangkaian tersebut.

Kedua pernyataan beliau diatas menjadi hukum dasar listrik yang menjelaskan

mengenai fenomena induksi elektromagnetik dan hubungan antara perubahan

flux dengan tegangan induksi yang ditimbulkan dalam suatu rangkaian, aplikasi

dari hukum ini adalah pada generator.

GGL induksi dinyatakan dengan rumus:

Tanda negatif berati sesuai dengan Hukum Lenz , yaitu “Ggl Induksi selalu

membangkitkan arus yang medan magnetiknya berlawanan dengan sumber

perubahan fluks magnetik”.

telah dijelaskan bahwa arah medan magnetik dinyatakan oleh garis-garis gaya

magnet. Medan magnet tidaklah kasat mata namun bisa dibuktikan dengan

mengamati penyimpangan jarum kompas atau serbuk besi halus di sekitar kawat

berarus listrik. Hal ini membuktikan bahwa:

1. Arus listrik dapat menghasilkan medan magnetik atau

2. Medan magnetik menghasilkan gaya pada kawat berarus listrik atau pada muatan

yang bergerak.

Dari pernyataan tersebut memunculkan pertanyaan :

“Jika arus listrik dapat menghasilkan medan magnetik apakah medan magnetik juga

dapat menghasilkan arus listrik ?”.

Page 9: Teori Dasar Listrik

Percobaan Faraday

Melalui berbagai percobaan, Michael Faraday (1791-1867), seorang ilmuwan jenius dari

inggris akhirnya berhasil membuktikan bahwa arus listrik memang dapat dihasilkan dari

perubahan medan magnetik .

Peristiwa dihasilkannya arus listrik akibat adanya perubahan medan magnetik dinamakan

induksi elektromagnetik, sedangkan arus yang dihasilkan dari induksi elektromagnetik

dinamakan arus induksi. Penemuan ini dikenal dengan “Hukum Faraday”. Penemuan ini

dianggap sebagai penemuan monumental. Mengapa?…

1. “Hukum Faraday” memiliki arti penting dalam hubungan dengan pengertian

teoretis tentang elektromagnetik.

2. elektromagnetik dapat dipergunakan sebagai penggerak secara terus-menerus

arus aliran listrik seperti yang digunakan oleh Faraday dalam pembuatan dinamo

listrik pertama .

Fluks Magnetik (ϕ) adalah kerapatan garis-garis gaya dalam medan magnet,

artinya fluks magnetik yang berada pada permukaan yang lebih luas

kerapatannya rendah dan kuat medan magnetik lebih lemah, sedangkan pada

permukaan yang lebih sempit kerapatan fluks magnet akan kuat dan kuat medan

magnetik lebih tinggi.

Hukum Faraday dapat ditentukan dengan menggunakan kaidah tangan kiri, yaitu

Ibu jari kita misalkan sebagai arah perputaran, telunjuk sebagai fluks magnetic

dan jari tengah sebagai arah arus.

Page 10: Teori Dasar Listrik

Perbedaan Gaya Lorentz dan Hukum Faraday ini adalah gaya Lorentz

memerlukan arus agar menimbulkan gaya( arus sudah ada) . Sedangkan hukum

faraday menghasilkan arus.

Fungsi dari medan magnet dalam mesin listrik adalah :

Menginduksikan tegangan (berdasarkan Hk. Faraday)

Dimana : e = tegangan induksi (Volt)

B = kerapatan fluksi (Tesla atau Weber/m2)

l = panjang konduktor (m)

V = kecepatan gerak konduktor (m/det)

VI. Kaidah Tangan Kanan

- Fluksi datang tegak lurus pada telapak tangan kanan.

- Arah gerak dinyatakan oleh arah ibu jari tangan kanan.

- Arah tegangan dinyatakan oleh jari tengah tangan kanan.

VII. Kaidah Tangan Kiri

- Fluksi datang tegak lurus pada telapak tangan kiri.

Page 11: Teori Dasar Listrik

- Arah arus dinyatakan oleh jari tengah tangan kiri.

- arah gerak dinyatakan oleh arah ibu jari tangan kiri

VIII. Daya

Daya adalah energi dikeluarkan untuk melakukan usaha.

Daya terdiri dari tiga bentuk, yaitu :

1. Daya aktif Daya aktif adalah daya yang terpakai untuk melakukan energi

sebenarnya. Satuan daya aktif adalah watt.

Page 12: Teori Dasar Listrik

Contoh : Energi panas, cahaya, mekanik, dll.

2. Daya reaktifDaya reaktif adalah jumlah daya yang diperlukan untuk pembentukan medan

magnet maka akan terbentuk fluks medan magnet. Satuan daya reaktif adalah VAR.

Contoh : transformator, motor, lampu pijar, dll

3. Daya nyataDaya nyata adalah daya yang dihasilkan oleh perkalian antara tegangan

rms dan arus rms/ daya yang merupakan hasil penjumlahan trigonometri daya aktif dan reaktif. Satuan daya nyata adalah VA.

Segitiga Daya Segitiga daya adalah segitiga yang menggambarkan hubungan antara tiga bentuk daya yang ada.

Page 13: Teori Dasar Listrik

Faktor Daya Faktor daya merupakan perbandingan antara daya aktif(watt) dan daya nyata (VA) yang digunakan dalam sirkuit AC atau beda fasa antara V

danI yang dinyatakan dalam

Beberapa keuntungan meningkatkan faktor daya :a. Tagihan listrik menjadi kecil b. Kapasitas distribusi sistem meningkatc. Mengurangi rugi-rugi daya pada sistemd. Adanya peningkatan tegangan karena daya naik

Beberapa kerugian menurunnya faktor daya :a. Membesarnya penggunaan daya listrik kWh karena rugi-rugib. Membesarnya penggunaan daya listrik kVARc. Mutu listrik jadi rendah karena voltage drops

Bentuk Rangkaian Hubungan Sistem Tiga Fasa :

a. Hubungan Wye (Y)

Sistem hubungan Wye :

Tegangan 3-fasa mempunyai magnitude yang sama

Perbedaan fasa antar tegangan adalah

Page 14: Teori Dasar Listrik

Tegangan line to line berbeda dengan tegangan fasa

Jadi ampitudo tegangan fasa-fasa adalah kali lebih besar dari amplitudo tegangan line.

Sedangkan sudut fasanya berbeda

Sistem Wye Berbeban :

Impedansi beban adalah Setiap sumber menyuplai Arus Line ke beban Arus dinyatakan sebagai :

Page 15: Teori Dasar Listrik

:

Pada sistem ini arus yang mengalir ke ground sebesar :

Sistem wye berbeban seimbang :

Jika beban seimbang, maka :

Pada saat terjadi gangguan, saluran netral pada hubungan bintang akan teraliri arus listrik. Ketidakseimbangan beban pada sistem 3 fase dapat diketahui dengan indikasi naiknya arus pada salahsatu fase dengan tidak wajar, arus pada tiap fase mempunyai perbedaan yang cukup signifikan, hal ini dapat menyebabkan kerusakan pada peralatan.

Beda Ground dan Netral

Perbedaan kabel neutral dan kabel ground. Umumnya kabel neutral itu adalah kabel yang dihubungkan ke titik neutral dalam sistem tiga fasa (umumnya listrik menerapkan sistem tiga fasa). Kabel ground ada yang bilang kabel pentanahan atau erthing kabel. Kabel ini menghubungkan material benda yang menghantarkan listrik (misalnya casing motor, generator, trafo, saklar yang ada bahan metalnya dll) ketanah. Maksudnya apabila ada fasa listrik yang menyentuh benda tersebut maka aliran arus akan menuju ke tanah.

Perlu dingat aliran arus listrik akan kembali kesumbernya, maka kawat tanah atau kabel ground dihubungkan ke neutral bersama-sama kawat neutral (digabung). Ini biasa diterapkan pada sistem 4 kawat. Sebenarnya kawat ground tidak dimaksudkan untuk dialiri arus besar, namun untuk baiknya ditentukan ukuran tertentu. Pada suatu kilang, kawat ground itu dibikin saling berhubungan dengan ukuran kabel 120 mm2 atau 70 mm2, itu tergantung pada sistem designnya. Kabel ground ini dihungkan ke semua benda metal yang ada dikilang, misalnya tangki, ranka baja, vesel (bejana), rangka atau frame peralatan listrik, enclosure peralatan listrik, digabung juga dengan pentanahan petir.

Page 16: Teori Dasar Listrik

b. Hubungan Delta(∆)

Sistem terhubung Delta : Sistem hanya mempunyai satu macam tegangan, yaitu: Line to line (VLL) Sistem mempunyai 2 arus :

o Arus line

o Arus phasa

Arus fasa adalah :

Arus line :

Pada beban setimbang :

Page 17: Teori Dasar Listrik

Dengan acuan gambar diatas maka persamaan menjadi :

Memperlihatkan bahwa sudut yang dibentuk oleh fasor IAB dan -ICA adalah 600.Dengan demikian maka :

Perhitungan Daya 3-phasa

Daya 3-fasa merupakan penjumlahan dari daya 1-fasa :

Jika beban setimbang:

Sistem Wye :

Sistem Delta :

Jadi Nilai besaran daya sistem 3-fasa wye dan delta memiliki nilai ekuivalen.

Page 18: Teori Dasar Listrik

IX. Arus AC & DC

Electron bergerak dari negative ke positive. Sedangkan arus bergerak

dari positive ke negative. Jadi arahnya berlawanan.

Arus adalah muatan yang bergerak terhadap waktu.

Arus dapat dikatakan juga sebagai muatan yang bergerak atau muatan

dengan kecepatan yang besarnya berubah terhadap waktu.

Arah bergerak arus listrik searah dengan muatan positif (proton) dan

berlawanan dengan arah muatan negative (electron).

Ketika terjadi perbedaan potensial, akan terjadi dengan pergerakan muatan

positif dari potensial tinggi ke potensial rendah. Untuk muatan negative,

pergerakan terjadi dari potensial rendah ke potensial tinggi. Hal ini lah

yang isebut dengan arus listrik.

Secara matematis arus didefinisikan:

Tegangan dapat didefiniskan sebagai adalah energy yang dibutuhkan untuk

memindahkan satu muatan listrik (sebesar 1 Coulomb) dari sebuah kutub ke

kutub lainnya yang berbeda potensial. Dengan kata lain tegangan adalah

perbedaan potensial listrik antara dua titik dalam rangkaian listrik, dan

dinyatakan dalam satuan volt. Besaran ini mengukur energi potensial dari sebuah

medan listrik yang mengakibatkan adanya aliran listrik dalam sebuah konduktor

listrik. satuan untuk tegangan adalah volt (V) . Nilai untuk 1 volt adalah sama

dengan 1 J/C.

Arus AC (Alternating Curren)

arus yang sipatnya mempunya dua arah atau lebih di kenal dengan

sebutan arus bolak-balik

Arus AC biasa di gunakan untuk tegangan listrik PLN sebesar misalnya

220 Volt 50 hezh. (ini adalah tegangan standard untuk Indonesia), beda

halnya dengan standard Tegangan untuk Negara lainnya.

Arus AC ini biasanya di dapat dari generator listrik dimana generator

listrik ini dapat di operasikan melalu beberapa cara untuk

menggerakkannya, seperti PLTU (PEmbangkit Listrik Tenaga UAp),

Page 19: Teori Dasar Listrik

PLTG ( Pembangkit Listrik Tenaga Gas) dan lainnya-lainnya. banyak hal

yang dapat kita gunakan untuk menggerakkan Generator listrik sebagai

media untuk penggeraknya, misalnya saja kita bisa memanfaatkan aliran

air di sungai, ataupun aliran air terjun dan sebagainya. Nah dari generator

listrik inilah nantinya tegangan-tegangan yang di hasilkan akan kecilkan

lagi yang umumnya menggunakan trafo pembagi tegangan., trafo inilah

yang nantinya menghasilkan tegangan standard 220 Volt. yang dapat di

konsumsi oleh kita dan peralatan elektronika lainnya.

Jadi ciri-ciri dari AC :

1. Sumbernya dari stop kontak PLN

2. Tidak pernah dari baterai

3. Arah arusnya bolak balik dan bukan searah

4. Karena arah arusnya bolak balik , bisa kesetrum

Bentuk gelombang :

Arus DC ( Direct Current )

ciri – ciri umum Dc :

1. Sumbernya selalu dari baterai

2. Bukan dari stop kontak PLN

3. Arah arus nya searah, sesuai kutub baterainya ( negative ke positive )

4. Kalau terpegang tidak akan kesetrum tetapi sangat panas.

Page 20: Teori Dasar Listrik

Arus DC disini benar-benar sudah disearahkan dengan menggukanan

rangkaian penyearah seperti adaftor.

fungsi penyearah disini dipakai untuk komponen komponen

elektronika seperti: IC, Resistor, Capasitor, Transistor dan lainnyanya

yang semuanya itu menggunakan arus searah.

Grafiknya :

Tegangan pada terminal positif sebuah baterai akan bertahan konstan hingga sel

kehabisan muatannya. Apabila kita memplot sebuah grafik yang menggambarkan

perubahan tegangan terhadap waktu, grafik untuk sebuah baterai yang masih baru

adalah sebagai berikut:

Jadi kesimpulannya bahwa arus AC itu di gunakan untuk rangkain-

rangkain AC dan Arus DC itu digunakan untuk Rangkaian-rangkain DC,

seperti Elektronika berupa TV, RADIO, TAPE dan lainnya. kedua arus

tersebut sangat berkesinambungan dan saling membantu untuk dunia

Elektronika dan lain-lainnya.

X. Rugi-rugi hysteresis Rugi-rugi hysteresis merupakan rugi yang disebabkan oleh fluks bolak balik pada inti besi

dimana =konstanta, = kerapatan fluks (tesla) 1.6 =nilai eksponen Steinmetz besi F= frekuensi (Hz)

Page 21: Teori Dasar Listrik

Kurva B-H

Gambar 1 Gambar 2

Ket : B= kerapatan fluks (tesla) H= kuat medan magnet (ampere-turn/ meter)

Pada gambar 1, warna biru menggambarkan jumlah energy yang tersimpan pada setengah siklus, sedangkan pada gambar 2 warna biru menggambarkan jumlah energy yang dilepaskan atau digunakan. Sehingga dapat disimpulkan bahwa jumlah energy yang digunakan lebih sedikit dari yang tersimpan dikarenakan energy tersebut diserap oleh bahan magnet.

Bahan material magnetik akan menyerap energy selama siklus berlangsung dan akan terdisipasi dalam bentuk panas (J/m). Untuk mengurangi histerisis loss ini maka dipilih bahan yang mempunyai loop yang sempit seperti grain oriented silicon steel yang dipakai sebagai inti pada transformer AC.

Page 22: Teori Dasar Listrik

XI. Rugi-rugi arus eddy Arus eddy merupakan arus yang berpusar pada suatu titik.

Misalnya terjadi pada inti besi, karena inti besi terlalu tebal maka arus eddy yang dihasilkan akan semakin besar karena, pengaruh dari luas penampangnya. Sehingga untuk mengurangi arus eddy dapat dengan memotong inti besi menjadi beberapa lapisan tipis kemudian disusun kembali dengan diberi isolasi pada setiap sela dari lapisan tersebut.

Untuk menguranginya maka inti besi dibuat berlapis lapis (Laminate) dan diberi isolasi tipis pada tiap lapisnya .inti trafo dibuat dari lembaran2 tipisdengan bertujuan untuk mengurangi rugi arus eddy, medan fluktuatif yang menghasilkan listrik AC yang melewati inti magnit menimbulkan induksi arus listrik (arus eddy) yang merupakan sumber rugi daya akibat resistansi listrik dalam bentuk rugi panas, oleh sebab itu trafo dibuat dari lembaran dgn isolasi yang tinggi dan memiliki resistivitas tinggi.

pengaruh arus eddy pada motor listrik akan membuat putaran motor turun , karena terjadi rugi-rugi daya

XII. RUGI-RUGI TEMBAGA

Rugi tembaga adalah rugi yang disebabkan oleh arus beban yang mengalir pada kawat tembaga, dapat ditulis:

Pada persamaan di atas, nilai R (tahanan) dari kawat tembaga didapatkan dari :

Keterangan :

: Resistiviti (Ωm)

: Panjang kawat tembaga (m)

: Luas penampang kawat tembaga (m2)

Page 23: Teori Dasar Listrik

RANGKAIAN LISTRIK 1

1. Hukum Kirchoff I / Kirchoff’s Current Law (KCL)Jumlah arus yang memasuki suatu percabangan atau node atau simpul

sama dengan arus yang meninggalkan percabangan atau node atau simpul, dengan kata lain jumlah aljabar semua arus yang memasuki sebuah percabangan atau node atau simpul samadengan nol.

Secara matematis :

2. Hukum Kirchoff II / Kirchoff’s Voltage Law (KVL) Jumlah tegangan pada suatu lintasan tertutup sama dengan nol, atau

penjumlahan tegangan pada masing-masing komponen penyusunnya yang membentuk satu lintasan tertutup akan bernilai sama dengan nol.

Secara matematis :

Metode analisa rangkaian listrik

A. Analisa mesh

Kaidah :

basis tegangan arah arus mesh bebas jumlah persamaan sama dengan jumlah mesh jika arah mesh bertemu kutub positif maka tandanya positif

(+) jika arah mesh bertemu kutub negatif maka tandanya

negatif (-) jika arah mesh bertemu tanpa ktutub diketahui maka

tandanya positif (+) metode ini cocok untuk rangkaian yang memiliki sumber

tegangan

contoh : tentukan nilai arus I dengan metode analisa mesh

Page 24: Teori Dasar Listrik

Jawab :

Pada rangkaian terdapat 2 mesh sehingga akan diperoleh 2 persamaan.Untuk Mesh 1 :

Untuk mesh 2 :

Eliminasi persamaan (1) dan (2) sehingga diperoleh

B. analisa node (simpul)

Node atau titik simpul adalah titik pertemuan dari dua atau lebih elemen rangkaian. Analisis node berprinsip pada Hukum Kirchoff I/ KCL dimana jumlah arus yang masuk dan keluar dari titik percabangan akan samadengan nol. analisis node lebih mudah jika pencatunya semuanya adalah sumber arus.

Tentukan node referensi sebagai ground/ potensial nol. Tentukan node voltage, yaitu tegangan antara node non

referensi dan ground. Asumsikan tegangan node yang sedang diperhitungkan lebih

tinggi daripada tegangan node manapun, sehingga arah arus keluar dari node tersebut positif.

Jika terdapat N node, maka jumlah node voltage adalah (N-1). Jumlah node voltage ini akan menentukan banyaknya persamaan yang dihasilkan.

Tentukan nilai dengan anlisa node

Page 25: Teori Dasar Listrik

Dari rangkaian diatas tampak ada 3 simpul dimana satu simpul merupakan ground sehingga ada 2 persamaan :

Dengan Menggunakan hukum arus Kirchoff terhadap simpul 1 dan simpul 2 :

Simpul 1 :

Simpul 2 :

Eliminasi 2 persamaan

Page 26: Teori Dasar Listrik

Sehingga diperoleh dan

Dan

C. Metode analisa superposisi

Kaidah :

Hanya berlaku untuk sumber bebas Ketika mematikan sumber arus maka diperlakukan open circuit Ketika mematikan sumber tegangan maka diperlakukan hubung

singkat Tiap-tiap sumber hanya boleh hidup sekali Hasil akhir adalah penjumlahan seluruh keadaan.

Metode ini cocok untuk rangkaian yang memiliki banyak sumber.

Contoh : tentukan nilai dengan metode superposisi , dimana

, dan

Jawab : dari rangkaian diatas terdapat 2 sumber bebas dan 1 sumber tertutup, sehingga pada kasus ini kita hanya 2 sumber yang bias dimatikan yaitu sumber bebas saja.

Page 27: Teori Dasar Listrik

1) Untuk keadaan 10 volt dimatikan :

Dengan menggunakan simpul maka diperoleh 3 simpul sehingga nantinya akan dihasilkan 2 persamaan

,

Simpul super : Simpul A :

2) untuk 3 A yang dimatikan

Dengan menggunakan analisa mesh

Page 28: Teori Dasar Listrik

Sehingga diperoleh

D. Teorema Thevenin-Norton

Kaidah :

1. Rangkaian disederhanakan berdasarkan dua titik acuan2. Terdapat dua jenis rangkaian

a. Rangkaian yang seluruhnya mengandung sumber bebasMetode Penyelesaian :

i. Cari Rth, dengan mematikan semua sumber Sumber tegangan di short (short circuit) Sumber arus di open (open circuit)

ii. Cari Voc/Isc

iii. Kemudian cari Rth dengan rumus :

b. Rangkaian yang terdapat sumber bebas dan sumber terikatMetode Penyelesaian :

i. Cari Voc terlebih dahulu ii. Cari Isc

iii. Cari Rth dengan rumus :

3. Ekivalen TheveninVoc di-seri-kan Rth

Voc

Rth

4. Ekivalen NortonIsc di-paralel-kan Rth

RthIsc

Contoh Thevenin Norton :

Page 29: Teori Dasar Listrik

R112Ω

R24Ω

I112 A

I2

5 A

I33 A

a

b

Mencari :

Rth4Ω

a

b

Mencari

R112Ω

R24Ω

I2

5 A

I33 A

a

b

Isc

Karena a-b hubung singkat,maka :

Menghitung :

Ekuivalen Thevenin dan Nortono Thevenin

Page 30: Teori Dasar Listrik

Rth4Ω

a

b

Voc32 V

o Norton

Isc8 A

a

b

Rt

12Ω

E. KOMPONEN R L C Resistor (R)

Resistor adalah komponen elektronik dua kutub yang didesain untuk menahan arus listrik dengan memproduksi tegangan listrik di antara kedua kutubnya, nilai tegangan terhadap resistansi berbanding dengan arus yang mengalir, berdasarkan hukum Ohm :

Induktor (L)Induktor adalah sebuah komponen elektronika pasif (kebanyakan

berbentuk torus) yang dapat menyimpan energi pada medan magnet yang ditimbulkan oleh arus listrik yang melintasinya. Biasanya sebuah induktor adalah sebuah kawat penghantar yang dibentuk menjadi kumparan, lilitan membantu membuat medan magnet yang kuat di dalam kumparan dikarenakan hukum induksi Faraday. Induktor adalah salah satu komponen elektronik dasar yang digunakan dalam rangkaian yang arus dan tegangannya berubah-ubah dikarenakan kemampuan induktor untuk memproses arus bolak-balik.

Untuk penghitungan nilai tegangan pada induktor (VL) yaitu :

Sedangkan untuk nilai arusnya (IL) yaitu :

Page 31: Teori Dasar Listrik

Kapasitor (C)Kapasitor adalah komponen elektronika yang berfungsi untuk

menyimpan muatan listrik, selain itu kapasitor juga dapat digunakan sebagai penyaring frekuensi. Kapasitas untuk menyimpan kemampuan kapasitor dalam muatan listrik disebut Farad (F) sedangkan simbol dari kapasitor adalah C (kapasitor).

Sifat dasar dalam sebuah kapasitor adalah dapat menyimpan muatan listrik, dan juga memiliki sifat yang tidak dapat dilalui arus DC (direct Current) dan dapat dilalui arus AC (alternating current) dan juga dapat berfungsi sebagai impedansi (resistansi yang nilainya tergantung dari frekuensi yang diberikan).

Fungsi Kapasitor dalam suatu rangkaian elektronika adalah sebagai kopling, filter pada sebuah rangkaian power supply, penggeser fasa, pembangkit frekuensi pada rangkaian oscilator dan juga digunakan untuk mencegah percikan bunga api pada sebuah saklar.

Kapasitor memiliki dua jenis, yaitu kapasitor elektrolit dan kapasitor non elektrolit. Pada kapasitor elektrolit, terdapat kutub positif dan kutub negatif, sedangkan pada kapasitor non elektrolit tidak memiliki kedua kutub. Pada kapasitor elektrolit, terdapat toleransi tegangan, dimana toleransi tegangan itu adalah batas tegangan yang dapat mengalir pada kapasitor tersebut. Apabila tegangan yang mengalir melebihi batas toleransi, maka kapasitor tersebut akan rusak.Untuk menghitung nilai tegangan pada kapasitor (Vc), yaitu :

Sedangkan untuk nilai arusnya (Ic) yaitu :

1. RANGKAIAN R-L DAN R-C Rangkaian R-L

Pada rangkaian R-L ini, hal yang biasa ditentukan adalah arus yang mengalir pada suatu induktor pada rangkaian, dalam kondisi switch masih terbuka atau sebaliknya (tergantung permasalahan). Pada kasus sebelum kejadian, induktor diperlakukan sebagai hubung singkat, karena arus yang mengalir adalah konstan. Periodenya dibagi dalam dua kondisi, yaitu kondisi sebelum kejadian (t < 0) dan setelah kejadian (t ≥ 0).

Karakteristik pada rangkaian R-L yaitu :

Page 32: Teori Dasar Listrik

1) Pada induktor, akan terdapat tegangan hanya apabila terjadi perubahan arus. Hal ini sesuai dengan persamaan

2) Apabila arus yang mengalir adalah konstan pada masa yang lama, maka tegangan pada induktor adalah = 0

3) Apabila arus konstan pada masa yang lama, maka induktor diperlakukan sebagai hubung singkat (short circuit).

4) Induktor bersifat menyimpan arus.

Contoh dari metode R-L ini adalah sebagai berikut :

Tentukan nilai V sepanjang masa

Jawab :

t < 0

Mesh 1

19I1 + I1 - I2 = 1000

20 I1 - I2 = 1000.....(1)

Mesh 2

I2 - I1 + 19(I2 – IL) = 0

-I1 + 20 I2 - 19 IL = 0....(2)

Page 33: Teori Dasar Listrik

Mesh IL

19 IL - 19 I2 + IL = 0

20 IL - 19 I2 = 0....(3)

t > 0

Page 34: Teori Dasar Listrik

Rangkaian R-CPada rangkaian R-C, yang biasa ditentukan adalah tegangan yang

terdapat pada kapasitor pada rangkaian tersebut, dalam kondisi switch on atau off (tergantung kondisi). Periode dibagi dalam dua kondisi, yaitu kondisi sebelum keadaan (t < 0) dan kondisi sesudah keadaan (t ≥ 0). Pada kondisi sebelum kejadian, kapasitor diperlakukan sebagai open circuit, dan kondisi sesudah, kapasitor kembali terpasang.

Page 35: Teori Dasar Listrik

Karakteristik pada rangkaian R-C yaitu :1) Pada kapasitor, akan terdapat arus hanya apabila terjadi perubahan

tegangan. Hal ini sesuai dengan persamaan

2) Apabila arus yang mengalir adalah konstan pada masa yang lama, maka tegangan pada induktor adalah = 0

3) Apabila arus konstan pada masa yang lama, maka induktor diperlakukan sebagai hubung singkat (short circuit).

4) Induktor bersifat menyimpan arus.

Contoh dari metode R-C ini adalah sebagai berikut :

Tentukan Vsw sepanjang masa

t < 0

Page 36: Teori Dasar Listrik

t > 0

Page 37: Teori Dasar Listrik

Rangkaian RLC

Tentukan berapa tegangan di resistor 1kohm ketika saklar ditutup dan dibuka!

Saklar ditutup

T < 0

, volt dan volt

Saklar dibuka

T > 0

Page 38: Teori Dasar Listrik

Masukan t=0

dan

Page 39: Teori Dasar Listrik

Masukan nilai B1 dan B2 ke persamaan V(t)

Maka didapat nilai VR=VC=VL=V(t)

Sehingga nilai VR setelah saklar dibuka akan terus turun sampai 0 volt.