REGULATION OF ACID-BASE & ELECTROLYTES

40
REGULATION OF ACID-BASE REGULATION OF ACID-BASE & & ELECTROLYTES ELECTROLYTES Oleh: Oleh: Dr. Husnil Kadri, M.Kes Dr. Husnil Kadri, M.Kes Bagian Biokimia Fakultas Bagian Biokimia Fakultas Kedokteran Kedokteran Universitas Andalas Universitas Andalas Padang Padang

description

REGULATION OF ACID-BASE & ELECTROLYTES. Oleh: Dr. Husnil Kadri, M.Kes Bagian Biokimia Fakultas Kedokteran Universitas Andalas Padang. ASAM BASA. [H + ]. pH. pH. pH. Acid. Base. - PowerPoint PPT Presentation

Transcript of REGULATION OF ACID-BASE & ELECTROLYTES

Page 1: REGULATION OF ACID-BASE & ELECTROLYTES

REGULATION OF ACID-BASE REGULATION OF ACID-BASE &&

ELECTROLYTESELECTROLYTES

Oleh:Oleh:

Dr. Husnil Kadri, M.KesDr. Husnil Kadri, M.Kes

Bagian Biokimia Fakultas KedokteranBagian Biokimia Fakultas Kedokteran

Universitas AndalasUniversitas Andalas

PadangPadang

Page 2: REGULATION OF ACID-BASE & ELECTROLYTES

2

ASAM BASA..ASAM BASA..

pHpH

[H[H++]]

Page 3: REGULATION OF ACID-BASE & ELECTROLYTES

3

Acid Base

Notasi pH diciptakan oleh seorang ahli kimia dari Denmark Notasi pH diciptakan oleh seorang ahli kimia dari Denmark yaitu Soren Peter Sorensen pada thn 1909, yang berarti log yaitu Soren Peter Sorensen pada thn 1909, yang berarti log negatif dari konsentrasi ion hidrogen. Dalam bahasa Jerman negatif dari konsentrasi ion hidrogen. Dalam bahasa Jerman disebutdisebutWasserstoffionenexponent Wasserstoffionenexponent (eksponen ion hidrogen) (eksponen ion hidrogen) dan diberi simbol pH yang berarti: ‘dan diberi simbol pH yang berarti: ‘ppotenz’ (power) of otenz’ (power) of HHydrogen. ydrogen.

Page 4: REGULATION OF ACID-BASE & ELECTROLYTES

4

Acid-Base Balance

• Normal pH of body fluids– Arterial blood is 7.4– Venous blood and interstitial fluid is 7.35– Intracellular fluid is 7.0

• Alkalosis or alkalemia – arterial blood pH rises above 7.45

• Acidosis or acidemia – arterial pH drops below 7.35

Page 5: REGULATION OF ACID-BASE & ELECTROLYTES

5

Sources of Hydrogen Ions

• Most hydrogen ions originate from cellular metabolism– Breakdown of phosphorus-containing proteins

releases phosphoric acid into the ECF– Anaerobic respiration of glucose produces lactic

acid– Fat metabolism yields organic acids and ketone

bodies– Transporting carbon dioxide as bicarbonate

releases hydrogen ions

Page 6: REGULATION OF ACID-BASE & ELECTROLYTES

6

Hydrogen Ion Regulation

• Concentration of hydrogen ions is regulated sequentially by:– Chemical buffer systems – act within seconds– The respiratory center in the brain stem – acts

within 1-3 minutes– Renal mechanisms – require hours to days to

effect pH changes

Page 7: REGULATION OF ACID-BASE & ELECTROLYTES

7

Acid/Base Homeostasis: OverviewAcid/Base Homeostasis: Overview

Page 8: REGULATION OF ACID-BASE & ELECTROLYTES

8

Regulation of Blood pH

• The lungs and kidneys play important role in regulating blood pH.

• The lungs regulate pH through retention or elimination of CO2 by changing the rate and volume of ventilation.

• The kidneys regulate pH by excreting acid, primarily in the ammonium ion (NH4

+), and by reclaiming HCO3

- from the glomerular filtrate (and adding it back to the blood).

Page 9: REGULATION OF ACID-BASE & ELECTROLYTES

9

Carbonic acid/bicarbonate buffer systemCarbonic acid/bicarbonate buffer system

• Carbonic acid is formed when CO2 combines with water. This reaction is catalysed by carbonic anhydrase

• Carbonic acid dissociates spontaneously to form a proton and a bicarbonate ion

CO2 + H2O H2CO3 H+ + HCO3-

CA

Page 10: REGULATION OF ACID-BASE & ELECTROLYTES

10

The Lung Regulation

• Normal, unassisted breathing:– An increase in arterial PCO2 acts through the

respiratory centre to increase the rate of pulmonary ventilation

– A decrease in arterial PCO2 reduces the rate of ventilation

• Assisted breathing:– A respirator is used to assist breathing by

expelling CO2, thus reducing PCO2 in blood

Page 11: REGULATION OF ACID-BASE & ELECTROLYTES

11

The Lung Regulation

• When hypercapnia or rising plasma H+ occurs:– Deeper and more rapid breathing expels more

carbon dioxide– Hydrogen ion concentration is reduced

• Alkalosis causes slower, more shallow breathing, causing H+ to increase

Page 12: REGULATION OF ACID-BASE & ELECTROLYTES

12

Page 13: REGULATION OF ACID-BASE & ELECTROLYTES

13

The Renal Regulation

• Chemical buffers can tie up excess acids or bases, but they cannot eliminate them from the body

• The lungs can eliminate carbonic acid by eliminating carbon dioxide

• Only the kidneys can rid the body of metabolic acids (phosphoric, uric, and lactic acids and ketones) and prevent metabolic acidosis

Page 14: REGULATION OF ACID-BASE & ELECTROLYTES

14

The Renal Regulation

• The most important renal mechanisms for regulating acid-base balance are:– Conserving (reabsorbing) or generating new

bicarbonate ions– Excreting bicarbonate ions

• Losing a bicarbonate ion is the same as gaining a hydrogen ion; reabsorbing a bicarbonate ion is the same as losing a hydrogen ion

Page 15: REGULATION OF ACID-BASE & ELECTROLYTES

15

Page 16: REGULATION OF ACID-BASE & ELECTROLYTES

16

Reabsorption of Bicarbonate

Page 17: REGULATION OF ACID-BASE & ELECTROLYTES

17

Hydrogen Ion Excretion

Page 18: REGULATION OF ACID-BASE & ELECTROLYTES

18

CARA CARA TRADISIONAL :TRADISIONAL :

Hendersen-Hendersen-HasselbalchHasselbalch(1909) (1909)

Page 19: REGULATION OF ACID-BASE & ELECTROLYTES

19

pH pH = 6.1 + log= 6.1 + log[HCO[HCO33

--]]

pCOpCO22

GINJALGINJAL

PARUPARU

BASA BASA

ASAMASAM CO2

HCO3HCO3

CO2

KompensasiKompensasi

NormalNormal

NormalNormal

Page 20: REGULATION OF ACID-BASE & ELECTROLYTES

20

Carbonic acid/bicarbonate buffer systemCarbonic acid/bicarbonate buffer system

• The pKa of carbonic acid is 6.1

• Carbonic acid is the major buffer in ECF

• The pH of blood can be determined using the Henderson-Hasselbalch equation

H2CO3 H+ + HCO3-

Carbonic acid Bicarbonate ion

pKa = 6.1

ECF:

Page 21: REGULATION OF ACID-BASE & ELECTROLYTES

21

• pH = pKa + log [HCO3-]/[H2CO3]

• pH = pKa + log [HCO3-]/0.03 x PCO2

• 7.4 = 6.1 + log 20 / 1

• 7.4 = 6.1 + 1.3

• Plasma pH equals 7.4 when buffer ratio is 20/1

• The solubility constant of CO2 is 0.03

Henderson-Hasselbalch equationHenderson-Hasselbalch equation

Page 22: REGULATION OF ACID-BASE & ELECTROLYTES

DUA VARIABELDUA VARIABEL

pH atau [HpH atau [H++] DALAM PLASMA ] DALAM PLASMA DITENTUKAN OLEHDITENTUKAN OLEH

VARIABELVARIABELINDEPENDENINDEPENDEN

Stewart PA. Can J Physiol Pharmacol 61:1444-1461, 1983.

VARIABELVARIABELDEPENDENDEPENDEN

Cara Stewart ;Cara Stewart ;

Page 23: REGULATION OF ACID-BASE & ELECTROLYTES

VARIABEL INDEPENDENVARIABEL INDEPENDEN

COCO22 STRONG ION STRONG ION DIFFERENCEDIFFERENCE

WEAK ACIDWEAK ACID

pCOpCO22 SIDSID AAtottot

Page 24: REGULATION OF ACID-BASE & ELECTROLYTES

COCO22 Didalam plasma berada Didalam plasma berada

dalam 4 bentukdalam 4 bentuk sCOsCO22 (terlarut) (terlarut)

HH22COCO33 asam karbonat asam karbonat

HCOHCO33-- ion bikarbonat ion bikarbonat

COCO332-2- ion karbonat ion karbonat

Rx dominan dari CORx dominan dari CO22 adalah rx adalah rx

absorpsi OHabsorpsi OH-- hasil disosiasi air hasil disosiasi air dengan melepas Hdengan melepas H++..

Semakin tinggi pCOSemakin tinggi pCO22 semakin semakin

banyak Hbanyak H++ yang terbentuk. yang terbentuk. Ini yg menjadi dasar dari Ini yg menjadi dasar dari

terminologi “respiratory acidosis,” terminologi “respiratory acidosis,” yaitu pelepasan ion hidrogen akibat yaitu pelepasan ion hidrogen akibat pCO pCO22

COCO22

Page 25: REGULATION OF ACID-BASE & ELECTROLYTES

Definisi:Definisi:Strong ion difference adalah ketidakseimbangan Strong ion difference adalah ketidakseimbangan muatanmuatan dari ion-ion kuat. Lebih rinci lagi, SID adalah jumlah dari ion-ion kuat. Lebih rinci lagi, SID adalah jumlah

konsentrasi basa kation kuat dikurangi jumlah dari konsentrasi basa kation kuat dikurangi jumlah dari konsentrasi asam anion kuat. Untuk definisi ini semua konsentrasi asam anion kuat. Untuk definisi ini semua konsentrasi ion-ion diekspresikan dalam ekuivalensi konsentrasi ion-ion diekspresikan dalam ekuivalensi (mEq/L).(mEq/L).

Semua ion kuat akan terdisosiasi sempurna jika berada didalam Semua ion kuat akan terdisosiasi sempurna jika berada didalam larutan, misalnya ion natrium (Nalarutan, misalnya ion natrium (Na++), atau klorida (Cl), atau klorida (Cl--). Karena ). Karena selalu berdisosiasi ini maka ion-ion kuat tersebut tidak selalu berdisosiasi ini maka ion-ion kuat tersebut tidak berpartisipasi dalam reaksi-reaksi kimia. Perannya dalam kimia berpartisipasi dalam reaksi-reaksi kimia. Perannya dalam kimia asam basa hanya pada hubungan elektronetraliti.asam basa hanya pada hubungan elektronetraliti.

Page 26: REGULATION OF ACID-BASE & ELECTROLYTES

Gamblegram

NaNa++

140140

KK+ + 44CaCa++++

MgMg++++

ClCl--

102102

KATION ANION

SIDSID

STRONG ION STRONG ION DIFFERENCEDIFFERENCE

[Na+] + [K+] + [kation divalen] - [Cl-] - [asam organik kuat-]

[Na+] + [K+] - [Cl-] = [SID]

140 mEq/L + 4 mEq/L - 102 mEq/L = 34 mEq/L

Page 27: REGULATION OF ACID-BASE & ELECTROLYTES

SIDSID(–) ((++))

[H[H++]] [OH[OH--]]

Dalam cairan biologis (plasma) dgn suhu 370C, SID hampir selalu positif, biasanya berkisar 30-40 mEq/Liter

AsidosisAsidosis AlkalosisAlkalosis

Konsentrasi [H+]

Page 28: REGULATION OF ACID-BASE & ELECTROLYTES

Kombinasi protein dan posfat disebut asam lemah total (total weak acid) [Atot]. Reaksi disosiasinya adalah:

[A[Atottot] (KA) = [A] (KA) = [A--].[H].[H++]]

[Protein H] [Protein-] + [H+]

WEAK ACIDWEAK ACID

disosiasi

Page 29: REGULATION OF ACID-BASE & ELECTROLYTES

Gamblegram

NaNa++

140140

KK+ + 44CaCa++++

MgMg++++

ClCl--

102102

HCOHCO33--

2424

KATION ANION

SIDSID

Weak acidWeak acid(Alb-,P-)(Alb-,P-)

Page 30: REGULATION OF ACID-BASE & ELECTROLYTES

DEPENDENT VARIABLESDEPENDENT VARIABLES

HH++

OHOH--

CO3CO3-- AA--

AHAH

HCO3-HCO3-

Page 31: REGULATION OF ACID-BASE & ELECTROLYTES

Strong IonsStrong IonsDifferenceDifference

pCOpCO22

ProteinProteinConcentrationConcentration

pHpH

INDEPENDENT VARIABLESINDEPENDENT VARIABLES DEPENDENT VARIABLESDEPENDENT VARIABLES

Page 32: REGULATION OF ACID-BASE & ELECTROLYTES

NaNa140140

KKMgMgCaCa

ClCl102102

PPAlbAlb

HCOHCO33 = 24 = 24

ClCl115115

PPAlbAlb

HCOHCO33--

Asidosis hiperklore

mi

SID nSID

ClCl102102

Laktat/keto=UA

Keto/laktat

asidosisCLCL9595

PPAlbAlb

SID

Alkalosis hipoklore

miKATIONKATION ANIONANION

H3O+ = H+ = 40 mEq/LHCOHCO33

--

HCO3-

Page 33: REGULATION OF ACID-BASE & ELECTROLYTES

Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med 2000 Dec;162(6):2246-51

Page 34: REGULATION OF ACID-BASE & ELECTROLYTES

  ASIDOSIS ALKALOSIS

I. Respiratori PCO2 PCO2

II. Nonrespiratori (metabolik)      

1. Gangguan pd SID      

a. Kelebihan / kekurangan air [Na+], SID [Na+], SID b. Ketidakseimbangan anion

kuat:     

i. Kelebihan / kekurangan Cl- [Cl-], SID [Cl-], SID ii. Ada anion tak terukur [UA-], SID   

2. Gangguan pd asam lemah      

i. Kadar albumin [Alb] [Alb]

ii. Kadar posphate [Pi] [Pi]

Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med 2000 Dec;162(6):2246-51

Page 35: REGULATION OF ACID-BASE & ELECTROLYTES

RESPIRASIRESPIRASI M E T A B O L I KM E T A B O L I K

Abnormal Abnormal pCO2pCO2

AbnormalAbnormalSIDSID

AbnormalAbnormalWeak acidWeak acid

AlbAlb PO4-PO4-

AlkalosisAlkalosis

AsidosisAsidosis

TurunTurun

MeningkatMeningkat

TurunTurun

kelebihankelebihan

kekurangankekurangan

PositifPositif meningkatmeningkat

Fencl V, Am J Respir Crit Care Med 2000 Dec;162(6):2246-51

AIRAIR Anion kuatAnion kuat

Cl-Cl- UA-UA-

HipoHipo

HiperHiper

Page 36: REGULATION OF ACID-BASE & ELECTROLYTES

Anion Gap

• Described by Gamble in 1939• Electroneutrality

• Na+, Cl-, and HCO3 are measured ions

Na + UC = Cl + HCO3 + UA

UC = Sum of unmeasured cations

UA = Sum of unmeasured anions

Page 37: REGULATION OF ACID-BASE & ELECTROLYTES

Anion Gap

Unmeasured Cations:• total 11 mEq/L

– Potassium 4– Calcium 5– Magnesium 2

Unmeasured Anions:• total 23 mEq/L

– Sulfates 1– Phosphates 2– Albumin 16– Lactic acid 1– Org. acids 3

Page 38: REGULATION OF ACID-BASE & ELECTROLYTES

Anion Gap

Na + UC = Cl + HCO3 + UA 140 + 11 = 104 + 24 + 23

151 = 151

UA – UC = Na - (Cl + HCO3);Anion Gap = Na - (Cl + HCO3)

Page 39: REGULATION OF ACID-BASE & ELECTROLYTES

Change in Anion Gap vs HCO3

• In simple AG Metabolic Acidosis – decrease in plasma bicarbonate = increase

in AG

Anion Gap = 1

HCO3

• Helpful in identifying mixed disorders

Page 40: REGULATION OF ACID-BASE & ELECTROLYTES

40

SourcesSources1. Achmadi, A., George, YWH., Mustafa, I. Pendekatan “Stewart” Pendekatan “Stewart”

Dalam Fisiologi Keseimbangan Asam Basa. 2007Dalam Fisiologi Keseimbangan Asam Basa. 20072. Beaudoin, D. Electrolytes and ion sensitive electrodes. PPT.

2003.3. Ivkovic, A ., Dave, R. Renal review. PPT4. Kersten. Fluid and electrolytes. PPT.5. Marieb, EN. Fluid, electrolyte, and acid-base balance. PPT.

Pearson Education, Inc. 20046. Rashid, FA. Respiratory mechanism in acid-base homeostasis.

PPT. 2005.7. Silverthorn, DU. Integrative Physiology II: Fluid and Electrolyte

Balance. Chapter 20, part B. Pearson Education, Inc. 20048. Smith, SW. Acid-Base Disorders. www.acid-base.com