Statistika Inferensi : Estimasi Titik & Estimasi Interval

download Statistika Inferensi  :  Estimasi Titik  &  Estimasi  Interval

of 66

  • date post

    05-Jan-2016
  • Category

    Documents

  • view

    160
  • download

    35

Embed Size (px)

description

Statistika Inferensi : Estimasi Titik & Estimasi Interval. Estimasi titik. Estimasi adalah keseluruhan proses yang menggunakan sebuah estimator untuk menghasilkan sebuah estimate dari suatu parameter. - PowerPoint PPT Presentation

Transcript of Statistika Inferensi : Estimasi Titik & Estimasi Interval

  • Statistika Inferensi : Estimasi Titik & Estimasi Interval

  • Estimasi titikEstimasi adalah keseluruhan proses yang menggunakan sebuah estimator untuk menghasilkan sebuah estimate dari suatu parameter.

    Sebuah estimasi titik dari sebuah parameter adalah sesuatu angka tunggal yang dapat dianggap sebagai nilai yang masuk akal dari .

  • ContohSeorang ahli sosial ekonomi ingin mengestimasi rata-rata penghasilan buruh di suatu kota. Sebuah sampel dikumpulkan menghasilkan rata-rata Rp 2.000.000,-.

    Dalam hal ini telah dilakukan estimasi titik, dengan menggunakan estimator berupa statistic mean ( ) untuk mengestimasi parameter mean populasi (). Nilai sampel Rp 2.000.000,- sebagai nilai estimate dari mean populasi.

  • Estimasi IntervalSebuah estimasi interval (interval estimate) dari sebuah parameter , adalah suatu sebaran nilai nilai yang digunakan untuk mengestimasi interval.Jika dimiliki sampel X1, X2, ., Xn dari distribusi normal N(, 2) maka

  • Akibatnya interval kepercayaan (1-)100% untuk mean populasi adalah

    dengan Z(1-/2) adalah kuantil ke-(1-/2) dari distribusi normal baku dan jika tidak diketahui maka dapat diestimasi dengan simpangan baku (standard deviation) sampel s yaitu s = s2.

  • Jadi interval kepercayaan (confidence interval) adalah estimasi interval berdasarkan tingkat kepercayaan tertentu dan batas atas serta batas bawah interval disebut batas kepercayaan (confidence limits).

    Dari prakteknya tingkat kepercayaan dilakukan sebelum estimasi dilakukan, jadi dengan menetapkan tingkat kepercayaan interval sebesar 90 persen (90 %).

    Artinya seseorang yang melakukan tersebut ingin agar 90 persen yakin bahwa mean dari populasi akan termuat dalam interval yang diperoleh.

  • Estimasi interval untuk beberapa tingkat kepercayaan (1-)100%.

  • ContohSeorang guru ingin mengestimasi waktu rata-rata yang digunakan untuk belajar.

    Suatu sampe acak ukuran 36 menunjukan bahwa rata-rata waktu yang digunakan siswa untuk belajar di rumah setiap harinya adalah 100 menit.

    Informasi sebelumnya menyatakan bahwa standar deviasi adalah 20 menit.

  • Estimasi interval dengan tingkat kepercayaan 95 persen dapat ditentukan berikut ini :

    Unsur unsur yang diketahui : = 100 ; = 20; n=36; tingkat kepercayaan 95 %.Dengan tingkat kepercayaan 95 % maka nilai z adalah 1,96 jadi estimasi interval dari nilai waktu rata-rata sesungguhnya adalah :

    Dengan kata lain guru mengestimasi dengan tingkat keyakinan 95 % bahwa rata-rata waktu belajar adalah antara 93,47 menit hingga 106,53 menit

  • Jika n > 30Dari seluruh siswa 4 kelas diambil sebagai sampel 40 siswa dan didapatkan nilai Matematika dari 40 siswa tersebut sebagai berikut :58485643585748354347494164584644475542485429464759475243474940586050505064364344

    maka estimasi rata-rata nilai Matematika sesungguhnya dengan tingkat kepercayaan 90 persen yaitu :

  • Dengan tingkat kepercayaan 90 % maka nilai z adalah 1,645 jadi estimasi interval dari rata-rata sesungguhnya adalah :

  • Hasil output spss

  • Jika n 30Jika dimiliki sampel X1, X2, ., Xn dari distribusi normal N(, 2) dengan 2 tidak diketahui maka :

    berdistribusi t dengan derajat bebas n-1.

  • Sifat-sifat distribusi tDistribusi ini serupa dengan distribusi Z dengan mean nol dan simetris berbentuk lonceng / bell shape terhadap mean.

    Bentuk distribusi tergantung pada ukuran sampel. Jadi distribusi adalah kumpulan keluarga distribusi dan perbedaan satu dengan yang lainnnya tergantung pada ukuran sampel.

    Pada ukuran sampel yang kecil keruncingan berbentuk distribusi t kurang dibandingkan dengan distribusi Z dan jika meningkatnya ukuran sampel mendekati 30 maka bentuk distribusi semakin mendekati bentuk distribusi Z. (Jadi jika n >30 maka digunakan nilai z).

  • Grafik fungsi distribusi t

  • Untuk n 30, interval kepercayaan (1-)100% untuk mean populasi adalah

    dengan tn-1; (1-/2) adalah kuantil ke-(1-/2) dari distribusi t dengan derajat bebas n-1 dan s adalah simpangan baku (standard deviation) sampel dengan s = s2 yaitu akar dari variansi sampel.

  • Contoh Misalkan diberikan nilai Matematika 10 siswa sebagai berikut : 58, 58, 43, 64, 47, 54, 59, 47, 60, dan 64.

    Estimasi rata-rata nilai Matematika sesungguhnya (populasi). Nilai rata-rata Matematika dengan tingkat kepercayaan 95 persen dapat diestimasi sebagai berikut:

  • Hasil perhitungan dari data

  • interval kepercayaan (rata-rata populasi) dengan koefisien kepercayaan 95 % :

  • Hasil output spss

  • Pengujian Hipotesis (Satu Sampel)

  • Secara umum, hipotesis statistik pernyataan mengenai distribusi probabilitas populasi atau pernyataan tentang parameter populasi.

    Contoh :Nilai Matematika siswa kelas 10 SMAN 1 Salatiga berdistribusi normal. Akan diuji hipotesis : rata-ratanya 60.

    Pernyataan : Rata-ratanya 60 ( = 60 ) hipotesis statistik

  • Kesalahan yang mungkin Kesalahan jenis pertama (type-I error) bila menolak menolak hipotesis yang seharusnya diterima.

    Kesalahan jenis kedua (type-II error) bila menerima hipotesis yang seharusnya ditolak.

  • Prosedur Uji hipotesisPernyataan Hipotesis nol dan hipotesis alternatifPemilihan tingkat kepentingan ( level of significance ), kesalahan tipe IPernyataan aturan keputusan ( Decision Rule)Perhitungan nilai-p berdasarkan pada data sampelPengambilan keputusan secara statistik (Penarikan kesimpulan)

  • Pernyataan Hipotesis nol dan hipotesis alternatifHipotesis nol (H0) adalah asumsi yang akan diuji.

    Hipotesis nol dinyatakan dengan hubungan sama dengan.

    Jadi hipotesis nol adalah menyatakan bahwa parameter (mean, presentase, variansi dan lain-lain) bernilai sama dengan nilai tertentu.

    Hipotesis alternatif (H1) adalah hipotesis yang berbeda dari hipotesis nol.

    Hipotesis alternatif merupakan kumpulan hipotesis yang diterima dengan menolak hipotesis nol.

  • ContohDalam suatu prosedur pengujian hipotesis mengenai mean dari suatu populasi, pernyataan-pernyataan mengenai hipotesis nol sebagai mean populasi 60 secara umum dinotasikan :

    H0 : = 60H1 : 60.

  • Pemilihan tingkat kepentingan ( level of significance ), Tingkat kepentingan ( level of significance ) menyatakan suatu tingkat resiko melakukan kesalahan dengan menolak hipotesis nol.

    Dengan kata lain, tingkat kepentingan menunjukkan probabilitas maksimum yang ditetapkan untuk menghasilkan jenis resiko pada tingkat yang pertama.

    Dalam prakteknya, tingkat kepentingan yang digunakan adalah 0.1, 0.05 atau 0.01.

    Jadi dengan mengatakan hipotesis bahwa ditolak dengan tingkat kepentingan 0.05 keputusan itu bisa salah dengan probabitas 0.05.

  • Pernyataan aturan keputusan (Decision Rule)Suatu nilai-P didefinisikan sebagai nilai tingkat kepentingan yang teramati yang merupakan nilai tingkat signifikan terkecil di mana hipotesis nol akan ditolak apabila suatu prosedur pengujian hipotesis tertentu pada data sampel.

    Menolak H0 jika nilai-p (p-value) < dan menerima H0 jika nilai-p (p-value) > .

  • Perhitungan nilai-p berdasarkan data sampel & Kesimpulan

    Berdasarkan sampel dihitung nilai-p.

    Karena nilai-p < maka Ho ditolak atau sebalinya nilai-p > maka Ho diterima.

  • Uji Hipotesis dengan Mean TunggalPengujian ini dibedakan atas dua jenis yaitu :

    Uji dua ujung ( two tailed test)

    Uji satu ujung ( one tailed test).

  • Uji Dua UjungUji dua ujung (two tailed) adalah uji hipotesis yang menolak hipotesis nol jika statistik sampel secara significant lebih tinggi atau lebih rendah dari pada nilai parameter populasi yang diasumsikan.

    Dalam hal ini hipotesis nol dan hipotesis alternatifnya masing-masing :

    H0 : = nilai yang diasumsikanH1 : nilai yang diasumsikan

  • ContohNilai Matematika siswa kelas 10 SMAN 1 Salatiga berdistribusi normal. Akan diuji hipotesis : rata-ratanya 60.

    Hipotesis nol : H0 : = 60Hipotesis alternatif : H1 : 60

  • Hasil output SPSS

  • Berdasarkan hasil output SPSS diperoleh nilai-p mendekati nol dan karena nilai- p < = 0,10 (10 %) maka H0 ditolak berarti H1 diterima.

    Dengan kata lain, 60 berarti rata-rata nilai Matematika siswa kelas 10 tidak sama dengan 60.

  • ContohNilai Matematika siswa kelas 10 SMAN 1 Salatiga berdistribusi normal. Akan diuji hipotesis : rata-ratanya 50.

    Hipotesis nol : H0 : = 50Hipotesis alternatif : H1 : 50

  • Hasil output SPSS

  • Berdasarkan hasil output SPSS diperoleh nilai-p = 0,367 dan karena nilai- p > = 0,10 (10 %) maka H0 diterima.

    Dengan kata lain, = 50 berarti rata-rata nilai Matematika siswa kelas 10 sama dengan 50.

  • STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL GANDA)

  • OutlineUji Hipotesis Mean dengan Sampel ganda :

    - Uji t untuk populasi saling bergantung

    - Uji t untuk populasi saling bebas

  • Uji t pasangan untuk populasi saling tergantungProsedur :Pernyataan Hipotesis nol dan Hipotesis Alternatif

    Dalam uji ini hipotesis nolnya adalah metode baru sama dengan metode lama (perbedaan rata-ratanya adalah nol). Sedangkan hipotesis alternatifnya adalah metode baru tidak sama dengan metode lama (terdapat perbedaan nilai rata-rata).

    H0 : d = 0 ( metode lama sama dengan metode baru)H1 : d 0 uji dua ujung ( d > 0 uji satu ujung )(metode lama tidak sama dengan metode baru)

    Pemilihan tingkat kepentingan (level of significance),