[PPT]Diferensiasi dan Integrasi Transformasi Laplace · Web viewTransformasi Laplace...

of 18 /18
Diferensiasi dan Integrasi Transformasi Laplace by: Karohika, I Made Gatot 2014 ref: Advanced Engineering Mathematics, Erwin Kreyszig

Embed Size (px)

Transcript of [PPT]Diferensiasi dan Integrasi Transformasi Laplace · Web viewTransformasi Laplace...

Diferensiasi dan Integrasi Transformasi Laplace

Diferensiasi dan IntegrasiTransformasi Laplace

by:

Karohika, I Made Gatot

2014

ref: Advanced Engineering Mathematics, Erwin Kreyszig

Transformasi Laplace memiliki banyak sifat umum yang cukup menakjubkan yang kita dapat gunakan untuk mendapatkan transformasi atau transformasi invers Laplace-nya. Tentu saja, metode-metode untuk mencapai tujuan itu didasarkan pada sifat-sifat itu sendiri seperti integrasi langsung, pemanfaatan linearitas, pergeseran dan diferensiasi atau integrasi dari fungsi original (t).

Dalam modul ini kita mempertimbangkan diferensisasi dan integrasi dari transformasi Laplace F(s) dan mendapatkan operasi yang berkorespondensi untuk fungsi original (t).

Diferensiasi Transformasi Laplace

Dapat diperlihatkan bahwa bila (t) memenuhi kondisi teorema yang ada dalam bab awal dan derivatif dari transformasi Laplace yang berkorespondensi,

Berkenaan dengan s dapat diperoleh dengan diferensiasi di bawah tanda integral berkenaan dengan s. Jadi,

Konsekuensinya, bila () = F(s), maka,

{ t (t) } = F(s) ...............................................(1)

Diferensiasi transformasi fungsi yang berkorespondensi dengan multiplikasi fungsi dengan t. Sifat transformasi Laplace ini memungkinkan kita memperoleh transformasi baru dari yang telah diberikan.

CONTOH 1.

Carilah transformasi Laplace dari (t) =

Penyelesaian:

Dari persamaan (1) di atas dan formula 8 dalam Tabel 1,

Dengan membagi hasil di atas dengan 2,

kita dapatkan,

CONTOH 2.

Carilah transformasi Laplace dari (t) =

Penyelesaian:

Serupa dengan CONTOH 1, dari persamaan (1) dan formula 7 dalam Tabel 1

sehingga,

CONTOH 3.

Carilah transformasi Laplace dari (t) =

Penyelesaian:

Transformasi Laplace dari (t) adalah,

Tabel 5 memperlihatkan transformasi Laplace yang diperoleh dari CONTOH 1, 2 dan 3.

Integrasi Transformasi Laplace

Dengan cara serupa, jika f(t) memenuhi kondisi yang ada dalam teorema di modul awal dan limit (t)/t dimana t mendekati 0 dan limit tersebut eksis, maka,

(2)

dalam model ini, integrasi transformasi fungsi (t) berkorespondensi dengan pembagian (t) dan t. Dari definisi transformasi Laplace, persamaan (2) dapat ditulis ke dalam bentuk,

dan dapat diperlihatkan bahwa integrasi persamaan di atas dapat ditukar, yaitu

Integral terhadap dapat dihitung sebagai berikut,

Sehingga,

dan transformasi invers Laplacenya adalah,

CONTOH 4.

Carilah transformasi invers Laplace dari fungsi

Penyelesaian:

Kita tuliskan,

Dengan diferensiasi,

dimana ekualitas terakhir dapat diverifikasi secara mudah dengan perhitungan langsung. Dari Tabel 1, kita peroleh,

Fungsi ini memenuhi kondisi yang ditampilkan dalam persamaan (2),

Karena itu,

Hasil kita adalah,

CONTOH 5.

Carilah transformasi invers Laplace dari fungsi F(s) = arc cot (s / )

Penyelesaian:

Dengan cara serupa kita tuliskan,

Dengan diferensiasi,

Misalkan, = arc cot (s / )

cot = s / , sin = / (s2 + 2), cos = s / (s2 + 2)

Diferensiasi ekspresi ini menghasilkan,

d(cot ) = d(s / )

cosec2 d = ds /

d / ds = 1 / ( cosec2 )

= sin2 /

= sin2 /

= / (s2 + 2),

sehingga,

Dari Tabel 1, kita peroleh,

Fungsi ini memenuhi kondisi yang ditampilkan dalam persamaan (2),

Karena itu,

Hasil kita adalah,

CONTOH 6.

Carilah transformasi invers Laplace dari fungsi F(s) =

Penyelesaian:

Dengan cara serupa kita tuliskan,

Ekspresi ini didiferensialkan,

Dengan memanfaatklan Tabel 1, diperoleh,

Fungsi ini memenuhi kondisi yang ditampilkan dalam persamaan (2),

Karena itu,

Hasil kita akhirnya adalah,

SOAL-SOAL

Tentukanlah transformasi Laplace dari fungsi (t) berikut,

1. t cos 2t

2. t e2t

3. t cosh t

4. t2 et

5. t sinh 2t

6. t2 sinh 2t

7. t2 cos t

8. t e-2t sin t

Tentukanlah (t) bila () didefinisikan sebagai berikut,

1.

2.

3.

4.

5.

6.

sekian

Ganbate kudasai