opnet WIMAX+IMS

58
MODUL OPNET WiMAX WiMAX TUTORIAL USING 0PNET 14.5 A. Standard Wimax Worldwide Interoperability for Microwafe Access (WiMAX) adalah teknologi nirkabel yang memiliki berbagai aplikasi dalam cangkupan MAN (Metropolitan Area Network). WiMAX merupakan standar Broadband Wireless Access (BWA) dengan kemampuan untuk menyalurkan data berkecepatan tinggi (layaknya xDSL pada jaringan wireline). Banyak kemampuan lebih yang ditawarkan oleh teknologi WiMAX dibanding teknologi sebelumnya seperti kemampuan diterapkan dalam kondisi NLOS, aplikasinya baik untuk fixed, nomadic, portable maupun mobile. Ukuran kanal spectrum WiMAX yang bervariasi membuat sebuah BTS dapat lebih fleksibel dalam melayani banyak pengguna. Selain itu pula jangkauan spektrum WiMAX termasuk lebar sehingga para pengguna dapat tetap terkoneksi dengan BTS selama berada dalam jangkauan operasi dari BTS. WiMAX merupakan suatu label dunia yang dapat beroperasi melalui produk produk berbasiskan standar IEEE 802.16. Secara sederhana perkembangan standar 802.16 dapat diuraikan sebagai berikut : 1. 802.16 Standar ini mengatur pemanfaatan diband frekuensi 10 66 Ghz. Aplikasi yang mampu didukung baru sebatas dalam kondisi LOS. 2. 802.16a Menggunakan frekuensi 2 - 11 Ghz, dapat digunakan untuk lingkungan NLOS. Standar ini difinalisasi pada januari 2003. Terdapat 3 spesifikasi pada physical layer didalam 802.16a, yaitu : a. Wireless MAN-SC : menggunakan format modulasi single carrier. TUJUAN : Mengetahui implementasi WiMAX pada jaringan. Mengetahui performa WiMAX pada berbagai skenario pada jaringan.

description

Konfigurasi opnet untuk wimax dan ims

Transcript of opnet WIMAX+IMS

Page 1: opnet WIMAX+IMS

MODUL OPNET – WiMAX

WiMAX TUTORIAL USING 0PNET 14.5

A. Standard Wimax

Worldwide Interoperability for Microwafe Access (WiMAX) adalah teknologi

nirkabel yang memiliki berbagai aplikasi dalam cangkupan MAN (Metropolitan Area

Network). WiMAX merupakan standar Broadband Wireless Access (BWA) dengan

kemampuan untuk menyalurkan data berkecepatan tinggi (layaknya xDSL pada jaringan

wireline). Banyak kemampuan lebih yang ditawarkan oleh teknologi WiMAX dibanding

teknologi sebelumnya seperti kemampuan diterapkan dalam kondisi NLOS, aplikasinya baik

untuk fixed, nomadic, portable maupun mobile. Ukuran kanal spectrum WiMAX yang

bervariasi membuat sebuah BTS dapat lebih fleksibel dalam melayani banyak

pengguna. Selain itu pula jangkauan spektrum WiMAX termasuk lebar sehingga para

pengguna dapat tetap terkoneksi dengan BTS selama berada dalam jangkauan operasi dari

BTS. WiMAX merupakan suatu label dunia yang dapat beroperasi melalui produk – produk

berbasiskan standar IEEE 802.16. Secara sederhana perkembangan standar 802.16

dapat diuraikan sebagai berikut :

1. 802.16

Standar ini mengatur pemanfaatan diband frekuensi 10 – 66 Ghz. Aplikasi

yang mampu didukung baru sebatas dalam kondisi LOS.

2. 802.16a

Menggunakan frekuensi 2 - 11 Ghz, dapat digunakan untuk lingkungan

NLOS. Standar ini difinalisasi pada januari 2003. Terdapat 3 spesifikasi pada

physical layer didalam 802.16a, yaitu :

a. Wireless MAN-SC : menggunakan format modulasi single carrier.

TUJUAN :

Mengetahui implementasi WiMAX pada jaringan.

Mengetahui performa WiMAX pada berbagai skenario pada jaringan.

Page 2: opnet WIMAX+IMS

b. Wireless MAN-OFDM : mengunakan OFDM dengan 256 point FFT. Modulasi

ini bersifat mandatory untuk non-licensed band.

c. Wireless MAN-OFDMA : menggunakan OFDMA dengan2048 point FFT.

3. 802.16d

Standar ini disebut juga sebagai fixed WiMAX. Standar ini berbasis 802.16

dan 802.16a dengan beberapa perbaiakan. Selain itu, standar ini juga

dikenal sebagai 802.16-2004. Terdapat 2 opsi dalam transmisi pada 802.16d

yaitu TDD maupun FDD.

4. 802.16e

Standar ini disebut juga sebagai mobile WiMAX. Standar ini telah

difinalisasi pada akhir tahun 2005. Berbeda dengan sebelumnya, antara

standar 802.26d dengan 802.26e tidak bisa dilakukan interoperability

sehingga diperlukan perangkat hardware tambahan bila akan mengoperasikan

802.26e.

Perbandingan standart wimax Tabel 1.1

Page 3: opnet WIMAX+IMS

B. Struktur Layer

PHY Layer

Pada standar WiMAX, fungsi-fungsi penting yang diatur pada PHY adalah :

OFDM, Duplex System, Adaptive Antenna System (AAS), Variable Error

Correction, Adaptive Modulation. Semua fungsi-fungsi ini secara bersama-

sama memberikan keunggulan yang cukup berarti dibandingkan dengan BWA

eksisting.

Dengan teknologi OFDM memungkinkan komunikasi berlangsung dalam kondisi

multipath LOS dan NLOS antara BS dan SS. Metode OFDM yang digunakan

untuk WiMAX adalah Fast Fourier Transform (FFT) 256. Fitur PHY untuk

sistem duplex pada estándar WiMAX bisa diterapkan pada Frequency

Division Duplexing (FDD) dan Time Division Duplexing (TDD) atau keduanya TDD

dan FDD. Fitur ini memberikan kemudahan pengaturan spektrum frekuensi

yang akan digunakan oleh para operator agar didapatkan efisiensi spektrum

yang optimal.

fitur-fitur physical layer WiMAX Tabel 1.2

MAC Layer

WiMAX MAC protokol didesain untuk aplikasi PMP. Berbeda dengan WiFi,

mekanisme pengalokasian dipersiapkan untuk menangani ratusan terminal per

kanal dan setiap terminal dimungkinkan lagi untuk penggunaan secara

Page 4: opnet WIMAX+IMS

bersama (sharing) dengan beberapa pengguna akhir (end users). Digunakan dua

jalur data berkecepatan data tinggi untuk komunikasi dua arah antara BS dan SS,

masing-masing disebut Uplink (UL) untuk komunikasi menuju ke BS, dan

Downlink (DL) untuk komunikasi dari BS. Secara umum DL ditransmisikan secara

broadcast dari BS dan semua SS menerima sinyal DL tersebut tanpa koordinasi

langsung antara SS yang ada. Pada penggunaan sistem TDD, ditentukan periode

transmit untuk DL dan UL.

C. QoS Pada Wimax

Dengan lahirnya teknologi baru di jaringan wireless seperti WiMAX tentunya diiringi

dengan kemampuan yang lebih bila dibanding dengan teknologi generasi sebelumnya.

Disamping mengusung isu interoperability, security, availability, capability (mampu

memberikan layanan broadband), NLOS (Non Line of Sight), jarak jangkau yang luas

dan mobility, maka WiMAX tak kalah penting juga menawarkan QoS (Quality of Service).

Dengan kemampuan memberikan QoS yang beragam, maka akan sangat

menguntungkan baik bagi operator (service provider) maupun pelanggan. Bagi

operator dapat memberikan diversifikasi layanan dan tarif berdasarkan tipe QoS yang

di-deliver ke pelanggan. Disamping itu kualitas layanan yang diberikan ke pelanggan

juga lebih terjamin karena masing-masing tipe QoS sangat sesuai dengan layanan

tertentu. Sedangkan bagi pelanggan dapat memilih layanan sesuai dengan

pertimbangan kebutuhan (misalkan biaya, tipe layanan yang akan diperoleh menyangkut

throughput-nya).

Berdasarkan kondisi tersebut, fitur QoS sangatlah penting dan dapat dijadikan

suatu nilai tambah dari teknologi WiMAX. Terdapat 3 tipe service class yang

disediakan oleh WiMAX, yaitu :

1. UGS (Unsolicited Grant Service)

UGS digunakan untuk layanan yang membutuhkan jaminan transfer data dengan prioritas

paling utama. Dengan demikian layanan dengan kriteria UGS ini memiliki karakteristik :

Seperti halnya layanan CBR (Constant Bit Rate) pada ATM, yang dapat memberikan

transfer data secara periodik dalam ukuran yang sama (burst).

Untuk layanan-layanan yang membutuhkan jaminan real-time.

Page 5: opnet WIMAX+IMS

Efektif untuk layanan yang sensitif terhadap througput, latency dan jitter

seperti layanan pada TDM (Time Division Multiplexing).

Maximum dan minimum bandwidth yang ditawarkan sama.

Contohnya untuk aplikasi VoIP, T1/E1 atau ATM CBR.

2. Real Time Polling Service (rtps)

Efektif untuk layanan yang sensitif terhadap throughput dan latency namun

dengan toleransi yang lebih longgar bila dibandingkan dengan UGS.

Untuk real-time service flows, periodic variable size data packets (variable bit rate).

Garansi rate dan syarat delay telah ditentukan.

Contohnya MPEG video, video conference.

Parameter service: commited burst, commited time .

3. Best Effort (BE)

Untuk trafik yang tidak membutuhkan jaminan kecepatan data (best effort).

Tidak ada jaminan (requirement) pada rate atau delay-nya.

Contohnya aplikasi internet (web browsing), email, FTP.

D. Topologi Jaringan WiMAX

Topologi Jaringan WiMAX dapat dibagi menjadi dua kategori besar yaitu Point to

Multipoint (PMP) dan Point to Point (P2P) serta dapat dikembangkan menjadi jaringan

berbentuk mesh.

Pada topologi mesh, Base Station (BS) digunakan sebagai interface ke core network,

sementara untuk menjangkau pelanggan yang berada diluar jangkauan suatu BS,

terminal pelanggan atau Customer Premises Equipment (CPE) dapat bertindak sebagai

router atau repeater bagi terminal pelanggan lainnya. Tentunya terminal pelanggan

disini akan menjadi lebih kompleks karena harus dilengkapi dengan kemampuan

routing. Melalui cara ini akan diperoleh penambahan coverage jaringan secara

signifikan. Namun dalam pengembangannya, topologi mesh merupakan topologi

optional yang berarti tidak harus diadopsi dalam system WiMAX.

Page 6: opnet WIMAX+IMS

Gambar 1.1 Konfigurasi umum jaringan WIMAX

E. Parameter Jaringan Wimax yang Akan Disimulasikan (802.16e) 1. Layanan Aplikasi

VOIP

No Parameter Layanan VoIP Value

1. Encoder Scheme G.729 (silence)

2. Voice Frames per Packet 1

3. Type of Service Interactive Voice (6)

4. Compression Delay (seconds) 0.02

5. Decompression Delay 0.02

HTTP

No Parameter Layanan HTTP Value

1. Page Interarrival Time (seconds) exponential (60)

2. Type of Service Best Effort (0)

Page 7: opnet WIMAX+IMS

VOD

No Parameter Layanan VoIP Value

1. Frame Interarrival Time Information 15 frames/sec

2. Frame Size Information (bytes) 128X240 pixels

3. Type of Service Streaming Multimedia (4)

2. User Profile

No Jenis User Profile Value

1. Download HTTP PROFILE

2. Conversation VOIP PROFILE

3. Watching VOD PROFILE

3. Parameter Service Class yang Digunakan Pada Wimax

Parameter MAC service Class Gold.

No Parameter MAC service Class 1 Value

1. Tipe scheduling UGS

2. Maximum sustained traffic rate 5 Mbps

3. Maximum reserved traffic rate 1 Mbps

4 Maximum Latency 30 milisecond

5 Maximum traffic burst 0

6 Unsolicited Poll Interval Auto Calculated

Parameter MAC service Class Silver

No Parameter MAC service Class 2 Value

1. Tipe scheduling rtPS

2. Maximum sustained traffic rate 1 Mbps

3. Maximum reserved traffic rate 0.5 Mbps

4 Maximum Latency 30 milisecond

Page 8: opnet WIMAX+IMS

5 Maximum traffic burst 0

6 Unsolicited Poll Interval Auto Calculated

Parameter MAC service Class Bronze

No Parameter MAC service Class 3 Value

1. Tipe scheduling Best Effort

2. Maximum sustained traffic rate 384 Kbps

3. Maximum reserved traffic rate 384 Kbps

4 Maximum Latency 30 milisecond

5 Maximum traffic burst 0

6 Unsolicited Poll Interval Auto Calculated

4. Parameter PHY Layer WiMAX

No Parameter PHY Layer Value

1. Frame duration 5 ms

2. Symbol duration 102.8 ms

3. Jumlah subcarrier 2048

4. Teknik duplexing TDD

5. Base Frekuensi 5 GHz

6. Bandwith 20 MHz

7. Modulasi Adaptive

8. Number of transmitter MIMO

Page 9: opnet WIMAX+IMS

E. MOBILE WiMAX

Mobile WiMAX yang pada awalnya dibangun untuk memenuhi kebutuhan

aplikasi mobile broadband memiliki beberapa kelebihan dibandingkan dengan teknologi

mobile broadband lainnya, yaitu antara lain:

1. Algoritma Mobile IP (MIP)

Algoritma MIP pada jaringan core-nya meliputi elemen-elemen seperti home agent yang

memungkinkan layanan handover saat pelanggan bergerak dari satu area jangkauan

ke area jangkauan lain. Dengan adanya fungsi-fungsi IP dan antarmuka sebagai bagian

dari standar yang lengkap, Mobile WiMAX memungkinkan penyampaian layanan berbasis IP

dan uga tetap menjaga Quality of Service (QoS). Perangkat jaringan core berbasis IP,

router dan switch memiliki harga yang lebih rendah dan lebih mudah dalam penginstalan

dan pengoperasiannya dibandingkan alternatif lain.

2. Scalable Transmission Coding

Dengan adanya beberapa pilihan untuk setiap perangkat, Mobile WiMAX akan

memaksimalkan performanya serta ketersediaan dan kualitas layanannya. Setiap

perangkat dapat berkomunikasi dengan base station terdekat menggunakan salah satu dari

sekian banyak skema pengkodean transmisi yang bergantung pada kualitas sinyal,

interferensi, kemampuan internal processing-nya dan masih banyak parameter lainnya.

Pengkodengan juga diperbarui secara periodik agar sesuai dengan status terbaru dari

perangkat.

3. Spectral Efficiency

Penggabungan skema pengkodean transmisi dengan beberapa pilihan ukuran kanal

(mencapai 20 MHz) serta kemampuan untuk mengelompokkan sub-carrier

memungkinkan para operator untuk menggunakan spektrum frekuensi yang tersedia

dengan sebaik-baiknya.

4. Advance over the QoS

Penawaran layanan multimedia yang menggabungkan suara, data dan video dalam

satu air link kebeberapa pengguna menunjukan bahwa QoS penting dalam

pengoperasian jaringan yang sesuai. Karena WiMAX berbasis IP, hubungan QoS dengan

Page 10: opnet WIMAX+IMS

jaringan berbasis IP dan broadband yang umumnya juga bagian dari standar mobile

WiMAX dimana penjadwalan transmisi disain digunakan untuk memastikan adanya QoS

yang sesuai untuk setiap layanan.

5. Proses Handover

Starting HO

a. HO initiator

Informasi dikumpulkan melalui Network Topology Advertisement dan merupakan

proses scanning yang berguna untuk MS. Sehingga MS dapat memutuskan dan

memulai HO (mobile-controlled HO). Di samping kualitas kanal yang murni,

informasi kemampuan jaringan diperlukan dalam suatu mobile-controlled HO

untuk memilih suatu target BS yang optimal. Prediksi tingkat layanan yang

kumpulkan oleh MS melalui asosiasi yang opsional merupakan kriteria dalam

keputusan. Jika serving BS meminta suatu laporan scanning dari MS, kualitas

kanal sangat berguna bagi serving BS itu sendiri. Dalam hal ini, BS dapat

memutuskan dan memulai HO berdasarkan pada pengukuran MS (mobile-

assisted HO). Tipe HO ini dapat mempertimbangkan status jaringan yang

tersedia untuk menyeimbangkan antar BS. Selama pesan MOB_SCN-REP tidak

berisi prediksi kualitas layanan, informasi ini tidak ada dalam serving BS. Informasi

tersebut bisa dikumpulkan melalui backbone. Tetapi, mobile-assisted HO

memiliki kerugian dalam HO yang inter-domain. Dalam domain yang berbeda

dalam operator atau administratif, MS dapat mempunyai QoS yang berbeda pula.

Hal ini tidak terlihat pada serving BS karena laporanscanning hanya berisi

informasi kualitas kanal tetapi bukan prediksi kualitas layanan. Memperoleh

prediksi QoS melewati batas administratif tidak dimungkinkan. Dan juga, mobile-

assisted HO membutuhkan suatu overhead pensinyalan yang lebih besar karena

laporan scanning di transmisikan melalui udara. BS yang lebih baik yang berada

pada suatu domain yang berbeda, kemungkinan besar tidak akan diperhatikan oleh

keputusan HO.

Page 11: opnet WIMAX+IMS

b. HO criteria

Dua tipe kriteria keputusan diprediksikan oleh IEEE 802.16 bagian management

message. Pertama adalah ukuran kualitas kanal seperti SINR dan kekuatan sinyal

yang dapat dipertukarkan. Agar dapat menghilangkan fluktuasi yang cepat akibat

sifat multipath dari kanal nirkabel, pengukuran kualitas link harus dirata-ratakan

dari waktu ke waktu. Panjang dan bentuk proses perata-rataan window adalah

suatu hal yang efektif untuk beradaptasi pada proses HO. Pada kondisi LOS,

dimana variasi kualitas link rata-ratanya sangat kecil, proses perata-

rataanwindow menghindari efek “ping-pong“. Pada kondisi NLOS, kekuatan sinyal

dapat turun dengan cepat akibat proses shadowing yang berat dan tiba-tiba. Hal

iniakan menuntut suatu proses perata-rataan window yang singkat,

sehinggamenghasilkan HO yang cepat. Kedua, QoS ditandai oleh prediksi kualitas

layanan. Prediksi kualitas layanan pada tingkat layanan MS dapat diwujudkan dari

BS ini.Nilai yang berbeda menandakan bahwa tidak ada layanan yang mungkin,

beberapa layanan yang diminta dapat tersedia, masing-masing koneksi dapat

diciptakan dengan QoS yang spesifik, atau tidak ada prediksi yang tersedia.

Bergantung pada ketersediaannya, kriteria lain dapat digunakan dengan strategi.

Dalam kasus mobile-controlled HO, beberapa layanan harus bisa diakses oleh MS.

Dalam kasus mobile-assisted HO, hal tersebut memerlukan kriteria pada serving

BS. Nilai kriteria bisa berupa bit error rate (BER), delay paket/jitter, penetapan

harga layanan, kecepatan MS, dan lokasi MS.

c. Manajemen HO

Dalam hal suatu keputusan HO yang positif, serving BS dan MS saling

memberitahukan. Dalam suatu mobile-controlled HO, MS mentransmisikan suatu

pesan MOB_MSHO-REQ ke serving BS. Serving BS merespon dengan suatu

pesan MOB_BSHO-RSP. MS mentransmisikan final indication (MOB_HO-IND) untuk

mulai melakukan HO (atau tidak).

Permintaan HO berisi satu atau lebih target BS yang mungkin dengan ukuran

kualitas link pada target BS yang sesuai, danprediksi kualitas layanan yang

tersedia. Menurut daftar tersebut,serving BS bisa menghubungi target BS dan

bernegosiasi untuk peluang transmisi pengukuran jarak awal yang dedicated untuk

Page 12: opnet WIMAX+IMS

MS. Jika MS itu tidak menghubungkan ke target BS selama interval scanning,

serving BS meminta prediksi kualitas layanan untuk MS. Lebih lanjut, serving BS

dapat mengumpulkan setiap informasi HO yang berhubungan dari jaringan, yakni

mengukur kualitas kanal UL selama asosiasi MS atau statistik muatan jaringan.

Respon serving BS berisi daftar BS yang direkomendasikan. Daftar tersebut

merekomendasikan target BS pertama dan masukan (entry) terakhir sebagai

rekomendasi terakhir. Ada kemungkinan bahwa daftar BS yang direkomendasikan

adalah suatu subset dari daftar BS yang mungkin yang diusulkan oleh MS. Lebih

lanjut, tanggapan berisi yang disebut tindakan waktu (action time). Action time

menggambarkan banyaknya frame sampai semua BS yang direkomendasikan

mengalokasikan suatu peluang transmisi yang dedicated untuk pesan RNG-REQ

dari MS. Suatu identifier (HO_ID) ditugaskan kepada MS, yang mengidentifikasi MS

selama pengukuran jarak awal. Dengan memiliki daftar BS yang

direkomendasikan, MS mengevaluasi target yang mungkin BS berdasarkan

pengukuran yang dilaksanakan selama proses scanning dan asosiasi sebelumnya.

Hal itu direkomendasikan, tetapi tidak diperlukan, bahwa MS memilih salah

satu BS dari daftar tersebut. MS boleh memutuskan untuk mencoba melakukan

HO ke suatu BS yang berbeda baik yang berada di daftar BS yang

direkomendasikan ataupun tidak. Tetapi, serving BS dapat memaksa MS untuk

melakukan handover dengan mengatur mode operasi pada MOB_BSHO-RSP

(MOB_BSHO-REQ). Final indication (MOB_HO-IND) berisi BSID target BS. Setelah

menerima indikasi, serving BS memulai resourceretain timer. Selama pengatur

waktu tersebut tidak berakhir, serving BS mempertahankan koneksi-koneksi,

MAC state machine dan PDU berhubungan dengan MS. Koneksi-koneksi

tersebut dapat digunakan oleh MS untukmelaksanakan suatu operasi re-

entryyang dipercepat dengan serving BS. Setelah pengatur waktu berakhir, MS

tidak mendengarkan lalu lintas DL serving BS lagi dan BS dapat mengakhiri

koneksi dengan MS. Serving BS dapat mengatur ulang pengatur waktu ketika

menerima suatu pesan backbone, yang menandakan adanya asosiasi MS yang

sukses pada target BS. Dalam mobile-assisted HO, serving BS meminta HO dengan

mentransmisikan suatu MOB_BSHO.

Page 13: opnet WIMAX+IMS

Sinkronisasi

MS mensinkronkan kanal DL target BS untuk memperoleh parameter transmisi DL

dan UL. Proses sinkronisasi telah digambarkan dalam bagian scanning neighboring

BS. Jika MS sebelumnya telah menerima suatu MOB_NBRADV atau jika MS telah

melaksanakan scanning, MS telah mengetahui informasi DCD/UCD. Dalam hal ini,

proses sinkronisasi tersebut diikatkan.

Entry/Re-entry Jaringan

Re-entry jaringan diproses menurut standar prosedur yang ditetapkan untuk awal

entry jaringan. Sedangkan dalam proses pengukuran jarak, MS memperoleh offset

pemilihan waktu yang tepat, mengoreksi offset frekuensi, dan melakukan

penyesuaian kehandalan transmisi. Untuk mengoptimalkan re-entry, pertukaran

pesan dapat disingkatkan atas bantuan jaringan backbone. Untuk melakukannya,

MS mengirim pesan Ranging Request NGREQ kepadatarget BS. Jika sebelumnya peluang

pengukuran jarak awal berdasarkan non-contention dirundingkan melalui backbone,

peluang ditandai dalam UL MAP atas pertolongan Fast_Ranging IE. Slot pengukuran

jarak yang dedicated menunjukkan alamat MAC MS. Selain hal tersebut, MS

mentransmisikan RNGREQ selama slot pengukuran jarak awal berdasarkan

contention. BS menanggapi dengan pesan Ranging Response (RNGRSP). Tanggapan

tersebut berisi manajemen CID dari MS. Lebih lanjut, tingkat transmit power, offset

timing-and frequency dimasukkan. Pertukaran pesan RNG-REQ dan RNG-RSP

diulangi sampai BS memberitahu suatu pengukuran jarak yang sukses. Jika MS

telah melaksanakan asosiasi yang opsional kepada target BS selama interval

scanning terbaru, MS menggunakan parameter pengukuran jarak awal yang

terekam untuk mempersingkat jumlah iterasi pengukuran jarak. Hal ini mungkin ketika

parameter yang terekam tidak out of date. Dengan demikian, asosiasi yang opsional

harus dilaksanakan dekat dengan pemulaian HO sehingga kondisi kanal tidak berubah

di pertengahan. Setelah pengukuran jarak, MS dan target BS bernegosiasi

kemampuan dasar mereka, yakni kemampuan modulator/demodulator. Kemudian

autentikasi MS dan pertukaran encryption key mengikuti. Setelah otorisasi, MS

melaksanakan registrasi di mana MS menginformasikan tentang dukungan ARQ dan

CRC. Dan MS masuk kembali jaringan dan meneruskan penetapan koneksi dengan

sukses. Target BS dapat memintaserving BS informasi tentang MS melalui jaringan

Page 14: opnet WIMAX+IMS

backbone. Entitas jaringan lain bisa dilibatkan juga. Entitas seperti itu adalah sebagai

contoh suatu server Authentication and Service Authorization(ASA) untuk meminta

informasi keamanan MS. Berkat informasi ini,re-entry jaringan bisa dioptimalkan.

Target BS menandai adanya tingkat optimisasi HO di dalam pesan RNGRSP.

Dengan demikian, satu atau beberapa dari langkah-langkah entry jaringan yang

berikut bisa dilompati:

• Bernegosiasi kemampuan dasar/Registration

• Manajemen privete key/tahap Authentication

• Tahap penetapan encryption key

Hal tersebut juga memungkinkan untuk melompati keseluruhan prosedur entry

jaringan dengan mentransfer seluruh status operasional dari serving BS ke target BS.

Status operasional dimasukkan dalam kondisi ARQ dan SAR, pengatur waktu,

counter, MAC state machine, CID, informasi arus layanan, dan informasi koneksi

lain. Dengan pertukaran informasi ini, target BS dan MS tidak menukar setiap

pesan re-entry jaringan setelah operasihandshake pengukuran jarak. Bahkan penetapan

koneksi (handshake DSA-REQ/DSA-RSP) dapat dihilangkan. MS dan BS melanjutkan

kembali operasi normal secara langsung.

Page 15: opnet WIMAX+IMS

Gambar mekanisme handover

E. Scheduling Architecture

Scheduling algortihm diimplementasikan di BS dan SS. Sebuah scheduling algorithm

dibutuhkan oleh sebuah SS untuk mendistribusikan alokasi bandwith dari BS selama

koneksi tersambung. Pada sisi SS, scheduling algorithm tidak dibutuhkan apabila BS

menjamin bandwith untuk setiap SS yang terkoneksi secara terpisah seperti Grant Per

Connection (GPC). Untuk Grant Per Subscriber Station, SS membutuhkan scheduling

alogorithm untuk menentukan alokasi bandwith selama koneksi tersambung.

Scheduling algorithm yang diimplementasikan di SS berbeda dengan yang

diimplementasikan di BS. Pada tugas pelatihan ini, scheduling algorithm yang

Page 16: opnet WIMAX+IMS

diimplementasikan di BS untuk arah trafik uplink dihadapkan dengan sejumlah

permasalahan yang tidak ditemui oleh algoritma untuk arah trafik downlink. Sebuah

uplink scheduling algorithm tidak mempunyai seluruh informasi mengenai SS seperti

ukuran besarnya antrian. Sebuah uplink cheduling algorithm di BS harus

mengkoordinasikan keputusan tersebut dengan seluruh SS yang ada. Hal ini berbeda

dengan arah downlink yang hanya terfokus dalam hal memberitahukan keputusan

tersebut kepada BS.

Pada dasarnya, uplink scheduling algorithm untuk WiMAX dapat dibagi menjadi tiga

kategori, yaitu:

1. Homogen scheduling algorithm :

Algoritma ini berfokus pada masalah ketersediaan QoS, flow isolation, dan fairness.

Tetapi algoritma ini tidak berfokus pada maslaah link channel quality. Contoh dari

algoritma tersebut adalah : Weighted Round Robin (WRR), Deficit Round Robin (DRR),

Earliest Deadline First (EDF), Weighted Fair Queuing (WFQ).

2. Hybrid scheduling algorithm :

Pada dasarnya, kategori algoritma ini merupakan kombinasi dari berbagai algoritma yang

homogen. Beberapa kategori algoritma ini berfokus kepada masalah kondisi variable

channel di WiMAX. Aspek terpenting untuk kategori ini adalah keseluruhan alokasi

bandwith selama scheduling service. Contoh dari algoritma ini adalah : EDF+WRR+FIFO,

EDF +WFQ.

3. Opportunistic scheduling algorithm :

Prioritas utama dari algoritma untuk kategori tersebut adalah variability pada kondisi kanal

di WiMAX. Algoritma ini juga mencoba menyediakan jaminan QoS untuk empat

scheduling services dan menjaga fairness diantara SS.

Jenis-jenis scheduling yan ada antara lain :

1. First Input First Output (FIFO)

FIFO dalam antrian (juga dikenal sebagai First-come First-served) bekerja seperti dalam

antrian checkout dari supermarket. Paket pertama yang tiba adalah yang pertama

Page 17: opnet WIMAX+IMS

diproses. Sebagai paket-paketbarutiba, mereka hanya ditambahkan ke akhir antrian. Jika

antrian penuh, dengan analogi supermarket berhenti.

2. Weighted Fair Queuing (WFQ)

WFQ merupakan pengembangan dari FQ (Fair Queuing) yaitu dengan menambahkan bobot

bagi masing-masing antrian.

Pada gambar diatas terlihat cara kerja pada WFQ. Pertama-tama, aliran trafik yang

masuk di kelompokkan oleh packet classifier menjadi m queue (antrian). Masing –

masing antrian memiliki bobot tersendiri berdasarkan Type of service , protocol, port

ataupun DSCP. Pada penelitian kali ini, bobot yang ada di WFQ diambil berdasarkan

default dari software opnet modeler dengan urutan nilai sebagai berikut :

Page 18: opnet WIMAX+IMS

Tabel 1.3

ToS Bobot

Best Effort 0

Background 1

Standard 2

Exelent Effort 3

Streaming Multimedia 4

Interactive Multimedia 5

Interactive Voice 6

Reserved 7

Setelah dilakukan pembobotan, maka masing-masing antrian akan mendapatkan alokasi

Bandwith yang sesuai dengan bobotnya. Antrian yang mempunyai bobot lebih tinggi akan

mendapatkan alokasi Bandwith yang lebih tinggi pula. Total Bandwith yang ada di

masing – masing antrian harus sama dengan Bandwith di output. Setelah dilakukan,

pengalokasian bandwith. Langkah selanjutnya yang dilakukan scheduler adalah

menghitung virtual finish untuk masing-masing antrian. Antrian yang memiliki virtual

finish paling sedikit akan terlebih dahulu dikirimkan. Dibawah ini merupakan contoh yang

menggambarkan prinsip kerja WFQ.

Page 19: opnet WIMAX+IMS

Pada gambar terlihat terdapat tiga antrian yang sudah diklasifikasi. Antrian pertama

memiliki alokasi bandwith 10% dari bandwith total, sedangkan antrian kedua memiliki

20% alokasi bandwith dari bandwith total dan antrian ketiga memiliki alokasi bandwith

70% dari bandwith total. Paket A berukuran 30 bytes, paket B berukuran 120 bytes dan

paket C berukuran 140 bytes.

Pada kondisi seperti itu, dengan asumsi bandwith total 10 bps, maka paket A akan

selesai dikirimkan setelah tiga kali melewati waktu visit (waktu yang digunakan

cheduler mengunjungi paket), sedangkan paket B setelah 6 kali waktu visit, dan paket C

setelah 2 kali waktu visit. Sehingga urutan paket yang dikirim adalah C, A, B.

3. Modified Deficit Round Robin (MDRR)

MDRR adalah pengembangan dari algoritma DRR yang sudah ada sebelumnya.

Algoritma ini yang paling sering digunakan pada router cisco 12000. Akan tetapi

MDRR berbeda dalam segi quantumnya, yaitu dengan rumus :

Quantum = MTU + 512 * Weight

Maksimum Transmission Unit adalah ukuran paket maksimum yang antrian mungkin kirim.

Akan tetapi sebagai catatan MTU adalah bilangan yang konstan untuk sebuah sistem, nilai

quantum dan weight dapat digunakan bersama-sama. Alasan memasukkan parameter MTU

kedalam persamaan (5) adalah untuk menjamin bahwa quantum dikirim kepada antrian

yang dituju setidaknya membuat antrian dapat mengirim satu paket. Weight. dihitung

dengan menggunakan rumus dibawah ini:

Weight = (MTMR x 100)/Total System Capacity

Page 20: opnet WIMAX+IMS

MTMR merupakan alokasi bandwith yang dijinkan oleh BS terhadap suatu SS. Akan tetapi,

pada software Opnet Modeler 14.5 weight yang digunakan sama seperti pada WFQ.

Disamping penentuan Quantum dan Weight, MDRR juga berbeda dengan DRR akibat adanya

satu antrian yang mempunyai prioritas paling tinggi dan seolah-olah dipisahkan dari

antrian yang lain yang bobotnya lebih rendah. Pada antrian yang mempunyai bobot

tertinggi tersebut (High Priority Queue), terdapat perlakuan khusus dibandingkan dengan

antrian yang lainnya. Perlakuan tersebut terbagi dua yaitu :

1. Alternate Mode : pada mode ini, high priority queue (PQ) dilayani berganti-

gantian dengan layanan yang lainnya. Sebagain contoh : {PQ, Q1, PQ, Q2, PQ,

Q3, PQ, Q4}

2. Strict Priority Mode : pada mode ini, apabila pada PQ terdapat paket yang

akan dikirimkan maka paket tersebut akan langsung dikirimkan sampai selesai.

Tetapi apabila scheduler sedang memproses paket yang lain, maka paket

tersebut diselesaikan dulu baru kemudian PQ yang dilayani.

Prinsip kerja MDRR pada dasarnya sama seperti DRR, pada MDRR terdapat deficit

counter. Paket akan dikirimkan apabila nilai deficit counter lebih besar atau sama dengan

nol. Nilai deficit counter itu sendiri diperoleh dengan cara mengurangi nilai terakhir yang

berada di deficit counter dengan ukuran paket. Untuk inisialisasi awal, nilai deficit

counter sama dengan nilai quantum. Quantum sendiri akan dimasukkan ke dalam

deficit counter setiap habis round.

Agar lebih mudah, berikut ini akan dicontohkan prinsip kerja MDRR.

Page 21: opnet WIMAX+IMS

Pada gambar diatas terdapat 3 antrian. Queue 2 merupakan antrian dengan prioritas

tertinggi (PQ). Pada contoh disini, digunakan Alternate Mode. Dan berikut ini adalah contoh

bobot masing-masing antrian :

Tabel 1.4

Nama antrian Weight Quantum = Weighted x MTU (MTU=1500 byte)

Queue 0 1 1500

Queue 1 2 3000

Queue 2 3 1500

Pertama-tama, Queue2 dilayani. Nilai deficit counter diinisialisasikan dengan nilai

Quantum yaitu 1500. Queue2 akan dilayani terus selama deficit counter lebih besar atau

sama dengan nol. Paket pertama di queue 2 adalah 500, sementara nilai deficit

counter adalah 1500. Sehingga nilai deficit counter menjadi 1500-500 = 1000. Setelah itu

paket selanjutnya di queue2 adalah 1500, dan deficit counter menjadi 1000-1500= -

500. Karena nilai deficit counter menjadi lebih kecil dari nol. Maka scheduler berpindah ke

queue 0.

Pada queue 0 , paket yang pertama dilayani adalah 1500, sehingga nilai deficit

counter menjadi 1500-1500=0, karena nilai deficit counter masih pada nilai nol, maka

scheduler masih bisa dapat melayani pada queue1. Paket selanjutnya yang dilayani

adalah 1000, sehingga nilai deficit counter menjadi 0-1000= -1000. Karena nilai deficit

counter sudah lebih kecil dari nol maka scheduler akan berpindah ke queue2 lagi.

Page 22: opnet WIMAX+IMS

Pada queue 1, langkah selanjutnya sama dengan pada antrian-antrian sebelumnya

sampai seluruhnya habis. Akan tetapi ada hal yang harus diperhatikan, yaitu urutan

antrian yang dilayani adalah Q2,Q0,Q2,Q1,Q2,Q0,Q2,Q1 dan selanjutnya. Akan tetapi

apabila Q2 (High Priority) sudah habis, maka urutannya berubah menjadi

Q0,Q1,Q2…dan seterusnya.

Page 23: opnet WIMAX+IMS

SIMULASI

A. Simulasi Tanpa Deploy Wireless Network

Buat project baru untuk jaringan yang diinginkan dengan cara :

1. Buka OPNET Modeler 14.5 –Educational Version, Klik New dari menu File.

2. Pilih Project Klik OK beri nama project kemudian Klik OK.

3. Pada Startup Wizard: Initial Topology dialog box, pastikan bahwa anda memilih Create

Empty Scenario > klik Next > pilih Campus list Network Scale > klik Next > masukkan nilai X=

1 dan nilai Y =1 , jangan lupa skala pilih yang kilometer > klik Next sebanyak dua kali > klik

OK.

4. setelah muncul workplace dan Object Palette, kita akan mengambil beberapa object yang

akan digunakan pada simulasi wimax, pilih pada model wimax_adv pada Object Palette,

diantaranya :

wimax_3sector_bs_atm2_ethernet2_slip4_wlan_router_adv (jumlah 1 buah),

wimax_ss_wkstn_adv (fixed node) (jumlah 3 buah),

router_slip64_dc sebagai pengatur antara BS dengan server (jumlah 1 buah) dan ganti icon

supaya mudah dikenal,

ppp_server (jumlah 3 buah),

PPP_DS3 untuk menghubungkan antara router dengan server,

Application Config, Profile Config, dan WiMAX_Config pada model palette wimax_adv

(masing-masing 1 buah), hasil pada workplace seperti gambar di bawah ini

Page 24: opnet WIMAX+IMS

5. Kemudian tetapkan application definition, klik kanan pada Application Definition > Edit Attribute

> Application Definition > Number of Row = 3 > isikan sesuai parameter

Page 25: opnet WIMAX+IMS

6. Pada Profile Definition > klik kanan > Edit Atribute > Number of Row = 3 > isi sesuai gambar

Pada masing-masing profile masukkan satu aplikasi Application > Number of Row 1 > Name >

jenis aplikasi

Page 26: opnet WIMAX+IMS

HTTP PROFILE > http

VOIP PROFILE > voice

VOD PROFILE > video

8. Pada masing masing subscriber tetapkan aplikasi, klik kana pada subscriber > Edit

Atribute > Application > Applicaion: Supported Profile > Number of Row = 1 > Profile Name

> nama profile

Subscriber 1 > VOIP PROFILE

Subscriber 2 > HTTP PROFILE

Subscriber 3 > VOD PROFILE

9. Pada masing masing server tetapkan aplikasi, klik kana pada subscriber > Edit Atribute >

Application > Applicaion: Supported Service > Number of Row = 1 > jenis aplikasi

Server voice > voip

Server http > http

Server video > video

10.Wimax configuration, klik kanan > Edit Atribute

Efficiency Mode > Mobility and Ranging Enabled

Page 27: opnet WIMAX+IMS

MAC Service Class Definition > untuk menentukan kelas layanan yang akan dipakai

11. Menentukan QoS Class pada base staion, klik kanan basestation > Edit Atribute > Wimax

parameter > Classifier Definition > Number of Row 3 > masukkan jenis layanan pada kelas-kelasnya

Page 28: opnet WIMAX+IMS

12. Menentukan apa yang akan diamati, klik kanan pada workplace > Choose Individual DES Statistic

Global Statistic : ftp, Video Conferencing, Voice,dan Wimax

Node Statistic : Client ftp, server ftp, Video Conferencing, Voice Application,dan

Wimax

13. untuk running simulasi klik ikon dibawah menu bar, tetapkan waktu 5 menit

Page 29: opnet WIMAX+IMS

B. Simulasi Dengan Deploy Wireless Network

Kali ini simulasi dengan template network yang kita inginkan dengan harapan

mempermudah untuk penelitian lebih lanjut model-model yang akan dipakai dalam sistem.

Cara ini sangat membantu untuk membentuk network sesuai kenginginan dan

mempersingkat waktu.

1. menu Topology > Deploy Wireless Network > Continue > pilih load file atau membuat

baru > tentukan lokasi

2. teknologi yang akan dipakai, Choose Technology > WiMAX > pilih bentuk cell = hexagon,

jumlah cell = 3, radius = 1km, dan letak mobile station = random

Page 30: opnet WIMAX+IMS

3. tentukan model yang akan dipakai dalam jaringan, Base Station =

wimax_bs_ethernet4_slip4_router_adv > Subscriber Station = wimax_ss_wkstn_adv = 1 >

next > finish

4. terbentuk jaringan seperti di bawah ini (gambar kiri) kemudian ditambah dengan

Application Profile, User Profile, Wimax config, server (gambar kanan)

5. lakukan seperti sesi sebelumnya mulai langkah 6 sampai langkah 10

Page 31: opnet WIMAX+IMS

6. lakukan klasifikasi pada masing-masing base station sesuai yang akan dilayanai,

Base station 1 = Interactive Voice > Gold

Base Station 2 = Streaming Multimedia > Silver

Base Station 3 = Best Effort > Bronze

Lebih jelasnya pada gambar berikut

7. Menentukan apa yang akan diamati, klik kanan pada workplace > Choose Individual DES Statistic

Global Statistic : ftp, Video Conferencing, Voice,dan Wimax

Node Statistic : Client ftp, server ftp, Video Conferencing, Voice Application,dan

Wimax

8. untuk running simulasi klik ikon dibawah menu bar, tetapkan waktu 5 menit

Page 32: opnet WIMAX+IMS

C. KONFIGURASI HANDOVER

1. Tambahkan satu node wimax_ss_wkstn_adv (Mobile Node) pada salah satu cell

2. Berikan IP pada masing-masing Base Station , klik Edit Atribute > IP > IP Routing

Parameter > Interface Information (9 Rows) > IF8 > Adress dan Subnet Mask

Base Station 1

IP > 192.168.1.1

Subnet Mask >

Class C (natural)

Base Station 2

IP >192.168.2.1

Subnet Mask >

Class C (natural)

Base Station 3

IP> 192.168.3.1

Subnet Mask >

Class C (natural)

Page 33: opnet WIMAX+IMS

3. misalkan Base Station 1 (cell 1) sebagai cell asal (Home Agent), sementara Base Station

2 (cell 2) dan Base Station 3 (cell 3) sebagai cell tujuan (Foreign Agent), klik kanan Base

Staion > Edit Atribute > IP > Mobile IP Router Parameters > Mobile IPv4 Parameters >

Interface Information > Number of Rows = 1 > Interface Name isikan IF8 >

Base Station 1

Agent Type >

Home Agent

Base Station 2

Agent Type >

Foreign Agent

Base Station 3

Agent Type >

Foreign Agent

4. Tentukan pergerakan mobile node dengan Trajectory, pada menu bar klik Topology >

Define Trajectory > diisikan nama Trajectory > Define Path > tentukan jalur pada workplace

> Continue untuk melanjutkan Trajectory > Complete untuk menghentikan Trajectory

Page 34: opnet WIMAX+IMS

5. Pakai Trajectory yang sudah dibuat kepada Mobile Node, klik kanan Mobile Node > Edit

Atribute > Trajectory > pilih nama Trajectory yang telah dibuat sebelumnya

6. Klik kanan pada jalur Trajectory > Edit Trajectory > untuk melihat atau mengedit

kecepatan (Gound Speed) dan lama waktu trajectory (Tranverse Time)

Page 35: opnet WIMAX+IMS

7. Running simulasi, tentukan waktu simulasi sesuai dengan waktu Trajectory berakhir

Hasil simulasi mobile node dengan handover

Page 36: opnet WIMAX+IMS

D. KONFIGURASI SCHEDULING

. Membuat duplikat skenario yang akan dipakai, dan diberi nama dengan scheduling yang

akan dipakai, pada menu bar > Scenario > Duplicate Scenario > beri nama scenario

<scheduling type>, untuk melihat ada berapa scenario yang dipakai dalam project pada

menu bar > Scenario > Manage Scenario, jadi ada beberapa scenario, antara lain :

Scenario x : tanpa memakai scheduling

Scenario x FIFO : dengan scheduling FIFO

Scenario x WFQ : dengan scheduling WFQ

Scenario x MDRR : dengan scheduling MDRR

2. Pada scenario pertama tidak diberlakukan scheduling

3. Pada scenario FIFO diberlakukan scheduling, pilih beberapa link pada network > pada

menu bar klik Protocol > IP > QoS > Configure QoS, kemudian pilih FIFO sebagai Skema

QoSnya

Page 37: opnet WIMAX+IMS

4. Pada scenario WFQ diberlakukan scheduling WFQ, pilih beberapa link pada network >

pada menu bar klik Protocol > IP > QoS > Configure QoS, kemudian pilih WFQ sebagai

Skema QoSnya

Page 38: opnet WIMAX+IMS

5. Pada scenario MDRR diberlakukan scheduling MDRR, pilih beberapa link pada network >

pada menu bar klik Protocol > IP > QoS > Configure QoS, kemudian pilih MDRR sebagai

Skema QoSnya

6. Kemudian masuk pada Manage Scenario, pada saat ini akan diamati Scnenario yang

memakai scheduling maka pada kolom Result diubah menjadi <collect> untuk merunning

Page 39: opnet WIMAX+IMS

7. Tunggu sampai simulasi pada masing-masing scenario selesai dilakukan

8. Untuk menampilkan hasil simulasi pilih icon View Result di bawah menu bar ,

kemudian pilih Current Project tapi beri tanda checklist pada scenario yang telah di run

Page 40: opnet WIMAX+IMS

Kemudian bagian bawahnya dipilih Global Statistic > layanan yang di pakai misal voice,

video conferencing, http, dsb. Pada bagian Presentaion ubah menjadi Overlaid untuk grafik

perbandingan supaya lebih mudah dengan warna yang berbeda

Page 41: opnet WIMAX+IMS

Hasil aplikasi HTTP (gambar kiri) dan Voice (gambar kanan) dengan beberapa scheduling

Page 42: opnet WIMAX+IMS

MODUL OPNET – IMS

IMS TUTORIAL USING 0PNET 14.5

A. OVERVIEW

IMS (IP Multizmedia Subsystem) merupakan teknologi yang muncul dengan diawali oleh kehadiran teknologi softswitch yang merupakan awal dari konsep teknologi NGN (Next Generation Network). Pada terminologi NGN, pemisahan softswitch dari fungsi application server memungkinkan penggelaran layanan atau aplikasi dapat dilakukan tanpa mengubah konfigurasi layer transport maupun layer akses di bawahnya. Perkembangan teknologi NGN selanjutnya bergerak maju menuju konvergensi layanan voice dan data antara PSTN dengan PLMN (mobile). Konvergensi antara jaringan PSTN, PLMN, dan jaringan data (khususnya IP) diharapkan dapat mempertemukan tiga kekuatan besar, yaitu layanan voice yang menjadi andalan PSTN, mobility, dan kekayaan layanan yang dimiliki PMLN dan internet-based application (transfer informasi, dan transaksi) yang menjadi kekuatan IP. Konvergensi ini berujung pada layanan multimedia dengan dukungan bandwidth yang memadai dan mobilitas tinggi. Di antara konsep, multimedia, mobile, dan IP inilah teknologi IMS lahir melengkapi teknologi NGN (softswitch).

Standar IMS mendefinisikan arsitektur umum yang menawarkan layanan VoIP dan multimedia dan secara internasional pertama kali dispesifikasikan oleh Third Generation Partnership Project (3GPP/3GPP2) dan juga dikembangkan oleh badan standarisasi lain seperti ETSI/TISPAN. Standar IMS mendukung banyak teknologi akses jaringan termasuk GSM, WCDMA, CDMA2000, akses pita lebar jaringan tetap, dan WLAN.

Prinsip dasar jaringan IMS adalah mengintegrasikan antara teknologi wireless dan wireline dengan berbagai layanan yang dapat ditangani, contohnya layanan suara dan layanan data. Prinsip dari teknologi ini yaitu mengatur session yang muncul untuk setiap layanan.

Jaringan 3G bertujuan menggabungkan dua paradigma sukses dalam komunikasi yaitu internet dan komunikasi seluler. IMS adalah elemen kunci dalam arsitektur 3G yang memungkinkan tersedianya akses seluler dimanapun ke seluruh layanan internet. IMS memungkinkan kita dapat browsing web favorit,

TUJUAN :

Mengetahui implementasi IMS pada jaringan.

Mengetahui performa IMS pada berbagai skenario pada jaringan.

Page 43: opnet WIMAX+IMS

VOICE SESSION

SOFTSWITCH

DATA SESSION PUSH TO TALK

Video RT Session

GAMING

SESSION

PrepaidVOICE SESSION Video RT Session

PUSH TO TALK

GAMING

SESSION

DATA SESSION

IMS

Prepaid

membaca/mengirim email, menonton film, atau mengikuti video conference dimanapun kita berada dengan menggunakan perangkat 3G.

Jadi, kenapa perlu IMS jika semua kelebihan internet sudah tersedia pada pengguna 3G melalui domain paket? Itu adalah karena QoS, pembebanan, dan integrasi layanan yang berbeda-beda. Problem utama dengan domain paket dalam memberikan laynan real-time multimedia adalah domain ini memberikan layanan yang bersifat best effort tanpa ada QoS. Jaringan tidak memberi jaminan jumlah bandwidth yang didapat pengguna untuk suatu koneksi khusus atau mengenai waktu tunda yang dialami paket. Karena itu, kualitas percakapan VoIP dapat berubah secara dramatis selama durasinya. Pada waktu tertentu suara pada ujung telepon yang lain dapat terdengar jelas, beberapa waktu kemudian sudah tidak terdengar dengan jelas lagi.

B. PERBEDAAN NGN dan IMS

Konsep Layanan Dasar Softswitch

Karena pada saat awal lahirnya softswitch lebih banyak diarahkan sebagai solusi layanan suara. Konsep dasar penyediaan layanan teleponi oleh softswitch adalah harus mampu menyediakan layanan teleponi minimal setingkat dengan layanan yang sudah diberikan oleh PSTN dengan berbagai kelengkapan fiturnya. Karena konsep ini maka session yang ditimbulkan untuk layanan data menjadi tidak efektif untuk dilewatkan pada satu server tunggal (softswitch). Hal ini dikarenakan database pelanggan dan atributnya yang terlibat dalam layanan data tidak seluruhnya menggunakan atribut layanan suara, demikian sebaliknya.

Konsep Layanan Dasar IMS

Dengan konsep IMS maka ketidakefisienan diatas dapat ditanggulangi dengan melibatkan IP Sub System (server) yang akan menangani layanan berdasarkan atributnya, dimana setiap layanan akan dikenali dengan session yang dibangkitkannya. Dengan IMS ini pula dimungkinkan untuk membangkitkan multi layanan dengan satu session, dimana hal ini akan lebih mengefisienkan proses komunikasi yang dibangun. Dalam hal ini protokol SIP (session initiation protocol) akan berperan.

IP Multimedia Subsystem (IMS) pada dasarnya dikhususkan untuk jaringan mobile dalam memberikan layanan telekomunikasi berbasis IP.

Page 44: opnet WIMAX+IMS

C. LAYER IMS

Pada konsep IMS dikenal tiga layer fungsi, yaitu: Service layer, Control Layer dan Transport Layer. Adapun keterangan fungsi masing-masing layer fungsional yang dikembangkan untuk IMS adalah sebagai berikut:

1) Control Layer

Control Layer merupakan bagian jaringan yang berfungsi sebagai pengendali proses pembangunan dan pemutusan hubungan yang melibatkan elemen-elemen jaringan pada layer yang lain berdasarkan signaling message yang diterima dari Transport Layer. Karakteristik layer ini adalah adanya elemen CSCF yang berfungsi sebagai sebuah mesin routing terpusat, policy manager dan policy enforcement point yang memfasilitasi pengiriman aplikasi multimedia real time menggunakan transport IP.

2) Service Layer

Service Layer merupakan bagian jaringan yang menyediakan dan mengeksekusi satu atau beberapa aplikasi layanan di dalam IMS. Service Layer juga mengontrol Media Server yang memberikan fungsi seperti conference, IVR, tone processing, dll. Protokol yang diterapkan antara control layer dan service layer adalah SIP (dengan elemen SIP application server).

3) Transport Layer

Transport Layer merupakan bagian jaringan yang berfungsi sebagai media transport bagi semua message di jaringan, seperti: call signaling, call & media setup atau informasi voice atau datanya sendiri. Pada transport layer ini, operator akan mengoptimalkan jaringan packet core eksisting untuk berinteraksi dengan control layer. Interface antara transport layer dengan control layer merupakan interface yang standard dan terbuka.

Page 45: opnet WIMAX+IMS

Pada intinya elemen utama IMS adalah HSS dan CSCF (Call Session Control Function)

dengan dukungan elemen-elemen pendukung lainnya. Berikut ini elemen-elemen

pembentuk IMS diantaranya :

1. CSCF (Call Session/control Function) : merupakan sebuah SIP server merupakan node

yang essensial dalam IMS. CSCF memproses signalling di dalam IMS. Terdapat tiga

tipe CSCF yaitu :

• P-CSCF (Proxy-CSCF) : merupakan titik kontak pertama antara terminal IMS dengan

jaringan IMS. Hal ini berarti bahwa semua permintaan yang diinisiasi oleh terminal

IMS atau ditujukan ke IMS melewati P-CSCF. P-CSCF mem-forward permintaan dan

response SIP baik dari terminal IMS ke jaringan IMS atau sebaliknya. Selain itu P-

CSCF berfungsi sebagai autentifikasi bagi IMS terminal pada saat registrasi IMS

terminal dengan IMS network.

I-CSCF (Interrogating-CSCF) : Adalah proxy SIP yang terletak pada ujung domain

administrasi. Alamat IP-nya dikeluarkan dalam rekaman DNS dari domain

(menggunakan NAPTR dan SRV), sehingga server yang jauh (contoh P-CSCF dan S-

CSCF dalam domain yang dikunjungi, atau dalam domain asing) dapat

menemukannya, dan menggunakannya sebagai titik kontak pertama untuk semua

paket SIP untuk domain ini. I-CSCF menghubungi HSS menggunakan antar muka

DIAMETER Cx dan Dx untuk mendapatkan kembali lokasi pengguna, dan kemudian

merutekan pesan SIP ke dalam S-CSCF. Sehingga ia menjadi simpul gateway untuk

IMS. Ia juga dapat menentukan S-CSCF mana yang akan melayani user. I-CSCF

dapat juga digunakan untuk menyembunyikan informasi sensitif jaringan internal

dari dunia luar seperti jumlah server, nama DNS, atau kapasitasnya dengan

mengenkripsi bagian pesan SIP.

S-CSCF (Serving-CSCF) : Adalah simpul pusat untuk bagian pensinyalan. Sebuah

Server SIP, tetapi mampu menunjukkan kontrol sesi sebaik mungkin. Bagian ini

selalu terletak pada jaringan asal. S-CSCF menggunakan antar muka DIAMETER Cx

dan Dx ke HSS untuk download dan upload profil pengguna – jika tidak ada

penyimpanan lokal pada UE. Fungsinya adalah sebagai berikut :

a. Menangani registrasi SIP, yang akan membantu menggabungkan lokasi

pengguna (alamat IP dari terminal) dan alamat SIP (sering disebut dengan PUI).

Page 46: opnet WIMAX+IMS

b. Berada pada seluruh pesan pensinyalan, dan bisa memeriksa seluruh pesan .

c. Memutuskan pada application server mana pesan SIP akan diteruskan, untuk

menyediakan layanannya.

d. Memperkuat kebijakan dari operator jaringan, sebagai contoh user tidak diberi

otoritas untuk membuat tipe sesi tertentu atau melakukan operasi tertentu.

2. HSS (Home Subscriber server) : database utama untuk user mengandung informasi

yang berhubungan dengan subscription untuk mendukung elemen-elemen yang

menangani session/call dari jaringan IMS. Ia memuat informasi yang berhubungan

dengan subscription (profile user), menjalankan autentikasi dan autorisasi terhadap

user, dan dapat menyediakan informasi mengenai lokasi dari user.

3. AS (Application Server): Merupakan server-server aplikasi yang menyediakan

layanan-layanan pada jaringan IMS.

4. Media Processing MRF/B/MGCF

MRF (Media Resource Function) dapat dibagi menjadi MRFC (Media Resource

Function Controller) dan MRFP (Media Resource Function Processor). MRF berfungsi

menyediakan sumber daya untuk media stream processing untuk menjalankan tugas

seperti media mixing, media announcement, media analysis dan media transcoding

seperti halnya speech recognition.

5. BGCF (Boder Gateway Control Function) : BGCF merupakan sebuah SIP server yang

mempunyai fungsi jika terdapat inisiasi dari terminal IMS ke alamat tujuan pada

pengguna di circuit-switched network seperti PSTN.

6. MGCF (Media Gateway Control Function) : MGCF merupakan node pusat dari

PSTN/CS gateway. MGCF mengimplementasikan konversi protocol dan mapping SIP

(control panggilan dari sisi IMS) ke ISUP atau BICC over IP.

7. SEG (Security Gateway) :Traffic yang keluar dan masuk domain melewati SEG dan

men-tunnel traffic ke SEG domain yang lain.Protokol security yang digunakan untuk

enkripsi, integritas data dan autentifikasi yaitu IPsec Encapsulating Security Payload

(ESP).

Page 47: opnet WIMAX+IMS

SIMULASI

Pada dasarnya di Opnet tidak bisa mensimulasikan IMS, kita harus menambahkan modul IMS tersendiri kedalam node model yang berada di program Opnet.

Page 48: opnet WIMAX+IMS

Pada modul SIP-IMS terdapat folder include copy-kan file yang ada didalamnya kedalam folder opnet pada foler models/std/include.

Simulasi IMS ini nanti tidak bisa memodelkan 100% komponen IMS, akan tetapi komponen pokoknya saja yaitu P-CSCF, I-CSCF dan S-CSCF, yang dalam hal ini sudah bisa mewakili IMS itu sendiri karena ketiga komponen itu merupakan komponen inti dari teknologi IMS.

Skenario dalam simulasi kali ini adalah terdapat sebuah jaringan computer yang terdiri dari server IMS (P-CSCF, S-CSCF, I-CSCF), 2 Client IMS. Layanan yang akan dibuat adalah VoIP.

1. Create a New Project

Buat project baru untuk jaringan Ethernet dengan cara :

1. Buka OPNET Modeler 14.0 –Educational Version, Klik New dari menu File.

2. Pilih Project Klik OK beri nama project <your initials>_Ethernet, dan nama scenario

Coax Klik OK.

Page 49: opnet WIMAX+IMS

3. Pada Startup Wizard: Initial Topology dialog box, pastikan bahwa anda memilih Create

Empty Scenario klik Next pilih Campus list Network Scale klik Next

masukkan nilai X= 10 dan nilai Y =10 klik N

ext sebanyak dua kali klik OK.

4. Tutup Object Palette dialog box.

2. Create the Network

Buat jaringan IMS dengan seperti gambar di bawah ini:

Page 50: opnet WIMAX+IMS

Yang diperlukan adalah :

a. 3 SIP_proxy dan 2 router yang ada pada sip object pallete

b. 2 work_station advanced pada ethernet_advanced object pallete

Page 51: opnet WIMAX+IMS

c. Hubungkan router dan SIP proxy dengan menggunakan link 1000baseX,

router dan workstation dengan 100baseT, dan router ke router dengan

PPP_ds3 pada object pallete link

d. Aplication dan profile config pada object pallete

Klik close

3. Configure the Network Nodes

3.1. Configuration Application Node

Application Node ini berfungsi untuk mendefinisikan layanan/service apa saja

yang disediakan oleh server.

Klik kanan pada ‘Applicaton Node’>klik ‘Edit Attributes’

Page 52: opnet WIMAX+IMS

Masukkan dan definisikan layanan voip seperti pada gambar di bawah.

3.2. Configuration Profile Node

Setelah mendefinisikan layanan-layanan apa saja yang tersedia, maka definisikan pula profile client, yakni pengkategorian layanan berdasarkan peran client.

Klik kanan pada ‘Profile Node’> klik ‘Edit Attributes’

3.3. Configuration CSCF Node

Pada IMS menggunakan proxy SIP sebagai CSCF, yaitu P-CSCF, I-CSCF, S-CSCF

Page 53: opnet WIMAX+IMS

P-CSCF I-CSCF

S-CSCF

Page 54: opnet WIMAX+IMS

3.4. Configuration Pemanggil dan Penerima Node

Pemanggil Penerima

Page 55: opnet WIMAX+IMS

4. DEFINED PARAMETERS TO SHOW (Individual Statistics)

Setelah melakukan mapping pada masing-masing workstation, selanjutnya definisikan/tentukan parameter-parameter apa saja yang akan dianalisis grafiknya dengan cara : Klik kanan pada workspace > Pilih menu ‘Choose Individual Statistics’

Definisikan Node Statistics seperti gambar dibawah.

5. RUN THE SIMULATION

Setelah menentukan parameter-parameter yang akan dianalisis, selanjutnya menjalankan simulasi yang ada, dengan cara : klik Configure Run Discrete Event Simulation (DES) pada toolbar. Isikan 15 minutes pada field duration (simulasi akan dilakukan selama 15 menit

secara virtual). Klik ‘Run’ > tunggu hingga simulasi selesai.

Page 56: opnet WIMAX+IMS

6. VIEW THE RESULTS

Setelah selesai, untuk melihat grafik hasil > klik kanan > view results.

Page 57: opnet WIMAX+IMS
Page 58: opnet WIMAX+IMS

Referensi

[1] Ahson, Syed and Ilyas, Mohammad, WiMAX Standard and Security, CRC Press Fance :

2008

[2] Roger Marks (June 29, 2006). "IEEE 802.16 WirelessMAN Standard: Myths and Facts".

Presentation at 2006 Wireless Communications Conference. Washington, DC: ieee802.org.

Retrieved August 26, 2011.

[3] http://en.wikipedia.org/wiki/WiMAX, Retrieved : December 14, 2011

[4] http://en.wikipedia.org/wiki/IP_Multimedia_Subsystem: December 15,2011

[5]http://www.ristinet.com/index.php?ch=8&lang=ind&n=278&page=2: December 15,2011

[6] www.wimaxforum.org/ , Retrieved : December 14, 2011

[7] WiMAX, Access.Net Laboratory, Bandung : 2009