Persamaan Momentum

23
PERSAMAAN MOMENTUM

description

hidologi

Transcript of Persamaan Momentum

Page 1: Persamaan Momentum

PERSAMAAN MOMENTUM

Page 2: Persamaan Momentum

Zat cair yang bergerak dapat menimbulkan gaya.

Gaya yang ditimbulkan oleh zat cair dapat dimanfaatkan untuk :

- analisis perencanaan turbin

- mesin-mesin hidraulis

- saluran yang panjang dan berkelok-kelok

- dsb.

Page 3: Persamaan Momentum

DEFINISIMomentum suatu partikel atau benda didefinisikan sebagai perkalian antara massa M dan kecepatan V,

Momentum = M · V

Partikel-partikel aliran zat cair mempunyai momentum.Perubahan momentum dapat menyebabkan terjadinya gaya.Gaya yang terjadi karena gerak zat cair disebut dengan gaya dinamis dan merupakan gaya tambahan pada gaya tekanan hidrostatis.

Page 4: Persamaan Momentum

MOMENTUM ALIRAN ZAT CAIR

Momentum = ρ Q V

Dengan :

ρ : rapat massa zat cairQ : debit aliranV : kecepatan rerata aliran

Page 5: Persamaan Momentum

GAYA YANG BEKERJA PADA ZAT CAIR

F = ρ Q (V2 – V1)

F = ρQV2 – ρQV1

Gaya yang bekerja pada zat cair adalah sebanding dengan laju perubahan momentum

Page 6: Persamaan Momentum

KOEFISIEN KOREKSI MOMENTUMDalam menurunkan persamaan momentum, distribusi kecepatan aliran dianggap seragam padahal tidak demikian kenyataannya, sehingga perlu koreksi.

F = ρ Q (β2V2 – β1V1)

Dengan β adalah koefisien koreksi momentum.Laminer β = 1,33Turbulen β = 1,01 – 1,04

Page 7: Persamaan Momentum

GAYA YANG DITIMBULKAN OLEH PERUBAHAN KECEPATAN

Ditinjau gaya pada curat.

Gaya ini dapat menimbulkan gaya tarik pada curat.

Perencanaan baut dan las pada sambungan didasarkan pada gaya tarik tsb.

Rx = p1A1 – ρQ(V2 – V1)

Page 8: Persamaan Momentum

CONTOH

Hitung gaya tarik pada sambungan antara pipa berdiameter 6,5 cm dan curat yang melewatkan semburan air dengan kecepatan 30 m/d dan diameter 2 cm. percepatan gravitasi adalah 9,81 m/d.

Page 9: Persamaan Momentum

PENYELESAIAN

/dm 00942,03002,04

1

4

1 322

22 VDVAQ

g

Vpz

g

Vpz

22

222

2

211

1

Persamaan kontinyuitas:

22

212

1 4

1

4

1VDVD

V1 = 2,84 m/d

Persamaan Bernoulli:

Page 10: Persamaan Momentum

g

V

g

Vp

22

22

211

Elevasi titik 1 & 2 sama dan tekanan di titik 2 adalah atmosfer, sehingga:

22221

221 kgf/m 460.4584,230

81,92

1000

2

VV

gp

Atau p1 = 45,46 t/m2

Dalam satuan MKS

Page 11: Persamaan Momentum

22221

221 N/m 967.44584,230

81,92

81,91000

2

VVg

gp

Atau p1 = 445,97 kN/m2

Dalam satuan SI

Rx = p1A1 – g / g Q(V2 – V1)

Rx = p1A1 – ρQ(V2 – V1)

Rx = 45.460 x ¼ π 0,0652 – 1000 / 9,81 x 0,00942 (30 – 2,84)

= 124,77 kgf (MKS)

Rx = 45.460 x ¼ π 0,0652 – 1000 x 0,00942 (30 – 2,84)

= 1.224,0 N (SI)

Page 12: Persamaan Momentum

GAYA YANG DITIMBULKAN OLEH PERUBAHAN ARAH

Perubahan arah aliran dalam pipa dapat menyebabkan terjadinya gaya-gaya yang bekerja pada belokan pipa.

Gaya-gaya tersebut disebabkan oleh gaya tekanan statis dan gaya dinamis.

Belokan arah x (horisontal) :

Rx = p1A1 – p2A2cosθ – ρQ(V2cosθ– V1)

Belokan arah y (vertikal) :

Ry = W + p2A2sinθ + ρQV2sinθ

Page 13: Persamaan Momentum

Resultante gaya R :

Sudut α diukur terhadap horisontal menunjukkan arah kerja gaya R. Gaya R tersebut akan berusaha untuk melepaskan bagian belokan dari pipa utama, yang harus dapt ditahan oleh sambungan antara pipa dan belokan.

22yx RRR

x

y

R

Rtg

Page 14: Persamaan Momentum

GAYA YANG DITIMBULKAN OLEH PANCARAN ZAT CAIR

PLAT TETAP

Apabila suatu pancaran zat cair menghantam plat datar diam dengan membentuk sudut tegak lurus terhadap plat, pancaran tsb tidak akan dipantulkan kembali tetapi akan mengalir di atas plat dalam segala arah.

Gaya yang bekerja pada plat :

R = ρ a V2

Apabila pancaran membentuk sudut θ terhadap plat :

R = ρ a V2 sin θV

Page 15: Persamaan Momentum

CONTOH

Sebuah curat memancarkan air yang menghantam plat vertikal. Debit aliran Q = 0,025 m3/d dan diameter ujung curat 3 cm. Hitung gaya horisontal yang diperlukan untuk menahan plat. Apabila pancaran air menghantam plat dengan membentuk sudut 30° terhadap plat, berapakah gaya penahan tegak lurus plat.

Page 16: Persamaan Momentum

m/d 37,3503,025,0

025,02

11

A

QV

Gaya yang bekerja pada air adalah sama dengan gaya horisontal yang diperlukan untuk menahan plat.

Dianggap bahwa arah ke kanan adalah positif.

Kecepatan aliran pada curat,

Kecepatan aliran pada plat,

V2 = 0

Gaya penahan,

F = ρ Q (V2 – V1)

F = 1000 x 0,025 (0 – 35,37) = -884,25 N (arah F adalah ke kiri)

Apabila pancaran membentuk sudut 30°, maka:

F = -884,25 sin 30° = -442,13 N

Page 17: Persamaan Momentum

PLAT BERGERAK

Apabila plat yang dihantam pancaran zat cair bergerak dengan kecepatan v dalam arah pancaran, maka pancaran tersebut akan menghantam plat dengan kecepatan relatif (V-v).

R = ρ a (V – v)2

Vv

Page 18: Persamaan Momentum

SERI PLAT BERGERAKJumlah plat dapat ditambah menjadi beberapa plat datar yang dipasang di sekeliling roda dan memungkinkan pancaran air menghantam plat-plat tersebut secara tangensial sehingga roda dapat bergerak dengan kecepatan tangensial v. apabila dianggap bahwa jumlah plat adalah sedemikian sehingga tidak ada pancaran air yang terbuang (tidak mengenai plat), maka gaya yang ditimbulkan oleh zat cair pada plat adalah :

R = ρ a V(V – v)v

V

Page 19: Persamaan Momentum

Kerja yang dilakukan/detik = gaya x jarak/detik

K = ρ a V(V – v)v

Energi kinetik pancaran :

Ek = ½ ρaV3

Efisiensi kerja :

2

)(2

V

vvV

Page 20: Persamaan Momentum

PLAT LENGKUNG TETAP

Perubahan momentum dapat terjadi karena adanya perubahan arah aliran tanpa terjadi perubahan kecepatan.

Gaya yang ditimbulkan oleh zat cair pada plat lengkung adalah :

R = ρ a V (V cosα + Vcosβ)Apabila α = β = 0 maka :

R = 2 ρ a V2

Page 21: Persamaan Momentum

PLAT DATAR R = Ρ A V2 PLAT LENGKUNG R = 2 Ρ A V2

Perbandingan antara persamaan gaya pada plat datar dan plat lengkung menunjukkan bahwa gaya yang terjadi pada plat lengkung dimana pancaran membelok 180 ° adalah 2 kali gaya yang terjadi pada plat datar. Pancaran membelok 180° apabila plat lengkung berbentuk setengah lingkaran.

Page 22: Persamaan Momentum

PLAT LENGKUNG BERGERAK

Pancaran air datang dengan kecepatan V menghantam plat dengan kecepatan relatif, Vr = V – v. pancaran tersebut akan meluncur pada plat lengkung dan keluar melalui kedua ujungnya dengan membentuk sudut β terhadap arah gerak plat.

Gaya yang ditimbulkan oleh pancaran dalam arah pancaran :

R = ρ a (V – v)2(1+cos β)v

V

Page 23: Persamaan Momentum

Kerja yang dilakukan :

K = ρ a (V – v)2 (1+cos β) vKerja akan maksimum jika : V = 3v

Kerja maksimum :

Kmaks = ρ a (1+cos β) 4/27V3

Apabila plat adalah setengah lingkaran, atau β=0

Kmaks = 8/27 ρ a V3

Tenaga kinetik pancaran air :

Ek = ½ ρaV3

Efisiensi maksimum :

%2,5927

16

E

kmaksmaks