PLTS

18
BAB III DASAR TEORI A. Cara Kerja Pembangkit Listrik Tenaga Surya (PLTS) Pembangkit listrik tenaga surya itu konsepnya sederhana. Yaitu mengubah cahaya matahari menjadi energi listrik. Cahaya matahari merupakan salah satu bentuk energi dari sumber daya alam. Sumber daya alam matahari ini sudah banyak digunakan untuk memasok daya listrik di satelit komunikasi melalui sel surya. Sel surya ini dapat menghasilkan energi listrik dalam jumlah yang tidak terbatas langsung diambil dari matahari, tanpa ada bagian yang berputar dan tidak memerlukan bahan bakar. Sehingga sistem sel surya sering dikatakan bersih dan ramah lingkungan. Badingkan dengan sebuah generator listrik, ada bagian yang berputar dan memerlukan bahan bakar untuk dapat menghasilkan listrik. Suaranya bising. Selain itu gas buang yang dihasilkan dapat menimbulkan efek gas rumah kaca (green house gas) yang pengaruhnya dapat merusak ekosistem planet bumi kita. Sistem sel surya yang digunakan di permukaan bumi terdiri dari panel sel surya, rangkaian kontroler pengisian (charge controller), dan aki (batere) 12 volt yang maintenance free. Panel sel surya merupakan modul yang terdiri beberapa sel surya yang digabung dalam hubungkan seri dan paralel tergantung ukuran dan kapasitas yang diperlukan. Yang sering digunakan adalah modul

description

Listrik

Transcript of PLTS

BAB IIIDASAR TEORIA. Cara Kerja Pembangkit Listrik Tenaga Surya (PLTS)Pembangkit listrik tenaga surya itu konsepnya sederhana. Yaitu mengubah cahaya matahari menjadi energi listrik. Cahaya matahari merupakan salah satu bentuk energi dari sumber daya alam. Sumber daya alam matahari ini sudah banyak digunakan untuk memasok daya listrik di satelit komunikasi melalui sel surya. Sel surya ini dapat menghasilkan energi listrik dalam jumlah yang tidak terbatas langsung diambil dari matahari, tanpa ada bagian yang berputar dan tidak memerlukan bahan bakar. Sehingga sistem sel surya sering dikatakan bersih dan ramah lingkungan.Badingkan dengan sebuah generator listrik, ada bagian yang berputar dan memerlukan bahan bakar untuk dapat menghasilkan listrik. Suaranya bising. Selain itu gas buang yang dihasilkan dapat menimbulkan efek gas rumah kaca (green house gas) yang pengaruhnya dapat merusak ekosistem planet bumi kita.Sistem sel surya yang digunakan di permukaan bumi terdiri dari panel sel surya, rangkaian kontroler pengisian (charge controller), dan aki (batere) 12 volt yang maintenance free. Panel sel surya merupakan modul yang terdiri beberapa sel surya yang digabung dalam hubungkan seri dan paralel tergantung ukuran dan kapasitas yang diperlukan. Yang sering digunakan adalah modul sel surya 20 watt atau 30 watt. Modul sel surya itu menghasilkan energi listrik yang proporsional dengan luas permukaan panel yang terkena sinar matahari.Rangkaian kontroler pengisian aki dalam sistem sel surya itu merupakan rangkaian elektronik yang mengatur proses pengisian akinya. Kontroler ini dapat mengatur tegangan aki dalam selang tegangan 12 volt plus minus 10 persen. Bila tegangan turun sampai 10,8 volt, maka kontroler akan mengisi aki dengan panel surya sebagai sumber dayanya. Tentu saja proses pengisian itu akan terjadi bila berlangsung pada saat ada cahaya matahari. Jika penurunan tegangan itu terjadi pada malam hari, maka kontroler akan memutus pemasokan energi listrik. Setelah proses pengisian itu berlangsung selama beberapa jam, tegangan aki itu akan naik. Bila tegangan aki itu mencapai 13,2 volt, maka kontroler akan menghentikan proses pengisian aki itu.Rangkaian kontroler pengisian itu sebenarnya mudah untuk dirakit sendiri. Tapi, biasanya rangkaian kontroler ini sudah tersedia dalam keadaan jadi di pasaran. Memang harga kontroler itu cukup mahal kalau dibeli sebagai unit tersendiri. Kebanyakan sistem sel surya itu hanya dijual dalam bentuk paket lengkap yang siap pakai. Jadi, sistem sel surya dalam bentuk paket lengkap itu jelas lebih murah dibandingkan dengan bila merakit sendiri.Biasanya panel surya itu letakkan dengan posisi statis menghadap matahari. Padahal bumi itu bergerak mengelilingi matahari. Orbit yang ditempuh bumi berbentuk elip dengan matahari berada di salah satu titik fokusnya. Karena matahari bergerak membentuk sudut selalu berubah, maka dengan posisi panel surya itu yang statis itu tidak akan diperoleh energi listrik yang optimal. Agar dapat terserap secara maksimum, maka sinar matahari itu harus diusahakan selalu jatuh tegak lurus pada permukaan panel surya.Jadi, untuk mendapatkan energi listrik yang optimal, sistem sel surya itu masih harus dilengkapi pula dengan rangkaian kontroler optional untuk mengatur arah permukaan panel surya agar selalu menghadap matahari sedemikian rupa sehingga sinar mahatari jatuh hampir tegak lurus pada panel suryanya. Kontroler seperti ini dapat dibangun, misalnya, dengan menggunakan mikrokontroler 8031. Kontroler ini tidak sederhana, karena terdiri dari bagian perangkat keras dan bagian perangkat lunak. Biasanya, paket sistem sel surya yang lengkap belum termasuk kontroler untuk menggerakkan panel surya secara otomatis supaya sinar matahari jatuh tegak lurus.Karena itu, kontroler macam ini cukup mahal.

B. Sistem Kelistrikan Di PLTSDalam bagian ini akan dibahas tentang sistim kelistrikan tenaga surya. Sebelumnya akan dijelaskan beberapa istilah yang muncul disini. Pertama adalah power conditioner. Power conditioner telah dijelaskan secara sangat singkat diatas, disini akan diterangkan sedikit lebih detail.Inti dari alat ini adalah inverter. Yaitu komponen listrik yang berfungsi sebagai perubah listrik DC menjadi listrik AC. Power conditioner selain berfungsi untuk menghasilkan listrik AC yang bersih juga mengkontrol agar tegangan keluarannya berada dalam batas tegangan yang diperbolehkan.Beberapa fungsi lain power conditioner dapat disimpulkan sebagai berikut: B.1. Mendeteksi islandingIslandingadalah kondisi ketika terjadi pemutusan aliran listrik pada jaringan distribusi yang dimiliki oleh perusahaan listrik sedangkan PLTS tetap bekerja. Hal ini terjadi misalnya apabila timbul kerusakan pada jaringan distribusi listrik. Bila ini terjadi akan membahayakan pekerja yang akan memperbaiki kerusakan-kerusakan yang ada. Disini power conditioner berfungsi untuk mendeteksi terjadinyaislandingdan dengan segera menghentikan kerja PLTS.B.2. Pengontrol maksimum tenaga listrikTenaga listrik yang dihasilkan oleh solar panel tergantung pada suhu udara dan kuatnya cahaya. Pada suatu nilai suhu dan kuatnya cahaya, hubungan antara tenaga, tegangan dan arus listrik yang dihasilkan oleh solar panel.Disini fungsi dari power conditioner adalah bagaimana mengontrol agar tenaga listrik yang diproduksi menjadi maksimum.Hal ini disebut dengan istilahMPPT (Maximum Power Point Tracking).

C. Komponen Dalam PLTS Dan Proses Konversi Sinar MatahariPada umumnya komponen-komponen dalam sistem Fotovoltaik terdiri dari: C.1. Panel surya :Panel surya merupakan alat yang berfungsi sebagai merubah cahaya matahari menjadi listrik. Bentuk moduler dari panel surya memberikan kemudahan pemenuhan kebutuhan pemenuhan listrik untuk berbagai skala kebutuhan.berdasarkan jenis,panel surya dibagi menjadi 2 yaitu : Panel Surya PollycristallineMerupakan panel surya yang diman memiliki susunan krital acak. tipe polikristal ini memerlukan luas permukaan yang lebih besar dibanding monokristal untuk menghasilkan daya listrik yang sama

Gambar1.1 Panel Surya Pollycristalinepanel surya ini memiliki kelebihan yaitu dapat bekerja atau menghasilkan daya pada saat cuaca sedang mendung atau itensitas cahaya yang kurang. Panel surya MonocristallineMerupakan panel surya yang paling efisien diantara yang lainnya,dengan ukuran yang sama monokristal dapat menghasilkan daya 15% lebih besar dibandingkan dengan polikristal.

Gambar 1.2 Panel Surya Tipe MonocristalineNamun dibalik kelebihan yang dimiki,panel surya ini juga memiliki kekurangan,adapun itu adalah jika cuaca mendung maka tingkat efisiensinya akan turun sangat drastic. Panel Surya AmourphousePanel surya Amorphousdibuat dengan menyemprotkan silikon ke kaca di lapisan sangat tipis, dan umumnya dikenal sebagai panel surya film tipis. panel surya ini dapat bekerjadi segala kondisi pencahayaan, termasuk lingkungan berawan atau teduh.pengaplikasian panel surya ini biasanya terdapat pada mainan anak anak atau kalkulator.

Gambar1.3 Panel Surya Tipe Amourphouse Battery control regulator (BCR) :Pada dasarnya di dalam 1 set panel surya anda akan mendapatkan battery control regulator. fungsi dari battery control regulator ini adalah mengatur volt yang keluar dari modul panel surya sehingga volt yang keluar dari panel surya tidak melebihi batas.

Gambar1.4 Battery Control Regulator

Sebagai contoh jika satu panel surya menghasilkan tegangan 17 Volt, sedangkan baterai hanya bisa menerima tegangan 12 Volt,maka untuk menghindari kerusakan pada saat charger baterai,digunakanlah BCR sebagai alat dimana tegangan output panel surya disesuaikan dengan input battery. InverterInverter merupakan perangkat elektrik yang digunakan untuk mengubah arus listrik searah (DC) menjadi arus listrik bolak balik (AC). Inverter mengkonversi DC dari perangkat seperti batere, panel surya/solar cell menjadi AC. Penggunaan inverter dari dalam Pembangkit Listrik Tenaga Surya (PLTS) adalah untuk perangkat yang menggunakan AC (Alternating Current).

Gambar 1.5 Inverter Arus DC ke AC Baterai :Berfungsi menyimpan arus listrik yang dihasilkan oleh Panel Surya (Solar Panel) sebelum dimanfaatkan untuk menggerakkan beban. Beban dapat berupa lampu penerangan atau peralatan elektronik dan peralatan lainnya yang membutuhkan listrik

Gambar 1.6 Baterai Penyimpan Main TransformatorTransformator pada PLTS digunakan jika PLTS berskala besar, dan tenaga listrik yang dihasilkan akan di distribusikan ke konsumen melalui jalur PLN. Transformator berfungsi untuk mengubah daya listrik dari suatu besaran (tegangan atau arus) ke besaran tersebut, menjadi lebih tinggi atau menjadi lebih rendah dengan daya yang sama. Prinsip suatu transformator menggunakan prinsip induktansi bersama. Besaran suatu transformator bergantung pada jumlah lilitannya.

Gambar 4.2 Main Transformator Transformator terdiri dari dua kumparan yaitu kumparan primer dan kumparan sekunder. Untuk konstruksi yang lebih sempurna misalnya yang dipergunakan untuk transformator-transformator daya, bagian-bagiannya dilengkapi dengan beberapa peralatan lainnya seperti bushing, minyak trafo, alat-alat pengaman dan lain-lain.Untuk beberapa tipe dari transformator intinya terdiri dari lempengan-lempengan baja yang disusun sedemikian rupa sehingga membentuk suatu batangan besi yang membuat celah-celah udara yang sangat kecil antara lempengan yang satu dengan yang lainnya dan diberi isolasi lapisan mikha yang tahan panas. Hal ini dimaksudkan untuk dapat memperkecil rugi-rugi daya. Pembagian transformator berdasarkan penggunaannya:1. Dilihat dari tegangannya, transformator terbagi dua:a. Transformator Step upb. Transformator Step down2. Transformator untuk keperluan pengukuran terbagi dua:a. Transformator Arusb. Transformator Tegangan3. Transformator untuk penyaluran tenaga listrik terbagi dua:a. Transformator Distribusib. Tansformator DayaKerja transformator berdasarkan induksi elektromagnetik menghendaki adanya gandengan magnet antara rangkaian primer dan sekunder . Gandengan magnet ini berupa inti besi tempat melakukan fluks bersama.C.2 Proses Konversi Energi Matahari Menjadi Energi ListrikProses pengubahan atau konversi cahaya matahari menjadi listrik ini dimungkinkan karena bahan material yang menyusun sel surya berupa semikonduktor. Lebih tepatnya tersusun atas dua jenis semikonduktor; yakni jenis n dan jenis p. Semikonduktor jenis n merupakan semikonduktor yang memiliki kelebihan elektron, sehingga kelebihan muatan negatif, (n = negatif). Sedangkan semikonduktor jenis p memiliki kelebihan hole, sehingga disebut dengan p ( p = positif) karena kelebihan muatan positif. Caranya, dengan menambahkan unsur lain ke dalam semkonduktor, maka kita dapat mengontrol jenis semikonduktor tersebut, sebagaimana diilustrasikan pada gambar di bawah ini.

Pada awalnya, pembuatan dua jenis semikonduktor ini dimaksudkan untuk meningkatkan tingkat konduktifitas atau tingkat kemampuan daya hantar listrik dan panas semikonduktor alami. Di dalam semikonduktor alami (disebut dengan semikonduktor intrinsik) ini, elektron maupun hole memiliki jumlah yang sama. Kelebihan elektron atau hole dapat meningkatkan daya hantar listrik maupun panas dari sebuah semikoduktor.Misal semikonduktor intrinsik yang dimaksud ialah silikon (Si). Semikonduktor jenis p, biasanya dibuat dengan menambahkan unsur boron (B), aluminum (Al), gallium (Ga) atau Indium (In) ke dalam Si. Unsur-unsur tambahan ini akan menambah jumlah hole. Sedangkan semikonduktor jenis n dibuat dengan menambahkan nitrogen (N), fosfor (P) atau arsen (As) ke dalam Si. Dari sini, tambahan elektron dapat diperoleh. Sedangkan, Si intrinsik sendiri tidak mengandung unsur tambahan. Usaha menambahkan unsur tambahan ini disebut dengan doping yang jumlahnya tidak lebih dari 1 % dibandingkan dengan berat Si yang hendak di-doping. Dua jenis semikonduktor n dan p ini jika disatukan akan membentuk sambungan p-n atau dioda p-n (istilah lain menyebutnya dengan sambungan metalurgi / metallurgical junction) yang dapat digambarkan sebagai berikut.

1. Semikonduktor jenis p dan n sebelum disambung.

2. Sesaat setelah dua jenis semikonduktor ini disambung, terjadi perpindahan elektronelektron dari semikonduktor n menuju semikonduktor p, dan perpindahan hole dari semikonduktor p menuju semikonduktor n. Perpindahan elektron maupun hole ini hanya sampai pada jarak tertentu dari batas sambungan awal.

3. Elektron dari semikonduktor n bersatu dengan hole pada semikonduktor p yang mengakibatkan jumlah hole pada semikonduktor p akan berkurang. Daerah ini akhirnya berubah menjadi lebih bermuatan positif. Pada saat yang sama. hole dari semikonduktor p bersatu dengan elektron yang ada pada semikonduktor n yang mengakibatkan jumlah elektron di daerah ini berkurang. Daerah ini akhirnya lebih bermuatan positif.

4. Daerah negatif dan positif ini disebut dengan daerah deplesi (depletion region) ditandai dengan huruf W. 5. Baik elektron maupun hole yang ada pada daerah deplesi disebut dengan pembawa muatan minoritas (minority charge carriers) karena keberadaannya di jenis semikonduktor yang berbeda. 6. Dikarenakan adanya perbedaan muatan positif dan negatif di daerah deplesi, maka timbul dengan sendirinya medan listrik internal E dari sisi positif ke sisi negatif, yang mencoba menarik kembali hole ke semikonduktor p dan elektron ke semikonduktor n. Medan listrik ini cenderung berlawanan dengan perpindahan hole maupun elektron pada awal terjadinya daerah deplesi (nomor 1 di atas).

7. Adanya medan listrik mengakibatkan sambungan pn berada pada titik setimbang, yakni saat di mana jumlah hole yang berpindah dari semikonduktor p ke n dikompensasi dengan jumlah hole yang tertarik kembali kearah semikonduktor p akibat medan listrik E. Begitu pula dengan jumlah elektron yang berpindah dari smikonduktor n ke p, dikompensasi dengan mengalirnya kembali elektron ke semikonduktor n akibat tarikan medan listrik E. Dengan kata lain, medan listrik E mencegah seluruh elektron dan hole berpindah dari semikonduktor yang satu ke semiikonduktor yang lain.

Pada sambungan p-n inilah proses konversi cahaya matahari menjadi listrik terjadi. Untuk keperluan sel surya, semikonduktor n berada pada lapisan atas sambungan p yang menghadap kearah datangnya cahaya matahari, dan dibuat jauh lebih tipis dari semikonduktor p, sehingga cahaya matahari yang jatuh ke permukaan sel surya dapat terus terserap dan masuk ke daerah deplesi dan semikonduktor p.

Ketika sambungan semikonduktor ini terkena cahaya matahari, maka elektron mendapat energi dari cahaya matahari untuk melepaskan dirinya dari semikonduktor n, daerah deplesi maupun semikonduktor. Terlepasnya elektron ini meninggalkan hole pada daerah yang ditinggalkan oleh elektron yang disebut dengan fotogenerasi elektron-hole (electron-hole photogeneration) yakni, terbentuknya pasangan elektron dan hole akibat cahaya matahari.

Cahaya matahari dengan panjang gelombang (dilambangkan dengan simbol lambda sbgn digambar atas ) yang berbeda, membuat fotogenerasi pada sambungan pn berada pada bagian sambungan pn yang berbeda pula. Spektrum merah dari cahaya matahari yang memiliki panjang gelombang lebih panjang, mampu menembus daerah deplesi hingga terserap di semikonduktor p yang akhirnya menghasilkan proses fotogenerasi di sana. Spektrum biru dengan panjang gelombang yang jauh lebih pendek hanya terserap di daerah semikonduktor n.Selanjutnya, dikarenakan pada sambungan pn terdapat medan listrik E, elektron hasil fotogenerasi tertarik ke arah semikonduktor n, begitu pula dengan hole yang tertarik ke arahsemikonduktor p. Apabila rangkaian kabel dihubungkan ke dua bagian semikonduktor, maka elektron akan mengalir melalui kabel. Jika sebuah lampu kecil dihubungkan ke kabel, lampu tersebut menyala dikarenakan mendapat arus listrik, dimana arus listrik ini timbul akibat pergerakan elektron.

Pada umumnya, untuk memperkenalkan cara kerja sel surya secara umum, ilustrasi di bawah ini menjelaskan segalanya tentang proses konversi cahaya matahari menjadi energi listrik.

SUMBER:http://www.mobnasesemka.com/cara-kerja-plts-untuk-menghasilkan-listrik/. Diakses tanggal 22 Januari https://rhazio.wordpress.com/2007/09/12/pembangkit-listrik-tenaga-surya/ Diakses tanggal 22 Januari Marsudi,Djiteng. 2005.Pembangkit Energi Listrik,Erlangga:Jakarta.