Pemodelan Temperatur Pahat Potong Hss dan Pencekam Pahat ... · membubut benda kerjatanpa cairan...

31
Pemodelan Temperatur Pahat Potong HSS dan Pencekam Pahat pada Proses Bubut dengan Metode Tool Termokopel Tipe K dengan Material St41 Nama : Yohanes Setiawan Mutiara NRP : 2107100101 Dosen Pembimbing: Ir. Bambang Pramujati, M.Sc.Eng, Ph.D. Dr. Ir. Agus Sigit Pramono, DEA

Transcript of Pemodelan Temperatur Pahat Potong Hss dan Pencekam Pahat ... · membubut benda kerjatanpa cairan...

Pemodelan Temperatur PahatPotong HSS dan Pencekam Pahat

pada Proses Bubut denganMetode Tool Termokopel Tipe K

dengan Material St41

Nama : Yohanes Setiawan Mutiara

NRP : 2107100101

Dosen Pembimbing:

Ir. Bambang Pramujati, M.Sc.Eng, Ph.D.

Dr. Ir. Agus Sigit Pramono, DEA

Bab 1Pendahuluan

1.1. Latar Belakang

• Panas pada permesinan– Dapat merusak pahat, sehinggi perlu pendinginan

– Maximum Coolant Flow Rate/Flood Lubrication• Cairan pendingin diberikan sesuai kapasitas pompa maksimum

– Minimum Coolant Flow Rate• Cairan pendingin diberikan seminimal mungkin tetapi tetap dapat memberikan

fungsi pendinginan dan pelumasan yang baik

– Kelemahan Metode yang ada:Maximum Coolant Flow Rate Minimum Coolant Flow Rate

Machinability optimal tidak tercapai Pemberian cairan pendingin konstan terhadapparameter permesinan

Tidak dapat berpenetrasi ke daerah kontak pahatdan geram

Memerlukan perhitungan manual dalam penentuandebit cairan pendingin

Biaya produksi meningkat

Pencemaran lingkungan dan gangguan kesehatan

1.1. Latar Belakang

• Variable Coolant Flow Rate– pengaturan variasi debit pendingin yang diberikan

berdasarkan kondisi pemotongan

– Agar sistem ini dapat berfungsi denganmaksimal, dibutuhkan informasi tentang kondisipemotongan pada saat itu, yaitu temperaturpemotongan. Informasi ini selanjutnya digunakansebagai umpan balik dalam control sistem Variable Coolant Flow Rate ini

1.3. Asumsi, 1.4. Tujuan Penelitian,1.5. Manfaat PenelitianAsumsi:

1. Material benda kerja dan pahat potong mempunyai homogenitas yang sama

2. Semua peralatan yang dipakai dalam penelitian sudah terkalibrasi

3. Pengambilan data dilakukan pada kondisi yang sama

Adapun tujuan dari penelitian ini adalah:

1. Memodelkan distribusi temperatur pada pahat dan tool post denganmenggunakan finite element method dengan bantuan program ANSYS

2. Memprediksi distribusi temperatur pada pahat berdasarkan temperatur yang terukur oleh termokopel pada jarak tertentu dari ujung pahat

Penelitian ini diharapkan dapat bermanfaat sebagai dasar pemodelan prosespermesinan bagi pengembangan pendinginan dengan variable coolant flow rate.

Bab 2Tinjauan Pustaka dan Dasar Teori

2.1. Tinjauan Pustaka

• Pemodelan dengan metode FEM– Power law temperature dependent FEM (Grezik, W, dan P. Nieslony. 2008)

– Dengan software Deform FEM (G., Jaharah A., dkk. 2009)

• Simulasi gaya dan temperatur (Mekhilef, S., dkk. 2007)

• Tool termokopel (Iswantoko, Agus. 2004)

• Pemodelan numerik/matematis– Pemodelan matematis untuk menentukan temperatur pemotongan

(Neagu, Maria. 2006)

– Pemodelan numerik untuk menentukan distribusi temperatur pahat(Dogu, Yahya. 2006)

• Pemodelan dengan metode FEM dan validasi tool termokopel(Mas’ud, Muhammad. 2010)

2.2. Dasar Teori

• Terminologi Turning– Kecepatan Potong:

– Kecepatan pemakanan:

– Material Removal Rate:

– Gaya Pemotongan:

– Daya pemotongan

– Spesific Cutting Energy

. .V n Dπ=

0.c

tF

w tu =

2.3. Temperatur Pemotongan•Teori dan Teknologi Permesinan (Rochim, Taufiq. 1993)

–Qc : panas yang terbawa oleh geram 75%–Qs : panas yang merambat melalui pahat 20%–Qv : pahat yang merambat melalui benda kerja 5%

•Fundamentals of Machining and Machine Tool (Boothroyd, Geoofrey. 1985)–Temperatur bidang geser :

•Mechanics of Machining (Chattopadhyay, A.K. 2006)

–Temperatur bidang geser :

–Temperatur bidagn gesek :

–Temperatur bidang kontak :

1

0

( . . )z c fs a

c

Aq P V F VJts Vθ θ

−= +

ff

c w

Pcva aθ ρ=

c s wQ Q Q Q= + +

(1 ) ss

c w

Pcva aθ ρ−Γ=

11

cci

v

V ac E cθ λ=

Bab 3Metodologi Penelitian

3.1. Diagram Alir PenelitianStart

Studi Pustaka

Menentukan dimensi, sudut, material properties, dan geometri pahat serta pencekam pahat

Memasukkan data simulasi temperatur

pahat

Set up eksperimen dan parameter

Simulasi temperatur Pahat dengan ANSYS

Eksperimen temperatur pahat dengan Termokopel

Menghitung temperatur pemotongan

VariasiKecepatan Potong ≥

3

Kecepatan Potong diubah

Temperatur Pahat hasil Simulasi

Temperatur Pahat Hasil Eksperimen

A

A

Kesimpulan

End

3.4. Pahat dan Pencekam Pahat• Pahat Potong

– Bahan HSS S700 / DIN HS10-4-3-10 produksi Bohler

– Ukuran ½’ x ½’ x 4’

A

C

B

B

3.4. Pahat dan Pencekam Pahat• Pencekam Pahat

– Tipe four way tool post

– Bahan AISI 4140

B

B

C

3.7. Set Up, Prosedur Eksperimen, dan ParameterProsedur eksperimen:

• Memasang pahat HSS yang telah disisipitermokopel

• Memasang benda kerja steelrod St41 pada mesin lathe

• Menyiapkan sistem data akuisisi USB-DAQ 6251 dengan memastikan sistembekerja dan siap menerima danmenampilkan data

• Melakukan percobaan denganmembubut benda kerja tanpa cairanpendingin

• Mencatat pembacaan temperatur pahatyang terukur oleh termokopel daninfrared thermometer

• Melakukan analisa data yang telahdidapat

3.9. Simulasi Temperatur Pahat

START

Model 3D, Material Properties, Data Temperatur, Constraints

Memilih tipe elemen solid

Mesh model 3D

Memilih analisa tipe Steady-state Thermal

Proses simulasi

Menampilkan hasil simulasi dan komputasi

END

Menentukan parameter temperatur yang dibutuhkan

Bab 4PENGUJIAN ALAT DAN ANALISA

DATA HASIL EKSPERIMEN

4.1. Rancangan Eksperimen denganMetode Tool Termokopel

Ekpserimen

Thermocuple

- Tipe K

- ø = 3 mm

- l = 65 mm

Sistem data akuisisi- NI USB DAQ 6251

- Program LabVIEW

- Sampling rate 0,1 Hz

Parameter dan RancanganEksperimen

- 3 variasi Vc

- t = 200 detik

Infrared Thermometer

- FLUKE 65

- 40 - 500 C- Optical resolution 8:1

No. EksperimenKecepatan Potong

(m/min)

Kecepatan Pemakanan

(mm/rev)

Pemakanan

(mm)

1 s.d. 5 38,704 0.098 1

6 s.d. 10 22,871 0.098 1

11 s.d. 15 9,676 0.098 1

4.3.1. Eksperimen Pengukuran Temperatur pada ProsesBubut dengan Kecepatan Potong 38,704 m/min

Replikasi ke 1 Replikasi ke 2 Replikasi ke 3 Replikasi ke 4 Replikasi ke 5

Ttermokopel ( C) 53,019 48,031 50,766 48,529 53,486

TIRthermometer ( C) 36,8 41,2 36,7 35,3 37,5

4.3.2. Hasil Eksperimen Pengukuran Temperatur padaProses Bubut dengan Kecepatan Potong 22,871 m/min

Replikasi ke 1 Replikasi ke 2 Replikasi ke 3 Replikasi ke 4 Replikasi ke 5

Ttermokopel ( C) 42,121 42,115 41,536 42 41,943

TIRthermometer ( C) 33,2 34,5 35 33 33,9

4.3.3. Hasil Eksperimen Pengukuran Temperatur padaProses Bubut dengan Kecepatan Potong 9,676 m/min

Replikasi ke 1 Replikasi ke 2 Replikasi ke 3 Replikasi ke 4 Replikasi ke 5

Ttermokopel ( C) 35,669 36,057 38,250 37,298 36,826TIRthermometer ( C) 30,2 31,2 30,9 30,1 30,5

4.4. Analisa Data Hasil Eksperimen

ω (rpm) T (°C) Replikasi ke 1 Replikasi ke 2 Replikasi ke 3 Replikasi ke 4 Replikasi ke 5 Rata-Rata

440Ts 67,505 59,938 64,078 60,693 68,213 64,085

Tir 36,8 41,2 36,7 35,3 37,5 37,5

260Ts 50,973 50,963 50,085 50,789 50,702 50,702

Tir 33,2 34,5 35 33 33,9 33,920

110Ts 41,185 41,773 45,1 43,656 42,94 42,931

Tir 30,2 31,2 30,9 30,1 30,5 30,580

rw = 0,001 m r3 = 0,004 m

kchromel = 19 W/m.K kc = 0,024 W/m.K

kalumel = 30 W/m.K L = 0,065 m

h = 5 W/m2.K Tamb = 25°C

ki = 0,04 W/m.K Tt = 53,019°C

• Kompensasi nilai temperatur hasil pengukuran terhadap systematic error

• Kompensasi ini mempertimbangan kerugian-kerugian konduksi yang ada akibatkonduktivitas material yang terlibat dalam pengukuran

• Informasi yang dibutuhkan adalah:

Bab 5HASIL SIMULASI DAN PEMODELAN

TEMPERATUR PAHAT

5.2. Pemodelan dan Simulasi

Simulasi

Temperaturbidang

kontak geramdan pahat

Pemodelan pahatdan pencekam pahat

- Software CATIA V5

- Assembly file

Simulasi- Software ANSYS 11.0

- Boundary condition

• Beban termal berupa temperatur pemotongan teoritis didefinisikan berupa luasan bidangkontak geram dan pahat• Konduksi antara pahat dan pencekamnya terjadi pada luasan kontak diantara keduanya•Temperatur udara ambient adalah 25 C dengan koefisien konveksi 5 W/m2 C• Konveksi terjadi pada keseluruhan permukaan pahat dan pencekam pahat selain kedua luasandiatas

5.3.1. Temperatur sebagai Fungsi Jarak dariUjung Termokopel

y200 = 170.7e-0.10x

y300 = 255.3e-0.11x

y400 = 340.0e-0.11x

y500 = 422.7e-0.11x

y600 = 509.6e-0.12x

0

100

200

300

400

500

600

700

0.000 2.000 4.000 6.000 8.000 10.000 12.000

Tem

pera

tur

C

Jarak terhadap ujung pahat (mm)

Grafik Temperatur sebagai Fungsi Jarak

Tcut = 200 C

Tcut = 300 C

Tcut = 400 C

Tcut = 500 C

Tcut = 600 C

Expon. (Tcut = 200 C)

Expon. (Tcut = 300 C)

Expon. (Tcut = 400 C)

Expon. (Tcut = 500 C)

Expon. (Tcut = 600 C)

Expon. (Tcut = 600 C)

5.3.1. Temperatur sebagai Fungsi Jarak dariUjung Termokopel

y = 4.525x - 77.56

0

100

200

300

400

500

600

700

50 70 90 110 130 150

Tem

p. P

emot

onga

n °C

Temp. Ujung TC °C

Grafik Temperatur Pemotongan sebagai FungsiTemperatur Ujung Termokopel

Temp. (probe 1)

Linear (Temp. (probe 1))

5.3.2.1. Simulasi Eksperimen 1 sampai 5

•Temperatur rata-rata bidang kontak pahat dan geram adalah 233,57 C

•Temperatur pada koordinat ujung termokopel adalah 70,966 C

5.3.2.2. Simulasi Eksperimen 6 sampai 10

•Temperatur rata-rata bidang kontak pahat dan geram adalah 179,547 C

•Temperatur pada koordinat ujung termokopel adalah 59,154 C

5.3.2.3. Simulasi Eksperimen 11 sampai 12

•Temperatur rata-rata bidang kontak pahat dan geram adalah 116,79 C

•Temperatur pada koordinat ujung termokopel adalah 45,285 C

Bab 6KESIMPULAN DAN SARAN

6.1. Kesimpulan

1. Hasil simulasi dengan software ANSYS 11.0 menunjukkan bahwa distribusi temperatur pada pahatdapat dinyatakan dengan fungsi eksponensial yang berbeda-beda untuk setiap variasi temperature pemotongan.

2. Hasil simulasi memberikan persamaan untuk memprediksi temperature pada ujung pahat, yaitu:

y = 4,525.x – 77,56

dimana y = temperatur pada ujung pahat

x = temperatur yang terukur pada ujung termokopel

3. Hasil eksperimen pengukuran temperatur pemotongan secara langsung dengan menggunakaninfrared thermometer tidak sesuai dengan temperatur pemotongan sesungguhnya karena area pengukuran lebih besar dari pada luas objek yang akan diukur.

6.2. Saran1. Pengembangan terhadap cara penempatan dan pengkondisian termokopel untuk mendapatkan

pembacaan yang akurat2. Pennggunaan alat ukur temperatur pemotongan yang lebih tepat untuk objek ukur yang relatif

sempit.3. Penelitian ini dapat dikembangkan sebagai dasar pemodelan proses permesinan bagi pengembangan

pendinginan dengan variable coolant flow rate.

Terima Kasih