Profil Endapan Nikel Laterit 2

download Profil Endapan Nikel Laterit 2

of 10

description

rr

Transcript of Profil Endapan Nikel Laterit 2

Profil Endapan Nikel LateritProfil endapan nikel laterit yang terbentuk dari hasil pelapukan batuan ultrabasa secara umum terdiri dari 4 (empat) lapisan, yaitu lapisan tanah penutup atau top soil, lapisan limonit, lapisan saprolit, dan bedrock.1. Lapisan tanah penutupLapisan tanah penutup biasa disebut iron capping. Material lapisan berukuran lempung, berwarna coklat kemerahan, dan biasanya terdapat juga sisa-sisa tumbuhan. Pengkayaan Fe terjadi pada zona ini karena terdiri dari konkresi Fe-Oksida (mineral Hematite dan Goethite), dan Chromiferous dengan kandungan nikel relatif rendah. Tebal lapisan bervariasi antara 0 2 m. Tekstur batuan asal sudah tidak dapat dikenali lagi.2. Lapisan LimonitMerupakan lapisan berwarna coklat muda, ukuran butir lempung sampai pasir, tekstur batuan asal mulai dapat diamati walaupun masih sangat sulit, dengan tebal lapisan berkisar antara 1 10 m. Lapisan ini tipis pada daerah yang terjal, dan sempat hilang karena erosi. Pada zone limonit hampir seluruh unsur yang mudah larut hilang terlindi, kadar MgO hanya tinggal kurang dari 2% berat dan kadar SiO2 berkisar 2 5% berat. Sebaliknya kadar Fe2O3 menjadi sekitar 60 80% berat dan kadar Al2O3 maksimum 7% berat. Zone ini didominasi oleh mineral Goethit, disamping juga terdapat Magnetit, Hematit, Kromit, serta Kuarsa sekunder. Pada Goethit terikat Nikel, Chrom, Cobalt, Vanadium, dan Aluminium.1. Lapisan SaprolitMerupakan lapisan dari batuan dasar yang sudah lapuk, berupa bongkah-bongkah lunak berwarna coklat kekuningan sampai kehijauan. Struktur dan tekstur batuan asal masih terlihat. Perubahan geokimia zone saprolit yang terletak di atas batuan asal ini tidak banyak, H2O dan Nikel bertambah, dengan kadar Ni keseluruhan lapisan antara 2 4%, sedangkan Magnesium dan Silikon hanya sedikit yang hilang terlindi. Zona ini terdiri dari vein-vein Garnierite, Mangan, Serpentin, Kuarsa sekunder bertekstur boxwork, Ni-Kalsedon, dan di beberapa tempat sudah terbentuk limonit yang mengandung Fe-hidroksida.1. Bedrock (Batuan Dasar)Merupakan bagian terbawah dari profil nikel laterit, berwarna hitam kehijauan, terdiri dari bongkah bongkah batuan dasar dengan ukuran > 75 cm, dan secara umum sudah tidak mengandung mineral ekonomis. Kadar mineral mendekati atau sama dengan batuan asal, yaitu dengan kadar Fe 5% serta Ni dan Co antara 0.01 0.30%.

[tutup]

Nikel lateritDari Wikipedia bahasa Indonesia, ensiklopedia bebasBelum DiperiksaLangsung ke: navigasi, cari Artikel ini perlu dirapikan agar memenuhi standar WikipediaMerapikan artikel bisa berupa membagi artikel ke dalam paragraf atau wikifikasi artikel. Setelah dirapikan, tolong hapus pesan ini.

Batuan induk bijih nikel adalah batuan peridotit. Menurut Vinogradov batuan ultra basa rata-rata mempunyai kandungan nikel sebesar 0,2%. Unsur nikel tersebut terdapat dalam kisi-kisi kristal mineral olivin dan piroksin, sebagai hasil substitusi terhadap atom Fe dan Mg. Proses terjadinya substitusi antara Ni, Fe dan Mg dapat diterangkan karena radius ion dan muatan ion yang hampir bersamaan di antara unsur-unsur tersebut. Proses serpentinisasi yang terjadi pada batuan peridotit akibat pengaruh larutan hydrothermal, akan mengubah batuan peridotit menjadi batuan serpentinit atau batuan serpentinit peroditit. Sedangkan proses kimia dan fisika dari udara, air serta pergantian panas dingin yang bekerja kontinu, menyebabkan disintegrasi dan dekomposisi pada batuan induk.Pada pelapukan kimia khususnya, air tanah yang kaya akan CO2 berasal dari udara dan pembusukan tumbuh-tumbuhan menguraikan mineral-mineral yang tidak stabil (olivin dan piroksin) pada batuan ultra basa, menghasilkan Mg, Fe, Ni yang larut; Si cenderung membentuk koloid dari partikel-partikel silika yang sangat halus. Didalam larutan, Fe teroksidasi dan mengendap sebagai ferri-hydroksida, akhirnya membentuk mineral-mineral seperti geothit, limonit, dan haematit dekat permukaan. Bersama mineral-mineral ini selalu ikut serta unsur cobalt dalam jumlah kecil.Larutan yang mengandung Mg, Ni, dan Si terus menerus kebawah selama larutannya bersifat asam, hingga pada suatu kondisi dimana suasana cukup netral akibat adanya kontak dengan tanah dan batuan, maka ada kecenderungan untuk membentuk endapan hydrosilikat. Nikel yang terkandung dalam rantai silikat atau hydrosilikat dengan komposisi yang mungkin bervariasi tersebut akan mengendap pada celah-celah atau rekahan-rekahan yang dikenal dengan urat-urat garnierit dan krisopras. Sedangkan larutan residunya akan membentuk suatu senyawa yang disebut saprolit yang berwarna coklat kuning kemerahan. Unsur-unsur lainnya seperti Ca dan Mg yang terlarut sebagai bikarbonat akan terbawa kebawah sampai batas pelapukan dan akan diendapkan sebagai dolomit, magnesit yang biasa mengisi celah-celah atau rekahan-rekahan pada batuan induk. Dilapangan urat-urat ini dikenal sebagai batas petunjuk antara zona pelapukan dengan zona batuan segar yang disebut dengan akar pelapukan (root of weathering).Faktor-faktor yang memengaruhi pembentukan bijih nikel laterit ini adalah:a. Batuan asal. Adanya batuan asal merupakan syarat utama untuk terbentuknya endapan nikel laterit, macam batuan asalnya adalah batuan ultra basa. Dalam hal ini pada batuan ultra basa tersebut: - terdapat elemen Ni yang paling banyak di antara batuan lainnya - mempunyai mineral-mineral yang paling mudah lapuk atau tidak stabil, seperti olivin dan piroksin - mempunyai komponen-komponen yang mudah larut dan memberikan lingkungan pengendapan yang baik untuk nikel.b. Iklim. Adanya pergantian musim kemarau dan musim penghujan dimana terjadi kenaikan dan penurunan permukaan air tanah juga dapat menyebabkan terjadinya proses pemisahan dan akumulasi unsur-unsur. Perbedaan temperatur yang cukup besar akan membantu terjadinya pelapukan mekanis, dimana akan terjadi rekahan-rekahan dalam batuan yang akan mempermudah proses atau reaksi kimia pada batuan.c. Reagen-reagen kimia dan vegetasi. Yang dimaksud dengan reagen-reagen kimia adalah unsur-unsur dan senyawa-senyawa yang membantu mempercepat proses pelapukan. Air tanah yang mengandung CO2 memegang peranan penting di dalam proses pelapukan kimia. Asam-asam humus menyebabkan dekomposisi batuan dan dapat mengubah pH larutan. Asam-asam humus ini erat kaitannya dengan vegetasi daerah. Dalam hal ini, vegetasi akan mengakibatkan: penetrasi air dapat lebih dalam dan lebih mudah dengan mengikuti jalur akar pohon-pohonan akumulasi air hujan akan lebih banyak humus akan lebih tebal Keadaan ini merupakan suatu petunjuk, dimana hutannya lebat pada lingkungan yang baik akan terdapat endapan nikel yang lebih tebal dengan kadar yang lebih tinggi. Selain itu, vegetasi dapat berfungsi untuk menjaga hasil pelapukan terhadap erosi mekanis.d. Struktur. Struktur yang sangat dominan yang terdapat didaerah Polamaa ini adalah struktur kekar (joint) dibandingkan terhadap struktur patahannya. Seperti diketahui, batuan beku mempunyai porositas dan permeabilitas yang kecil sekali sehingga penetrasi air sangat sulit, maka dengan adanya rekahan-rekahan tersebut akan lebih memudahkan masuknya air dan berarti proses pelapukan akan lebih intensif.e. Topografi. Keadaan topografi setempat akan sangat memengaruhi sirkulasi air beserta reagen-reagen lain. Untuk daerah yang landai, maka air akan bergerak perlahan-lahan sehingga akan mempunyai kesempatan untuk mengadakan penetrasi lebih dalam melalui rekahan-rekahan atau pori-pori batuan. Akumulasi andapan umumnya terdapat pada daerah-daerah yang landai sampai kemiringan sedang, hal ini menerangkan bahwa ketebalan pelapukan mengikuti bentuk topografi. Pada daerah yang curam, secara teoritis, jumlah air yang meluncur (run off) lebih banyak daripada air yang meresap ini dapat menyebabkan pelapukan kurang intensif.f. Waktu. Waktu yang cukup lama akan mengakibatkan pelapukan yang cukup intensif karena akumulasi unsur nikel cukup tinggi.Profil nikel laterit keseluruhan terdiri dari 4 zona gradasi sebagai berikut:1. Iron Capping: Merupakan bagian yang paling atas dari suatu penampang laterit. Komposisinya adalah akar tumbuhan, humus, oksida besi dan sisa-sisa organik lainnya. Warna khas adalah coklat tua kehitaman dan bersifat gembur. Kadar nikelnya sangat rendah sehingga tidak diambil dalam penambangan. Ketebalan lapisan tanah penutup rata-rata 0,3 s/d 6 m. berwarna merah tua, merupakan kumpulan massa goethite dan limonite. Iron capping mempunyai kadar besi yang tinggi tapi kadar nikel yang rendah. Terkadang terdapat mineral-mineral hematite, chromiferous.2. Limonite Layer: Merupakan hasil pelapukan lanjut dari batuan beku ultrabasa. Komposisinya meliputi oksida besi yang dominan, goethit, dan magnetit. Ketebalan lapisan ini rata-rata 8-15 m. Dalam limonit dapat dijumpai adanya akar tumbuhan, meskipun dalam persentase yang sangat kecil. Kemunculan bongkah-bongkah batuan beku ultrabasa pada zona ini tidak dominan atau hampir tidak ada, umumnya mineral-mineral di batuan beku basa-ultrabasa telah terubah menjadi serpentin akibat hasil dari pelapukan yang belum tuntas. fine grained, merah coklat atau kuning, lapisan kaya besi dari limonit soil menyelimuti seluruh area. Lapisan ini tipis pada daerah yang terjal, dan sempat hilang karena erosi. Sebagian dari nikel pada zona ini hadir di dalam mineral manganese oxide, lithiophorite. Terkadang terdapat mineral talc, tremolite, chromiferous, quartz, gibsite, maghemite.3. Silika Boxwork: putih orange chert, quartz, mengisi sepanjang fractured dan sebagian menggantikan zona terluar dari unserpentine fragmen peridotite, sebagian mengawetkan struktur dan tekstur dari batuan asal. Terkadang terdapat mineral opal, magnesite. Akumulasi dari garnierite-pimelite di dalam boxwork mungkin berasal dari nikel ore yang kaya silika. Zona boxwork jarang terdapat pada bedrock yang serpentinized.4. Saprolite: Zona ini merupakan zona pengayaan unsur Ni. Komposisinya berupa oksida besi, serpentin sekitar 35%. Permeabilitas batuan dasar meningkat sebanding dengan intensitas serpentinisasi.Zona ini terfrakturisasi kuat, kadang membuka, terisi oleh mineral garnierite dan silika. Frakturisasi ini diperkirakan menjadi penyebab adanya root zone yaitu zona high grade Ni, akan tetapi posisinya tersembunyi.Menu navigasi Buat akun baru Masuk log Halaman Pembicaraan Baca Sunting sumber Versi terdahuluTop of Form

Bottom of Form Halaman Utama Perubahan terbaru Peristiwa terkini Halaman baru Halaman sembarangKomunitas Warung Kopi Portal komunitas BantuanWikipediaBagikanCetak/eksporPeralatanBahasa lain Sunting interwiki Halaman ini terakhir diubah pada 13.57, 7 April 2011. Teks tersedia di bawah Lisensi Atribusi-BerbagiSerupa Creative Commons; ketentuan tambahan mungkin berlaku. Lihat Ketentuan Penggunaan untuk lebih jelasnya. Kebijakan privasi Tentang Wikipedia Penyangkalan Developers Tampilan selulerGenesa Endapan NikelLateritMaret 16, 2013 by sup4rdi | Leave a comment Genesa Endapan Nikel LateritProses Terbentuknya EndapanEndapan nikel yang ada di daerah penelitian adalah jenis nikel laterit, yang merupakan hasil pelapukan dari batuan ultrabasa. Menurut Vinogradov, batuan ultrabasa pada awalnya mempunyai kandungan nikel rata-rata sebesar 0.2%. Tabel 3.1 adalah unsur-unsur yang terkandung dalam batuan beku (Boldt, 1967).Unsur yang terkandung dalam batuan bekuBatuanPersentase Kadar (%)

NiFeO + MgAl + Si

Peridotit0,200043,545,9

Gabro0,016016,666,1

Diorit0,004011,773,4

Granit0,00204,478,7

Proses terbentuknya nikel laterit dimulai dari peridotit sebagai batuan induk. Batuan induk ini akan berubah menjadi serpentin akibat pengaruh larutan hidrotermal atau larutan residual pada waktu proses pembentukan magma (proses serpentinisasi) dan akan merubah batuan peridotit menjadi batuan Serpentinit atau batuan Serpentinit PeridotitSelanjutnya terjadi proses pelapukan dan laterit yang menghasilkan serpentin dan peridotit lapuk. Adanya proses kimia dan fisika dari udara, air, serta pergantian panas dan dingin yang kontinu, akan menyebabkan disintegrasi dan dekomposisi pada batuan induk. Batuan asal yang mengandung unsur-unsur Ca, Mg, Si, Cr, Mn, Ni, dan Co akan mengalami dekomposisi.Air tanah yang mengandung CO2 dari udara meresap ke bawah sampai ke permukaan air tanah sambil melindi mineral primer yang tidak stabil seperti olivin, serpentin, dan piroksen. Air tanah meresap secara perlahan dari atas ke bawah sampai ke batas antara zone limonit dan zone saprolit, kemudian mengalir secara lateral dan selanjutnya lebih banyak didominasi oleh transportasi larutan secara horizontal. Proses ini menghasilkan Ca dan Mg yang larut disusul dengan Si yang cenderung membentuk koloid dari partikel-partikel silika yang sangat halus sehingga memungkinkan terbentuknya mineral baru melalui pengendapan kembali unsur-unsur tersebut. Semua hasil pelarutan ini terbawa turun ke bagian bawah mengisi celah-celah dan pori-pori batuan.Ca dan Mg yang terlarut sebagai bikarbonat akan terbawa ke bawah sampai batas pelapukan dan diendapkan sebagai Dolomit dan Magnesit yang mengisi celah-celah atau rekahan-rekahan pada batuan induk. Di lapangan, urat-urat ini dikenal sebagai batas petunjuk antara zona pelapukan dengan zona batuan segar yang disebut dengan akar pelapukan (root of weathering).Fluktuasi muka air tanah yang berlangsung secara kontinu akan melarutkan unsur-unsur Mg dan Si yang terdapat pada bongkah-bongkah batuan asal di zone saprolit, sehingga memungkinkan penetrasi air tanah yang lebih dalam. Dalam hal ini, zone saprolit akan bertambah ke dalam, demikian juga dengan ikatan yang mengandung oksida MgO sekitar 30 50%-berat dan SiO2 antara 35 40%-berat. Oksida yang masih terkandung pada bongkah-bongkah di zone saprolit ini akan terlindi dan ikut bersama-sama dengan aliran air tanah, sehingga sedikit demi sedikit zone saprolit atas akan berubah porositasnya dan akhirnya menjadi zone limonit. Sedangkan bahan-bahan yang sukar atau tidak mudah larut akan tinggal pada tempatnya dan sebagian turun ke bawah bersama larutan sebagai larutan koloid. Bahan-bahan seperti Fe, Ni, dan Co akan membentuk konsentrasi residu dan konsentrasi celah pada zona yang disebut dengan zona saprolit, berwarna coklat kuning kemerahan. Batuan asal ultramafik pada zone ini selanjutnya diimpregnasi oleh Ni melalui larutan yang mengandung Ni, sehingga kadar Ni dapat naik hingga 7%-berat. Dalam hal ini, Ni dapat mensubstitusi Mg dalam Serpentin atau juga mengendap pada rekahan bersama dengan larutan yang mengandung Mg dan Si sebagai Garnierit dan Krisopras.Sementara Fe di dalam larutan akan teroksidasi dan mengendap sebagai Ferri-Hidroksida, membentuk mineral-mineral seperti Goethit, Limonit, dan Hematit yang dekat permukaan. Bersama mineral-mineral ini selalu ikut serta unsur Co dalam jumlah kecil. Semakin ke bawah, menuju bed rock maka Fe dan Co akan mengalami penurunan kadar. Pada zona saprolit Ni akan terakumulasi di dalam mineral Garnierit. Akumulasi Ni ini terjadi akibat sifat Ni yang berupa larutan pada kondisi oksidasi dan berupa padatan pada kondisi silika.Endapan laterit biasanya terbentuk melalui proses pelapukan kimia yang intensif, yaitu di daerah dengan iklim tropis-subtropis. Proses pelindian batuan lapuk merupakan proses yang terjadi pada pembentukan endapan laterit, dimana proses ini memiliki penyebaran unsur-unsur yang tidak merata dan menghasilkan konsentrasi bijih yang sangat bergantung pada migrasi air tanah.Faktor-faktor yang Mempengaruhi Terbentuknya EndapanProses dan kondisi yang mengendalikan proses lateritisasi batuan ultramafik sangat beragam dengan ukuran yang berbeda sehingga membentuk sifat profil yang beragam antara satu tempat ke tempat lain, dalam komposisi kimia dan mineral, dan dalam perkembangan relatif tiap zona profil. Faktor yang mempengaruhi efisiensi dan tingkat pelapukan kimia yang pada akhirnya mempengaruhi pembentukan endapan adalah:1. IklimIklim yang sesuai untuk pembentukan endapan laterit adalah iklim tropis dan sub tropis, di mana curah hujan dan sinar matahari memegang peranan penting dalam proses pelapukan dan pelarutan unsur-unsur yang terdapat pada batuan asal. Sinar matahari yang intensif dan curah hujan yang tinggi menimbulkan perubahan besar yang menyebabkan batuan akan terpecah-pecah, disebut pelapukan mekanis, terutama dialami oleh batuan yang dekat permukaan bumi.Secara spesifik, curah hujan akan mempengaruhi jumlah air yang melewati tanah, yang mempengaruhi intensitas pelarutan dan perpindahan komponen yang dapat dilarutkan. Sebagai tambahan, keefektifan curah hujan juga penting. Suhu tanah (suhu permukaan udara) yang lebih tinggi menambah energi kinetik proses pelapukan. 2. TopografiGeometri relief dan lereng akan mempengaruhi proses pengaliran dan sirkulasi air serta reagen-reagen lain. Secara teoritis, relief yang baik untuk pengendapan bijih nikel adalah punggung-punggung bukit yang landai dengan kemiringan antara 10 30. Pada daerah yang curam, air hujan yang jatuh ke permukaan lebih banyak yang mengalir (run-off) dari pada yang meresap kedalam tanah, sehingga yang terjadi adalah pelapukan yang kurang intensif. Pada daerah ini sedikit terjadi pelapukan kimia sehingga menghasilkan endapan nikel yang tipis. Sedangkan pada daerah yang landai, air hujan bergerak perlahan-lahan sehingga mempunyai kesempatan untuk mengadakan penetrasi lebih dalam melalui rekahan-rekahan atau pori-pori batuan dan mengakibatkan terjadinya pelapukan kimiawi secara intensif. Akumulasi andapan umumnya terdapat pada daerah-daerah yang landai sampai kemiringan sedang, hal ini menerangkan bahwa ketebalan pelapukan mengikuti bentuk topografi.3. Tipe batuan asalAdanya batuan asal merupakan syarat utama untuk terbentuknya endapan nikel laterit. Batuan asalnya adalah jenis batuan ultrabasa dengan kadar Ni 0.2-0.3%, merupakan batuan dengan elemen Ni yang paling banyak di antara batuan lainnya, mempunyai mineral-mineral yang paling mudah lapuk atau tidak stabil (seperti Olivin dan Piroksen), mempunyai komponen-komponen yang mudah larut, serta akan memberikan lingkungan pengendapan yang baik untuk nikel. Mineralogi batuan asal akan menentukan tingkat kerapuhan batuan terhadap pelapukan dan elemen yang tersedia untuk penyusunan ulang mineral baru.4. StrukturStruktur geologi yang penting dalam pembentukan endapan laterit adalah rekahan (joint) dan patahan (fault). Adanya rekahan dan patahan ini akan mempermudah rembesan air ke dalam tanah dan mempercepat proses pelapukan terhadap batuan induk. Selain itu rekahan dan patahan akan dapat pula berfungsi sebagai tempat pengendapan larutan-larutan yang mengandung Ni sebagai vein-vein. Seperti diketahui bahwa jenis batuan beku mempunyai porositas dan permeabilitas yang kecil sekali sehingga penetrasi air sangat sulit, maka dengan adanya rekahan-rekahan tersebut lebih memudahkan masuknya air dan proses pelapukan yang terjadi akan lebih intensif.5. Reagen-reagen Kimia dan VegetasiReagen-reagen kimia adalah unsur-unsur dan senyawa-senyawa yang membantu mempercepat proses pelapukan. Air tanah yang mengandung CO2 memegang peranan paling penting di dalam proses pelapukan secara kimia. Asam-asam humus (asam organik) yang berasal dari pembusukan sisa-sisa tumbuhan akan menyebabkan dekomposisi batuan, merubah pH larutan, serta membantu proses pelarutan beberapa unsur dari batuan induk. Asam-asam humus ini erat kaitannya dengan kondisi vegetasi daerah. Dalam hal ini, vegetasi akan mengakibatkan penetrasi air lebih dalam dan lebih mudah dengan mengikuti jalur akar pohon-pohonan, meningkatkan akumulasi air hujan, serta menebalkan lapisan humus. Keadaan ini merupakan suatu petunjuk, dimana kondisi hutan yang lebat pada lingkungan yang baik akan membentuk endapan nikel yang lebih tebal dengan kadar yang lebih tinggi. Selain itu, vegetasi juga dapat berfungsi untuk menjaga hasil pelapukan terhadap erosi.6. WaktuWaktu merupakan faktor yang sangat penting dalam proses pelapukan, transportasi, dan konsentrasi endapan pada suatu tempat. Untuk terbentuknya endapan nikel laterit membutuhkan waktu yang lama, mungkin ribuan atau jutaan tahun. Bila waktu pelapukan terlalu muda maka terbentuk endapan yang tipis. Waktu yang cukup lama akan mengakibatkan pelapukan yang cukup intensif karena akumulasi unsur nikel cukup tinggi. Banyak dari faktor tersebut yang saling berhubungan dan karakteristik profil di satu tempat dapat digambarkan sebagai efek gabungan dari semua faktor terpisah yang terjadi melewati waktu, ketimbang didominasi oleh satu faktor saja.Ketebalan profil laterit ditentukan oleh keseimbangan kadar pelapukan kimia di dasar profil dan pemindahan fisik ujung profil karena erosi. Tingkat pelapukan kimia bervariasi antara 10 50 m per juta tahun, biasanya sesuai dengan jumlah air yang melalui profil, dan 2 3 kali lebih cepat dalam batuan ultrabasa daripada batuan asam. Disamping jenis batuan asal, intensitas pelapukan, dan struktur batuan yang sangat mempengaruhi potensi endapan nikel lateritik, maka informasi perilaku mobilitas unsur selama pelapukan akan sangat membantu dalam menentukan zonasi bijih di lapangan (Totok Darijanto, 1986).Profil Endapan Nikel LateritProfil endapan nikel laterit yang terbentuk dari hasil pelapukan batuan ultrabasa secara umum terdiri dari 4 (empat) lapisan, yaitu lapisan tanah penutup atau top soil, lapisan limonit, lapisan saprolit, dan bedrock.1. Lapisan tanah penutupLapisan tanah penutup biasa disebut iron capping. Material lapisan berukuran lempung, berwarna coklat kemerahan, dan biasanya terdapat juga sisa-sisa tumbuhan. Pengkayaan Fe terjadi pada zona ini karena terdiri dari konkresi Fe-Oksida (mineral Hematite dan Goethite), dan Chromiferous dengan kandungan nikel relatif rendah. Tebal lapisan bervariasi antara 0 2 m. Tekstur batuan asal sudah tidak dapat dikenali lagi.2. Lapisan LimonitMerupakan lapisan berwarna coklat muda, ukuran butir lempung sampai pasir, tekstur batuan asal mulai dapat diamati walaupun masih sangat sulit, dengan tebal lapisan berkisar antara 1 10 m. Lapisan ini tipis pada daerah yang terjal, dan sempat hilang karena erosi. Pada zone limonit hampir seluruh unsur yang mudah larut hilang terlindi, kadar MgO hanya tinggal kurang dari 2% berat dan kadar SiO2 berkisar 2 5% berat. Sebaliknya kadar Fe2O3 menjadi sekitar 60 80% berat dan kadar Al2O3 maksimum 7% berat. Zone ini didominasi oleh mineral Goethit, disamping juga terdapat Magnetit, Hematit, Kromit, serta Kuarsa sekunder. Pada Goethit terikat Nikel, Chrom, Cobalt, Vanadium, dan Aluminium.1. Lapisan SaprolitMerupakan lapisan dari batuan dasar yang sudah lapuk, berupa bongkah-bongkah lunak berwarna coklat kekuningan sampai kehijauan. Struktur dan tekstur batuan asal masih terlihat. Perubahan geokimia zone saprolit yang terletak di atas batuan asal ini tidak banyak, H2O dan Nikel bertambah, dengan kadar Ni keseluruhan lapisan antara 2 4%, sedangkan Magnesium dan Silikon hanya sedikit yang hilang terlindi. Zona ini terdiri dari vein-vein Garnierite, Mangan, Serpentin, Kuarsa sekunder bertekstur boxwork, Ni-Kalsedon, dan di beberapa tempat sudah terbentuk limonit yang mengandung Fe-hidroksida.1. Bedrock (Batuan Dasar)Merupakan bagian terbawah dari profil nikel laterit, berwarna hitam kehijauan, terdiri dari bongkah bongkah batuan dasar dengan ukuran > 75 cm, dan secara umum sudah tidak mengandung mineral ekonomis. Kadar mineral mendekati atau sama dengan batuan asal, yaitu dengan kadar Fe 5% serta Ni dan Co antara 0.01 0.30%.