Temas Selectos Fisica 2

140
Reforma Integral de la Educación Media Superior 6 SEMESTRE FORMACIÓN PROPEDÉUTICA Temas Selectos de Física 2

description

Módulo de aprendizaje para la asignatura Temas Selectos de Física 2, sexto semestre

Transcript of Temas Selectos Fisica 2

Page 1: Temas Selectos Fisica 2

6

Reforma Integral de la Educación Media Superior

6SEMESTRE

FORMACIÓN PROPEDÉUTICA

Temas Selectosde Física 2

Page 2: Temas Selectos Fisica 2

QUERIDOS JÓVENES:

Siempre he pensado que la juventud constituye una de las etapas más importantes en el desarrollo del ser humano; es la edad donde forjamos el carácter y visualizamos los más claros anhelos para nuestra vida adulta. Por eso, desde que soñé con dirigir los destinos de nuestro estado, me propuse hacer acciones concretas y contundentes para contribuir al pleno desarrollo de nuestros jóvenes sonorenses.

Hoy, al encontrarme en el ejercicio de mis facultades como Gobernadora Constitucional del Estado de Sonora, he retomado los compromisos que contraje con ustedes, sus padres y –en general con las y los sonorenses– cuando les solicité su confianza para gobernar este bello y gran estado. Particularmente lucharé de manera incansable para que Sonora cuente con “Escuelas formadoras de jóvenes innovadores, cultos y con vocación para el deporte”. Este esfuerzo lo haré principalmente de la mano de sus padres y sus maestros, pero también con la participación de importantes actores que contribuirán a su formación; estoy segura que juntos habremos de lograr que ustedes, quienes constituyen la razón de todo lo que acometamos, alcancen sus más acariciados sueños al realizarse exitosamente en su vida académica, profesional, laboral, social y personal.

Este módulo de apendizaje que pone en sus manos el Colegio de Bachilleres del Estado de Sonora, constituye sólo una muestra del arduo trabajo que realizan nuestros profesores para fortalecer su estudio; aunado a lo anterior, esta Administración 2015-2021 habrá de caracterizarse por apoyar con gran ahínco el compromiso pactado con ustedes. Por tanto, mis sueños habrán de traducirse en acciones puntuales que vigoricen su desarrollo humano, científico, físico y emocional, además de incidir en el manejo exitoso del idioma inglés y de las nuevas tecnologías de la información y la comunicación.

Reciban mi afecto y felicitación; han escogido el mejor sendero para que Sonora sea más próspero: la educación.

LIC. CLAUDIA ARTEMIZA PAVLOVICH ARELLANOGOBERNADORA CONSTITUCIONAL DEL ESTADO DE SONORA

Page 3: Temas Selectos Fisica 2

Temas Selectosde Física 2

Page 4: Temas Selectos Fisica 2

COLEGIO DE BACHILLERES DEL ESTADO DE SONORA

Director GeneralMtro. Víctor Mario Gamiño Casillas

Director AcadémicoMtro. Martín Antonio Yépiz Robles

Director de Administración y FinanzasIng. David Suilo Orozco

Director de PlaneaciónMtro. Víctor Manuel Flores Valenzuela

TEMAS SELECTOS DE FÍSICA 2Módulo de Aprendizaje.Copyright 2011 por Colegio de Bachilleres del Estado de Sonora.Todos los derechos reservados.Primera edición 2011.Quinta reimpresión 2015. Impreso en México.

DIRECCIÓN ACADÉMICADepartamento de Innovación y Desarrollo de la Práctica Docente.Blvd. Agustín de Vildósola, Sector Sur.Hermosillo, Sonora, México. C.P. 83280

COMISIÓN ELABORADORA

Elaboración:Alfonso Bernardo Harita

Revisión Disciplinaria:Luis Alfonso Yáñez Munguía

Corrección de estilo:Esperanza Brau Santacruz

Diseño y edición:María Jesús Jiménez DuarteBernardino Huerta Valdez

Diseño de portada:Yolanda Yajaira Carrasco Mendoza

Foto de portada:Alma Ivette Montijo González

Banco de imágenes:Shutterstock©

Coordinación Técnica:Rubisela Morales Gispert

Supervisión Académica:Vanesa Guadalupe Angulo Benítez

Coordinación General:Mtra. Laura Isabel Quiroz Colossio

Esta publicación se terminó de imprimir durante el mes de diciembre de 2015.Diseñada en Dirección Académica del Colegio de Bachilleres del Estado de Sonora.Blvd. Agustín de Vildósola, Sector Sur. Hermosillo, Sonora, México.La edición consta de 2,303 ejemplares.

Page 5: Temas Selectos Fisica 2

3 PRELIMINARES

Ubicación Curricular

COMPONENTE:

FORMACIÓN PROPEDÉUTICA

GRUPO: 2 FÍSICO MATEMÁTICO

HORAS SEMANALES:

03

CRÉDITOS: 06

DATOS DEL ALUMNODATOS DEL ALUMNODATOS DEL ALUMNODATOS DEL ALUMNO

Nombre: _______________________________________________________________

Plantel: __________________________________________________________________

Grupo: _________________ Turno: _____________ Teléfono:___________________

E-mail: _________________________________________________________________

Domicilio: ______________________________________________________________

_______________________________________________________________________

Page 6: Temas Selectos Fisica 2

4 PRELIMINARES

Page 7: Temas Selectos Fisica 2

5 PRELIMINARES

Presentación ......................................................................................................................................................... 7 Mapa de asignatura .............................................................................................................................................. 8 BLOQUE 1: ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO ......................................................... 9 Secuencia Didáctica 1Secuencia Didáctica 1Secuencia Didáctica 1Secuencia Didáctica 1: Electrostática ................................................................................................................10 • Electrostática...............................................................................................................................................11 • Estructura eléctrica de la materia ...............................................................................................................12 • Unidades de carga eléctrica ......................................................................................................................13 • Ley de Coulomb ..........................................................................................................................................13 • Campo eléctrico ..........................................................................................................................................15 • Líneas de fuerza ..........................................................................................................................................17 • Flujo eléctrico ..............................................................................................................................................17 • Ley de Gauss ..............................................................................................................................................19 • Potencial eléctrico y capacitancia ..............................................................................................................23 • Condensadores y capacitancia ..................................................................................................................24 • Condensadores en serie ............................................................................................................................26 • Condensadores en paralelo .......................................................................................................................27 Secuencia Didáctica 2Secuencia Didáctica 2Secuencia Didáctica 2Secuencia Didáctica 2: Electrodinámica ............................................................................................................33 • Electrodinámica, corriente eléctrica y circuitos eléctricos .........................................................................34 • Circuitos con resistencias en paralelo ........................................................................................................38 • Leyes de Kirchhoff ......................................................................................................................................41 • Magnetismo ................................................................................................................................................42 • Corriente continua o directa (CC o CD) y corriente alterna (CA) ...............................................................47 • Carga del condensador ..............................................................................................................................49 BLOQUE 2: APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA ................................... 57 Secuencia Didáctica 1Secuencia Didáctica 1Secuencia Didáctica 1Secuencia Didáctica 1: Características de una onda y tipos de onda ..............................................................58 • Características de una onda y tipos de onda ............................................................................................59 • Características de una onda.......................................................................................................................61 • Fenómenos Ondulatorios ...........................................................................................................................67 Secuencia Didáctica 2Secuencia Didáctica 2Secuencia Didáctica 2Secuencia Didáctica 2: Movimiento armónico simple .......................................................................................70 • Movimiento armónico simple ......................................................................................................................71 • Ley de Hooke ..............................................................................................................................................72 • Cálculo de Posición, Velocidad y Aceleración en el Movimiento Armónico Simple .................................75 Secuencia Didáctica Secuencia Didáctica Secuencia Didáctica Secuencia Didáctica 3333: Péndulo simple y compuesto.......................................................................................82 • Péndulo Simple ...........................................................................................................................................85 • Péndulo Físico o Compuesto .....................................................................................................................87

Índice

Page 8: Temas Selectos Fisica 2

6 PRELIMINARES

BLOQUE 3: DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA ................................................................. 95 Secuencia Didáctica 1Secuencia Didáctica 1Secuencia Didáctica 1Secuencia Didáctica 1: Calor ............................................................................................................................ 96 • Concepto de calor ..................................................................................................................................... 97 • Formas de propagación del calor ............................................................................................................. 98 • Unidades de medida del calor ................................................................................................................ 100 • Capacidad calorífica, calor específico y calor latente ............................................................................. 102 • Calor latente de un cuerpo ...................................................................................................................... 104 Secuencia Didáctica 2Secuencia Didáctica 2Secuencia Didáctica 2Secuencia Didáctica 2: Leyes de los gases .................................................................................................... 109 • Leyes de los gases .................................................................................................................................. 110 • Concepto de gas ideal ............................................................................................................................ 110 • Teoría cinética de los gases .................................................................................................................... 110 • Ley de Boyle ............................................................................................................................................. 111 • Ley de Charles ......................................................................................................................................... 111 • Ley de Gay-Lussac .................................................................................................................................. 112 • Constante universal de los gases ........................................................................................................... 116 Secuencia Didáctica Secuencia Didáctica Secuencia Didáctica Secuencia Didáctica 3333: Conceptos fundamentales de la Termodinámica .................................................... 122 • Termodinámica ........................................................................................................................................ 123 • Trabajo en Procesos Termodinámicos.................................................................................................... 124 • Primera Ley de la Termodinámica ........................................................................................................... 129 • Segunda Ley de la Termodinámica ......................................................................................................... 133 Bibliografía........................................................................................................................................................ 138

Índice (continuación)

Page 9: Temas Selectos Fisica 2

7 PRELIMINARES

“Una competencia es la integración de habilidades, conocimientos y actitudes en un contexto específico”.“Una competencia es la integración de habilidades, conocimientos y actitudes en un contexto específico”.“Una competencia es la integración de habilidades, conocimientos y actitudes en un contexto específico”.“Una competencia es la integración de habilidades, conocimientos y actitudes en un contexto específico”.

El enfoque en competencias considera que los conocimientos por sí mismos no son lo más importante, sino el uso que se hace de ellos en situaciones específicas de la vida personal, social y profesional. De este modo, las competencias requieren una base sólida de conocimientos y ciertas habilidades, los cuales se integran para un mismo propósito en un determinado contexto.

El presente Módulo de Aprendizaje de la asignatura Temas Selectos de Física 2, es una herramienta de suma importancia, que propiciará tu desarrollo como persona visionaria, competente e innovadora, características que se establecen en los objetivos de la Reforma Integral de Educación Media Superior que actualmente se está implementando a nivel nacional.

El Módulo de aprendizaje es uno de los apoyos didácticos que el Colegio de Bachilleres te ofrece con la intención de estar acorde a los nuevos tiempos, a las nuevas políticas educativas, además de lo que demandan los escenarios local, nacional e internacional; el módulo se encuentra organizado a través de bloques de aprendizaje y secuencias didácticas. Una secuencia didáctica es un conjunto de actividades, organizadas en tres momentos: Inicio, desarrollo y cierre. En el inicio desarrollarás actividades que te permitirán identificar y recuperar las experiencias, los saberes, las preconcepciones y los conocimientos que ya has adquirido a través de tu formación, mismos que te ayudarán a abordar con facilidad el tema que se presenta en el desarrollo, donde realizarás actividades que introducen nuevos conocimientos dándote la oportunidad de contextualizarlos en situaciones de la vida cotidiana, con la finalidad de que tu aprendizaje sea significativo.

Posteriormente se encuentra el momento de cierre de la secuencia didáctica, donde integrarás todos los saberes que realizaste en las actividades de inicio y desarrollo.

En todas las actividades de los tres momentos se consideran los saberes conceptuales, procedimentales y actitudinales. De acuerdo a las características y del propósito de las actividades, éstas se desarrollan de forma individual, binas o equipos.

Para el desarrollo del trabajo deberás utilizar diversos recursos, desde material bibliográfico, videos, investigación de campo, etc.

La retroalimentación de tus conocimientos es de suma importancia, de ahí que se te invita a participar de forma activa, de esta forma aclararás dudas o bien fortalecerás lo aprendido; además en este momento, el docente podrá tener una visión general del logro de los aprendizajes del grupo.

Recuerda que la evaluación en el enfoque en competencias es un proceso continuo, que permite recabar evidencias a través de tu trabajo, donde se tomarán en cuenta los tres saberes: el conceptual, procedimental y actitudinal con el propósito de que apoyado por tu maestro mejores el aprendizaje. Es necesario que realices la autoevaluación, este ejercicio permite que valores tu actuación y reconozcas tus posibilidades, limitaciones y cambios necesarios para mejorar tu aprendizaje.

Así también, es recomendable la coevaluación, proceso donde de manera conjunta valoran su actuación, con la finalidad de fomentar la participación, reflexión y crítica ante situaciones de sus aprendizajes, promoviendo las actitudes de responsabilidad e integración del grupo.

Nuestra sociedad necesita individuos a nivel medio superior con conocimientos, habilidades, actitudes y valores, que les permitan integrarse y desarrollarse de manera satisfactoria en el mundo social, profesional y laboral. Para que contribuyas en ello, es indispensable que asumas una nueva visión y actitud en cuanto a tu rol, es decir, de ser receptor de contenidos, ahora construirás tu propio conocimiento a través de la problematización y contextualización de los mismos, situación que te permitirá: Aprender a conocer, aprender a hacer, aprender a ser y aprender a vivir juntos.

Presentación

Page 10: Temas Selectos Fisica 2

TEMAS SELECTOS DE FíSICA 2

BLOQUE 1. Analizas la

Electricidad y el magnetismo.

Secuencia didáctica 1.

Electrostática.

Secuencia didáctica 2.

Electrodinámica.

BLOQUE 2. Aplicas conceptos

sobre la mecánica ondulatoria.

Secuencia didáctica 1.

Características de una

onda y tipos de onda.

Secuencia didáctica 2.

Movimiento armónico

simple.

Secuencia didáctica 3.

Péndulo simple y

compuesto.

BLOQUE 3. Distingues los

procesos relativos al calor, las

leyes de los gases y la

termodinámica.

Secuencia didáctica 1.

Calor.

Secuencia didáctica 2.

Leyes de los gases.

Secuencia didáctica 3.

Conceptos

fundamentales de la

Termodinámica.

Page 11: Temas Selectos Fisica 2

amamamam

Tiempo asignado: 16 horas

Analizas la electricidad y el magnetismo.

Competencias disciplinares extendidas: 2. Evalúa las implicaciones del uso de la ciencia y la tecnología, así como los fenómenos relacionados con el origen, continuidad y

transformación de la naturaleza para establecer acciones a fin de preservarla en todas sus manifestaciones. 3. Aplica los avances científicos y tecnológicos en el mejoramiento de las condiciones de su entorno social. 4. Evalúa los factores y elementos de riesgo físico, químico y biológico presentes en la naturaleza que alteran la calidad de vida de

una población para proponer medidas preventivas. 6. Utiliza herramientas y equipos especializados en la búsqueda, selección, análisis y síntesis para la divulgación de la información

científica que contribuya a su formación académica. 7. Diseña prototipos o modelos para resolver problemas, satisfacer necesidades o demostrar principios científicos, hechos o

fenómenos relacionados con las ciencias experimentales. 8. Confronta las ideas preconcebidas acerca de los fenómenos naturales con el conocimiento científico para explicar y adquirir

nuevos conocimientos. 10. Resuelve problemas establecidos o reales de su entorno, utilizando las ciencias experimentales para la comprensión y mejora del

mismo. Unidad de competencia: Evalúa las aplicaciones de la electricidad y magnetismo a partir de la construcción de modelos esquemáticos y analíticos en hechos notables de la vida cotidiana valorando las implicaciones metodológicas.

Atributos a desarrollar en el bloque: 4.1. Expresa ideas y conceptos mediante representaciones lingüísticas, matemáticas o gráficas. 5.1. Sigue instrucciones y procedimientos de manera reflexiva, comprendiendo cómo cada uno de sus pasos contribuye al alcance de

un objetivo. 5.2. Ordena información de acuerdo a categorías, jerarquías y relaciones. 5.3. Identifica los sistemas y reglas o principios medulares que subyacen a una serie de fenómenos. 5.4. Construye hipótesis y Diseña y aplica modelos para probar su validez. 5.6. Utiliza las tecnologías de la información y comunicación para procesar e interpretar información. 6.1. Elige las fuentes de información más relevantes para un propósito específico y discrimina entre ellas de acuerdo a su relevancia y

confiabilidad. 6.3. Reconoce los propios prejuicios, modifica sus propios puntos de vista al conocer nuevas evidencias, e integra nuevos

conocimientos y perspectivas al acervo con el que cuenta. 7.1. Define metas y da seguimiento a sus procesos de construcción de conocimientos. 8.1. Propone manera de solucionar un problema y desarrolla un proyecto en equipo, definiendo un curso de acción con pasos

específicos. 8.2. Aporta puntos de vista con apertura y considera los de otras personas de manera reflexiva. 8.3. Asume una actitud constructiva, congruente con los conocimientos y habilidades con los que cuenta dentro de distintos equipos

de trabajo.

Page 12: Temas Selectos Fisica 2

10 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Secuencia didáctica1. Electrostática.

Inicio

EvaluaciónEvaluaciónEvaluaciónEvaluación Actividad: 1 Producto: Cuestionario. Puntaje:

SaberesSaberesSaberesSaberes ConceptualConceptualConceptualConceptual ProcedimentalProcedimentalProcedimentalProcedimental ActitudinalActitudinalActitudinalActitudinal

Recuerda conceptos relacionados con la electrostática

Anota conclusiones sobre aspectos de la electrostática y los comenta en forma grupal.

Muestra una actitud colaborativa durante el ejercicio.

Autoevaluación C MC NC Calificación otorgada por el

docente

En equipos de 5, respondan las siguientes preguntas, anótenlas y comenten en forma grupal:

1. ¿Cómo se originan los rayos? 2. ¿Cómo funciona un foco incandescente? 3. ¿Qué es un campo en Física (por ejemplo: campo gravitatorio, campo eléctrico, campo magnético, etc.)?

Actividad: 1

Page 13: Temas Selectos Fisica 2

11 BLOQUE 1

Desarrollo

Electrostática.

El término “eléctrico” y todos sus derivados, tiene su origen en las experiencias realizadas por el filósofo griego Tales de Mileto, quien vivió en el siglo VI a.C. Tales de Mileto estudió el comportamiento de una resina fósil, el ámbar (elektron), percibiendo que cuando era frotado con un paño de lana, adquiría la propiedad de atraer hacia sí pequeños cuerpos ligeros; los fenómenos análogos a los producidos por Tales de Mileto con el ámbar, se denominaron fenómenos eléctricos y más recientemente fenómenos electrostáticos. La electrostática es la parte de la física que estudia este tipo de comportamiento de la materia. Se ocupa de la medida de la carga eléctrica o cantidad de electricidad presente en los cuerpos y, en general, de los fenómenos asociados a las cargas eléctricas en reposo o con movimiento tan despreciable, que casi no se observan fenómenos magnéticos por parte de esas cargas. El desarrollo de la teoría atómica permitió aclarar el origen y la naturaleza de los fenómenos electromagnéticos. La noción de fluido eléctrico, introducida por Benjamín Franklin (1706–1790) para explicar la electricidad, fue desechada a finales del siglo XIX al descubrirse que la materia está compuesta íntimamente de átomos y éstos a su vez por partículas (electrones, protones y neutrones), que tienen propiedades eléctricas. El interés del estudio de la electrostática reside no sólo en que describe las características de unas fuerzas fundamentales de la naturaleza (fuerzas eléctricas), sino también en facilitar la comprensión de sus aplicaciones tecnológicas. Desde el pararrayos hasta la televisión, una amplia variedad de dispositivos científicos y técnicos están relacionados con los fenómenos electrostáticos.

Page 14: Temas Selectos Fisica 2

12 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Estructura eléctrica de la materia. La teoría atómica moderna explica el por qué de los fenómenos de electrización y hace de la carga eléctrica una propiedad fundamental de la materia en todas sus formas. Un átomo de cualquier sustancia está constituido, en esencia, por una región central o núcleo y una envoltura externa o nube formada por electrones El núcleo está formado por dos tipos de partículas: los protones, dotados de carga eléctrica positiva; y los neutrones, sin carga eléctrica aunque con una masa semejante a la del protón. Los protones y neutrones se hallan unidos entre sí por efecto de fuerzas mucho más intensas que las de la repulsión electrostática (las fuerzas nucleares), formando un todo compacto. La carga total del núcleo es positiva debido a la presencia de los protones. Los electrones son partículas mucho más ligeras que los protones (unas 1840 veces menos, aproximadamente) y tienen carga eléctrica negativa. La carga de un electrón es igual en magnitud, aunque de signo contrario a la de un protón. Las fuerzas eléctricas atractivas que experimentan los electrones respecto del núcleo hacen que éstos se muevan en torno a él en una situación que podría ser comparada, en una primera aproximación, a la de los planetas girando en torno al Sol por efecto, en este caso, de la atracción gravitatoria. El número de electrones en un átomo es igual al de protones de su núcleo correspondiente, de ahí que en conjunto y a pesar de estar formado por partículas con carga, el átomo completo resulte eléctricamente neutro. Aunque los electrones se encuentran ligados al núcleo por fuerzas de naturaleza eléctrica, en algunos tipos de átomos les resulta sencillo liberarse de ellas. Cuando un electrón logra escapar de dicha influencia, el átomo correspondiente pierde la neutralidad eléctrica y se convierte en un ión positivo, al poseer un número de protones superior al de electrones. Lo contrario sucede cuando un electrón adicional es incorporado a un átomo neutro, en cuyo caso se dice que dicho átomo se ha transformado en un ión negativo. Carga eléctricaCarga eléctricaCarga eléctricaCarga eléctrica Como ya se mencionó anteriormente, la carga eléctrica constituye una propiedad fundamental de la materia y se manifiesta a través de ciertas fuerzas, denominadas electrostáticas, que son las responsables de los fenómenos eléctricos. Al realizar experimentos con cuerpos cargados eléctricamente, se llega a la conclusión de que existen dos tipos de cargas eléctricas: positivas y negativas. Las cargas eléctricas de igual signo se rechazan o repelen, mientras que las de diferente signo se atraen.

Leyes de las cargas eléctricas: cargas con Leyes de las cargas eléctricas: cargas con Leyes de las cargas eléctricas: cargas con Leyes de las cargas eléctricas: cargas con igual signo se repelen y de diferente signo igual signo se repelen y de diferente signo igual signo se repelen y de diferente signo igual signo se repelen y de diferente signo se atraen.se atraen.se atraen.se atraen.

Un átomo que ha perdido unUn átomo que ha perdido unUn átomo que ha perdido unUn átomo que ha perdido un electrón electrón electrón electrón se convierte en un se convierte en un se convierte en un se convierte en un ión positivo.ión positivo.ión positivo.ión positivo.

Page 15: Temas Selectos Fisica 2

13 BLOQUE 1

La carga del electrón (o del protón) constituye el valor mínimo e indivisible de cantidad de electricidad. Es, por tanto, la carga elemental y por ello constituye una unidad natural de cantidad de electricidad. Cualquier otra carga equivaldría a un número entero de veces la carga del electrón. Unidades de carga eléctrica. El coulomb (C) es la unidad de carga eléctrica en el Sistema Internacional de Unidades y equivale a aproximadamente 6.27 × 1018 veces la carga del electrón, es decir 1 C = 6.27 × 1018 electrones. En electrostática generalmente se trabaja con cargas eléctricas mucho menores que 1C, en este caso, es conveniente expresar los valores de las cargas de los cuerpos electrizados en unidades menores (submúltiplos) del coulomb. Los más comúnmente utilizados son: el milicoulomb (mC), el microcoulomb (µC), el nanocoulomb (nC) y el picocoulomb (pC).

1 mC = 10‒3 C 1µC = 10‒6 C

1 µC = 10‒9 C 1 pC = 10‒12 C En el sistema CGS, la unidad de carga eléctrica se llama unidad electrostática (ues)unidad electrostática (ues)unidad electrostática (ues)unidad electrostática (ues), la cual es varias veces menor que el coulomb, ya que 1C = 3 x 109ues. Ley de Coulomb. En el siglo XVIII el científico francés Charles Augustin de Coulomb (1736 –1806) llevó a cabo una serie de mediciones muy cuidadosas de las fuerzas existentes entre dos cargas puntuales (q1 y q2) separadas a una distancia r.

En su experimento, Coulomb utilizó un dispositivo llamado balanza de torsión, similar a la que se utilizó para evaluar la ley de gravitación universal; mediante estas medidas llegó a las siguientes conclusiones:

• La fuerza eléctrica (atracción o repulsión) entre ambas cargas puntuales es proporcional al producto de las cargas. • La fuerza de atracción o repulsión es inversamente proporcional al cuadrado de la distancia.

Con estos resultados, Coulomb estableció una ley que, en su honor, es llamada ley de Coulomb y que se puede enunciar de la siguiente manera:

“La magnitud de la fuerza eléctrica F“La magnitud de la fuerza eléctrica F“La magnitud de la fuerza eléctrica F“La magnitud de la fuerza eléctrica Feeee (atracción o repulsión) entre dos cargas puntuales q(atracción o repulsión) entre dos cargas puntuales q(atracción o repulsión) entre dos cargas puntuales q(atracción o repulsión) entre dos cargas puntuales q1111 y qy qy qy q2222 es directamente es directamente es directamente es directamente proporcional proporcional proporcional proporcional al al al al producto de ambas cargas e inversamente proporcional al cuadrado de la distancia r que las separa. producto de ambas cargas e inversamente proporcional al cuadrado de la distancia r que las separa. producto de ambas cargas e inversamente proporcional al cuadrado de la distancia r que las separa. producto de ambas cargas e inversamente proporcional al cuadrado de la distancia r que las separa.

En la fórmula, kkkk es la constante introducida que permite transformar la proporción en una igualdad, se le denomina constante de Coulomb o constante electrostática; su valor, obtenido experimentalmente es 9 x 109 Nm2/C2 (SI) o 1 Dina cm2/(ues)2 (CGS). En algunas ocasiones se utiliza el valor K= 1/4πє0, en donde є0 es la constante de permitividad del medio (aire o vacío).

2r

1F α

21qqαF

F = k q1 q2r2

Page 16: Temas Selectos Fisica 2

14 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Ejemplo.Ejemplo.Ejemplo.Ejemplo. Una carga puntual q1 positiva de 23 µC se coloca a una distancia de 3 cm de otra carga q2, también puntual pero negativa de ‒60 µC. Suponiendo que ambas cargas se encuentran en el vacío, calcula la fuerza F1 que ejerce q2 sobre q1.

q1 q2 |………... 3 cm………….| DatosDatosDatosDatos q1 = 23 µC = 23 × 10‒6 C q2 = ‒60 µC = ‒60 × 10‒6 C r = 3 cm = 0.03 m = 3 × 10‒2 m k = 9 × 109 Nm2/C2 SSSSoluciónoluciónoluciónolución: el valor de la fuerza eléctrica F estará dado por la ley de Coulomb:

Al sustituir los valores (datos) del problema en esta expresión, obtendremos: En este ejemplo no es necesario considerar los signos de las cargas, pues se sabe con anticipación el sentido de la fuerza. Si ambas cargas son de igual signo, la fuerza será de repulsión, pero si son de signos diferentes, entonces será de atracción. Por otro lado, si calculáramos el valor de la fuerza F2 que q1 ejerce sobre q2, encontraríamos que sería igual al valor de F1, porque constituyen una pareja de acción y reacción (tercera ley de Newton), por lo tanto sus magnitudes serían iguales y de sentidos opuestos. EjemploEjemploEjemploEjemplo:::: Dada la configuración de cargas que se observan en el siguiente dibujo, calcula la fuerza resultante que actúa sobre la carga q1. Datos

q1 = ‒ 4 x 10‒3

C

q2 = ‒ 2 x 10‒4

C

q3 = +5 x 10‒4 C

22

66229

1)m10×3(

)C10×60)(C10×23)(C/Nm10×9(F

−−

=

2m0009.0

Nm42.12F

2

1 =

N800,13F1 =

Page 17: Temas Selectos Fisica 2

15 BLOQUE 1

SoluciónSoluciónSoluciónSolución:::: Para poder calcular la fuerza neta sobre la carga q1, debemos aplicar la ley de Coulomb tomándolas en parejas. Cálculo entre qqqq1111qqqq2:2:2:2:

F = 9 10 N. mC 4 10‒C2 10C

0.1m = 7.2 10 N

Cálculo entre qqqq1111qqqq3333

F = 9 10 N. mC 4 10C 5 10C

!0.1m 0.1m" = 9 10 N

Resultante sobre carga qqqq1111

Para hallar dicha resultante lo haremos por el método analítico de las componentes rectangulares. Para ello debemos realizar la proyección de los vectores sobre ejes coordenados elegidos de modo que resulte cómodo su uso para los cálculos a realizar. De la forma elegida tenemos las siguientes componentes para cada uno de los vectores fuerza:

VectorVectorVectorVector MagnitudMagnitudMagnitudMagnitud Dirección Dirección Dirección Dirección ComponeComponeComponeComponente Xnte Xnte Xnte X Componente YComponente YComponente YComponente Y

Fq1q2 7.2 x105 N 90º 0 7,2 x 105N

Fq1q3 +9 x 105 N 315º 6.4 x 105 N ‒ 6.4 x 105N

ΣF 6.4 x 105N 8 x 104N

Teniendo las componentes rectangulares podemos calcular la magnitud de la resultante y el ángulo que forma con el eje de las x:

.F = #FX% FY = !6.4 x 10 8 x 10 = 6.45 x 10 N ∅ = arctg / 0 123. 0 14 = 7°7′30"

Fq1 = 6.45 × 10

5 N ∅= 7º 7’30”

Campo eléctrico. La ley de Coulomb revela que en el espacio que rodea a una carga eléctrica QQQQ se ejerce una cierta influencia que altera sus propiedades de modo que, cuando en cualquier otro punto se sitúa otra carga qqqq, pequeña y positiva frente a QQQQ, aparecerá sobre ella una fuerza de interacción. La carga testigo o carga de prueba, que es el nombre que recibe la pequeña carga qqqq, permite poner experimentalmente en evidencia la existencia de una cierta propiedad del espacio, en este caso de una fuerza electrostática que define la existencia de un campo vectorial, el llamado campo eléctrico o campo electrostático.

Campo eléctrico debido a Q sobre Campo eléctrico debido a Q sobre Campo eléctrico debido a Q sobre Campo eléctrico debido a Q sobre una carga puntual q, en un punto P una carga puntual q, en un punto P una carga puntual q, en un punto P una carga puntual q, en un punto P del espacio.del espacio.del espacio.del espacio.

Page 18: Temas Selectos Fisica 2

16 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Llamamos intensidad de campo electrostático o simplemente campo electrostático (E)E)E)E) creado por una carga puntual QQQQ en un punto P del espacio, a la fuerza electrostática que dicha carga QQQQ ejercería sobre la unidad de carga positiva colocada en el punto P, es decir: Donde F F F F representa a la fuerza electrostática que viene dada por la ley de Coulomb: F = Kq1q2/r

2. Si hacemos q1 = Q, y q2 = q, entonces: Se deduce entonces, que la magnitud de la intensidad del campo eléctrico en cada punto, depende únicamente del valor de la carga generadora QQQQ y de la distancia r r r r que hay entre ésta y el punto. La intensidad, del campo eléctrico E es una cantidad eléctrica vectorial definida en cada punto del espacio que rodea a la carga generadora QQQQ, con dirección y sentido que depende del signo de la carga generadora. La unidad de intensidad de campo eléctrico EEEE resulta del cociente entre la unidad de fuerza y la unidad de carga; en el SI equivale, por tanto, al newton /coulomb (N/C). EjemploEjemploEjemploEjemplo Determina la intensidad y dirección del campo eléctrico que genera una carga de +10 µC en un punto situado a 12 cm a la derecha de la carga.

|……………………………….| 12 cm Cuando se trata de configuraciones con dos o más cargas generadoras, el campo eléctrico resultante (ER) en un punto, es la suma vectorial de los campos eléctricos individuales, es decir:

E99:; = E99: E99: E99:. . . . . . . . . . E99:<

Q = 10 µC

• P

Solución: tomando la expresión para campo eléctrico, tenemos:

hacia la derecha de Q.

q

FE =

22 r

kQ

qr

kQq

q

FE ===

Page 19: Temas Selectos Fisica 2

17 BLOQUE 1

Líneas de fuerza. Es posible conseguir una representación gráfica de un campo de fuerzas, empleando las llamadas líneas de fuerzalíneas de fuerzalíneas de fuerzalíneas de fuerza. Son líneas imaginarias que describen, si los hubiere, los cambios en dirección de las fuerzas al pasar de un punto a otro. En el caso del campo eléctrico, puesto que tiene magnitud y sentido, se trata de una cantidad vectorial, y las líneas de fuerza o llllíneas de campo eléctricoíneas de campo eléctricoíneas de campo eléctricoíneas de campo eléctrico indican las trayectorias que seguirían las partículas positivas, si se abandonaran libremente a la influencia de las fuerzas del campo. El campo eléctrico será un vector tangente a la línea de fuerza en cualquier punto considerado. Una carga puntual positiva dará lugar a un mapa de líneas de fuerza radiales, pues las fuerzas eléctricas actúan siempre en la dirección de la línea que une a las cargas interactuantes; son dirigidas hacia fuera, porque las cargas móviles positivas se desplazarían en ese sentido (fuerzas repulsivas). En el caso del campo debido a una carga puntual negativa, el mapa de líneas de fuerza sería análogo, pero dirigidas hacia la carga central.

Como consecuencia de lo anterior, en el caso de los campos debido a varias cargas, las líneas de fuerza nacen siempre de las cargas positivas y mueren en las negativas. Se dice por ello que las primeras son “manantiales” y las segundas, “sumideros” de líneas de fuerza. Se pueden mencionar otras más de las características o propiedades de las líneas de campo eléctrico o líneas de fuerza:

El número de líneas de fuerza es siempre proporcional a la magnitud de la carga que las genera.

La densidad de líneas de fuerza en un punto es

siempre proporcional al valor del campo eléctrico en dicho punto.

Flujo eléctrico. Con ayuda de las líneas de fuerza, vamos a desarrollar el concepto de flujo del campo eléctrico (ΦE)))) y conocer una ley de gran utilidad conocida como ley de Gauss, que permitirá obtener la expresión del campo eléctrico en distribuciones de carga con un alto grado de simetría. En el apartado anterior establecimos que la densidad de líneas de fuerza era proporcional a la intensidad del campo eléctrico en esa zona. Podemos definir una magnitud que relaciona la densidad de líneas de fuerza y establecer su valor cuantitativamente. Si consideramos una determinada superficie A A A A perpendicular a un campo eléctrico EEEE. Definimos entonces, el flujo del campo eléctrico como el producto de la magnitud del campo por el área de la superficie:

ΦE = EA

Líneas de campo para una Líneas de campo para una Líneas de campo para una Líneas de campo para una carga puntual positiva.carga puntual positiva.carga puntual positiva.carga puntual positiva.

Líneas de campo para una Líneas de campo para una Líneas de campo para una Líneas de campo para una carga puntual negativa.carga puntual negativa.carga puntual negativa.carga puntual negativa.

Para Para Para Para configuraciones de dos o más cargas eléctricas, las líneas configuraciones de dos o más cargas eléctricas, las líneas configuraciones de dos o más cargas eléctricas, las líneas configuraciones de dos o más cargas eléctricas, las líneas de campo se dirigen de la carga positiva a la negativa.de campo se dirigen de la carga positiva a la negativa.de campo se dirigen de la carga positiva a la negativa.de campo se dirigen de la carga positiva a la negativa.

Page 20: Temas Selectos Fisica 2

18 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Como el campo eléctrico es proporcional al número de líneas de fuerza por unidad de área, así también, el flujo eléctrico es proporcional al número de líneas de fuerza que atraviesan la superficie. Para generalizar la expresión anterior y poder considerar superficies que no sean perpendiculares en todos los puntos al campo, la definición más precisa del flujo es la siguiente:

ΦE = EA

Tomando en cuenta que E y A sean perpendiculares entre sí en cada punto (de no ser así, habría que multiplicar por el coseno del ángulo entre ellos). Cuando se trata de una superficie cerrada, el flujo eléctrico a través de ella será la diferencia de las líneas que salen y las que entran, es decir, el flujo neto. Flujo neto (Φneto) = número de líneas que salen (positivas) – número de líneas que entran (negativas). Las unidades de flujo eléctrico en el Sistema Internacional son: Nm2/C Ejemplo:Ejemplo:Ejemplo:Ejemplo: ¿Cuál es el flujo eléctrico que pasa a través de una esfera que tiene un radio de 1m y una carga de 1 µC, ubicada en su centro?

Datos: ΦE= ?

r = 1 m

Q = 1 µC = 1 X10‒6 C

K = 9 × 109 N m2/C2 Solución: la magnitud del campo eléctrico a 1 m de esta carga es:

El campo eléctrico apunta radialmente hacia fuera y por lo tanto es en todas partes perpendicular a la superficie de la esfera.

La superficie de la esfera es:

A = 4π r2 = 4 (3.1416)(1 m)2 = 12.56 m2

Por lo tanto:

ΦE = E.A = (9 × 103 N/C)(12.56 m2) = 1.13 ×105 Nm2/C

Q = 1µC

r = 1m

Flujo eléctrico. Cantidad de líneas Flujo eléctrico. Cantidad de líneas Flujo eléctrico. Cantidad de líneas Flujo eléctrico. Cantidad de líneas de campo (E) perpendiculares a de campo (E) perpendiculares a de campo (E) perpendiculares a de campo (E) perpendiculares a ununununaaaa superficie (A).superficie (A).superficie (A).superficie (A).

Flujo eléctricoFlujo eléctricoFlujo eléctricoFlujo eléctrico dededede una una una una cargacargacargacarga puntual puntual puntual puntual en una superficie cerrada.en una superficie cerrada.en una superficie cerrada.en una superficie cerrada.

2

6229

2 )m1(

)C101)(C/Nm109(

r

kQE

−××

==

C/N109E 3×=

Page 21: Temas Selectos Fisica 2

19 BLOQUE 1

Ley de Gauss. La ley de Gauss, llamada así en honor a Karl Friedrich Gauss (1777 – 1855), desempeña un papel importante dentro de la electrostática, porque permite calcular de manera más sencilla el campo eléctrico o electrostático (E) producido por una distribución de cargas, cuando esta distribución presenta ciertas propiedades de simetría (esférica, cilíndrica o plana). Esta ley establece que el flujo eléctrico neto (ΦE), a través de cualquier superficie cerrada, (llamada superficie gaussiana) es igual a la carga encerrada en su interior (Qint) dividida por la permitividad eléctrica del vacío (ε0)

intneto

o

QΦ =

ε

Para aplicar la Ley de Gauss se recomienda seguir los siguientes pasos:

1. Elegir una superficie gaussiana apropiada y calcular el flujo eléctrico. 2. Determinar la carga que hay en el interior de la superficie cerrada. 3. Aplicar la ley de Gauss y despejar el campo eléctrico. La ley de Gauss es más conveniente que la de Coulomb para cálculos de campos eléctricos de distribuciones de carga altamente simétricos; además sirve como guía para comprender problemas más complicados. EjemploEjemploEjemploEjemplo:::: Utilizando la ley de Gauss, determina el campo eléctrico producido por una carga puntual de 55.7 microcoulombs a una distancia de 75 cm de la carga. Solución:Solución:Solución:Solución: Primeramente se establece una superficie gaussiana (imaginaria), la cual será una esfera de 75 cm de radio. De la ley de Gauss tenemos: Tomando la parte: EA = Qint/ε0 y despejando E:

)Nm/C1085.8)(m06.7(

C107.55

A

QE

22122

6

o

int

×

×=

ε⋅=

C/N1091.8E 5

×=

KarlKarlKarlKarl Friedrich Gauss, su obra Friedrich Gauss, su obra Friedrich Gauss, su obra Friedrich Gauss, su obra solucionó complicados solucionó complicados solucionó complicados solucionó complicados problemas de ciencias problemas de ciencias problemas de ciencias problemas de ciencias naturales.naturales.naturales.naturales.

ointneto /QAE ε=⋅=Φ

ointneto /QAE ε=⋅=Φ

Page 22: Temas Selectos Fisica 2

20 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

1. En binas utilicen la ley de Coulomb para resolver el siguiente ejercicio: Se tienen tres cargas puntuales localizadas en los vértices de un triángulo rectángulo, como se muestra en la figura, donde q1 = ‒80 µC, q2 = 50 µC y q3 = 70 µC, distancia AC = 30 cm, distancia AB = 40 cm. Calculen la fuerza resultante sobre la carga q3 debida a las cargas q1 y q2

Actividad: 2

Page 23: Temas Selectos Fisica 2

21 BLOQUE 1

2. En forma individual realiza el siguiente ejercicio: Calcula la intensidad y dirección del campo eléctrico resultante sobre el punto A de la siguiente figura: |‒‒‒‒‒‒‒‒‒‒‒15 cm ‒‒‒‒‒‒‒‒‒‒|‒‒‒‒‒‒‒‒‒‒‒‒‒ 20 cm ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒|

•···························•····································•

Q1 = 8 µC A Q2 = 12 nC

Actividad: 2 (continuación)

Page 24: Temas Selectos Fisica 2

22 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

EvaluaciónEvaluaciónEvaluaciónEvaluación Actividad: 2 Producto: Ejercicio práctico. Puntaje:

SaberesSaberesSaberesSaberes ConceptualConceptualConceptualConceptual ProcedimentalProcedimentalProcedimentalProcedimental ActitudinalActitudinalActitudinalActitudinal

Conocerá las leyes fundamentales de la electrostática.

Aplicará el conocimiento de las leyes de la electrostática en situaciones sencillas.

Demostrará esmero en la ejecución de la actividad.

Autoevaluación C MC NC Calificación otorgada por el

docente

3. Utilizando la ley de Gauss, calcula a qué distancia de una carga de 100 µC se

producirá un campo eléctrico de 900 N/C.

Actividad: 2 (continuación)

Page 25: Temas Selectos Fisica 2

23 BLOQUE 1

Potencial eléctrico y capacitancia. Ya hemos visto con anterioridad que cuando una carga eléctrica puntual se encuentra dentro de un campo eléctrico, experimenta una fuerza eléctrica dada por la expresión: F = qE. Consideremos un campo eléctrico existente entre dos placas paralelas cargadas opuestamente: B E d q ⊕ A Suponiendo que las placas están separadas una distancia d. Una carga +q situada en la región entre las placas A y B experimentará una fuerza dada por F = qE. El trabajo realizado contra el campo eléctrico por esta fuerza al mover la carga q de A a B es: W = F d

W = qEd Por consiguiente, la energía potencial eléctrica (Ep) que adquiere la carga en el punto B con relación al punto A es: Ep = qEd En la práctica, nos interesa conocer el trabajo que se requiere para mover una carga unitaria de un punto a otro. El trabajo realizado contra fuerzas eléctricas al mover una carga de un punto A a un punto B sería igual a la diferencia de la energía potencial en las dos posiciones, lo que nos lleva al concepto de diferencia de potencial. La diferencia de potencial (V) entre dos puntos, es el trabajo por unidad de carga realizado contra la fuerza eléctrica al mover una carga de prueba de un punto a otro. VAB = WAB/q = qEd/q = Ed, o simplemente: V = Ed

“La diferencia de potencial entre dos placas cargadas opuestamente, es igual al producto “La diferencia de potencial entre dos placas cargadas opuestamente, es igual al producto “La diferencia de potencial entre dos placas cargadas opuestamente, es igual al producto “La diferencia de potencial entre dos placas cargadas opuestamente, es igual al producto de la intensidad del campode la intensidad del campode la intensidad del campode la intensidad del campo por la por la por la por la distancia de separación entre placas”distancia de separación entre placas”distancia de separación entre placas”distancia de separación entre placas”

EjemploEjemploEjemploEjemplo:::: La diferencia de potencial entre dos placas separadas 3 mm es de 3000 volts. ¿Cuál es la intensidad del campo eléctrico entre las dos placas?

Una carga positiva +q que se Una carga positiva +q que se Una carga positiva +q que se Una carga positiva +q que se mueve en contra de un campo mueve en contra de un campo mueve en contra de un campo mueve en contra de un campo eléctrico E, da como resultado una eléctrico E, da como resultado una eléctrico E, da como resultado una eléctrico E, da como resultado una energía potencial Eenergía potencial Eenergía potencial Eenergía potencial Epppp = qEd en el = qEd en el = qEd en el = qEd en el punto B, con relación al punto A.punto B, con relación al punto A.punto B, con relación al punto A.punto B, con relación al punto A.

+ + + + + + + + + + + + + + + +

‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒

‒ ‒ ‒ ‒ ‒

Page 26: Temas Selectos Fisica 2

24 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

SoluciónSoluciónSoluciónSolución:::: Para encontrar la intensidad del campo eléctrico, aplicamos la fórmula V = Ed, despejando para E y sustituyendo en ella los datos siguientes: DATOSDATOSDATOSDATOS:::: FÓRMULAFÓRMULAFÓRMULAFÓRMULA:::: d= 3 mm = 0.003 m V = Ed; E = V/d = 3000 V/0.003 m

V = 3000 V

E = ? E = 1000000 V/m = 1×106 V/m

Condensadores y capacitancia.

Se denomina condensador, capacitor o filtro, al dispositivo que es capaz de acumular cargas eléctricas. En ocasiones, es deseable almacenar grandes cantidades de carga, de manera que los condensadores se pueden emplear también como fuentes de carga eléctrica.

Existen diversos tipos de condensadores: de papel, de cerámica, electrolíticos, etc. Los hay de diferentes tamaños y capacidades.

Varios tipos de Varios tipos de Varios tipos de Varios tipos de condensadores que se condensadores que se condensadores que se condensadores que se pueden encontrar en el pueden encontrar en el pueden encontrar en el pueden encontrar en el

mercado, dependiendo de su mercado, dependiendo de su mercado, dependiendo de su mercado, dependiendo de su aplicación específica.aplicación específica.aplicación específica.aplicación específica.

Condensadores diseñados para Condensadores diseñados para Condensadores diseñados para Condensadores diseñados para funcionar a distintas temperaturas y funcionar a distintas temperaturas y funcionar a distintas temperaturas y funcionar a distintas temperaturas y frecuencias.frecuencias.frecuencias.frecuencias.

Representación gráfica de un Representación gráfica de un Representación gráfica de un Representación gráfica de un condensador cargado eléctricamente.condensador cargado eléctricamente.condensador cargado eléctricamente.condensador cargado eléctricamente.

Page 27: Temas Selectos Fisica 2

25 BLOQUE 1

La capacidadcapacidadcapacidadcapacidad (capacitancia) de un condensador depende de sus características físicas, de tal manera que:

1. Si el área de las placas que están frente a frente es grande, la capacidad aumenta. 2. Si la separación entre placas aumenta, disminuye la capacidad. 3. El tipo de material dieléctricodieléctricodieléctricodieléctrico que se aplica entre las placas también afecta la capacidad.

4. Si se aumenta la tensión aplicada, se aumenta la carga almacenada.

El símbolo del condensadorcondensadorcondensadorcondensador en los circuitos eléctricos es el siguiente:

El condensador más sencillo es el condensador de placas paralelas. Consideremos dos placas que tienen una diferencia de potencial V entre ellas, y supongamos que las dos placas tienen cargas iguales y de signo opuesto. Esto se puede lograr conectando las dos placas descargadas a las terminales de una batería o acumulador.

Al desconectarse la batería, las placas quedarán cargadas, pudiéndose utilizar esta energía posteriormente en cualquier otra aplicación. Existe un límite para transferir carga. Cargar un condensador equivale a inflar con aire un globo; mientras más inflado esté, más difícil se hace seguir introduciendo aire. En el caso de un condensador sucede lo mismo ya que cuanta más carga se le dé, más se incrementa la diferencia de potencial. Por tanto, puede decirse que el incremento en la carga (Q), es directamente proporcional a la diferencia de potencial (V).

Q α V

Page 28: Temas Selectos Fisica 2

26 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

En este caso, la constante de proporcionalidad recibe el nombre de Capacitancia Capacitancia Capacitancia Capacitancia y su símbolo es (C)(C)(C)(C)

Q = CV

C = Q/V La unidad de medida de la capacitancia en el SI es el farad (F) en honor al físico inglés Miguel Faraday (1791‒1867). De este modo, un condensador tiene un farad de capacitancia, si al recibir la carga de un coulomb, su diferencia de potencial o tensión aumenta en un volt. Por ser el farad una unidad muy grande, se utilizan comúnmente submúltiplos de la misma: 1 microfarad =1x10‒6 Farad 1 nanofarad = 1x10‒9 Farad 1 picofarad = 1X10‒12 Farad EjemploEjemploEjemploEjemplo:::: Un capacitor que tiene una capacitancia de 5 µF se conecta a una batería de 3 V. ¿Cuál es la carga que adquiere el capacitor? SoluciónSoluciónSoluciónSolución::::

V

QC = , Q = C.V = (5X10‒6 F)(3 V) = 15X10‒6 C = 15 µC

Condensadores en serie. Es común en algunos circuitos, que se tengan que conectar dos o más condensadores, por ejemplo en el siguiente circuito que contiene tres condensadores interconectados en una disposición en serie. En esta forma de conexión, la placa negativa de un condensador se conecta con la placa positiva de otro. De esta manera, la carga de cada condensador es la misma que la que transfiere la batería, es decir: QT = Q1 = Q2 = Q3

En la conexión en serie, la suma de las caídas de voltaje a través de los capacitares es igual al voltaje de la batería: VT = V1 + V2 + V3 Y si aplicamos VT = QT/CT, tenemos:

QT/CT = Q1/C1 + Q2/C2 + Q3/C3

QT/CT = Q( 1/C1 + 1/C2 + 1/C3)

y dado que QT = Q1 = Q2 = Q3, entonces:

1/CT = 1/C1 + 1/C2 + 1/C3

No se puede mostrar la imagen en este momento.

C1 C2 C3

V

V1 V2 V3

+ – + – + –

Page 29: Temas Selectos Fisica 2

27 BLOQUE 1

Donde CT es la capacitancia equivalente o total de los tres condensadores en serie, es decir, los tres condensadores en serie podrán ser reemplazados por uno solo, en este caso, por CT. La ecuación: 1/CT = 1/C1 + 1/C2 + 1/C3, puede extenderse para cualquier número o cantidad de condensadores en serie. Para el caso de dos condensadores en serie:

21

21

TCC

CCC

+=

La capacitancia total o equivalente en un circuito con condensadores en serie, es siempre menor que la menor capacitancia de la serie. EjemploEjemploEjemploEjemplo:::: Tres condensadores en serie tienen una capacitancia de 2 F cada uno. Calcular la capacitancia total o equivalente del circuito. SoluciónSoluciónSoluciónSolución:::: Tomando la expresión para condensadores en serie:

2

1

2

1

2

1

11111

321 ++

=++=CCCC

T

F66.0F3

2CT ==

Condensadores en paralelo. Otra configuración o disposición en la que la carga es compartida por dos o más condensadores, es la conexión de éstos en paralelo. En una conexión en paralelo, las placas positivas de todos los condensadores están conectadas entre sí y asimismo con las placas negativas, como se muestra en el siguiente circuito. En este caso, la caída de voltaje en cada uno de los condensadores es igual al voltaje de la batería: VT = V1 = V2 = V3 La carga total transferida por la batería es igual a la suma de las cargas acumuladas en los condensadores conectados: QT = Q1 + Q2 + Q3 Por lo tanto, aplicando la expresión Q = C.V, tenemos: CTVT = C1V1 + C2V2 + C3V3 = V( C1 + C2 + C3)

Page 30: Temas Selectos Fisica 2

28 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Y aplicando la relación: VT = V1 = V2 = V3 al último paso de la anterior ecuación: Donde CT es la capacitancia total o equivalente de los tres condensadores conectados en paralelo. Esta suma puede extenderse para cualquier número de condensadores. EjemploEjemploEjemploEjemplo:::: Calcular la magnitud de la capacitancia total o equivalente a tres condensadores de 5 µF, conectados en paralelo a una fuente de 12 V.

SoluciónSoluciónSoluciónSolución:::: Como los condensadores están conectados en una configuración en paralelo, se aplica CT = C1 + C2 + C3 para obtener la capacitancia equivalente.

CT = C1 + C2 + C3

CT = 5 µF + 5 µF +5 µF CT = 15 µF

CT = C1 + C2 + C3

Page 31: Temas Selectos Fisica 2

29 BLOQUE 1

En equipios de tres, resuelvan los siguientes ejercicios: 1. Encuentren en cada caso, la capacitancia equivalente entre los puntos a y b de las siguientes

configuraciones de condensadores, (los valores de las capacitancias son los mismos en ambos casos):

a)

Actividad: 3

Page 32: Temas Selectos Fisica 2

30 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

EvaluaciónEvaluaciónEvaluaciónEvaluación Actividad: 3 Producto: Ejercicio práctico. Puntaje:

SaberesSaberesSaberesSaberes ConceptualConceptualConceptualConceptual ProcedimentalProcedimentalProcedimentalProcedimental ActitudinalActitudinalActitudinalActitudinal

Explica los conceptos de potencial eléctrico y capacitancia.

Aplica los conceptos de potencial eléctrico y capacitancia en ejercicios sencillos.

Realica la actividad con entusiasmo.

Autoevaluación C MC NC Calificación otorgada por el

docente

b)

Actividad: 3 (continuación)

Page 33: Temas Selectos Fisica 2

31 BLOQUE 1

Cierre

En forma individual, resuelve los siguientes ejercicios:

1. Dos condensadores de 5 µF y 7 µF de capacidad, están conectados en paralelo y la combinación se conecta en serie con un condensador de 6 µF, sobre una batería de 50 volts. Determina:

a) La capacidad total de la combinación y la carga total. b) La carga sobre cada condensador. c) La diferencia de potencial sobre cada uno de ellos.

Actividad: 4

Page 34: Temas Selectos Fisica 2

32 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

EvaluaciónEvaluaciónEvaluaciónEvaluación Actividad: 4 Producto: Ejercicio práctico. Puntaje:

SaberesSaberesSaberesSaberes ConceptualConceptualConceptualConceptual ProcedimentalProcedimentalProcedimentalProcedimental ActitudinalActitudinalActitudinalActitudinal

Comprende los aspectos y conceptos funamentales de la electrostática.

Resuelve casos sencillos de electrostática.

Es aplicado al realizar la actividad.

Autoevaluación C MC NC Calificación otorgada por el

docente

Actividad: 4 (continuación)

Page 35: Temas Selectos Fisica 2

33 BLOQUE 1

Secuencia didáctica 2. Electrodinámica.

Inicio

EvaluaciónEvaluaciónEvaluaciónEvaluación Actividad: 1 Producto: Cuestionario. Puntaje:

SaberesSaberesSaberesSaberes ConceptualConceptualConceptualConceptual ProcedimentalProcedimentalProcedimentalProcedimental ActitudinalActitudinalActitudinalActitudinal

Recuerda aspectos importantes sobre la electrodinámica.

Anotan las conclusiones sobre la electrodinámica y comentan en forma grupal.

Es ordenado al realizar la actividad.

Autoevaluación C MC NC Calificación otorgada por el

docente

En equipos de cinco, respondan las siguientes preguntas y comenten las respuestas en forma grupal. 1. ¿Qué se necesita para que haya una corriente eléctrica? 2. ¿Qué diferencia hay entre la corriente continua y la corriente alterna? 3. ¿Qué características tiene cualquier tipo de circuito?

Actividad: 1

Page 36: Temas Selectos Fisica 2

34 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Desarrollo

Electrodinámica, corriente eléctrica y circuitos eléctricos. Al contrario de lo que ocurre con la electrostática, la electrodinámica se caracteriza porque las cargas eléctricas se encuentran en constante movimiento. La electrodinámica consiste en el movimiento de un flujo de cargas eléctricas (electrones), utilizando como medio de desplazamiento un material conductor, por ejemplo, un metal. Para poner en movimiento las cargas eléctricas o de electrones, podemos utilizar cualquier fuente de fuerza electromotriz (FEM), ya sea de naturaleza química (como una batería) o magnética (como la que produce un generador). Cuando aplicamos a un conductor una diferencia de potencial, (tensión o voltaje), las cargas eléctricas o electrones comienzan a moverse a través del conductor, debido a la presión que ejerce la tensión o voltaje sobre esas cargas, estableciéndose así la circulación de una corriente eléctrica cuya intensidad está dada por:

t

QI =

En donde Q representa la cantidad de carga que pasa por la sección transversal de un conductor y t el tiempo empleado. En otras palabras, una corriente eléctrica es la carga neta que pasa por un conductor en la unidad de tiempo. Las unidades para la intensidad de corriente eléctrica son: Coulombs/segundo (C/s) que en conjunto reciben el nombre de Ampere (A), en honor al físico francés André-Marie Ampère (1775‒1836).

)s(segundo

)C(coulomb)A(Ampere =

EjemploEjemploEjemploEjemplo:::: Una corriente eléctrica de 1A circula por un conductor.

a) ¿Qué cantidad de carga por segundo fluye por el conductor? b) ¿Cuántos electrones pasan por el área de sección transversal del conductor en ese mismo tiempo?

Solución: Solución: Solución: Solución:

a) Se tiene que t

QI = , por lo tanto Q = It = (1 A)(1 s) = 1 C

b) Se tiene también que Q = ne, en donde n es la cantidad de electrones en la carga neta y e representa la

carga eléctrica de un electrón, por lo tanto:

Q = ne, n = electrones102.6C106.1

C1

e

Q 18

19×=

×=

Al movimiento de electrones libres a través de un Al movimiento de electrones libres a través de un Al movimiento de electrones libres a través de un Al movimiento de electrones libres a través de un conductor se le conductor se le conductor se le conductor se le denomina corriente eléctrica.denomina corriente eléctrica.denomina corriente eléctrica.denomina corriente eléctrica.

Page 37: Temas Selectos Fisica 2

35 BLOQUE 1

Históricamente, se estableció el sentido convencional de circulación de la corriente como un flujo de cargas desde el polo positivo (+) al negativo(-). Sin embargo, posteriormente se observó que en los metales, los portadores de carga son negativos, éstos son los electrones, los cuales fluyen en sentido contrario al convencional. Para que haya una corriente eléctrica sostenida, se requiere de un circuito completo. Básicamente, un circuito eléctrico es un camino completo o cerrado por donde fluyen los electrones. En la práctica, el circuito está compuesto por una fuente (E), conectada a una carga (R) mediante conductores. Se dice que un circuito está abierto, cuando hay una interrupción que no permite el paso de la corriente y que un circuito está cerrado, cuando circula la corriente por él. Para ello se incorpora al circuito un interruptor que permita cerrarlo o abrirlo. Un circuito puede ser tan sencillo como una pila conectada a una pequeña lámpara o tan complicado como un computador digital controlando un robot con miles de circuitos integrados, sensores, motores, etc. Resistencia eléctricaResistencia eléctricaResistencia eléctricaResistencia eléctrica La resistencia eléctrica, o simplemente resistencia, es un efecto físico que afecta a la corriente eléctrica. Se trata de una oposición o dificultad que presentan los materiales a que por ellos circule la corriente eléctrica. No existe un único mecanismo físico que explique la resistencia, pero básicamente podemos atribuirla a que las partículas portadoras de carga eléctrica (electrones) no se mueven libremente por el seno del material conductor, sino que en su recorrido van chocando con los átomos fijos que forman dicho material. Así pues, las partículas son en muchos casos rebotadas o desviadas de su trayectoria original (rectilínea), cediendo parte de su energía cinética a la estructura del material y provocando por tanto un calentamiento de éste.

Todos los materiales y elementos conocidos ofrecen mayor o menor resistencia al paso de la corriente eléctrica, incluyendo los mejores conductores. Los metales que menos resistencia ofrecen son el oro y la plata, pero por lo costoso que resultaría fabricar cables con esos metales, se optó por utilizar el cobre, que es buen conductor y mucho más barato. Para medir la resistencia se usa la unidad llamada ohm, en el SI, que se denota por la letra griega omega (ω). El ohm se define como el valor de una resistencia eléctrica tal, que al aplicarle un voltaje de 1 V se produzca la circulación de una corriente eléctrica de 1 A. Evidentemente, cuanto mayor sea la resistencia para un valor determinado de tensión, más pequeño será el valor de la intensidad de la corriente eléctrica que circulará por ella. También podemos decir que para un valor concreto de resistencia, a mayor tensión aplicada en sus extremos, mayor corriente circulará por ella. El símbolo para la resistencia eléctrica es el siguiente: Ley de Ohm.Ley de Ohm.Ley de Ohm.Ley de Ohm. Vemos que se da una relación entre el voltaje, la intensidad de corriente y la resistencia eléctrica. Esta relación fue descubierta por el físico alemán Georg Ohm (1789‒1854). A través de sus estudios, Ohm encontró que, para una resistencia determinada (R), la intensidad de corriente (I) es directamente proporcional al voltaje o diferencia de potencial aplicado (V), es decir: VI α

AAAA Electrones fluyendo por un buen conductor Electrones fluyendo por un buen conductor Electrones fluyendo por un buen conductor Electrones fluyendo por un buen conductor

eléctrico, que ofrece baja resistencia.eléctrico, que ofrece baja resistencia.eléctrico, que ofrece baja resistencia.eléctrico, que ofrece baja resistencia.

BBBB Electrones fluyendo por un mal conductor Electrones fluyendo por un mal conductor Electrones fluyendo por un mal conductor Electrones fluyendo por un mal conductor eléctrico, que ofrece alta resistencia a su eléctrico, que ofrece alta resistencia a su eléctrico, que ofrece alta resistencia a su eléctrico, que ofrece alta resistencia a su paso. En ese caso paso. En ese caso paso. En ese caso paso. En ese caso los electrones chocan los electrones chocan los electrones chocan los electrones chocan unos contra otros al no poder circular unos contra otros al no poder circular unos contra otros al no poder circular unos contra otros al no poder circular libremente y, como consecuencia, generan libremente y, como consecuencia, generan libremente y, como consecuencia, generan libremente y, como consecuencia, generan calor.calor.calor.calor.

Page 38: Temas Selectos Fisica 2

36 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Siendo la resistencia la constante de proporcionalidad involucrada, por lo tanto:

“La corriente es directamente proporcional al voltaje e inversamente proporcional a la resistencia”“La corriente es directamente proporcional al voltaje e inversamente proporcional a la resistencia”“La corriente es directamente proporcional al voltaje e inversamente proporcional a la resistencia”“La corriente es directamente proporcional al voltaje e inversamente proporcional a la resistencia” Esta ecuación conocida como la ley de Ohm, se ha convertido en una poderosa herramienta para los estudiantes, ingenieros, y técnicos electricistas, pues nos permite predecir lo que sucederá en un circuito antes de construirlo. Al aplicar la Ley de Ohm, conoceremos con exactitud cuánta corriente fluirá por una resistencia, cuando se conoce el voltaje aplicado.

EjemploEjemploEjemploEjemplo:::: Cuando una lámpara de automóvil se conecta a la batería de 12 V, por ella circula una corriente de 200 mA. ¿Cuál es la resistencia de la lámpara? SoluciónSoluciónSoluciónSolución:::: Datos:Datos:Datos:Datos: V = 12 V I = 200 mA = 0.2 A R = ? Circuitos con resistencias en serieCircuitos con resistencias en serieCircuitos con resistencias en serieCircuitos con resistencias en serie Si se conectan varias resistencias o cargas, extremo a extremo a una fuente de voltaje (por ejemplo en una batería), se constituye lo que se llama un circuito en serie. Las principales características de un circuito con resistencias en serie son:

1. La resistencia equivalente es igual a la suma de las resistencias individuales.

Re = R1 + R2 + R3+ .....+Rn

V en volts

R en ohms

I en amperes

Empleando la ley de Ohm:Empleando la ley de Ohm:Empleando la ley de Ohm:Empleando la ley de Ohm:

Ley de Ohm aplicada a Ley de Ohm aplicada a Ley de Ohm aplicada a Ley de Ohm aplicada a circuitos eléctricos para circuitos eléctricos para circuitos eléctricos para circuitos eléctricos para determinar la intensidad determinar la intensidad determinar la intensidad determinar la intensidad de corriente, conocida su de corriente, conocida su de corriente, conocida su de corriente, conocida su resistencia y el voltaje resistencia y el voltaje resistencia y el voltaje resistencia y el voltaje aplicado.aplicado.aplicado.aplicado.

R

VI =

Page 39: Temas Selectos Fisica 2

37 BLOQUE 1

2. La corriente es la misma en todas las resistencias del circuito.

IR1 = IR2 = IR3= ……..

3. La suma de las caídas individuales a través de cada resistencia constituye el voltaje de la fuente

V = V1 + V2+ V3 + ….. EjemploEjemploEjemploEjemplo:::: En el circuito mostrado a continuación se aprecian tres resistencias conectadas en serie a una fuente de voltaje de 6 volts.

Determinar los valores de:

a) La resistencia equivalente del circuito. b) La corriente del circuito. c) La caída de tensión o voltaje en cada resistencia.

Solución:Solución:Solución:Solución:

a) La resistencia equivalente o total es:

Re = R1 + R2 + R3

Re = (2 + 6 + 12) Ω

Re = 20 Ω b) La corriente del circuito se determina aplicando la ley de Ohm:

I = V/R = 6 V/20 Ω = 0.3 A

c) La caída de voltaje sobre cada resistencia, mediante la ley de Ohm:

V1 = I R1 = (0.3 A)(2 Ω) = 0.6 V

V2 = I R2 = (0.3 A)(6 Ω) = 1.8 V

V3 = I R3 = (0.3 A)(12 Ω) = 3.6 V Como prueba, la suma de las caídas de voltaje debe ser igual al voltaje aplicado, o sea, 0.6 V + 1.8 V + 3.0.6 V + 1.8 V + 3.0.6 V + 1.8 V + 3.0.6 V + 1.8 V + 3.6 V = 6 V6 V = 6 V6 V = 6 V6 V = 6 V

Page 40: Temas Selectos Fisica 2

38 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Circuitos con resistencias en paralelo. Las resistencias se pueden conectar de tal manera que salgan de un solo punto y lleguen a otro punto, conocidos como nodos. Este tipo de circuito se llama paralelo. En AAAA el potencial es el mismo en cada resistencia. De igual manera, en BBBB el potencial también es el mismo en cada resistencia. Entonces, entre los puntos AAAA y BBBB, la diferencia de potencial o voltaje es el mismo. Esto significa que cada una de las tres resistencias en el circuito paralelo deben tener el mismo voltaje. V = VV = VV = VV = V1111 = V= V= V= V2222 = V= V= V= V3333 También, la corriente se divide cuando fluye de AAAA a BBBB. Entonces, la suma de la corriente a través de las tres resistencias (ramas) es la misma que la corriente en AAAA y en BBBB.

I = IR1 + IR2 + IR3

La resistencia equivalente del circuito se obtiene por medio de la expresión:

321e R

1

R

1

R

1

R

1++=

EjeEjeEjeEjemplomplomplomplo:::: Tres resistencias de 2 Ω, 6 Ω y 12 Ω, se conectan en paralelo y a una fuente de 6 volts. Determina:

a) La resistencia equivalente del circuito. b) La corriente total del circuito. b) La corriente que fluye por cada resistencia.

SoluciónSoluciónSoluciónSolución:::: 1

R = 12 1

6 112 = 9

12 = 34 R = 4

3 = 1.33ohms a) La resistencia equivalente es: b) La corriente total del circuito: I = V/R = 6V/1.33Ω = 4.5 A c) La corriente que circula por cada resistencia: I1 = V/R1 = 6V/2Ω = 3A

I2 = V/R2 = 6V/6Ω = 1A

I3 = V/R3 = 6V/12Ω = 0.5A

Cada una de las tres resistencias en paralelo representa un camino por el cual la corriente viaja de los puntos AAAA al BBBB

Cuando es el caso de dos resistencias en paralelo, la resistencia equivalente (Re) de ellas dos, viene dada por el producto de sus valores, dividido por su suma:

AB = ACADAC AD

V

Page 41: Temas Selectos Fisica 2

39 BLOQUE 1

En equipos de tres, resuelvan los siguientes ejercicios: 1. ¿Cuál es la resistencia de cierto conductor que, al aplicarle un voltaje de 90 volts,

experimenta una corriente de 6 A? 2. Si a un conductor se le aplica 300 V durante 10 segundos, ¿qué cantidad de electrones circularon si la

resistencia del conductor es de 75 Ω? 3. Por un foco de 20 Ω circulan 5 A. Determinen la diferencia de potencial. 4. Tres resistencias, de 2 Ω, 6 Ω y 12 Ω, se conectan en serie a una fuente de 6 volts. Dibujen el circuito

eléctrico correspondiente y determinen la resistencia total, la corriente y la caída de voltaje sobre cada resistencia.

Actividad: 2

Page 42: Temas Selectos Fisica 2

40 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

EvaluaciónEvaluaciónEvaluaciónEvaluación Actividad: 2 Producto: Ejercicio práctico. Puntaje:

SaberesSaberesSaberesSaberes ConceptualConceptualConceptualConceptual ProcedimentalProcedimentalProcedimentalProcedimental ActitudinalActitudinalActitudinalActitudinal

Comprende conceptos relacionados con la corriente eléctrica y los circuitos de resistencias.

Aplica conceptos relacionados con la corriente eléctrica y los circuitos de resistencias en ejercicios prácticos.

Muestra entusiasmo en la actividad.

Autoevaluación C MC NC Calificación otorgada por el

docente

Actividad: 2 (continuación)

Page 43: Temas Selectos Fisica 2

41 BLOQUE 1

Leyes de Kirchhoff. En el año de 1845, el científico alemán Gustav Robert Kirchhoff (1824‒1887) estableció dos leyes que son indispensables para calcular valores desconocidos de voltaje y corriente en cada punto de un circuito eléctrico complejo. Para facilitar el estudio de un circuito conviene definir primeramente los términos: NoNoNoNodos dos dos dos y MallasMallasMallasMallas. Un nonononododododo es la unión de más de dos cables y una mallamallamallamalla es un recorrido cerrado.

Los puntos A y B son los dos únicos Los puntos A y B son los dos únicos Los puntos A y B son los dos únicos Los puntos A y B son los dos únicos nodos nodos nodos nodos existentes en este circuito.existentes en este circuito.existentes en este circuito.existentes en este circuito.

El punto C es la unión deEl punto C es la unión deEl punto C es la unión deEl punto C es la unión de dos elementos, pero no es un nodos elementos, pero no es un nodos elementos, pero no es un nodos elementos, pero no es un nodo.do.do.do.

ABDA es una ABDA es una ABDA es una ABDA es una malla (malla I) y ACBA es otra malla (malla II). También lo es el malla (malla I) y ACBA es otra malla (malla II). También lo es el malla (malla I) y ACBA es otra malla (malla II). También lo es el malla (malla I) y ACBA es otra malla (malla II). También lo es el recorrido exterior BDACB, pero es redundante con las anteriores (I y II) que ya recorrido exterior BDACB, pero es redundante con las anteriores (I y II) que ya recorrido exterior BDACB, pero es redundante con las anteriores (I y II) que ya recorrido exterior BDACB, pero es redundante con las anteriores (I y II) que ya cubren todos los elementos recorridos por la última.cubren todos los elementos recorridos por la última.cubren todos los elementos recorridos por la última.cubren todos los elementos recorridos por la última.

El enunciado de la Primera Ley de Kirchhoff o Ley de Kirchhoff de corrientes, dice lo siguiente:

La suma algebraica dLa suma algebraica dLa suma algebraica dLa suma algebraica de las corrientes en cualquier noe las corrientes en cualquier noe las corrientes en cualquier noe las corrientes en cualquier nodo en un circuito es cero.do en un circuito es cero.do en un circuito es cero.do en un circuito es cero. Las corrientes que Las corrientes que Las corrientes que Las corrientes que entran al noentran al noentran al noentran al nodo se toman con un mismo signo y las que salen, con el signo contrario.do se toman con un mismo signo y las que salen, con el signo contrario.do se toman con un mismo signo y las que salen, con el signo contrario.do se toman con un mismo signo y las que salen, con el signo contrario.

La Segunda Ley de Kirchhoff o Ley de Kirchhoff de voltajes, establece que:

En una malla, la suma algebraica de las diferencias de potencial en cada elemento de ésta es cero. En una malla, la suma algebraica de las diferencias de potencial en cada elemento de ésta es cero. En una malla, la suma algebraica de las diferencias de potencial en cada elemento de ésta es cero. En una malla, la suma algebraica de las diferencias de potencial en cada elemento de ésta es cero. Las caídas de voltaje se consideran con un mismo signo, mientras que las subidas de voltaje se Las caídas de voltaje se consideran con un mismo signo, mientras que las subidas de voltaje se Las caídas de voltaje se consideran con un mismo signo, mientras que las subidas de voltaje se Las caídas de voltaje se consideran con un mismo signo, mientras que las subidas de voltaje se conconconconsideran con el signo contrario.sideran con el signo contrario.sideran con el signo contrario.sideran con el signo contrario.

Page 44: Temas Selectos Fisica 2

42 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Magnetismo.

A lo largo de la historia, diversos científicos, en diferentes épocas y lugares del mundo, investigaron y estudiaron las propiedades de la electricidad, sin imaginarse que hubiera alguna relación entre ésta y el magnetismo, por tal motivo, los fenómenos eléctricos y magnéticos permanecieron por muchos años independientes los unos de los otros. A inicios del siglo XVIII se inició la búsqueda de una posible relación entre estas dos ramas de la Física. Por un lado, Benjamín Franklin sabía el hecho, que al presentarse una tormenta atmosférica, también se manifiestan en ella fenómenos de naturaleza eléctrica, y durante una de estas tormentas trató de magnetizar una llave metálica, sin lograr éxito alguno en su intento. Más tarde, Coulomb, quien había medido en forma separada las fuerzas eléctricas y las magnéticas, afirmó que estas fuerzas físicas, eran distintas entre sí a pesar de haber encontrado ciertas similitudes entre ambas.

En 1819 el físico danés Hans C. Oersted demostró que una corriente eléctrica posee propiedades similares a las de un imán. Cuando explicaba en una de sus clases qué era la corriente eléctrica que había descubierto Volta, acercó distraídamente una brújula a un conductor por el que circulaba corriente y observó que la aguja imantada sufría una desviación. A partir de esta, aparentemente, insignificante observación, Oersted siguió investigando y obtuvo una serie de resultados que ayudaron a comprender el magnetismo: 1. Cuando colocamos una brújula cerca de un conductor por el que pasa una corriente

eléctrica, la brújula se orienta perpendicularmente al conductor y deja de señalar hacia el polo norte.

2. Si aumentamos la intensidad de la corriente eléctrica que circula por el conductor, la brújula gira mas rápidamente,

hasta colocarse perpendicular al mismo. 3. Si invertimos el sentido de la corriente eléctrica, es decir, si invertimos las conexiones que unen al conductor con la

pila, la brújula sigue orientada perpendicularmente al conductor, pero el sentido en que se orienta es, justamente, el opuesto al caso anterior.

Page 45: Temas Selectos Fisica 2

43 BLOQUE 1

Con la experiencia de Oersted se comprobó, por primera vez, la existencia de un vínculo entre la electricidad y el magnetismo, estableciéndose con ello el electromagnetismo, es decir, la parte de la física que integra el estudio de los fenómenos magnéticos con los eléctricos.

El fenómeno del magnetismo fue conocido por los griegos desde el año 800 a.C. Ellos descubrieron que ciertas piedras, ahora llamadas magnetita (Fe3O4), atraían piezas de hierro. Se dice que el nombre de magnetita dado a este compuesto ferroso, se atribuye a una región del Asia Menor, entonces llamada Magnesia; en ella abundaba una piedra negra o piedra imán, capaz de atraer objetos de hierro y de comunicarles por contacto un poder similar.

Actualmente se sabe que el magnetismo, es una de las fuerzas fundamentales de la naturaleza. Estas fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo los electrones. La prueba más conocida de este fenómeno es la fuerza de atracción o repulsión que actúa entre los materiales magnéticos como el hierro. Sin embargo, en toda la materia se pueden observar efectos más evidentes del magnetismo. Recientemente, estos efectos han proporcionado definiciones importantes para comprender la estructura atómica de la materia. El magnetismo como disciplina, comienza a desarrollarse muchos siglos después de su descubrimiento, cuando la experimentación se convierte en

una herramienta básica para el desarrollo del conocimiento científico. Gilbert (1544‒1603), Ampere (1775‒1836), Oersted (1777‒1851), Faraday (1791‒1867) y Maxwell (1831‒1879), investigaron sobre las características de los fenómenos magnéticos, difundiendo sus aportaciones en forma de leyes. Un imán es un material capaz de producir un campo magnético exterior y atraer a otros materiales tales como: el hierro, el cobalto y el níquel. Los imanes son fascinantes. ¿Cuántas veces hemos jugado con uno de ellos? Si tomas dos imanes y los aproximas el uno al otro se pegan repentinamente, y si das vuelta a uno de ellos se repelen. Los imanes tienen diversas formas y tamaños y forman parte importante de variados utensilios de uso diario. Los imanes se clasifican en naturales y artificiales, naturales como la magnetita y artificiales como los que se obtienen de ciertas aleaciones de diferentes metales. Existen algunos que pierden su magnetismo al poco tiempo después de haber sido imantado, mientras otros conservan su magnetismo por un período de tiempo más prolongado, esto los clasifica también en temporales y permanentes. Se ha encontrado que en el imán la capacidad o fuerza de atracción es mayor en sus extremos, a los que se les da el nombre de polos. Estos polos se denominan norte (N) y sur (S), debido a que tienden a orientarse según los polos geográficos de la Tierra, que es un gigantesco imán natural. Campo MagnéticoCampo MagnéticoCampo MagnéticoCampo Magnético La región del espacio que rodea a un imán y en donde se pone de manifiesto la acción de las fuerzas magnéticas, se llama campo magnético. Este campo se representa mediante líneas de fuerza, que son unas líneas imaginarias, cerradas, que van del polo norte al polo sur, por fuera del imán y en sentido contrario en el interior de éste. La intensidad del campo es mayor donde están más juntas las líneas (la intensidad es máxima en los polos).

Page 46: Temas Selectos Fisica 2

44 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Inducción ElectromagnéticaInducción ElectromagnéticaInducción ElectromagnéticaInducción Electromagnética El descubrimiento de Oersted, de que una corriente eléctrica origina un campo magnético, llamó la atención de los físicos de la época y propició el desarrollo de la experimentación en este campo y la búsqueda de nuevas relaciones entre la electricidad y el magnetismo. En poco tiempo surgió la idea opuesta, es decir, la de producir corrientes eléctricas mediante campos magnéticos.

Muchos científicos se dieron a la tarea de demostrar, mediante la experimentación, este tipo de fenómenos, pero fue Faraday el primero en precisar en qué condiciones podía ser observado semejante hecho. A las corrientes eléctricas producidas mediante campos magnéticos, Michael Faraday las llamó corrientes inducidas. Desde entonces, al fenómeno consistente en generar campos eléctricos a partir de campos magnéticos variables se le llama inducción electromagnética. La inducción electromagnética es un concepto muy importante en lo referente a la relación mutua entre electricidad y magnetismo, lo que conllevó al surgimiento de lo que hoy en día se le conoce con el nombre de electromagnetismo.

Se han hallado numerosas aplicaciones prácticas que resultan de este fenómeno físico, por ejemplo, el transformador que se emplea para conectar una computadora a la red, el alternador de un automóvil o el generador de una gran central hidroeléctrica son sólo algunos ejemplos derivados de la inducción electromagnética y en gran medida a los trabajos que en ese campo llevó a cabo Faraday. Como ya se dijo, la inducción electromagnética se refiere a la producción de corrientes eléctricas por medio de campos magnéticos variables con el tiempo y las contribuciones hechas por Faraday y otros físicos con relación a este fenómeno, permitieron, en gran medida, al desarrollo del electromagnetismo. James Clerk Maxwell consiguió reunir en una sola teoría los conocimientos básicos sobre la electricidad y el magnetismo. Su teoría electromagnética predijo, antes de ser observadas experimentalmente, la existencia de ondas electromagnéticas. Heinrich Rudolf Hertz comprobó su existencia e inició para la humanidad la era de las telecomunicaciones. Ley de Faraday Ley de Faraday Ley de Faraday Ley de Faraday Para esta etapa del desarrollo del electromagnetismo, era necesario constatar el hecho de cómo producir una corriente eléctrica a partir de un campo magnético. Los trabajos del británico Michael Faraday (1791‒1867) y el estadounidense Joseph Henry (1797‒1878), llevados a cabo casi simultáneamente, sirvieron para sentar definitivamente las bases del electromagnetismo. La producción de una corriente eléctricacorriente eléctricacorriente eléctricacorriente eléctrica en un circuito, a partir de manifestaciones magnéticas, puede lograrse mediante un sencillo experimento, ideado independientemente por Faraday y por Henry.

Page 47: Temas Selectos Fisica 2

45 BLOQUE 1

Experimento de FaradayExperimento de FaradayExperimento de FaradayExperimento de Faraday Cuando se mantiene en reposo un imán frente a un circuito eléctrico en forma de espira (b), el amperímetro no detecta corriente. Si se acerca el imán al circuito (a), se produce corriente en un sentido, y cuando se aleja (c), el flujo de corriente toma sentido contrario.

La interpretación que dio Faraday a este experimento es que la aparición de la corriente se debía a la variación que se producía al mover el imán en el número de líneas de campolíneas de campolíneas de campolíneas de campo magnético que atravesaban el circuito (la espira). Para poder contar o determinar el número de líneas de campo que atravesaban el circuito en forma de espira de su experimento, Faraday tuvo la necesidad de definir el concepto de flujo magnético (flujo magnético (flujo magnético (flujo magnético (Φ), especificándolo ), especificándolo ), especificándolo ), especificándolo como el producto del campo magnético (B) por el área (A) de la espira (perpendicular a la superficie y con magnitud igual a dicha área), mediante la expresión: Φ = BA La anterior expresión es válida en campos magnéticos uniformes. Si el campo es no uniforme, el flujo magnético presente se determina mediante otros procedimientos matemáticos. La unidad de flujo magnético en el Sistema Internacional de Unidades es el weber y se designa por Wb. En el C.G.S. se utiliza el maxwell. 1 weber (Wb) = 101 weber (Wb) = 101 weber (Wb) = 101 weber (Wb) = 108888 maxwells.maxwells.maxwells.maxwells.

Page 48: Temas Selectos Fisica 2

46 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Con base en sus experimentos, Faraday enunció la ley del Electromagnetismo, o ley de Faraday:

““““La fem inducida en un circuito formado por un conductor o una bobina es directamente La fem inducida en un circuito formado por un conductor o una bobina es directamente La fem inducida en un circuito formado por un conductor o una bobina es directamente La fem inducida en un circuito formado por un conductor o una bobina es directamente proporcional al número de líneas de fuerza magnética cortadas en un segundo”proporcional al número de líneas de fuerza magnética cortadas en un segundo”proporcional al número de líneas de fuerza magnética cortadas en un segundo”proporcional al número de líneas de fuerza magnética cortadas en un segundo”

En otras palabras:

“La fem“La fem“La fem“La fem inducida en un circuito es directamente proporcional a la rapidez con que cambia el inducida en un circuito es directamente proporcional a la rapidez con que cambia el inducida en un circuito es directamente proporcional a la rapidez con que cambia el inducida en un circuito es directamente proporcional a la rapidez con que cambia el flujo magnético que envuelve”flujo magnético que envuelve”flujo magnético que envuelve”flujo magnético que envuelve”

La Ley de Faraday se expresa matemáticamente como: O bien: En donde: E = fuerza electromotriz media inducida en volts (V). Φi = flujo magnético inicial en webers (Wb). Φf = Flujo magnético final en webers (Wb). t = tiempo en que se realiza la variación del flujo magnético, medido en segundos (s). El signo menos indica que la fem inducida y por lo tanto la corriente inducida, tiene un sentido que se opone al cambio que lo provoca, resultando de esta manera la llamada ley de Lenz. Así, si el flujo magnético a través del circuito aumenta, la corriente inducida toma un sentido que se opone a este cambio, tratando de hacer disminuir el flujo magnético y si el flujo disminuye, la corriente inducida se opone a este cambio tomando un sentido que trata de hacer aumentar el flujo magnético a través del circuito. Por otro lado, la ley anterior, en términos de la corriente inducida, se expresa de la siguiente manera:

“La intensidad de la corriente inducida en un circuito es directamente proporcional a la rapidez “La intensidad de la corriente inducida en un circuito es directamente proporcional a la rapidez “La intensidad de la corriente inducida en un circuito es directamente proporcional a la rapidez “La intensidad de la corriente inducida en un circuito es directamente proporcional a la rapidez con que cambia el flujo magnético”con que cambia el flujo magnético”con que cambia el flujo magnético”con que cambia el flujo magnético”

Cuando se trata de una bobina que tiene N número de espiras o vueltas, la expresión matemática para calcular la fem inducida será: Al calcular la fem inducida en un conductor recto de longitud LLLL que se desplaza con una velocidad vvvv en forma perpendicular a un campo de inducción magnética BBBB se utiliza la expresión: E = B L vE = B L vE = B L vE = B L v

t

)f(NE i Φ−Φ−

=

t

fE i Φ−Φ

=

tE

∆Φ−=

Page 49: Temas Selectos Fisica 2

47 BLOQUE 1

EjemploEjemploEjemploEjemplo:::: Una bobina de 60 espiras emplea 0.04 segundos en pasar entre los polos de un imán en forma de herradura desde un lugar donde el flujo magnético es de 2x10‒4 webers a otro en el que éste es igual a 5x10‒4 webers. ¿Cuál es el valor de la fem media inducida?

DatosDatosDatosDatos::::

N=60 t=0.04 s . Φi=2x10‒4 wb Φf=5x10‒4 wb E = ?

SoluciónSoluciónSoluciónSolución:::: La magnitud de la fem inducida viene dada por la ley de Faraday:

E = E = E = E = ‒ 0.45 V0.45 V0.45 V0.45 V Corriente continua o directa (CC o CD) y corriente alterna (CA).

Sin duda alguna, un hecho sumamente importante en la historia de la electricidad lo fue la invención de la pila eléctrica, realizada por Alessandro Volta, con la cual se producía una corriente continua, es decir una corriente que fluye en un solo sentido, y su tensión o voltaje se mantiene siempre fijo, tanto en valor como en polaridad.

Posteriormente, los conocimientos desarrollados en torno a la inducción electromagnética llevaron a la invención del generador, el cual era capaz de producir corrientes alternas. La característica principal de una corriente alterna (ca), es que durante un instante de tiempo, un polo es negativo y el otro positivo, mientras que en el instante siguiente las polaridades se invierten tantas veces como ciclos o hertz por segundo posea esa corriente. No obstante, aunque se produzca un constante cambio de polaridad, la corriente siempre fluirá del polo negativo al positivo, tal como ocurre en las fuentes que suministran corriente directa. Cualquier corriente alterna puede fluir a través de diferentes dispositivos eléctricos, como pueden ser resistencias, bobinas, condensadores, etc., sin sufrir deformación. La corriente alterna se representa gráficamente con una onda senoidal.

t

)f(NE i Φ−Φ−

=

s04.0

)webers105webers102(60 44 −−×−×−

=

Page 50: Temas Selectos Fisica 2

48 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Las ventajas que presenta la corriente alterna (ca), con relación a la continua o directa (cd), son:

Permite aumentar o disminuir el voltaje o tensión por medio de transformadores. Se transporta a grandes distancias con poca pérdida de energía. Es posible convertirla en corriente directa con facilidad. Al incrementar su frecuencia por medios electrónicos en miles o millones de ciclos por segundo (frecuencias

de radio), es posible transmitir voz, imagen, sonido y órdenes de control a grandes distancias, de forma inalámbrica.

Los motores y generadores de corriente alterna son estructuralmente más sencillos y fáciles de mantener que los de corriente directa.

Circuitos RCCircuitos RCCircuitos RCCircuitos RC Los circuitos RC son circuitos simples de corriente continua que están constituidos por una resistencia (R) y un condensador (C). Como se vio anteriormente, en los circuitos eléctricos los condensadores se utilizan con varios propósitos. Se emplean para almacenar energía, para dejar pasar la corriente alterna, para bloquear la corriente continua, etc. Los condensadores actúan cargándose y descargándose. Un condensador puede almacenar y conservar una carga eléctrica, proceso que se conoce como carga del condensador. En un circuito RC, cuando se conecta un condensador descargado a una fuente de tensión constante, éste no se carga instantáneamente, sino que adquiere cierta carga que varía con el tiempo. El ritmo de crecimiento de la corriente (velocidad con que crece), depende de los valores de la capacitancia (C) del condensador y de la resistencia (R) del circuito. Al producto RC se le llama constante de tiempo (τ ) y se le define como el tiempo requerido para que la carga del condensador alcance un 63% de su máximo posible:::: τ = RC= RC= RC= RC En donde R está expresada en ohms (Ω), CCCC en farads (F) y τ en segundos (s) EjemploEjemploEjemploEjemplo:::: Un condensador de 3 µF inicialmente descargado se conecta en serie con una resistencia de 6 × 105 Ω y a una batería de 12 V. Determina la constante de tiempo (τ ) del circuito. DatosDatosDatosDatos::::

C = 3 µF = 3x10‒6 F R = 6X105Ω V = 12 V τ = ?

SoluciónSoluciónSoluciónSolución::::

τ = RCRCRCRC τ = (6X105Ω) (3x10-6 F) τ = 1.8 s

Por razones prácticas, un condensador se considera totalmente cargado después de un periodo de tiempo igual a cinco veces la constante de tiempo (τ ). Carga del condensador.

V

Page 51: Temas Selectos Fisica 2

49 BLOQUE 1

En un circuito RC simple, inmediatamente antes de cerrar el interruptor (s), la carga q del condensador es cero.

Al cerrar el interruptor (t = 0), el voltaje del condensador (VC) es cero por estar descargado y el voltaje en la resistencia (VR) será igual al voltaje (V) de la fuente (segunda ley de Kirchhoff).

En ese instante, la corriente inicial (Ii) a través de la resistencia será: VR /R = V/R. (Ley de Ohm). A medida que el condensador se carga, su voltaje VC aumenta y el voltaje VR en la resistencia disminuye, lo anterior debido a una disminución en la corriente del circuito. La suma de estos dos voltajes es una constante y será igual al voltaje de la fuente:( V = VC + VR) Después de un largo tiempo, el condensador se cargará completamente, la corriente disminuirá hasta cero y el voltaje en la resistencia también será cero. En ese instante, el voltaje en el condensador (Vc) será igual al voltaje de la fuente, es decir, Vc = V. Al cabo de cierto tiempo de cerrar el interruptor, los voltajes respectivos en la resistencia y en el condensador, estarán dados por:

IRVR = y C

QVc =

Utilizando la segunda ley de Kirchhoff y las expresiones anteriores, tenemos:

0C

QIRV =−−

V

I

V

Page 52: Temas Selectos Fisica 2

50 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Despejando la corriente I en la expresión:

RC

Q

R

VI −=

En el instante t = 0, cuando se cierra inicialmente el interruptor, el condensador está descargado y, por lo tanto, Q = 0. Sustituyendo Q = 0 en la anterior expresión:

R

VI =

Resultando que la corriente inicial I está dada por V/R, como ya se había señalado con anterioridad. Si el condensador no estuviera en el circuito, el último término de la ecuación: I = V/R – Q/RC, no existiría, entonces la corriente I sería constante e igual a V/R. Conforme la carga Q aumenta, el término Q/RC crece y la carga del condensador tiende a su valor final (Qf). La corriente disminuye y termina por desaparecer (I = 0), en este momento la ecuación V/R = Qf/RC, se reduce a: Qf = CV, con esto nos damos cuenta que la carga final Qf no depende del valor de la resistencia R. Mediante métodos de cálculo se pueden deducir expresiones generales de la carga Q y la corriente I en función del tiempo para circuitos RC en carga, resultando las siguientes fórmulas:

Q = CV (1‒e‒t/RC) e R

)e(VI

RCt−

= , en donde: Q0= CV e I0 = V/R

Las representaciones gráficas correspondientes a la corriente y la carga en el condensador son las siguientes;

EjemploEjemploEjemploEjemplo:::: Un circuito de corriente continua en serie consiste en un condensador de 4 μF, una resistencia de 5000 Ω y una batería de 12 V.

a) ¿Cuál es la constante de tiempo para este circuito? b) ¿Cuáles son la corriente inicial y la corriente final? c) ¿Cuánto tiempo se necesita para asegurarse de que el condensador esté totalmente cargado?

t t

I Q

I0 Q

0

Page 53: Temas Selectos Fisica 2

51 BLOQUE 1

DatosDatosDatosDatos::::

C = 4 µF = 4X10‒6 F R = 5000ΩΩΩΩ V = 12 V

SoluciónSoluciónSoluciónSolución::::

a) τ = RC = (5000 Ω)(4 x 10 ‒6 F) = 0.02 s

b) R

)e(VI

RCt−

=

mA35.2A1035.25000

)71828.2(V12I 3

seg02.0

=×=Ω

=−

c) I final = 0, por lo tanto: 5 RC = 5 x 0.02 s = 0.1 s

Descarga del condensadorDescarga del condensadorDescarga del condensadorDescarga del condensador El condensador está cargado inicialmente con una carga Q. Cuando el interruptor s está abierto, el voltaje en el condensador es: Vc = Q/C y no hay corriente circulando por el circuito. Al cerrar el interruptor s, se inicia el proceso de descarga del condensador a través de la resistencia R, la corriente del circuito aumenta y el voltaje en el condensador disminuye proporcionalmente a su carga. Durante el proceso de descarga, los valores en función del tiempo para la corriente del circuito y el voltaje del condensador son, respectivamente:

R

eVI

RCt

o

−= Vc = VVc = VVc = VVc = V0000 eeee

–––– t/RCt/RCt/RCt/RC

Page 54: Temas Selectos Fisica 2

52 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

En equipos de 4 resuelvan los siguientes ejercicios:

1. ¿Cuál es la constante de tiempo para un circuito de corriente continua en serie que contiene un condensador de 4 µF, un resistor de 5000 Ω y una batería de 12 V.

2. Un condensador de 8 µF está conectado en serie con un resistor de 600 Ω y una batería de 24 V. Después de un lapso igual a una constante de tiempo, ¿cuáles son la carga en el condensador y la corriente en el circuito?

Actividad: 3

Page 55: Temas Selectos Fisica 2

53 BLOQUE 1

EvaluaciónEvaluaciónEvaluaciónEvaluación Actividad: 3 Producto: Ejercicio práctico. Puntaje:

SaberesSaberesSaberesSaberes ConceptualConceptualConceptualConceptual ProcedimentalProcedimentalProcedimentalProcedimental ActitudinalActitudinalActitudinalActitudinal

Identifica conceptos de la electrodinámica como las leyes de Kichhoff, ley de Faraday, Ley de Lenz, corriente continua, corriente alterna, carga y descarda de condensadores.

Aplica los conocimentos tratados en casos de aplicación práctica

Es perseverante al realizar la actividad.

Autoevaluación C MC NC Calificación otorgada por el

docente

Actividad: 3 (continuación)

Page 56: Temas Selectos Fisica 2

54 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Cierre

En forma individual resuelve los siguientes ejercicios:

1. Utilizando las leyes de Kirchhoff, encuentra el valor de las intensidades del circuito de la

figura:

Actividad: 4

Page 57: Temas Selectos Fisica 2

55 BLOQUE 1

EvaluaciónEvaluaciónEvaluaciónEvaluación Actividad: 4 Producto: Ejercicio práctico. Puntaje:

SaberesSaberesSaberesSaberes ConceptualConceptualConceptualConceptual ProcedimentalProcedimentalProcedimentalProcedimental ActitudinalActitudinalActitudinalActitudinal

Comprende los aspectos y conceptos funamentales de la electrodinámica.

Resuelve casos sencillos de electrodinámica.

Es aplicado al realizar la actividad.

Autoevaluación C MC NC Calificación otorgada por el

docente

2. Una bobina consta de 200 vueltas de alambre y tiene una resistencia total de 2 Ω. Cada

vuelta es un cuadrado de 18 cm de lado y se activa un campo magnético uniforme perpendicular al plano de la bobina. Si el campo cambia linealmente de 0 a 0.5 tesla en 0.8 seg. ¿Cuál es la magnitud de la fem inducida en la bobina mientras está cambiando el campo?

Actividad: 4 (continuación)

Page 58: Temas Selectos Fisica 2

56 ANALIZAS LA ELECTRICIDAD Y EL MAGNETISMO

Page 59: Temas Selectos Fisica 2

Producto:

Tiempo asignado: 16 horas

Aplicas conceptos sobre la mecánica ondulatoria.

Competencias disciplinares extendidas: 2. Evalúa las implicaciones del uso de la ciencia y la tecnología, así como los fenómenos relacionados con el origen,

continuidad y transformación de la naturaleza para establecer acciones a fin de preservarla en todas sus manifestaciones.

3. Aplica los avances científicos y tecnológicos en el mejoramiento de las condiciones de su entorno social. 4. Evalúa los factores y elementos de riesgo físico, químico y biológico presentes en la naturaleza que alteran la calidad de vida

de una población para proponer medidas preventivas.

6. Utiliza herramientas y equipos especializados en la búsqueda, selección, análisis y síntesis para la divulgación de la información científica que contribuya a su formación académica.

7. Diseña prototipos o modelos para resolver problemas, satisfacer necesidades o demostrar principios científicos, hechos o

fenómenos relacionados con las ciencias experimentales. 8. Confronta las ideas preconcebidas acerca de los fenómenos naturales con el conocimiento científico para explicar y adquirir

nuevos conocimientos.

10. Resuelve problemas establecidos o reales de su entorno, utilizando las ciencias experimentales para la comprensión y mejora del mismo.

Unidad de competencia: Resuelve problemas prácticos de ondas y vibraciones, mediante el análisis comparativo y aplicación de los conceptos fundamentales, características y tipos de ondas, movimiento armónico simple y péndulo simple y compuesto; mostrando una

actitud crítica, analítica y responsable durante el desarrollo de los temas.. Atributos a desarrollar en el bloque: 4.1. Expresa ideas y conceptos mediante representaciones lingüísticas, matemáticas o gráficas. 5.1. Sigue instrucciones y procedimientos de manera reflexiva, comprendiendo cómo cada uno de sus pasos contribuye al

alcance de un objetivo.

5.2. Ordena información de acuerdo a categorías, jerarquías y relaciones. 5.3. Identifica los sistemas y reglas o principios medulares que subyacen a una serie de fenómenos. 5.4. Construye hipótesis y Diseña y aplica modelos para probar su validez.

5.6. Utiliza las tecnologías de la información y comunicación para procesar e interpretar información. 6.1. Elige las fuentes de información más relevantes para un propósito específico y discrimina entre ellas de acuerdo a su

relevancia y confiabilidad.

6.3. Reconoce los propios prejuicios, modifica sus propios puntos de vista al conocer nuevas evidencias, e integra nuevos conocimientos y perspectivas al acervo con el que cuenta.

7.1. Define metas y da seguimiento a sus procesos de construcción de conocimientos.

8.1. Propone manera de solucionar un problema y desarrolla un proyecto en equipo, definiendo un curso de acción con pasos específicos.

8.2. Aporta puntos de vista con apertura y considera los de otras personas de manera reflexiva.

8.3. Asume una actitud constructiva, congruente con los conocimientos y habilidades con los que cuenta dentro de distintos equipos de trabajo.

Page 60: Temas Selectos Fisica 2

58

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Secuencia didáctica 1. Características de una onda y tipos de onda

Inicio

Evaluación

Actividad: 1 Producto: Cuestionario. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Conoce el concepto de onda. Distingue el concepto de onda. Atiende las indicaciones del profesor al realizar el cuestionario.

Autoevaluación C MC NC

Calificación otorgada por el docente

Desarrolla lo que se pide y, posteriormente intercambia tu respuesta con el grupo.

1. ¿Qué es una onda? 2. Menciona cinco diferentes casos en donde se presentan las ondas.

Actividad: 1

Page 61: Temas Selectos Fisica 2

59 BLOQUE 2

Desarrollo

Características de una onda y tipos de onda. En nuestra infancia, la mayoría de nosotros dejamos caer una piedra en un estanque y podíamos observar cómo se formaban pequeñas perturbaciones (ondas) en el agua, que se iban alejando del punto donde entró la piedra en el agua. Si analizamos el movimiento de un pedazo de madera que flota cerca de la perturbación, veremos que sube y baja en un movimiento de vaivén alrededor de su posición original, pero no experimenta un desplazamiento neto apreciable en comparación con la perturbación. Esto significa que la onda que se genera se mueve de un lugar a otro, pero con ella no se mueve el agua

Una onda es una perturbación que se desplaza a través de un medio, mientras éste permanece básicamente en reposo, en comparación con la velocidad de propagación de la onda

. El medio en que se propagan puede ser: aire, agua, tierra, metal, vacío, etc. Los diferentes sonidos musicales que escuchamos, así como los sismos producidos por un terremoto, etc., todos estos son movimientos ondulatorios. Una característica muy importante de la onda es que da información de que ha ocurrido una perturbación en un medio por un efecto vibratorio el cual genera energía. Esta energía que se transfiere de una partícula a otra es la que se propaga, a esto se le llama onda. Tipos de onda.

Las ondas (o movimientos ondulatorios) son, fundamentalmente, de dos tipos: ondas mecánicas y electromagnéticas.

Empezaremos por entender las ondas mecánicas, porque sus principales características nos servirán más adelante para el análisis de las ondas electromagnéticas. Las ondas mecánicas son aquellas que necesitan de un medio (sólido, líquido o gaseoso) para poder propagarse. Las partículas del medio oscilan alrededor de un punto fijo, por lo que no existe transporte neto de materia a través del medio. Sin embargo, para poner en movimiento una onda se debe aportar energía para que se pueda realizar un trabajo mecánico, por lo tanto, en todo tipo de onda no se transporta materia sino lo que se transporta es energía.

Por las formas de propagación, las ondas se clasifican en lineales, superficiales y tridimensionales, dependiendo del medio en el que se presentan.

Las ondas lineales o planas son las que se propagan en una dirección, por ejemplo: las que se propagan sobre una cuerda, un alambre, un resorte, etc.

Page 62: Temas Selectos Fisica 2

60

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Las ondas superficiales se propagan en dos dimensiones como las que se presentan en la superficie del agua, las ondas sísmicas en la corteza terrestre, etc.

Cuando se estudia el tema de ondas es necesario utilizar la siguiente terminología:

Frente de onda: es el lugar geométrico en que los puntos del medio son alcanzados en un mismo instante, por una determinada onda. Dada una onda propagándose en el espacio o sobre una superficie, los frentes de onda pueden visualizarse como superficies o líneas que se desplazan a lo largo del tiempo alejándose de la fuente sin tocarse. Los frentes de onda pueden darse en forma esférica o plana. Rayos: son líneas imaginarias que indican la dirección de propagación de una onda y se representan por medio de flechas. Siempre son perpendiculares a los frentes de ondas. A su vez las ondas mecánicas se clasifican según su dirección de propagación en transversales y longitudinales. Una forma muy sencilla de demostrar la formación de una onda transversal, es a través de una cuerda larga donde un extremo está bajo tensión y tenga un extremo fijo. Cuando se realiza un movimiento lateral rápido de la muñeca va a provocar una protuberancia llamada pulso, que viaja hacia la derecha a través de la cuerda. Se puede observar que las partículas del medio se desplazan en una dirección perpendicular a la propagación de la onda; cuando esto sucede se le conoce como onda transversal. Si una onda tiene un movimiento repetitivo o periódico al propagarse por un medio, se le conoce como onda

periódica.

Las ondas tridimensionales que se propagan en tres dimensiones, como las de un sismo, un tsunami, una onda sonora, etc.

Onda transversal

c)

b)

Page 63: Temas Selectos Fisica 2

61 BLOQUE 2

Las ondas longitudinales son aquellas donde la dirección del movimiento de las partículas del medio es paralela a la dirección de propagación de la onda (se denominan también ondas compresionales). Un ejemplo típico es cuando las espiras de un resorte tenso están comprimidas en un extremo y se sueltan, un pulso de onda viaja por el resorte, las “partículas del resorte se mueven de un lado a otro en dirección paralela a la dirección de propagación de la onda.

Características de una onda. Todos los fenómenos ondulatorios, sin importar su naturaleza, presentan un tipo de onda sinusoidal y comparten algunas propiedades y características, como nos muestra la siguiente.

Onda Longitudinal

Onda armónica lineal de tipo transversal

Page 64: Temas Selectos Fisica 2

62

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Cresta: parte de la onda que se encuentra por encima de la línea de equilibrio y se simboliza con la letra “C”. Valle: parte de la onda que se encuentra por debajo de la línea de equilibrio y se simboliza con la letra “V”. Elongación: son las alturas que se encuentran de la línea de equilibrio hacia cualquier punto de la onda y se simboliza con la letra “e”. Amplitud: es la máxima altura de una cresta o un valle en cualquier tipo de onda y se simboliza con la letra “A”. Nodo: son lugares donde la amplitud es cero y se simboliza con la letra “N”. Frecuencia: es el número de veces que se repite una onda completa y se representa con la letra “f”; también se

representa con la letra griega “nu” (), aunque puede confundirse con la letra v. En toda onda periódica, la frecuencia permanece constante desde que nace hasta que muera. La unidad de frecuencia en el Sistema Internacional es de 1/s que se conoce como Hertz (Hz). Período: es el tiempo de duración de una onda y se simboliza con la letra “T”. Por lo tanto, el período y la frecuencia se relacionan con la siguiente ecuación: Longitud de onda: es la distancia entre una cresta y la siguiente o de un valle al siguiente o de cualquier punto de la

onda al siguiente punto correspondiente. La longitud de onda se representa por la letra griega llamada “lambda” (λ). Rapidez de Propagación: se define como el cociente de la distancia que experimenta un pulso entre el tiempo en que se realice y se representa con la letra v. Su valor depende de las propiedades mecánicas del medio.

Donde:

Por lo tanto:

Sustituyendo el período tenemos:

f

1 T

t

dv

T ty d

T v

f v

Page 65: Temas Selectos Fisica 2

63 BLOQUE 2

Las ondas electromagnéticas: son aquellas que pueden viajar tanto en el vacío como en un medio; son de tipo transversal, es decir, sus campos eléctricos y magnéticos son perpendiculares entre sí y a la dirección de propagación.

Toda onda electromagnética tiene una rapidez de propagación en el vacío de 300,000 km/s (3 X 108 m/s) y cuando penetra a un medio de diferente densidad, su valor varía; si el medio es más denso, es menor su rapidez de propagación. Como la rapidez de propagación de las ondas electromagnéticas en el vacío, es la misma rapidez definida y constante en que viaja la luz, entonces la ecuación de rapidez de propagación para ondas electromagnéticas, se

puede expresar de la siguiente forma: C = λf, donde C = velocidad de la luz, λ = Longitud de onda y f = frecuencia. Ejemplo: Determina la longitud de una onda sonora con frecuencia de 784 Hertz, que corresponda a la nota SOL de la quinta octava de un piano. Si la rapidez del sonido en el aire es de 344 m/s a una temperatura de 20 ºC.

Datos: v = λ f

f = 784 Hz v = 344 m/s λ = ? Ejemplo: Un radiador de microondas que presenta una longitud de onda de 25 cm, se usa para medir las magnitudes de las velocidades de automóviles. Determina la frecuencia que emite su radiación

Datos: C = λ f

λ = 25 cm = 0.25 m C = 3 X 108 m/s f = ?

Onda electromagnética

Resultado: λ = 0.459 m

Resultado: f = 1.2 × 109 Hz

Page 66: Temas Selectos Fisica 2

64

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Con apoyo de varias fuentes investiga lo siguiente y repórtalo a tu profesor, para su posterior análisis en clases:

1. Define las siguientes ondas que cubren el espectro del sonido, su rango de frecuencia y

menciona dos ejemplos en los que se presente cada una. Ondas audibles. _________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

Ondas infrasónicas. _________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

Ondas ultrasónicas. _________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

Ondas estacionarias. ._________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

Principio de Superposición. _________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

Actividad: 2

Page 67: Temas Selectos Fisica 2

65 BLOQUE 2

Interferencia Constructiva. _________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

Interferencia Destructiva. _________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

Efecto Doppler. _________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

Ondas de Choque. _________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

2. Completa lo siguiente:

a) ¿Qué es un espectro electromagnético? _________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

Actividad: 2 (continuación)

Page 68: Temas Selectos Fisica 2

66

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Evaluación

Actividad: 2 Producto: Investigación bibliográfica.

Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Reconoce los tipos de ondas. Distingue los tipos de ondas. Atiende con responsabilidad las indicaciones de la investigación.

Autoevaluación C MC NC Calificación otorgada por el

docente

b) Realiza el dibujo de la gama del espectro electromagnético, donde especifiques la

frecuencia y longitud de onda para cada radiación electromagnética. _________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

c) ¿A qué llamamos luz visible? _________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

3. Responde las siguientes preguntas:

a) ¿Cuál es el valor de la rapidez de propagación del sonido a la temperatura normal del medio ambiente?: _________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

b) ¿Cuál es la ecuación de la rapidez de propagación del sonido que se aplica para diferentes temperaturas? _________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

Actividad: 2 (continuación)

Page 69: Temas Selectos Fisica 2

67 BLOQUE 2

Fenómenos Ondulatorios. Éstos se presentan cuando las ondas viajan en un medio y se encuentran con obstáculos u otros medios en su camino, donde los efectos más comunes que se presentan son los siguientes fenómenos ondulatorios:

Difracción: se presenta cuando una onda viajera se encuentra con el borde de un obstáculo y deja de viajar en línea recta para rodearlo y continuar viajando en el medio. Se produce cuando la longitud de onda es mayor que las dimensiones del objeto.

La longitud de onda de las ondas de agua puede ser de varios metros. Si la longitud de onda es de un tamaño similar o mayor a una brecha en un dique del puerto, entonces la onda se difracta

Si la longitud de onda es menor que el tamaño de la brecha, entonces sólo un poco de difracción se producirá en el borde de la ola.

Reflexión: cuando una onda choca o incide sobre un medio al que no puede penetrar, cambia su dirección, es decir rebota, volviendo al mismo medio donde venía viajando.

Refracción: se presenta cuando la onda cambia su dirección y rapidez de propagación, al pasar a otro medio de distinta densidad.

Interferencia: se presenta cuando dos o más ondas se superponen combinándose entre sí, al encontrarse en el mismo punto en tiempo y espacio, modificando o alterando sus características por instantes de tiempo durante sus trayectos por el medio donde viajan, dando lugar a interferencias constructivas o destructivas.

Page 70: Temas Selectos Fisica 2

68

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Cierre

Utilizando la fórmula de rapidez de propagación de ondas mecánicas y electromagnéticas, resuelve los siguientes ejercicios.

1. Un barco envía una onda sonora a través de un sistema de sonar hacia el fondo del

océano, donde se refleja y se regresa. Si el viaje redondo es de 0.6 s ¿A qué profundidad se encuentra el fondo? Considera que la rapidez del sonido en el agua de mar es aproximadamente 1489 m/s.

2. La longitud de onda de la luz verde es de 5.3 manómetros. Calcula su frecuencia. 3. Una balsa de madera en el extremo de una línea pesquera, completa 8 oscilaciones en 10 segundos. Si se

requiere 3.6 segundos para que una sola onda recorra 11 metros, ¿cuál es la longitud de las ondas que se encuentran en el agua?

4. Una onda longitudinal tiene una frecuencia de 200 Hz y una longitud de onda de 4.2 m. ¿Cuál es la rapidez

de la onda?

Actividad: 3

Page 71: Temas Selectos Fisica 2

69 BLOQUE 2

Evaluación

Actividad: 3 Producto: Ejercicio práctico. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Identifica el concepto de onda en ejercicios prácticos.

Emplea el concepto de onda en ejercicios prácticos.

Se esmera en la solución de los ejercicios.

Autoevaluación C MC NC Calificación otorgada por el

docente

5. Una señal de T.V. es una onda electromagnética. ¿Cuántos kilómetros viajará tal señal en

0.2 segundos? 6. Una estación de radio transmite a una frecuencia de 100.9 MHz ¿Cuál es la longitud de onda de las ondas

producidas?

Actividad: 3 (continuación)

Page 72: Temas Selectos Fisica 2

70

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Secuencia didáctica 2. Movimiento armónico simple

Inicio

Evaluación

Actividad: 1 Producto: Cuestionario. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Conoce los conceptos en los que se basa el movimiento armónico simple.

Establece las bases para construir los conceptos en los que se basa el movimiento armónico simple.

Emprende la actividad con responsabilidad.

Autoevaluación C MC NC Calificación otorgada por el

docente

Contesta las siguientes preguntas y participa en una discusión grupal conducida por el profesor.

1. ¿Qué es una oscilación? 2. ¿Qué es una vibración? 3. ¿En qué se parecen una onda y una vibración?

Actividad: 1

Page 73: Temas Selectos Fisica 2

71 BLOQUE 2

Desarrollo

Movimiento armónico simple.

Muchos tipos de movimientos se repiten una y otra vez en el tiempo, como por ejemplo: un péndulo oscilante de un reloj de pedestal, las vibraciones sonoras producidas por un clarinete, el movimiento de los pistones del motor de un automóvil, una cuerda que se agite constantemente hacia arriba y hacia abajo, etc. A este tipo de movimiento se le llama Movimiento Periódico u Oscilación. Un movimiento periódico se caracteriza porque un cuerpo oscila de un lado y al otro de un punto o su posición de equilibrio en una dirección determinada y en intervalos iguales de tiempo. Cuando la partícula se aleja de su posición de equilibrio y se suelta, entra en acción una fuerza o un momento de torsión para volverlo al punto de equilibrio. Sin embargo, para cuando llegue al punto central ya habrá adquirido cierta energía cinética que lo hace pasarse hasta detenerse del otro lado, de donde será impulsado otra vez al punto de equilibrio, repitiéndose así sucesivamente con respecto al tiempo. Por ejemplo, un cuerpo con masa m se mueve horizontalmente sin fricción, de modo que sólo puede desplazarse en el eje x. El cuerpo está conectado a un resorte de masa despreciable, que puede estirarse o comprimirse. Si el cuerpo se desplaza respecto a su posición de equilibrio, la fuerza del resorte tiende a regresarlo a su posición central. A una fuerza con esta característica se le conoce como fuerza de restitución o restauradora

Por lo anterior, un Movimiento Armónico Simple (MAS) es el tipo de movimiento más sencillo de oscilación y se define como un movimiento vibratorio bajo la acción de una fuerza de restitución F, la cual es directamente proporcional al desplazamiento x respecto al equilibrio. Es un movimiento idealizado, donde se considera que sobre el sistema no existen las fuerzas de fricción. Conceptos fundamentales.

Posición de equilibrio: es la posición en la cual no actúa ninguna fuerza neta sobre la partícula oscilante.

Amplitud: es la magnitud máxima del desplazamiento respecto al punto de equilibrio, es decir el valor máximo de |x|; siempre es positivo y se denota por la letra “A“.

Período: es el tiempo requerido para que se realice una oscilación completa o un ciclo, está dado por

k

m 2 T

Donde k es la constante del resorte y m la masa del objeto.

Frecuencia: es el número de veces en que se repite una oscilación en la unidad del tiempo.

T

1f entonces:

m

k

2

1f

Page 74: Temas Selectos Fisica 2

72

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Frecuencia angular: es la rapidez de un cambio de un desplazamiento angular y siempre se mide en radianes/segundo.

ω = 2π f

Fase: es el estado de vibración inicial.

Ley de Hooke. Cuando un objeto es sometido a fuerzas externas, sufre cambios de tamaño o de forma; o de ambos. Estos cambios dependen de las fuerzas intermoleculares que existen en el interior del material; es decir, sufre un esfuerzo o tensión en el interior del material, que provoca la deformación del mismo.

Donde la Ley de Hooke se enuncia de la siguiente manera: “La fuerza que ejerce el resorte sobre

un cuerpo (fuerza de restitución) es directamente proporcional al desplazamiento respecto al

equilibrio”.

F = −k x

Donde “k” es la constante de resorte y “x” el desplazamiento. El valor de la constante depende de la forma del resorte y del material que ha sido construido. El signo menos de la Ley de Hooke indica que la fuerza tiene sentido opuesto al desplazamiento. Por ejemplo, cuando un resorte se estira o comprime, su fuerza se opone al desplazamiento, es decir, se trata de una fuerza restauradora. Por lo que resulta que: una vibración ondulatoria requiere siempre una fuerza restauradora. Los ejemplos comunes en que se utiliza la Ley de Hooke son: una masa suspendida en un resorte, las oscilaciones pequeñas de un péndulo simple, las de un péndulo torsional, etc. No es válida si la fuerza externa supera el límite de resistencia que ofrece una material para no quedar deformado permanentemente. Al máximo esfuerzo que un material puede soportar antes de quedar permanentemente deformado se denomina límite de elasticidad.

Ejemplo:

Un objeto de masa de 20 Kg que cuelga de un resorte que cumple con la Ley de Hooke, presenta una constante de elasticidad de 300 N/m. Determina la deformación en centímetros que causa el objeto. Datos:

F = −kx m = 20 Kg k = 300 N/m x = ?

kxF

k

Fx

En este caso F equivale al peso del cuerpo:

k

mgx

mN300

sm8.9Kg20

x2

Resultado: cm 33.65x

Ley de Hooke.

Page 75: Temas Selectos Fisica 2

73 BLOQUE 2

Ejemplo: ¿Cuál es el período de oscilación de una masa de 0.2 kg. que oscila en un resorte con una constante 16 N/m? Datos:

m = 0.2 Kg k = 16 N/m T = ?

m

k

2

1f

Kg2.0

m/N16

2

1f

T = 1/f = 1/1.42 Hz T = 0.702 s

En forma individual resuelve los siguientes ejercicios: 1. Un cuerpo de masa desconocida se une a un resorte ideal con constante de fuerza de 140

N/m. Se observa que vibra con una frecuencia de 8 Hz. Calcula: a) el período, b) la frecuencia angular y c) la masa del cuerpo.

2. Se crea un oscilador armónico usando un bloque de 0.60 Kg que se desliza sobre una superficie sin fricción

y un resorte ideal con constante de fuerza desconocida. Se determina que el oscilador tiene un período de 0.15 s. Calcula la constante de fuerza del resorte.

Actividad: 2

Page 76: Temas Selectos Fisica 2

74

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Evaluación

Actividad: 2 Producto: Ejercicio práctico. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Conoce aplicaciones prácticas de la ley de Hooke.

Soluciona situaciones cotidianas donde se aplica la ley de Hooke.

Realiza el ejercicio con esmero.

Autoevaluación C MC NC Calificación otorgada por el

docente

3. Un oscilador armónico tiene una masa de 800 gr y un resorte ideal de con k = 180 N/m.

Determina: a) el período, b) la frecuencia y c) la frecuencia angular.

4. Cuando una masa de 300 gr se cuelga de un resorte, este se estira 7 cm. ¿Cuál es la frecuencia de vibración, si la masa se jala un poco más debajo de la posición de equilibrio y luego se suelta?

Actividad: 2

Page 77: Temas Selectos Fisica 2

75 BLOQUE 2

Cálculo de Posición, Velocidad y Aceleración en el Movimiento Armónico Simple. Cálculo de Posición

Cuando una masa presenta un Movimiento Circular Uniforme (MCU), el movimiento se puede graficar o proyectar en un papel, describiendo un movimiento en términos de una función senoidal, es decir, de un Movimiento Armónico Simple (MAS). Como los valores máximos y mínimos de la función seno son: +1 y −1, el movimiento se realiza en una región del eje x comprendida entre –A y +A, donde A es el radio de giro del mcu.

El MAS de un cuerpo real se puede considerar como el movimiento de la “proyección” (sombra que se proyecta) de un cuerpo que describe un MCU de radio igual a la amplitud y velocidad angular, sobre el diámetro vertical de la circunferencia que recorre. Esto nos permite encontrar más fácilmente las ecuaciones del MAS sin tener que recurrir a cálculos matemáticos complejos.

La ecuación general de posición de cualquier movimiento armónico simple es: x(t) = Asen(ωt +Φ) donde: x: es la posición en cualquier instante, respecto de la posición de equilibrio, de la partícula que vibra (también se le

llama “elongación”) t: es el tiempo en segundos. A: es la amplitud. ω: es la frecuencia angular y se mide en radianes/s; se relaciona con la constante del resorte de la siguiente forma:

Φ: Es el ángulo de fase y su valor depende del instante que se selecciona como cero en la escala del tiempo, es

decir, cuando t = 0, Φ = 0.

Relación de MCU y MAS

m

k

Page 78: Temas Selectos Fisica 2

76

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Ejemplo: La posición de una masa fija de un resorte se determina por la siguiente ecuación:

x = 0.25 sen (52.3t) Donde x se expresa en metros y t en segundos. ¿Cuál es la frecuencia de oscilación y el período? Datos:

A = 0.25 m ω = 52.3 rad/s a) f = ? b) T = ?

f2

2f

2

srad3.52

f

Hz32.8f

seg 12.0T

Hz32.8

1T

f

1T

Cálculo de Velocidad La velocidad se obtiene derivando la ecuación referente a la posición de cualquier movimiento armónico simple.

dt

dxV , entonces:

tcosAV Cuando el objeto pasa por la posición de equilibrio, se encuentra que la velocidad máxima es:

V máx =ωA Cuando se conocen las condiciones de posición inicial x0 y rapidez inicial v0 en el instante t=0, tenemos que:

Cos AV

Sen AX

0

0

La amplitud A y la fase inicial φ se determina:

2

2

02

0

vxA

0

0

v

xtan

Page 79: Temas Selectos Fisica 2

77 BLOQUE 2

Ejemplo: Una masa de 0.6 Kg, fija a un resorte ideal, ejecuta un MAS de 0.5 m de amplitud. La velocidad máxima de la masa durante este movimiento es de 7 m/s. Determina: a) La frecuencia del MAS y b) la constante del resorte. Datos: m = 0.6 Kg A = 0.5 m v = 7 m/s a) f = ? b) k = ? Solución: a)

Avmáx

Hz23.2f

2

srad14

f

:tenemos f,2 como

srad14

m5.0

sm7

A

vmáx

b)

mN6.117k

Kg6.0s

rad14k

m k

m

k

2

2

Page 80: Temas Selectos Fisica 2

78

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Evaluación

Actividad: 3 Producto: Ejercicio práctico. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Conoce aplicaciones prácticas del cálculo de Posición, Velocidad y Aceleración en el Movimiento Armónico Simple.

Soluciona situaciones cotidianas del cálculo de Posición, Velocidad y Aceleración en el Movimiento Armónico Simple.

Realiza el ejercicio con responsabilidad.

Autoevaluación C MC NC Calificación otorgada por el

docente

Resuelve los siguientes ejercicios.

1. La posición de un objeto se determina por la siguiente ecuación: x = 3.0 sen (20πt) cm Determina la amplitud, la frecuencia y el período de las oscilaciones.

2. Una masa de 800 gr se sujeta a un resorte. El sistema se pone a vibrar a su frecuencia natural de 5 Hz con

una amplitud de 6.0 cm. Encuentra la constante de resorte y la velocidad máxima de la masa.

Actividad: 3

Page 81: Temas Selectos Fisica 2

79 BLOQUE 2

Cálculo de aceleración

En al MAS, la aceleración no es constante ya que depende de la posición de la partícula y ésta varía con respecto al tiempo; la aceleración se obtiene con la segunda derivada de la ecuación de posición con respecto al tiempo o

derivando la ecuación de velocidad con respecto al tiempo:

dt

dv

dt

xda

2

tAsena 2

Recuerda que el signo menos de la aceleración, indica que es proporcional pero con sentido contrario al desplazamiento. Cuando el ángulo de fase ( Ф ) es cero, la aceleración queda:

m

kx xa 2

Ejemplo:

Un objeto está vibrando a lo largo de una línea recta con un movimiento armónico simple. Cuando está a 10.0 cm de su posición promedio tiene una aceleración de 0.6 m/s2. Determina su frecuencia de oscilación. Datos:

x = 10 cm a = - 0.6 m/s2

a) f = ?

xa 2

x

a

m10.0

sm6.0 2

s

rad45.2

Hz389.0f

2

srad45.2

f

2f

f2

Page 82: Temas Selectos Fisica 2

80

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Cierre

En equipo de tres resuelvan el siguiente ejercicio y coméntenlo con su profesor.

1. Un objeto de 0.50 Kg presenta un movimiento armónico simple y tiene una aceleración de –

3.0 m/s2 cuando x = 45 cm. ¿Cuánto tarda una oscilación?

2. La posición de una masa fija a un resorte se determina por x = 0.20 sen (47.1t) Donde x se expresa en metros y t en segundos. ¿Cuáles son la amplitud, la frecuencia y el período del movimiento?

Actividad: 4

Page 83: Temas Selectos Fisica 2

81 BLOQUE 2

Evaluación

Actividad: 4 Producto: Ejercicio práctico. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Conoce aplicaciones prácticas del M.A.S.

Soluciona situaciones cotidianas donde se presenta el M.A.S.

Realiza el ejercicio con responsabilidad.

Autoevaluación C MC NC Calificación otorgada por el

docente

3. Una masa de 800 g, fija a un resorte ideal, ejecuta un MAS de 60 cm de amplitud. La

velocidad máxima de la masa durante este movimiento es de 9 m/s. Determina: a) la frecuencia del MAS y b) la constante del resorte.

4. Una masa de 0.6 Kg se sujeta a un resorte. El sistema se pone a vibrar con un período de oscilación de 0.125 s y una amplitud de 8.0 cm. Encuentra la constante de resorte y la velocidad máxima de la masa.

Actividad: 4 (continuación)

Page 84: Temas Selectos Fisica 2

82

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Secuencia didáctica 3. Péndulo simple y compuesto

Inicio

Evaluación

Actividad: 1 Producto: Cuestionario. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Conoce el concepto de péndulo. Distingue el concepto de péndulo. Es atento y responsable al realizar el cuestionario.

Autoevaluación C MC NC Calificación otorgada por el

docente

Desarrolla lo que se pide y participa en un debate grupal.

1. ¿Qué es un péndulo simple?

__________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

2. ¿Qué es un Péndulo compuesto? __________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

_________________________________________________________________________________________________

Actividad: 1

Page 85: Temas Selectos Fisica 2

83 BLOQUE 2

Desarrollo

Realiza en binas la siguiente investigación y posteriormente participa en una discusión grupal moderada por tu profesor. 1. Define los siguientes péndulos: a) Péndulo de Foucault. __________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

b) Péndulo de Newton. __________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

c) Doble Péndulo __________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

__________________________________________________________________________________________________

2. Investiga el concepto de Momento de Inercia, las fórmulas para cada figura en especial y el Teorema del

Paralelo.

Actividad: 2

Page 86: Temas Selectos Fisica 2

84

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Evaluación

Actividad: 2 Producto: Trabajo de investigación. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Reconoce los tipos de péndulos.

Identifica los tipos de péndulos. Muestra interés en realizar la actividad.

Coevaluación C MC NC Calificación otorgada por el

docente

Actividad: 2 (continuación)

Page 87: Temas Selectos Fisica 2

85 BLOQUE 2

Péndulo Simple. Es un ejemplo del MAS, que consiste en una masa puntual suspendida de un hilo con masa despreciable y no estirable, donde si la masa se mueve de su posición de equilibrio, ésta oscilará alrededor de dicha posición.

Como se observa en la figura anterior, la trayectoria de la masa puntual no es recta, sino es el arco de una circunferencia con radio L igual a la longitud del hilo. En base a la dinámica del péndulo simple, las fuerzas que actúan sobre la lenteja (masa del cuerpo suspendida en el

hilo) son dos: el peso de la masa y la tensión del hilo (T). El peso de la masa m se descompone vectorialmente, la componente en el eje Y se equilibra con la tensión del hilo T:

T = mg Cosθ

La fuerza que actúa sobre el eje X es la fuerza de restitución, que es la que origina el movimiento oscilatorio:

F = - mg senθ

Es decir:

Para oscilaciones pequeñas, cuando el ángulo θ toma valores pequeños, se cumple que: sen θ ≅ θ, cuando θ se

mide en radianes.

Movimiento de un Péndulo Simple

L

x mg F

Page 88: Temas Selectos Fisica 2

86

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Relacionando con la Ley de Hooke tenemos:

Por lo anterior la frecuencia angular (ω), para amplitudes pequeñas nos da:

L

g

De la misma forma la frecuencia y el período nos dan las siguientes ecuaciones: Frecuencia:

L

g

2

1f

Período:

g

L 2 T

Se puede observar, que si las oscilaciones son pequeñas, el valor del período y de la frecuencia de un péndulo para un valor dado de la gravedad g, depende solamente de su longitud L; es decir; si analizamos la ecuación anterior, vemos que si aumenta su longitud aumenta el período. Ejemplos: ¿Cuál debe ser la longitud de un péndulo simple cuyo período es de un segundo? Datos:

T = 1 s g = 9.8 m/s2 L = ?

g

L 2 T

cm 8.24m 248.0L

4

sm8.9s1L

4

gTL

2

22

2

2

L

mgk

Page 89: Temas Selectos Fisica 2

87 BLOQUE 2

Péndulo Físico o Compuesto. Es un cuerpo rígido capaz de girar libremente alrededor de un eje fijo. La diferencia del péndulo simple es que es idealizado y el péndulo compuesto es un péndulo real no puntual.

La figura anterior, muestra que un cuerpo de forma irregular puede girar sin fricción alrededor de un eje que pasa por el punto de origen. Cuando el cuerpo se desplaza de su punto de origen, el peso causa un momento de torsión de

restitución τ

lsenmg

El signo negativo indica que el momento de torsión va en contra de desplazamiento. Si se suelta el cuerpo, oscila

alrededor de su posición de equilibrio, pero no es un MAS ya que el momento de torsión es proporcional al sen θ, no

a θ. Sin embargo, para valores pequeños de θ, el movimiento es aproximadamente un Movimiento Armónico Simple.

mgL

Donde:

τ: es el momento de torsión y su unidad en el sistema internacional es N x m.

m: masa del cuerpo

g: aceleración gravitacional.

L: distancia desde el punto de origen hasta el centro de masa.

θ: ángulo.

Para poder analizar el tipo de ejercicios en este tema, es muy importante que recuerdes el concepto de momento de inercia y su fórmula. La ecuación del movimiento de rotación con respecto a un punto, se basa en la Segunda Ley de Newton:

I

Donde I = momento de inercia del cuerpo con respecto a un eje de rotación y α = la aceleración angular

2

2

dt

d

Péndulo Físico o Compuesto

Page 90: Temas Selectos Fisica 2

88

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Es decir:

2

2

dt

d I

Entonces:

I

mgL

dt

d

2

2

Se puede observar que el valor de m

k en el sistema masa resorte, corresponde a

I

mgL, entonces la frecuencia

angular se determina:

I

mgL

Y el período:

mgL

I2T

Ejemplo: Se tiene una varilla uniforme de un metro de longitud que pivota en su extremo. ¿Cuál es el período de su movimiento?

Datos:

L = 1m T= ?

La fórmula del momento de inercia es 2mL

3

1I

Y la distancia del pivote al centro de masa es L/2

Page 91: Temas Selectos Fisica 2

89 BLOQUE 2

Por lo tanto:

1.64sT :Resultado

8.93

122

:dosustituyen

3

22

2

31

2

2

2

2

sm

mT

g

LT

Lmg

mLT

mgL

IT

Ejemplo: Un disco uniforme de 40 cm de radio tiene un pequeño agujero a la mitad entre el centro y la orilla. El disco está sostenido por un clavo en la pared que pasa por el agujero. ¿Cuál es el período de este péndulo físico para oscilaciones pequeñas? Datos:

R = 40 cm

T= ? En física, el teorema de los ejes paralelos o teorema de Steiner es usado en la determinación del momento de inercia de un sólido rígido sobre cualquier eje, dado el momento de inercia del objeto sobre el eje paralelo que pasa a través del centro de masa y de la distancia perpendicular (r) entre ejes.

El momento de inercia sobre el nuevo eje es dado por 2

CM mLII donde:

ICM es el momento de inercia del objeto sobre un eje que pasa a través de su centro de masas; m es la masa del objeto; L es la distancia perpendicular entre los dos ejes.

La fórmula del momento de inercia para el centro de masa del disco de este ejemplo es 2

CM mR2

1I y el nuevo eje

tiene L=R/2, entonces mR 4

3I 2

El período será:

2

2

sm8.94

m40.062

g4

R62

2

Rmg

mR4

3

2mgL

I2T

s55.1T

Page 92: Temas Selectos Fisica 2

90

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

En equipo de tres resuelvan los siguientes ejercicios y muestren los resultados a tu profesor:

1. Un péndulo consiste de una lenteja de masa de 3 Kg y una cuerda de longitud L. ¿Cuál

debe ser el valor de L para que el período del péndulo sea de 2 s? 2. La aceleración de la gravedad varía ligeramente sobre la superficie de la Tierra. Si un péndulo tiene un

período de 3.0 s en un lugar donde la g = 9.803 m/s2 y en otro lugar presenta un período de 3.0024 s. ¿Cuál es el valor de la gravedad en este último lugar?

Actividad: 3

Page 93: Temas Selectos Fisica 2

91 BLOQUE 2

Evaluación

Actividad: 3 Producto: Ejercicio práctico. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Identifica las fórmulas para el trabajo con péndulos.

Emplea fórmulas para el trabajo con péndulos.

Comparten responsabilidades durante el ejercicio.

Coevaluación C MC NC Calificación otorgada por el

docente

3. Un adorno navideño con forma de esfera hueca de 0.02 Kg y de radio 60 cm se cuelga de una rama con lazo de alambre en la superficie de la esfera. Si el adorno se desplaza una distancia corta y se suelta, oscila como un péndulo físico.

Determina el período, si el momento de inercia de la esfera respecto al pivote es de 5mR2/3.

Actividad: 3 (continuación)

Page 94: Temas Selectos Fisica 2

92

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Cierre

Lee cuidadosamente y responde los siguientes cuestionamientos, subraya la opción que consideres correcta.

1. Denominamos onda:

a) A la transmisión de una perturbación en un medio cualquiera, con desplazamiento de masa y aporte de energía.

b) Al fenómeno de transmisión de una perturbación de un punto a otro del espacio sin que exista un transporte neto de materia entre ambos, pero sí de energía.

c) A la transmisión de energía de un punto a otro del espacio con desplazamiento de masa. d) Al lugar geométrico de los puntos alcanzados por la perturbación en el mismo instante.

2. Cuando una onda se propaga, su rapidez de propagación depende de:

a) La amplitud de la onda. b) La frecuencia de la onda. c) Las propiedades del medio donde se propaga. d) La longitud de onda.

3. Son perturbaciones que necesitan de un medio para poder propagarse:

a) Ondas mecánicas. b) Ondas transversales. c) Ondas electromagnéticas. d) Ondas longitudinales.

4. Se produce una onda estacionaria por la superposición de dos ondas si:

a) Su amplitud, frecuencia y rapidez de propagación son idénticas. b) Su amplitud y frecuencia son iguales pero sus direcciones de propagación son opuestas. c) Su amplitud y dirección de propagación son idénticas, pero con frecuencias diferentes. d) Son de igual amplitud, dirección opuesta de propagación, pero con frecuencias diferentes.

5. Se define como la magnitud máxima del desplazamiento de una onda respecto al punto de equilibrio.

a) Cresta. b) Longitud de Onda. c) Valle. d) Amplitud.

6. Debajo del agua se produce un sonido que se propaga hacia la superficie y parte de este sonido se transmite también al aire. Si la rapidez de propagación en el agua es de 1450 m/s y en el aire de 340 m/s., cuando el sonido pasa del agua al aire, el efecto sobre la frecuencia y longitud de onda es:

a) La frecuencia y longitud de onda permanecen sin cambio. b) La frecuencia aumenta y la longitud de onda disminuye. c) La frecuencia permanece sin cambio y la longitud de onda aumenta. d) La frecuencia disminuye y la longitud de onda aumenta

Actividad: 4

Page 95: Temas Selectos Fisica 2

93 BLOQUE 2

Evaluación

Actividad: 4 Producto: Ejercicio de opción múltiple.

Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Identifica los conceptos de péndulos.

Reafirma los conceptos de péndulos.

Reconoce de manera analítica el trabajo con péndulos.

Autoevaluación C MC NC Calificación otorgada por el

docente

7. Una onda viajera pasa por un punto de observación. En este punto, el intervalo entre crestas

sucesivas es de 0.2 s, por lo tanto:

a) La longitud de onda es de 5 m. b) La longitud de onda es de 2 m. c) La rapidez de propagación es de 5 m/s. d) La frecuencia es de 5 Hz.

8. En un movimiento armónico simple:

a) La aceleración es nula cuando la elongación es máxima. b) La elongación es cero cuando la velocidad es máxima. c) La aceleración es directamente proporcional a la velocidad pero de signo contrario. d) La aceleración es directamente proporcional a la frecuencia.

9. La ecuación X = 0.04 sen (16π t + 4πy), describe una onda, en donde x y y se dan en metros y t en segundos. La frecuencia y amplitud de la onda son:

a) 16 MHz y 2.5 cm. b) 8 Hz y 4 cm. c) 8 MHz y 4 cm. d) 4 Hz y 2.5 cm.

10. La ecuación X = 3 sen (π t +)m, describe una onda, en donde t se da en segundos. El período del sistema es:

a) 2 s. b) 2 Hz. c) 3 m. d) 0.5 s.

Actividad: 4 (continuación)

Page 96: Temas Selectos Fisica 2

94

APLICAS CONCEPTOS SOBRE LA MECÁNICA ONDULATORIA

Page 97: Temas Selectos Fisica 2

Tiempo asignado: 16 horas

Distingues los procesos relativos al

calor, las leyes de los gases y la

termodinámica.

Competencias disciplinares extendidas:

2. Evalúa las implicaciones del uso de la ciencia y la tecnología, así como los fenómenos relacionados con el origen, continuidad y

transformación de la naturaleza para establecer acciones a fin de preservarla en todas sus manifestaciones.

3. Aplica los avances científicos y tecnológicos en el mejoramiento de las condiciones de su entorno social.

4. Evalúa los factores y elementos de riesgo físico, químico y biológico presentes en la naturaleza que alteran la calidad de vida de

una población para proponer medidas preventivas.

6. Utiliza herramientas y equipos especializados en la búsqueda, selección, análisis y síntesis para la divulgación de la información

científica que contribuya a su formación académica.

7. Diseña prototipos o modelos para resolver problemas, satisfacer necesidades o demostrar principios científicos, hechos o

fenómenos relacionados con las ciencias experimentales.

8. Confronta las ideas preconcebidas acerca de los fenómenos naturales con el conocimiento científico para explicar y adquirir

nuevos conocimientos.

10. Resuelve problemas establecidos o reales de su entorno, utilizando las ciencias experimentales para la comprensión y mejora

del mismo.

Unidad de competencia:

Resuelve problemas relacionados con el calor, los gases ideales y la termodinámica, a partir del análisis de sus conceptos y la

aplicación de sus leyes, mostrando una actitud participativa, crítica y responsable.

Atributos a desarrollar en el bloque:

4.1. Expresa ideas y conceptos mediante representaciones lingüísticas, matemáticas o gráficas.

5.1. Sigue instrucciones y procedimientos de manera reflexiva, comprendiendo cómo cada uno de sus pasos contribuye al alcance

de un objetivo.

5.2. Ordena información de acuerdo a categorías, jerarquías y relaciones.

5.3. Identifica los sistemas y reglas o principios medulares que subyacen a una serie de fenómenos.

5.4. Construye hipótesis y Diseña y aplica modelos para probar su validez.

5.6. Utiliza las tecnologías de la información y comunicación para procesar e interpretar información.

6.1. Elige las fuentes de información más relevantes para un propósito específico y discrimina entre ellas de acuerdo a su relevancia

y confiabilidad.

6.3. Reconoce los propios prejuicios, modifica sus propios puntos de vista al conocer nuevas evidencias, e integra nuevos

conocimientos y perspectivas al acervo con el que cuenta.

7.1. Define metas y da seguimiento a sus procesos de construcción de conocimientos.

8.1. Propone manera de solucionar un problema y desarrolla un proyecto en equipo, definiendo un curso de acción con pasos

específicos.

8.2. Aporta puntos de vista con apertura y considera los de otras personas de manera reflexiva.

8.3. Asume una actitud constructiva, congruente con los conocimientos y habilidades con los que cuenta dentro de distintos equipos

de trabajo.

Page 98: Temas Selectos Fisica 2

96

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Secuencia didáctica 1.

Calor.

Inicio

Evaluación

Actividad: 1 Producto: Cuestionario. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Reconoce la utilidad del calor en

situaciones cotidianas.

Identifica la utilidad del calor en

situaciones cotidianas.

Atiende las indicaciones del docente

para la resolución del cuestionario.

Autoevaluación:

C MC NC

Calificación otorgada por el docente:

Desarrolla lo que se pide y posteriormente participa en un debate grupal.

1. Define qué es calor:

2. Menciona dos situaciones cotidianas en las que se presente la transmisión del calor:

3. Menciona dos unidades de medición del calor que conozcas:

Actividad: 1

Page 99: Temas Selectos Fisica 2

97

BLOQUE 3

Desarrollo

Concepto de calor.

Durante muchos años se creyó que el calor era un componente que impregnaba la materia y

que los cuerpos absorbían o desprendían, según fuera el caso.

En el siglo XVIII, el físico escocés Joseph Black (1728-1799), estableció que el calor era una

sustancia fluida que contenía todo cuerpo y la llamó “calórico”, el cual podía mezclarse y pasar

a otro cuerpo. Así, por ejemplo, el agua hirviendo contenía más calórico que el agua fría, y al

mezclarlas, este fluido se repartía uniformemente en toda la mezcla.

Poco tiempo después, la hipótesis del calórico fue modificada por Benjamin Thomson, físico norteamericano, quien

demostró que la teoría de Black no permitía explicar ciertos resultados obtenidos en pruebas experimentales

concernientes al calor.

Thomson dedujo que si un cuerpo se enfría es porque pierde parte del calor que contiene y si

éste fuera realmente un fluido (calórico), entonces el cuerpo frio tendría una masa menor; la

realidad nos muestra que un cuerpo tiene la misma masa estando frio o caliente. Estas

conclusiones llevaron a Thomson a expresar una nueva hipótesis tocante al calor, fundamentada

en el hecho de que al frotar un cuerpo con otro, ambos cuerpos se calentaban. A partir de este

resultado concluyó que el calor estaba relacionado con el movimiento de las partículas que

constituían a la materia y precisamente ese movimiento es el calor que los cuerpos poseen. Si

las partículas que conforman a un cuerpo se mueven más de prisa, el cuerpo se calienta y si la

rapidez de movimiento disminuye, el cuerpo se enfría.

Simultáneamente con el trabajo de Thomson, otros hombres de ciencia, entre ellos James Prescott Joule, formularon

otras hipótesis que hasta hoy en día permanecen vigentes, ya que todas ellas se encuentran respaldadas en los

estudios realizados que establecen que la materia está constituida por pequeñas partículas que están en constante

movimiento.

En conclusión, el calor no es un fluido, así como lo es el agua o el aire, no es algo que tenga una

masa determinada ni que ocupe un lugar en el espacio, el calor es, simplemente, movimiento de

partículas (átomos y moléculas). Se relaciona directamente con la energía cinética a nivel

molecular, por lo que podemos afirmar que el calor es una forma de energía (energía calorífica) y

que fluye de los cuerpos que se encuentran a mayor temperatura a los de menor temperatura.

Para que esto suceda, se requiere una diferencia de temperatura. El cuerpo que recibe calor

aumenta su temperatura, el que cede calor la disminuye. Resulta evidente que los dos

conceptos, calor y temperatura, están relacionados entre sí.

Joseph Black

Benjamin Thomson

James Prescott Joule

Page 100: Temas Selectos Fisica 2

98

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Formas de propagación del calor.

El calor puede conducirse de un lugar a otro o de un cuerpo a otro, principalmente por tres maneras diferentes:

conducción, convección y radiación. Aunque las tres se dan de forma simultánea, una de ellas es la que predomina

en cada situación dada. Sentimos frio cuando nuestro cuerpo pierde calor. Cuanto mayor es la velocidad a la que

perdemos calor, mayor es también la sensación de frio.

Conducción

Si alguien sujeta una barra de hierro con la mano por un extremo

y el otro extremo lo coloca en el fuego, es probable que tenga

que soltarla si no quiere quemarse. Lo que sucede es que, a

través de la barra de hierro, así como en el interior de cualquier

sólido, el calor se transmite por un mecanismo denominado

conducción.

La conducción tiene lugar cuando dos objetos a diferentes

temperaturas entran en contacto. El calor fluye desde el objeto

más caliente hasta el más frio, hasta que los dos objetos

alcanzan una misma temperatura.

La conducción es el transporte de calor a través de una

sustancia y se produce gracias a las colisiones de las moléculas.

En el lugar donde los dos objetos se ponen en contacto, las moléculas del objeto caliente, que se mueven más de

prisa, colisionan con las del objeto frio, que se mueven más despacio. A medida que colisionan las moléculas rápidas

ceden algo de su energía a las más lentas. Estas a su vez colisionan con otras moléculas en el objeto frio. Este

proceso continua hasta que la energía del objeto caliente se extiende por el objeto frio.

Page 101: Temas Selectos Fisica 2

99

BLOQUE 3

Algunas sustancias conducen el calor mejor que otras. Los

sólidos son mejores conductores que los líquidos y estos mejores

que los gases. Los metales son muy buenos conductores de

calor, mientras que el aire es muy mal conductor.

Podemos experimentar cómo el calor se transfiere por

conducción, siempre que tocamos algo que está más caliente o

más frio que nuestra piel, por ejemplo cuando nos lavamos las

manos en agua caliente o fría.

Convección

En líquidos y gases, la convección es prácticamente la forma

más eficiente de transferir calor. Tiene lugar cuando masas

(porciones) de fluido caliente ascienden hacia las regiones de

fluido frio. Cuando esto ocurre, el fluido frio desciende tomando

el lugar del fluido caliente que ascendió.

Este ciclo da lugar a una continua circulación en que el calor se

transfiere a las regiones frías. Se puede ver cómo tiene lugar la

convección cuando hierve agua en una olla. Las burbujas son las

regiones calientes de agua que ascienden hacia las regiones

más frías de la superficie.

Probablemente cada uno de nosotros estemos familiarizado con la expresión: "el aire caliente sube y el frio baja", que

es una descripción del fenómeno de convección en la atmosfera. El calor en este caso se transfiere por la circulación

del aire.

Page 102: Temas Selectos Fisica 2

100

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Radiación

Tanto la conducción como la convección requieren la presencia de materia como medio para transferir calor. La

radiación es una forma de transferencia de calor que no requiere de contacto físico entre la fuente y el receptor del

calor. Por ejemplo, podemos sentir el calor del Sol aunque no podemos tocarlo.

La radiación es la forma de transmisión en la que el calor se puede transferir a través del espacio vacío. Conocida

también como radiación infrarroja, es un tipo de radiación electromagnética (o luz). Por tanto, es un tipo de transporte

de calor que consiste en la propagación de ondas electromagnéticas que viajan a la velocidad de la luz

(300,000 km/s). No se produce ningún intercambio de masa y no se necesita ningún medio.

Unidades de medida del calor.

Aun cuando no sea posible determinar el contenido total de energía calorífica de un

cuerpo, puede medirse la cantidad que se absorbe o se cede al ponerlo en contacto

con otro cuerpo a diferente temperatura. Esta cantidad de energía en tránsito, de los

cuerpos de mayor temperatura a los de menor temperatura es precisamente lo que se

entiende en física por calor.

La cantidad de calor, ganado o perdido por un cuerpo, se expresa en las mismas

unidades que la energía y el trabajo, es decir, en joules (J). Otra unidad es la caloría

(cal), definida como la cantidad de calor necesaria para elevar la temperatura de

1 gramo de agua a 1 atmósfera de presión desde 20 ºC hasta 21 ºC.

Para cantidades mayores de calor, se utiliza un múltiplo de la caloría, la kilocaloría (kcal), que equivale a 1000 calorías.

La energía mecánica puede convertirse en calor a través de la fricción o

rozamiento, y el trabajo mecánico necesario para producir 1 caloría se conoce

como equivalente mecánico del calor. Una caloría equivale a 4.185 J.

El BTU, cuyas siglas significan: British Termal Unit, (unidad térmica británica), es

una unidad para medir el calor en el sistema inglés y se define como la cantidad de

calor que se debe aplicar a una libra de agua (454 g) para que su temperatura se

eleve en un grado Fahrenheit, en condiciones atmosféricas normales.

Algunas equivalencias entre

las diversas unidades del

calor son:

1 BTU = 252 cal

1 cal = 4.18 J

1 kcal = 1000 cal

1 BTU = 1055 J

Page 103: Temas Selectos Fisica 2

101

BLOQUE 3

Evaluación

Actividad: 2 Producto: Ejercicio práctico. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Identifica las unidades de calor. Distingue en la práctica los tipos de

unidades de calor.

Se esmera con responsabilidad

al realizar la actividad.

Coevaluación:

C MC NC Calificación otorgada por el

docente:

En binas, realicen la siguiente actividad y compartan su trabajo al grupo en plenaria.

a) Mencionen cuatro situaciones cotidianas en las que se presenten en cada una de las tres formas de

transmisión del calor.

b) Investiguen en varias fuentes, la teoría del flogisto.

c) Realicen las siguientes conversiones considerando las equivalencias descritas en el tema “Unidades de

calor”.

a) Convertir 5.3 Joules a calorías.

b) Convertir 1.8 kcal a BTU.

c) Convertir 873 cal a Joules.

Actividad: 2

Page 104: Temas Selectos Fisica 2

102

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Capacidad calorífica, calor específico y calor latente.

La capacidad calorífica de una sustancia es el calor necesario para elevar, en una unidad termométrica, la

temperatura de una unidad de masa de dicha sustancia. Experimentalmente se ha observado que, al suministrar la

misma cantidad de calor a dos materiales diferentes, el aumento de temperatura no es el mismo en cada uno de

ellos. Por consiguiente, para conocer el aumento de temperatura que tiene un material cuando recibe calor,

emplearemos su capacidad calorífica, la cual se define como el cociente entre la cantidad de calor ΔQ que recibe y su

correspondiente elevación de temperatura ΔT.

T

QC

en donde:

Es evidente que mientras más alto sea el valor de la capacidad calorífica de una sustancia, requiere mayor cantidad

de calor para elevar su temperatura.

La cantidad de calor o simplemente el calor, puede ser expresado en calorías, kilocalorías, joules, ergios o BTU; y la

temperatura en ºC, ºK, o ºF; por tal motivo, las unidades de la capacidad calorífica pueden ser en: cal/ºC, kcal/ºC,

J/ºC, J/ºK, erg/ºC, BTU/ºF.

Por otro lado, si calentamos diferentes masas de una misma sustancia, observaremos que su capacidad calorífica es

distinta. Por ejemplo, al calentar dos trozos de hierro, uno de 2 kg y otro de 10 kg, la relación ΔQ/ΔT = C es diferente

entre los dos trozos, aunque se trata de la misma sustancia o material.

Pero si dividimos el valor de la capacidad calorífica de cada trozo de hierro entre su masa, encontraremos que la

relación capacidad calorífica/masa, o bien C/m para cada trozo es la misma. De donde, para un mismo material

independientemente de su masa, C/m = constante. A esta relación se le llama calor específico y es una propiedad

característica de la materia.

El procedimiento más habitual para medir calores específicos consiste en sumergir una cantidad del cuerpo sometido

a medición en un baño de agua de temperatura conocida. Suponiendo que el sistema está aislado, cuando se

alcance el equilibrio térmico se cumplirá que el calor cedido por el cuerpo será igual al absorbido por el agua, o a la

inversa.

El calor específico (c) de una sustancia es igual a la capacidad calorífica (C) de dicha sustancia entre su

masa (m):

m

Cc

Pero como

T

QC

, entonces se puede obtener la expresión:

Tm

Qc

C = capacidad calorífica

ΔQ = cantidad de calor

ΔT = variación de temperatura

Page 105: Temas Selectos Fisica 2

103

BLOQUE 3

Esto significa que el calor específico se define como “la cantidad de calor que necesita un gramo de una sustancia

para elevar su temperatura un grado Celsius”

Para el caso del agua, el valor del calor especifico es 1 cal / g ºC, esto quiere decir que un gramo de agua aumenta

su temperatura un grado Celsius, cuando se le suministra una cantidad de calor igual a una caloría.

Tabla de calores específicos

Sustancia cal /g ºC Sustancia cal /g ºC

Aluminio 0.217 Vidrio 0.199

Cobre 0.093 Arena 0.20

Hierro 0.113 Hielo 0.55

Mercurio 0.033 Zinc 0.092

Plata 0.056 Alcohol 0.58

Latón 0.094 Aire 0.0000053

Agua de

mar 0.945 Plomo 0.031

Parafina

0.51 Acero 0.42

Ejemplo:

¿Qué cantidad de calor se debe aplicar a una barra de plata de 12 kg para que eleve su temperatura de 22 ºC a

90 ºC?

Datos:

Q = ? m = 12 kg = 12000 g To = 22 ºC Tf = 90 ºC

Q = c m ΔT Q = (0.056 cal/g ºC) (12000)(68 ºC) Q = 45696 cal ΔT = (90 – 22) ºC = 68 ºC cAg = 0.056 cal/g ºC

Ejemplo:

Determina el calor específico de una pieza metálica de 100 gramos que requiere 868 calorías para elevar su

temperatura de 50ºC a 90ºC, ¿De qué sustancia se trata?

Al consultar la tabla encontraremos que la muestra metálica es de aluminio.

Datos:

c=? m = 100 g Q = 868 cal ΔT = 90 ºC – 50 ºC = 40 ºC

Q = c m ΔT c = Q/mΔT c = 868 cal/(100 g)(40 ºC) = 0.217 c = 0.217 cal / g ºC

Page 106: Temas Selectos Fisica 2

104

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Calor latente de un cuerpo.

Se denomina fase de una sustancia a su estado, que puede ser sólido, líquido o gaseoso. Los cambios de fase en

sustancias puras tienen lugar a temperaturas y presiones definidas. El paso de sólido a gas se denomina sublimación;

de solido a líquido, fusión, y de líquido a vapor, vaporización. Si la presión es constante, estos procesos tienen lugar a

una temperatura constante. La cantidad de calor necesaria para producir un cambio de fase se llama calor latente

(llamado también calor oculto o escondido), y se define como la cantidad de calor necesaria para cambiar de fase

una masa m de una sustancia pura, es decir, calor entre unidad de masa.

m

QL donde:

El calor latente tiene de unidades: J/kg en el SI, pero también, cal/g y kcal/kg.

Existen calores latentes de sublimación (Ls), de fusión (Lf) y de vaporización (Lv). Para el caso del agua, los calores

latentes de fusión y vaporización son 3.33 X 105

J/kg (aproximadamente 80 kcal/kg) y 22.6 X 105

J/kg

(aproximadamente 540 kcal/kg), respectivamente.

Lo anterior significa que, si se hierve agua en un recipiente abierto a la presión de 1 atmósfera, la temperatura no

aumenta por encima de los 100ºC, por mucho calor que se suministre. El calor que se absorbe sin cambiar la

temperatura del agua es el calor latente; no se pierde, sino que se emplea en transformar el agua en vapor y se

almacena como energía en el vapor. Cuando el vapor se condensa para formar agua, esta energía vuelve a liberarse.

Del mismo modo, si se calienta una mezcla de hielo y agua, su temperatura no cambia hasta que se funde todo el

hielo. El calor latente absorbido se emplea para vencer las fuerzas que mantienen unidas las partículas de hielo, y se

almacena como energía en el agua.

Tabla de calores latentes de fusión y vaporización.

Sustancia Lfx10

3

(J/kg) Lf (cal/g) L

vx10

3

(J/kg)

Lv(cal/g)

Hielo (agua) 334 80 2260 540

Alcohol etílico 105 25.1 846 202.1

Acetona 96 23 524 125.3

Benceno 127 30.4 396 94.7

Aluminio 322–394 77–94.2 9220 2205.7

Estaño 59 14.1 3020 722.5

Hierro 293 70 6300 1507

Cobre 214 51.2 5410 1294.2

Mercurio 11.73 2.8 285 68.1

Plomo 22.5 5.4 880 210.5

Potasio 60.8 14.5 2080 497.6

L = Calor latente

Q = Cantidad de calor

m = Masa de la sustancia

Page 107: Temas Selectos Fisica 2

105

BLOQUE 3

Ejemplo:

¿Cuánto calor se requiere para convertir 500 gramos de agua a 20 ºC a vapor a 100 ºC?

Ejemplo:

Determina el calor que hay que suministrar para convertir 1g de hielo a ‒20 ºC en vapor a 100 ºC.

Solución:

Se tienen los siguientes datos:

Calor específico del hielo: ch = 0.5 cal/g ºC

Calor de fusión del hielo: Lf = 80 cal/g

Calor específico del agua: c = 1 cal/g ºC

Calor de vaporización del agua: Lv = 540 cal/g

Procedimiento:

Paso 1: se calienta (se eleva la temperatura) de 1g de hielo de −20 ºC a 0 ºC

Q1 = (0.5 cal/g ºC) (1 g) ((0−(−20 ºC)) = 10 cal

Paso 2: Se funde el hielo (1 g de hielo pasa de sólido a líquido)

Q2 = (80 cal/g) (1g) = 80 cal

Paso 3: se eleva la temperatura del agua de 0 ºC a 100 ºC

Q3 = (1 cal/g ºC) (1 g) (100 ºC−0 ºC) = 100 cal

Paso 4: se convierte 1 g de agua a 100 ºC en vapor a la misma temperatura

Q4 = (540 cal/g) (1 g) = 540 cal

El calor total será: QT = Q

1 + Q

2 + Q

3 + Q

4 = 730 cal

Datos:

m = 500 g

c = 1 cal/g ºC

Ti = 20 ºC

Tf = 100 ºC

Lv = 540 cal/g)

.

Solución:

Primeramente se calcula la cantidad de calor requerido para calentar los 500 g

de agua de 20 a 100 ºC.

Q = c m ΔT = (1 cal/g ºC)(500 g)(80 ºC) = 40,000 cal

Paso seguido, se calcula la cantidad de calor para el cambio de fase (líquido a

vapor)

Q = m L = (500 g)(540 cal/g) = 270,000 cal

El total de calor requerido es:

QT = 40,000 cal + 270,000 cal = 310,000 cal = 310 kcal

QT = 310 kcal.

Page 108: Temas Selectos Fisica 2

106

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Cierre

En binas resuelvan los siguientes ejercicios prácticos y entreguen los resultados a su

profesor.

1. Se colocan 200 g de hierro a 120 ºC en un recipiente conteniendo 500 g de agua a 20 ºC. Considerando

despreciable el calor absorbido por el recipiente, determina la temperatura de equilibrio químico.

2. Se colocan 400 g de cobre a 80 ºC en un recipiente conteniendo 500 g de agua a 20 ºC. Considerando

despreciable el calor absorbido por el recipiente, determina la temperatura de equilibrio térmico.

3. Un objeto de Aluminio a la temperatura de 10 ºC se coloca en 250 g de agua a 100 ºC. Sabiendo que la

temperatura de equilibrio es 60 ºC, ¿cuál es la masa del objeto?

Actividad: 3

Page 109: Temas Selectos Fisica 2

107

BLOQUE 3

4. Un cilindro de plomo de 450 gramos se calienta a 100 ºC y se introduce en un calorímetro de

cobre de 50 g. El calorímetro contiene 100 g de agua inicialmente a 10 ºC. Encuentra el calor

específico del plomo, si la temperatura de equilibrio de la mezcla es 21.1 ºC.

5. Un calorímetro de aluminio de 500 g de masa y a 20 ºC, contiene inicialmente 200 g de agua a la misma

temperatura. En el calorímetro se depositan 600 g de un líquido a 70 ºC mezclándose con el agua. Si la

temperatura final de equilibrio del sistema es de 47 ºC, ¿cuál es el calor específico del líquido?

6. ¿Cuánto calor se requiere para convertir 100 g de agua a 80 ºC en vapor a 110 ºC?

Actividad: 3 (continuación)

Page 110: Temas Selectos Fisica 2

108

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Evaluación

Actividad: 1 Producto: Ejercicio práctico. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Reconoce las funciones para el

manejo de calor en Física.

Emplea ejercicios de calor en

Física.

Toma conciencia del trabajo en

equipo.

Coevaluación:

C MC NC Calificación otorgada por el

docente:

7. ¿Qué cantidad de calor se necesita para convertir 2 kg de hielo a −25 ºC en vapor a

100 ºC?

8. ¿Qué cantidad de calor debemos suministrar a 20 g de hielo a 0 ºC para que se transformen en vapor de

agua calentado hasta 200 ºC (vapor sobrecalentado)?

Actividad: 3 (continuación)

Page 111: Temas Selectos Fisica 2

109

BLOQUE 3

Secuencia didáctica 2.

Leyes de los gases.

Inicio

Evaluación

Actividad: 1 Producto: Cuestionario. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Reconoce las variaciones en el

volumen y presión de un gas,

debido a cambios en su

temperatura.

Analiza los efectos en el volumen y

presión de un gas, debido a cambios

en su temperatura.

Realiza la actividad con

entusiasmo.

Autoevaluación:

C MC NC Calificación otorgada por el

docente:

Contesta las siguientes preguntas y participa en una discusión grupal:

1. Al calentar un gas, ¿qué pasa con su volumen?

2. Al calentar un gas, ¿qué pasa con su presión?

Actividad: 1

Page 112: Temas Selectos Fisica 2

110

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Desarrollo

Leyes de los gases.

Una de las aplicaciones del calor es la transformación de la energía térmica en

trabajo mecánico, o la conversión de trabajo mecánico a calor. Por ejemplo, las

maquinas térmicas accionadas por gasolina utilizan la presión de los gases

quemados para impulsar pistones y realizar un trabajo. De manera similar, el

vapor que se produce al hervir agua puede accionar turbinas que generan

electricidad. Para entender mejor la relación que existe entre el calor y el trabajo

mecánico, es necesario conocer las propiedades térmicas de los gases en

relación con la presión, temperatura y volumen que producen. Típicamente se

utiliza un sistema pistón – cilindro con fricción despreciable para realizar

experimentos de máquinas térmicas con las leyes de los gases.

Concepto de gas ideal.

Un gas se define como el estado de agregación de la materia que no tiene forma

ni volumen definido, sino que toma la forma y el volumen del recipiente que lo

contiene debido a la poca fuerza de atracción entre sus moléculas. Un gas ideal

o hipotético se considera aquel que está formado por partículas puntuales, sin atracción ni repulsión entre ellas y

cuyos choques son perfectamente elásticos (conservando su momento y energía cinética). Los gases reales que más

se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta

temperatura.

Teoría cinética de los gases.

La teoría cinética de los gases es una teoría física que explica el comportamiento y propiedades macroscópicas de

los gases, a partir de una descripción estadística de las leyes que gobiernan las partículas de los procesos

moleculares microscópicos que lo forman. La teoría cinética se desarrolló con base en los estudios de físicos como:

Daniel Bernoulli, James Prescott Joule, Rudolph Clausius, Ludwig Boltzmann, Johannes Diderik van der Waals, James

Clerk Maxwell y Albert Einstein, entre otros científicos a finales del siglo XIX.

Los principios fundamentales de la teoría cinética son:

El volumen del gas es proporcional al número de moles.

Los gases están compuestos de moléculas en movimiento aleatorio. Las moléculas sufren colisiones

aleatorias entre ellas y las paredes del recipiente contenedor del gas.

Las colisiones entre las moléculas del gas y las paredes del recipiente contenedor son elásticas.

Page 113: Temas Selectos Fisica 2

111

BLOQUE 3

Estos postulados describen el comportamiento de un gas ideal. Los gases reales se aproximan a este

comportamiento ideal en condiciones de baja densidad y temperatura.

Ley de Boyle.

Robert Boyle (1627–1691) fue de los primeros en estudiar las mediciones experimentales del

comportamiento térmico de los gases, al realizar cambios de volumen y de presión en un gas,

permaneciendo la masa y la temperatura constantes.

Tiempo después Edme Mariotte llegó a las mismas conclusiones que Robert Boyle; por eso

en algunos libros esta ley se conoce como la Ley de Boyle – Mariotte. Sin embargo, es más

conocida como la Ley de Boyle.

Para la aplicación de esta ley, supondremos un proceso que en su estado inicial tiene una

presión P1 y un volumen V

1. Si disminuye la presión inicial a una presión P

2, se observa que el

volumen inicial aumenta a V2. Cuidaremos además, que el proceso se realice a temperatura constante (proceso

isotérmico).

Observaremos que el producto de la presión y el volumen en el estado inicial es igual al producto de la presión y

volumen en el estado final, si la masa y la temperatura permanecen constantes.

Hay que recordar que la presión absoluta = presión manométrica + presión atmosférica.

Ley de Charles.

La ley de Charles es una de las más importantes leyes acerca del comportamiento de

los gases. Nos relaciona el cambio del volumen de un gas en relación con los cambios

de temperatura, manteniendo la presión constante (proceso isobárico). Al aumentar la

temperatura de un gas, el volumen también aumenta y al disminuir su temperatura, su

volumen también disminuye.

LEY DE BOYLE:

“Siempre que la masa y la temperatura de una muestra de un gas permanecen constantes, el volumen del gas es inversamente proporcional a su presión absoluta”

P1V1 = P2V2

Donde: P1 = presión absoluta inicial. V1 = volumen inicial. P2 = presión absoluta final. V2 = volumen final.

Page 114: Temas Selectos Fisica 2

112

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Si se tienen dos condiciones de estado inicial y final, la fórmula se puede expresar de la siguiente manera:

2

2

1

1

T

V

T

V

Donde:

V1 = volumen inicial.

T1 = temperatura absoluta inicial.

V2 = volumen final.

T2 = temperatura absoluta final.

Ley de Gay–Lussac.

Gay–Lussac observó cómo variaba la presión de un gas al variar su temperatura,

manteniendo el volumen constante (proceso isométrico o isocórico).

2

2

1

1

T

P

T

P

Donde:

P1 = Presión absoluta inicial.

T1 = Temperatura absoluta inicial.

P2 = Presión absoluta final.

T2 = Temperatura absoluta final.

Al utilizar las ecuaciones de estado, la temperatura y presión deben ser absolutas.

𝐕

𝐓 = 𝐤

LEY DE CHARLES “Siempre que la masa y la presión de un gas permanecen constantes, el volumen del gas es directamente proporcional a su temperatura absoluta”

La ley de Gay - Lussac se enuncia como sigue:

“Siempre que la masa y el volumen de un gas permanecen constantes, la presión absoluta de un gas es directamente proporcional a su temperatura absoluta.”

Page 115: Temas Selectos Fisica 2

113

BLOQUE 3

Ejemplo:

¿Qué volumen de aire a la presión atmosférica puede almacenarse en un tanque de 12 pies3

que pueda soportar una

presión absoluta de 120 lb/in2

?

Datos:

P1 = 1 atm = 14.7 lb/in

2

V1 = ?

P2 = 120 lb/in

2

V2 = 12 ft

3

3

1

2

32

1

1

221

2211

ft96.97V

inlb7.14

ft12in

lb120V

P

VPV

VPVP

Ejemplo:

Si 12 litros de gas se encuentran en un tanque a 5 ºC y se calienta a 90 ºC ¿Cuál será el nuevo volumen, si la presión

no cambia?

Datos:

V1 = 12 l

t1

= 5 ºC

t2 = 90 ºC

V2 = ?

l 67.15V

K278

K363l 12V

T

TVV

T

V

T

V

2

0

0

2

1

212

2

2

1

1

Ejemplo:

Un recipiente de 6 ft3

se llena con un gas a presión absoluta de 300 lb/in2

y una temperatura de 75 ºF. ¿Cuál es la

nueva presión manométrica, si la temperatura se incrementa a 260 ºF? (El volumen permanece constante).

Datos: P1 = 300 lb/in2 T1 = 75 0F T2 = 260 0F P2 = ?

22

22

0

02

2

1

212

2

2

1

1

inlb22.208P

inlb92.222P

K720

R535in

lb300P

T

TPP

T

P

T

P

man

Page 116: Temas Selectos Fisica 2

114

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Resuelve los siguientes ejercicios y muestra los resultados a tu profesor.

1. Un gas a 30 ºC se encuentra a una presión manométrica de 8 Pa. ¿Cuál será la lectura manométrica de la

presión cuando el tanque se calienta uniformemente a 150 ºC?

2. Un globo lleno de aire tiene un volumen de 250 litros a 0 ºC. ¿Cuál será su volumen a 65 ºC, si la presión

permanece constante?

3. Si en 10 litros de gas, a una presión absoluta de 250 kPa, se mantiene la temperatura constante. ¿Cuál será

el nuevo volumen si la presión absoluta se reduce a 140 KPa?

Actividad: 2

Page 117: Temas Selectos Fisica 2

115

BLOQUE 3

Evaluación

Actividad: 2 Producto: Ejercicio práctico. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Reconoce las teorías cinéticas

de los gases.

Emplea en ejercicios las teorías

cinéticas de los gases.

Es atento al desarrollo del

ejercicio.

Autoevaluación:

C MC NC Calificación otorgada por el

docente:

4. Se encuentran 15 litros de un gas a una presión absoluta de 300 kPa, ¿A qué presión

manométrica se encuentra si se comprime lentamente en un proceso isotérmico hasta la

mitad de su volumen original?

5. Un recipiente lleno de gas tiene un volumen de 1500 ft3

a una temperatura de 32 ºF. Si se expande su

volumen a 2200 ft3

, manteniendo su presión constante. ¿Cuál será su nueva temperatura en grados

Fahrenheit?

Actividad: 2 (continuación)

Page 118: Temas Selectos Fisica 2

116

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Constante universal de los gases.

Como hemos visto, las mediciones del comportamiento de los gases, dan origen a varias condiciones: la primera es

que el volumen de un gas es directamente proporcional al número de moles; la segunda es que el volumen varía

inversamente proporcional a la presión absoluta manteniendo la temperatura absoluta constante y el número de

moles; la tercera es que la presión absoluta es proporcional a la temperatura absoluta, manteniendo constante el

volumen y el número de moles. Esto implica a que si se combinan cada una de las tres leyes de los gases ideales se

obtiene una ecuación llamada: ecuación del gas ideal:

nRTPV

Donde:

P = presión absoluta

V = volumen

N = número de moles

R = constante de los gases

T = temperatura absoluta

El número de moles se relaciona con la masa molar o peso molecular de un compuesto y con la masa total dada de

ese compuesto, mediante la siguiente ecuación:

mtot = nM

Donde:

mtot = masa total n = número de moles M = peso molecular o masa molar

La constante de proporcionalidad R, tiene el mismo valor para todos los gases, al menos a presiones bajas y altas

temperaturas y su valor depende solamente del sistema de unidades que se utilicen para las variables de estado:

presión, temperatura y volumen. Entonces, el valor de la constante de los gases:

Kmol

atml08206.0R

KmolJ314.8R

Para una masa constante o el número de moles constante, en la ecuación del gas ideal, el producto nR es constante,

por lo tanto, PV / T también es constante. Si tenemos dos condiciones de estado inicial y final, la ecuación

nRTPV se puede expresar:

ConstanteT

VP

T

VP

2

22

1

11

Se puede observar que no se necesita el valor de R para utilizar la ecuación anterior.

Page 119: Temas Selectos Fisica 2

117

BLOQUE 3

Ejemplo:

Determina el tamaño de un recipiente que debe contener una mol de un gas que se encuentra a una temperatura y

presión estándar (TPE).

Datos:

Ejemplo:

Un compresor toma 2 m3

de aire a 20 ºC a la presión atmosférica (101.3 kPa). Si el compresor se descarga en un

tanque de 0.3 m3

a una presión absoluta de 1500 kPa. ¿Cuál es la temperatura del aire descargado?

Datos:

KmolJ314.8n

Pa10013.1atm1P

K 273C0T

5

0

l 4.22V

m 0224.0V

Pa10013.1

K273Kmol

J314.8mol1

V

P

nRTV

nRTPV

3

5

kPa1500P

m3.0V

kPa3.101P

C20T

m2V

2

3

2

1

0

1

3

1

K79.650T

m2kPa3.101

K293m3.0kPa1500T

VP

TVPT

T

VP

T

VP

2

3

3

2

11

122

2

2

22

1

11

Page 120: Temas Selectos Fisica 2

118

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

En equipo de tres resuelvan los siguientes ejercicios y muestren sus resultados al

profesor.

1. Un contenedor de 12 litros mantiene una muestra de gas bajo una presión absoluta de 800 kPa a una

temperatura de 65 ºC. ¿Cuál será la nueva presión si la misma muestra de gas se pone dentro de un

contenedor de 7 litros a 13 ºC?

2. Determina el número de moles que se encuentran en un recipiente de 30 litros a una presión de 1.8 atm y

una temperatura de 30 ºC.

3. Siete litros de un gas a presión absoluta de 220 kPa y a una temperatura de 27 ºC se calientan

uniformemente hasta 85 ºC reduciéndose la presión absoluta a 110 kPa. ¿Qué volumen ocupara el gas en

esas condiciones?

Actividad: 3

Page 121: Temas Selectos Fisica 2

119

BLOQUE 3

Evaluación

Actividad: 3 Producto: Ejercicio práctico. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Comprende la Constante

universal de los gases.

Realiza en la práctica el uso de la

Constante universal de los gases.

Es responsable durante la

realización de la práctica.

Autoevaluación:

C MC NC Calificación otorgada por el

docente:

4. Un tanque de almacenamiento con un volumen de 25 litros se llena con oxígeno bajo una

presión absoluta de 6500 kPa a 20 ºC. El oxígeno se utilizará en una aeronave a gran altura

donde la presión absoluta es de 80 kPa. Bajo estas condiciones, ¿a qué temperatura se

encuentra si el volumen de oxígeno que se proporciona es de 1500 litros?

5. Un tanque de 25 litros contiene 0.325 kg de helio a 22 ºC. La masa molar del helio es de 4.0 g/mol.

a) ¿Cuantos moles de helio hay en el tanque?

b) Calcula la presión en el tanque en pascales y en atmósferas.

Actividad: 3

Page 122: Temas Selectos Fisica 2

120

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Cierre

Resuelve los siguientes ejercicios prácticos y entrega los resultados a tu profesor para

su revisión.

1. El manómetro de un tanque de oxígeno registra 60 kPa a 45 ºC, ¿cuáles son la presión y la temperatura

absoluta del gas?

2. La presión absoluta en el interior de una llanta de automóvil es de 30 lb/in2

cuando su temperatura es de

90 ºF. ¿Cuáles son la presión manométrica y la temperatura absoluta del aire dentro de la llanta?

3. Un contenedor mantiene una muestra de gas a volumen constante bajo una presión absoluta de 700 kPa y a

una temperatura de 60 ºC. ¿Cuál será la nueva presión si a la muestra de gas se le reduce la temperatura a

10 ºC?

Actividad: 4

Page 123: Temas Selectos Fisica 2

121

BLOQUE 3

Evaluación

Actividad: 4 Producto: Ejercicio práctico. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Comprende en ejercicio las

leyes de los gases.

Emplea fórmulas en ejercicio sobre

las leyes de los gases.

Se esfuerza en realizar el

ejercicio.

Autoevaluación:

C MC NC Calificación otorgada por el

docente:

4. Se encuentra que a 80 ºF, la presión manométrica de un gas es de 120 lb/in2

. Si se calienta

uniformemente en un proceso isométrico, ¿cuál será su temperatura si se encuentra bajo una

presión manométrica de 135 lb/in2

?

5. Un recipiente contiene 12 litros de gas a una presión absoluta de 350 kPa y a una temperatura de 32 ºC se

calienta uniformemente hasta 120 ºC reduciendo la presión a 230 kPa. ¿Qué volumen ocupará en estas

condiciones?

Actividad: 4 (continuación)

Page 124: Temas Selectos Fisica 2

122

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Secuencia didáctica 3.

Conceptos fundamentales de la Termodinámica.

Inicio

Evaluación

Actividad: 1 Producto: Cuestionario. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Ubica la importancia de la

termodinámica.

Distingue la importancia de la

termodinámica.

Muestra interés al realizar la

actividad.

Autoevaluación:

C MC NC Calificación otorgada por el

docente:

En binas responde las siguientes preguntas.

1. ¿Qué es la Termodinámica?

2. ¿En qué procesos recibimos los beneficios de la aplicación de la termodinámica?

Actividad: 1

Page 125: Temas Selectos Fisica 2

123

BLOQUE 3

Desarrollo

Termodinámica.

El desarrollo de esta ciencia empezó en el siglo XVIII a partir de los conocimientos empíricos, debido a la necesidad

del hombre de crear máquinas donde a través de la energía calorífica se produjera un trabajo mecánico, como son las

máquinas de vapor.

La termodinámica (en griego termo significa “calor” y dinámico significa “fuerza”) se define como la rama de la física

que estudia las relaciones de la energía y sus transferencias pero, sobre todo, en la que interviene el calor y el trabajo

mecánico. Por ejemplo: cuando conducimos un automóvil, se utiliza el calor de combustión del combustible para

realizar un trabajo mecánico en los pistones de los cilindros para impulsar el vehículo.

Para el estudio de la Termodinámica, definiremos los siguientes conceptos fundamentales:

Sistema termodinámico: es cualquier conjunto de objetos que conviene

considerar como unidad y que podría intercambiar energía con su entorno.

Proceso Termodinámico: se presenta cuando la intervención del calor

produce un cambio en el estado de un sistema termodinámico. Es decir,

cambios en su temperatura, volumen y presión dados.

Energía Interna (U): se define como la suma de todas las energías cinéticas

de todas sus partículas constituyentes, más la suma de todas las energías

potenciales de interacción entre ellas.

Máquina Térmica: se le llama así a cualquier dispositivo que convierte

energía calorífica a energía mecánica o viceversa.

Bombas de calor: son dispositivos que utilizan energía o trabajo mecánico

para transferir calor de una fuente con temperatura inferior a una región de

temperatura más elevada.

FUENTE FRÍA

Trabajo realizado

FUENTE CALIENTE

Q1 calor recibido

Q2 calor cedido

MÁQUINA

MÁQUINA TÉRMICA

Page 126: Temas Selectos Fisica 2

124

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Trabajo en Procesos Termodinámicos.

Como ya hemos visto, la transferencia de energía en cualquier proceso termodinámico se da en función del calor

agregado al sistema y del trabajo mecánico realizado del sistema. Un gas encerrado en un cilindro con un pistón

móvil es un ejemplo muy sencillo y común para analizar el trabajo que se realiza en los procesos termodinámicos, el

cual tomaremos para describir el trabajo en los siguientes procesos:

Trabajo realizado por un sistema durante un cambio de volumen. Al expandirse un gas, empuja el pistón hacia afuera,

por lo que realiza un trabajo positivo. La fuerza total ejercida por el sistema sobre el pistón es:

Cuando el pistón se mueve hacia fuera una distancia

infinitesimal, entonces:

2

1

V

VpW

pdVdW

pAdxFdxdW

Si la presión permanece constante, entonces:

VVpW 12

Para cualquier proceso isotérmico en que el volumen

cambia, la ecuación quedaría:

V

Vln nRTW

V

dVnRTW

1

2

2

1

V

V

Aplicando la Ley de Boyle:

P

Pln nRTW

P

P

V

V

VPVP

2

1

2

1

1

2

2211

Ejemplo:

Un gas en un cilindro se mantiene a presión constante de 2.5 × 105

Pa mientras se enfría y comprime de 2.0 m3

a

1.50 m3

. Determina el trabajo realizado por el gas.

?W

m50.1V

m0.2V

Pa 105.2P

:Datos

3

2

3

1

5

sistema. el sobre un trabajo

realiza se que indica negativo signo El

.Joules1025.1W

m0.2m50.1Pa 105.2W

VVPW

5

335

12

PAF

ÁreaA

esiónPrP

fuerzaF

:Donde

Page 127: Temas Selectos Fisica 2

125

BLOQUE 3

En binas realicen la siguiente investigación bibliográfica. Apóyense en el módulo de

física dos o en cualquier otra fuente.

1. Definan los siguientes conceptos:

a) Sistema.

b) Frontera.

c) Entorno.

d) Sistema aislado.

e) Sistema abierto.

f) Sistema cerrado.

g) Sistema en equilibrio.

2. Investiguen ejemplos de máquinas térmicas y bombas de calor.

3. Investiguen cómo se aplica la primera ley de la termodinámica en el metabolismo de los seres humanos.

Actividad: 2

Page 128: Temas Selectos Fisica 2

126

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Actividad: 2 (continuación)

Page 129: Temas Selectos Fisica 2

127

BLOQUE 3

Actividad: 2 (continuación)

Page 130: Temas Selectos Fisica 2

128

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Evaluación

Actividad: 2 Producto: Trabajo de Investigación. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Reconoce el trabajo en procesos

termodinámicos.

Emplea ejercicios de procesos

termodinámicos.

Argumenta sus resultados al

realizar la investigación.

Coevaluación:

C MC NC Calificación otorgada por el

docente:

En binas resuelvan los siguientes ejercicios y muestren los resultados al profesor.

1. Determinen el trabajo realizado por tres moles de un gas que se encuentra encerrado en un cilindro de 8

litros y que aumenta a 12 litros, a una temperatura constante de 28 ºC.

2. La temperatura de 0.18 moles de gas ideal se mantiene constante en 80 ºC, mientras su volumen se reduce

al 30% de su volumen inicial. Determinen el trabajo efectuado por el gas.

Actividad: 2 (continuación)

Page 131: Temas Selectos Fisica 2

129

BLOQUE 3

?U

J 600W

cal 500Q

:Datos

Primera Ley de la Termodinámica.

La primera Ley de la Termodinámica se basa en el principio de la ley de conservación de la energía y se enuncia de la

siguiente forma:

sistema. elpor realizado TrabajoW

netoCalor Q

interna energía de cambioUUU

:donde

WQU

12

La ecuación anterior es más común con la siguiente expresión:

WUQ

Lo anterior significa que cuando se agrega calor al sistema, una parte de este calor agregado modifica su energía

interna U a ΔU; el resto sale del sistema cuando efectúa un trabajo W sobre su entorno.

Al utilizar la ecuación de la primera ley de la termodinámica se debe tomar en cuenta lo siguiente:

Se toma un calor Q positivo cuando se le agrega calor al sistema y negativo cuando el flujo de calor sale del

sistema hacia su entorno.

Un trabajo W es positivo cuando el sistema realiza trabajo sobre su entorno y negativo si se realiza trabajo sobre

el sistema.

También es importante mencionar algunos casos especiales donde se aplica la primera ley de la termodinámica:

a) Cuando un proceso, tarde o temprano, vuelve a su estado inicial el proceso es cíclico, es decir, el estado final

es igual al inicial; entonces ΔU = 0 y por lo tanto Q = W.

b) Para cualquier sistema aislado: no se realiza trabajo sobre su entorno ni hay intercambio de calor, es decir,

W = Q = 0 y por lo tanto ΔU = 0. (La energía interna de un sistema aislado es constante).

c) Un proceso adiabático ocurre cuando en el sistema no entra ni sale calor, es decir, Q = 0, entonces ΔU = −W

Ejemplo:

Un gas en un cilindro absorbe 500 calorías de calor, ocasionando que un pistón efectúe 600 Joules de trabajo.

Determina el cambio en la energía interna del gas.

“En cualquier proceso termodinámico, el calor neto absorbido por un sistema es igual a la suma del equivalente térmico del trabajo efectuado por el sistema y el cambio en la energía interna del sistema”.

J 1492U

J 600cal 2092U

WQU

WUQ

Page 132: Temas Selectos Fisica 2

130

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

ra? temperatulacon pasa ¿Qué c)

?U b)

?Q a)

J 2300W

Ejemplo:

Un gas ideal se deja expandir en forma adiabática hasta el doble de su volumen. Al hacerlo, el gas efectúa un trabajo

de 2300 J.

a) ¿Cuánto calor pasó al gas?

b) ¿Cuál es el cambio de energía interna del gas?

c) ¿Subió o bajó su temperatura?

Datos:

Ejemplo:

Un sistema absorbe 260 BTU de energía calorífica y rechaza 150 BTU mientras realiza trabajo en un proceso cíclico.

¿Cuánto trabajo se realiza en calorías?

Datos:

baja ra temperatuLac)

J 2300ΔU

WΔU

WΔUQ b)

0Q

adiabático es proceso el Como a)

?W

BTU 150Q

BTU260Q

sal

abs

Cal 0.436W

BTU 110W

BTU 110BTU 150BTU 260Q

QQQ

WQ

0ΔU ciclíco, es proceso el Como

WΔUQ

salidaabsorbido

Page 133: Temas Selectos Fisica 2

131

BLOQUE 3

En equipo de tres, resuelvan los siguientes ejercicios y muestren sus resultados al

profesor.

1. En un proceso isotérmico ¿cuál es el cambio en la energía interna si se realizan 450 J de trabajo? ¿Cuántos

BTU de calor se absorben?

2. Un pistón realiza 120 J de trabajo sobre un gas encerrado en un cilindro, causando que la energía interna

aumente 70 J. Calcula la pérdida de calor total durante este proceso.

3. En un proceso de transformación de un gas del estado A al estado B, salen del sistema 100 J de calor y se

efectúan 65 J de trabajo sobre el mismo sistema. Determina el cambio de energía interna.

Actividad: 3

Page 134: Temas Selectos Fisica 2

132

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Evaluación

Actividad: 3 Producto: Ejercicio práctico. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Comprende la primera ley de la

termodinámica.

Aplica la primera ley de la

termodinámica en situaciones

cotidianas.

Lleva a cabo el ejercicio con

responsabilidad.

Autoevaluación:

C MC NC Calificación otorgada por el

docente:

4. Un gas se comprime de 10 litros a 3 litros, manteniendo la presión constante en 0.9 atm. En

el proceso, 450 J de energía salen del gas por calor.

a) ¿Cuál es el trabajo realizado sobre el sistema?

b) ¿Cuál es el cambio de su energía interna?

5. Se reduce la presión de un sistema mientras el volumen se mantiene constante. Si fluye calor hacia el

sistema durante este proceso, ¿la energía interna del sistema aumenta o disminuye? Explica tu

razonamiento.

Actividad: 3 (continuación)

Page 135: Temas Selectos Fisica 2

133

BLOQUE 3

Segunda Ley de la Termodinámica.

Como ya habrás observado, en nuestra vida cotidiana nunca hemos experimentado que el flujo de calor se da de lo

frío a lo caliente. Si compras un refresco muy frío y lo dejas por un tiempo sobre la mesa, al tiempo de volver por él no

va a estar más frío; al contrario, lo encontrarás más caliente.

De hecho, debes recordar que la termodinámica nace de la experiencia de los fenómenos que se dan en la

naturaleza.

Cuando aplicamos la primera ley de la termodinámica no influye la dirección del flujo del calor, puesto que se cumple

la ley de la conservación de la energía, independientemente de si el cuerpo más frío cede calor al más caliente o a la

inversa. Sin embargo, sabemos por experiencia que en la naturaleza siempre el flujo de calor es de los cuerpos de

mayor a menor temperatura; de aquí nace la Segunda Ley de la Termodinámica, que nos indica la dirección del flujo

de calor o la dirección en que se llevan a cabo los procesos termodinámicos. También nos da la respuesta del por

qué ni las mentes más brillantes han podido construir una máquina que convierta el calor totalmente en energía

mecánica, lo cual significa que una máquina térmica nunca va a operar con una eficiencia del 100%. Es decir, una

parte del calor absorbido se convierte en trabajo y otra, debido a la fricción que se da por el funcionamiento de la

máquina, se pierde y fluye hacia los alrededores produciendo un efecto de contaminación térmica en el medio

ambiente.

Representación esquemática de una máquina

térmica.

Representación esquemática de una máquina

térmica imposible de construir.

Representación esquemática de un

refrigerador.

La eficiencia de una máquina térmica se define como el cociente entre el trabajo útil realizado por la máquina y el

calor que se le suministra; suele expresarse como un porcentaje.

=

=

=

Esta fórmula muestra que una máquina tiene un 100% de eficiencia sólo sí Qf = 0. Es decir, no se entrega energía

térmica al reservorio frío.

Como se ha visto, la Segunda Ley de la Termodinámica es de mucha importancia para la humanidad debido a la

forma de convertir la energía para nuestro beneficio en la vida diaria. Sin embargo, el ser humano tiene la

responsabilidad de un desarrollo sustentable en el uso de las máquinas térmicas porque, como ya se mencionó, se

contribuye con esta tecnología al calentamiento global.

Page 136: Temas Selectos Fisica 2

134

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Si la primera ley de la termodinámica se basa en la conservación de la energía, la segunda ley limita la forma en que

puede usar y convertir la energía y se puede expresar en dos formas basadas en los planteamientos de Clausius y

Kelvin-Planck:

Enunciado de Clausius

No es posible un proceso cuyo único resultado sea la

transferencia de calor de un cuerpo de menor

temperatura (T2) a otro de mayor temperatura (T

1).

Enunciado de Kelvin-Planck

No es posible un proceso cuyo único resultado sea la

absorción de calor procedente de un foco y la

conversión de este calor en trabajo.

La Entropía se define como una medida cuantitativa del grado de desorden de un sistema y siempre va en aumento

en procesos irreversibles (todos los procesos termodinámicos de la naturaleza son irreversibles) o puede permanecer

constante en los procesos reversibles, pero nunca disminuye.

entropía. de Cambio ΔS

:Donde

)reversible isotérmico (Proceso T

QSSΔS 12

La unidad de entropía en el Sistema Internacional es:

Kelvin

Joule ΔS

Existen otras dos leyes más de la termodinámica, la ley cero y la tercera, las cuales solamente las enunciaremos para

comprender y analizar mejor los procesos termodinámicos.

Ley Cero de la Termodinámica.

Se basa en el equilibrio térmico y se enuncia como sigue: “Si dos sistemas A y

B están por separados en equilibrio térmico con un tercer sistema C, entonces

los Sistemas A y B están en equilibrio térmico entre sí”

Tercera Ley de la Termodinámica.

“No se puede llegar al cero absoluto

mediante una serie finita de

procesos”.

Page 137: Temas Selectos Fisica 2

135

BLOQUE 3

Ejemplo:

0.8 moles de un gas pasan por una expansión isotérmica a 78 K, doblando su volumen original. Determina:

a) El trabajo que se realiza.

b) El calor absorbido

c) El cambio de entropía.

Datos:

Ejemplo:

Determina el cambio de entropía al pasar un kilogramo de hielo a 0 ºC y convertirse en agua a 0 ºC, si el calor de

fusión es de 3.34×105

J/kg.

Datos:

El cambio de entropía significa el aumento del desorden, cuando las moléculas ordenadas del agua en estado sólido

pasan a un estado más desordenado molecular del líquido.

?ΔS c)

?Q b)

? Wa)

2VV

K 78T

moles 0.8n

12

KJ4.61ΔS

K 78

359.62JΔS

T

QΔS c)

WQ isotérmico es proceso el como b)

J 359.62W

2ln78KK molJ8.3144720.8molesW

V2V

ln78KK molJ8.3144720.8molesW

V

Vln nRT Wa)

1

1

1

2

J103.34Q

K273T

5

0

KJ101.22ΔS

K273

J103.34ΔS

T

QΔS

3

0

5

Page 138: Temas Selectos Fisica 2

136

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Cierre

Resuelve los siguientes ejercicios y entrega al profesor para su revisión.

1. En un proceso químico, un técnico de laboratorio suministra 265 J de calor a un sistema. Al mismo tiempo,

el entorno efectúa 80 J de trabajo sobre el sistema. ¿Cuánto aumentó la energía interna del sistema?

2. Un gas con comportamiento ideal se expande mientras la presión permanece constante. Durante este

proceso ¿entra calor al gas o sale de él? Explica tu respuesta.

3. Un estudiante de 70 Kg se propone comer una mantecada de 900 cal y luego subir corriendo varios tramos

de escalera para quemar la energía que ingirió. ¿A qué altura debe subir?

4. En un proceso adiabático con gas ideal, la presión disminuye. La energía interna del gas ¿aumenta o

disminuye durante este proceso? Explique su respuesta.

Actividad: 4

Page 139: Temas Selectos Fisica 2

137

BLOQUE 3

Evaluación

Actividad: 4 Producto: Ejercicio práctico. Puntaje:

Saberes

Conceptual Procedimental Actitudinal

Comprende los procesos

fundamentales de la

termodinámica.

Utiliza los procesos fundamentales

de la termodinámica para resolver

problemas sencillos.

Realiza las actividades con

entusiasmo e interés.

Autoevaluación:

C MC NC Calificación otorgada por el

docente:

5. Cierta cantidad de gas en un dispositivo de pistón cilíndrico se comprime isobáricamente a

una presión de 1 atm, con una disminución de volumen de 0.015 m3

. Si la energía interna del

gas aumenta en 500 J. ¿Cuántas calorías de calor se entrega a los alrededores?

6. ¿Cuál es el cambio de entropía cuando 0.8 Kg de agua se convierten en hielo a 0 ºC? ¿Cuál es el cambio

de entropía cuando el hielo se derrite a esa temperatura?

7. ¿Cuál es el cambio de entropía cuando 60 gramos de alcohol etílico se evaporan en su punto de ebullición

de 78 ºC? (Leb = 200 cal/g).

Actividad: 4 (continuación)

Page 140: Temas Selectos Fisica 2

138

DISTINGUES LOS PROCESOS RELATIVOS AL CALOR, LAS LEYES DE LOS GASES Y LA TERMODINÁMICA

Bibliografía

Básica:

Hewitt, Paul G. Física Conceptual. México, Ed. Pearson Educación de México, 9ª Edición, 2004.

Pérez Montiel, Héctor. Física 1 para Bachillerato General. México, 2ª. Ed., Publicaciones Cultural, 2003.

Pérez Montiel, Héctor. Física 2 para Bachillerato General. México, 2ª. Ed., Publicaciones Cultural, 2003.

Pérez Montiel, Héctor. Física General. México. Publicaciones Culturales, 2ª. Edición, 2004.

Tippens, Paul. Física, Conceptos y Aplicaciones, México: Ed. McGraw Hill, 7 ª Edición, 2007.

Complementaria:

Giancoli, C. Douglas. Física. Principios con aplicaciones . 6ª. Edición). México: Pearson, 2006.

Halliday, D., Resnick, R. y Walker, J. Fundamentos de Física. 8ª Edición. México: Ed. CECSA, 2001.

Halliday, Resnick, Walter. Fundamentos de Física I. 6º Edición, México: Ed. CECSA. 2002.

Serway, Raymond A. y John W. Jewett, Jr. Física. 3ª. edición, México: Ed. Thomson, 2004.

Serway, Raymond, Jerry S. Faughn, Física para bachillerato general, Volumen 1. México, 6ª Ed. Editorial Cengage,

2006.

Serway, Raymond, Jerry S. Faughn, Física para bachillerato general, Volumen 2. México, 6ª Ed. Editorial Cengage,

2006.

Serway, Raymond A. Fundamentos de física vol. I . 6ª. Edición. México: Thomson Learning, 2004.