Sistem Kendali Alternator

13
SISTEM KENDALI ALTERNATOR Istilah sistem kendali dalam teknik listrik mempunyai arti suatu peralatan atau sekelompok peralatan yang digunakan untuk mengatur fungsi kerja suatu mesin dan memetakan tingkah laku mesin tersebut sesuai dengan yang dikehendaki. Fungsi kerja mesin tersebut mencakup antara lain menjalankan (start), mengatur (regulasi), dan menghentikan suatu proses kerja. indarluhsepdyanuri Pada umumnya, sistem kendali merupakan suatu kumpulan peralatan listrik atau elektronik, peralatan mekanik, dan peralatan lain yang menjamin stabilitas dan transisi halus serta ketepatan suatu proses kerja. Sistem kendali dibedakan menjadi dua, yaitu sistem kendali loop terbuka dan sistem kendali loop tertutup. a) Sistem Kendali Loop Terbuka Sistem kendali loop terbuka adalah proses pengendalian di mana variabel inputmempengaruhi output yang dihasilkan. 1

description

Pengendalian Generator

Transcript of Sistem Kendali Alternator

SISTEM KENDALI ALTERNATOR Istilah sistem kendali dalam teknik listrik mempunyai arti suatu peralatan atau sekelompok peralatan yang digunakan untuk mengatur fungsi kerja suatu mesin dan memetakan tingkah laku mesin tersebut sesuai dengan yang dikehendaki. Fungsi kerja mesin tersebut mencakup antara lain menjalankan (start), mengatur (regulasi), dan menghentikan suatu proses kerja.indarluhsepdyanuriPada umumnya, sistem kendali merupakan suatu kumpulan peralatan listrik atau elektronik, peralatan mekanik, dan peralatan lain yang menjamin stabilitas dan transisi halus serta ketepatan suatu proses kerja. Sistem kendali dibedakan menjadi dua, yaitu sistem kendali loop terbuka dan sistem kendali loop tertutup.a)Sistem Kendali Loop TerbukaSistem kendaliloopterbuka adalah proses pengendalian di mana variabelinputmempengaruhioutputyang dihasilkan.

Gambar 1 Diagram blok sistem kendali loop terbuka

b)Sistem Kendali Loop TertutupSistem kendali loop tertutup adalah suatu proses pengendalian di mana variabel yang dikendalikan (output) disensor secara kontinyu, kemudian dibandingkan dengan besaran acuan.

Gambar 2. Diagram blok sistem kendali loop tertutup

1. SISTEM PENGONTROLAN TEKANAN UDARA PADA RUANG TERTUTUPA. Pengenalan Ketel Uap Ketel uap atau boiler merupakan suatu peralatan yang digunakan untuk menghasilkan steam (uap) dalam berbagai keperluan. Air di dalam boiler dipanaskan oleh panas dari hasil pembakaran bahan bakar (sumber panas lainnya) sehingga terjadi perpindahan panas dari sumber panas tersebut ke air yang mengakibatkan air tersebut menjadi panas atau berubah wujud menjadi uap. Air yang lebih panas memiliki berat jenis yang lebih rendah dibanding dengan air yang lebih dingin, sehingga terjadi perubahan berat jenis air di dalam boiler. Air yang memiliki berat jenis yang lebih kecil akan naik, dan sebaliknya air yang memiliki berat jenis yang lebih tinggi akan turun ke dasar. Uap panas atau steam pada tekanan tertentu kemudian digunakan untuk mengalirkan panas ke suatu proses. Jika air dididihkan sampai menjadi steam, volumenya akan meningkat..

Gambar 3.Boiler penyulingan

B. Model self regulating process Pada dasarnya dapat didekati oleh sebuah model matematis FOPDT (First Order Plus Ded Time) yang hanya dicirikan oleh tiga buah parameter yaitu Process transport delay L, Process time constant T, Process static gain- K Ketiga parameter yang menggambarkan dinamika proses, secara praktis dapat diperoleh atau diidentifikasi melalui eksperimen sederhana BumpTest atau sinyal tangga secara open loop pada mode kontrol manual (lihat Gambar 4).

Gambar 4. Kontrol manual.

Gambar 5. Respon tangga Bump test.

Percobaan BumpTest yang mana parameter-parameter proses FOPDT (First Order Plus Ded Time) dapat dicari sebagai berikut:a. Keterlambatan transportasi proses (L) = waktu yang terjadi pada proses yang dihitung sejak terjadi perubahan tangga pada CO sampai variabel proses (PV) yang dikontrol mulai menanggapi perubahan input CO. b. Konstanta waktu (T) = Waktu yang di perlukan sehingga nilai PV mencapai kurang lebih 63 % dari keadaan steady akhir setelah waktu tunda. c. Gain Statis Proses (K) = Perbandingan perubahan PV terhadap perubahan CO dalam keadaan steadynya. Gain statis bisa bernilai positif maupun negatif tergantung jenis kontrol valve yang di gunakan.

2. SISTEM PENGONTROLAN MINYAK DALAM TANGKIA. Deskripsi Sistem Sensor Linier Variable Differential Transformers (LVDT) Adalah suatu sensor yang bekerja berdasarkan prinsip trafo diferensial dengan gandengan variabel antara gandengan variabel antara kumparan primer dan kumparan sekunder. Prinsip ini pertama kali dikemukakan oleh Schaevits pada tahun 1940-an.Pada masa sekarang sensor LVDT telah secara luas digunakan. Pada aplikasinya LVDT dapat digunakan sebagai sensor jarak, sensor sudut, dan sensor mekanik lainnya.Untuk kali ini sensor ini diaplikasikan sebagai sensor jarak. Suatu LVDT pada dasarnya terdiri dari sebuah kumparan primer, dua buah kumparan sekunder, dan inti dari bahan feromagnetik. Kumparan-kumparan tersebut dililitkan pada suatu selongsong, sedangkan inti besi ditempatkan didalam rongga selongsong tersebut. Selongsong ini terbuat dari bahan non-magnetik. Kumparan primer dililitkan ditengah selongsong, sedangkan kedua kumparan sekunder dililitkan disetiap sisi kumparan primer. Kedua kumparan sekunder ini dihubungkan seri secara berlawanan dengan jumlah lilitan yang sama.Perancangan sistem dari tugas yang berjudul system monitoring tangki SPBU dan detektor kadar air yang terkandung dalam bahan bakar dengan menggunakan sensor LVDT dan sensor konduktifitas adalah dengan cara memanfaatkan sensor LVDT/sensor pergeseran untuk mengetahui volume tangki pendam ,serta sensor konduktifitas yang mampu membedakan massa jenis dari bahan bakar dan air.

Gabar 6. Skematik Sensor LDVT

Secara skematik LVDT dapat digambarkan seperti pada gambar diatas. Pada ujung-ujung kumparan primer diberikan tegangan eksitasi yang berupa sinyal yang dihasilkan oleh oscilator Keluaran dari sensor ini diambil dari ujung-ujung kumparan sekunder. Besar tegangan keluaran LVDT bergantung kepada posisi inti. Pada saat posisi inti. Pada saat posisi inti besi ditengah, GGL yang diinduksi oleh kumparan sekunder 1 dan 2 sama besar. Tetapi karena kedua kumparan sekunder dihubungkan seri secara berlawanan maka tegangan keluaran akan sama dengan nol. Jika inti besi kita geser kearah kiri maka kumparan sekunder 1 akan mendapat rapat fluks yang lebih tinggi dibandingkan dengan kumparan sekunder 2. Akibatnya GGl induksi pada kumparan sekunder 1 akan lebih besar daripada kumparan sekunder 2. Tegangan keluaran yang dihasilkan merupakan selisih tegangan kedua kumparan sekunder. Hubungan antara tegagan keluaran dan pergesaran inti LVDT adalah linier pada selang jarak tertentu. Hubungan antara tegangan keluaran U dengan posisi inti besi x linier saat inti berada ditengah selongsong, dan tidak linier saat inti berada di pinggirpinggir selongsong. LVDT dapat digunakan untuk mengukur pergeseran/perubahan jarak. Untuk keperluan ini kita hubungkan pegangan inti LVDT ke bagian yang akan diukur pergerakannya.

Gambar 7 .Skema LDVT

3. SISTEM KENDALI OLI MESINA. Pelumas Mesin (Oli Mesin) Pelumas oli merupakan sejenis cairan kental yang berfungsi sebagai pelicin, pelindung, dan pembersih bagi bagian dalam mesin. Kode pengenal Oli adalah berupa huruf SAE yang merupakan singkatan dari Society of Automotive Engineers. SAE (Society of Automotive Engineer) adalah sebuah lembaga standarisasi seperti ISO,DIN atau JIS yang mengkhususkan diri di bidang otomotif. Standarisasi minyak pelumas untuk mesin kendaraan bermotor pertama kali dilakukan oleh Society of Automotive Engineers (SAE) pada tahun 1911 dengan kode SAE J300. Minyak pelumas dikelompokkan berdasarkan tingkat kekentalannya. Dalam kemasan atau kaleng pelumas, biasanya dapat ditemukan kode angka yang menunjukkan tingkat kekentalannya, seperti: SAE 40, SAE 90, dsb. Semakin tinggi angkanya semakin kental minyak pelumas tersebut. Ada juga kode angka multi grade seperti SAE 10W-50, yang dapat diartikan bahwa pelumas memiliki tingkat kekentalansama dengan SAE 10 pada suhu udara dingin (W=Winter) dan SAE 50 pada suhu udara panas (Wijaya, R. Indra, 2005).Sensor kapasitif dapat mengindera langsung berbagai hal, seperti: gerakan, komposisi kimia dan medan listrik. Sensor kapasitif juga dapat mengindera berbagai variabel yang dikonversi terlebih dahulu menjadi konstanta gerak ataupun dielektrik, seperti: tekanan,percepatan, tinggi dan komposisi fluida.Sensor kapasitif menggunakan elektroda konduktif dengan dielektrik. Rangkaian detector hanya membutuhkan tegangan (listrik) 5 Volt yang akan mengubah variasi kapasitansi menjadi variasi voltase, frekuensi atau lebar pulsa.

Gambar 7. Kapasitansi cylinderB. Sensor Cylinder Kapasitif Pada tugas akhir ini tahap pertama yang dilakukan adalah perancangan Cylinder kapasitif Sensor. Sensor kapasitif ini didesain menggunakan 2 plat berbahan konduktor berbentuk lingkaran yang terbuat dari aluminium dengan luas penampang panjang 8 cm dan diameter lingkaran dalam 1cm dan diameter lingkaran luar 3,2 cm.

Gambar 8. Perancangan sensor kapasitifSensor ini akan bekerja dengan memanfaatkan perubahan frequensi yang terjadi pada astable multivibrator.Perubahan frequensi ini akan diumpankan ke rangkaian minimum.

9