NUTRIEN: C - CARBON

36
MSP513: PRODUKTIVITAS PERAIRAN - SDP SIGID HARIYADI Produktivitas & Lingkungan Perairan (Proling) Dept. MSP – FPIK - IPB

description

MSP 513 : PRODUKTIVITAS P ERA IR AN - SDP. NUTRIEN: C - CARBON. SIGID HARIYADI Produktivitas & Lingkungan Perairan (Proling) Dept. MSP – FPIK - IPB. FAKTOR-FAKTOR yang mempengaruhi Produksi Primer. ESSENTIAL NUTRIENT. - PowerPoint PPT Presentation

Transcript of NUTRIEN: C - CARBON

Page 1: NUTRIEN: C  - CARBON

MSP513: PRODUKTIVITAS PERAIRAN - SDP

SIGID HARIYADI Produktivitas & Lingkungan Perairan (Proling)

Dept. MSP – FPIK - IPB

Page 2: NUTRIEN: C  - CARBON

I. Faktor Abiotik II. Faktor Biotik

1. Cahaya

2. Temperatur

3. Nutrien

4. Oksigen

5. Kualitas fisika-kimia air lainnya: kekeruhan/TSS, bahan toksik

1. Kompetisi

2. Pemangsaan / grazing

FAKTOR-FAKTOR FAKTOR-FAKTOR yang mempengaruhi yang mempengaruhi Produksi PrimerProduksi Primer

Page 3: NUTRIEN: C  - CARBON

ESSENTIAL NUTRIENT

Tucker, MR. 1999. Essential Plant Nutrients: their presence in North Carolina soils and role in plant nutrition

Salah satu dari 11 element utama dalam produksi bahan organik:

C, H, O, N, P, K, S, Na, Ca, Mg dan Cl

Page 4: NUTRIEN: C  - CARBON

biomass-limiting nutrients: membatasi produksi biomass

rate-limiting nutrients: membatasi laju produktivitas primer

C (carbon)

C

Page 5: NUTRIEN: C  - CARBON
Page 6: NUTRIEN: C  - CARBON
Page 7: NUTRIEN: C  - CARBON

*kelarutan pada air murni 10°C, 1 atm

N2 – NitrogenO2 – OksigenAr – ArgonCO2 – Karbon dioksida

Page 8: NUTRIEN: C  - CARBON
Page 9: NUTRIEN: C  - CARBON

Kelarutan CO2 dalam air murni pada berbagai temperatur

CO2 berupa gas, di atmosfer : 0,027- 0,044 % (0,033%), tetapi kelarutannya tinggi : 1194 ml/L

Page 10: NUTRIEN: C  - CARBON

diabsorbsiCO Δ

dihasilkanO Δ PQ Quotient etic Photosynth

2

2

44 g CO2 (1,2 x 32) g O2

1 g CO2 0.873 g O2

Bila PQ = 1,0 maka 1 mol CO2 akan menghasilkan 1 mol O2 Tetapi PQ ≠ 1 PQ = 1.2

maka 1 mol CO2 akan menghasilkan 1,2 mol O2

Page 11: NUTRIEN: C  - CARBON
Page 12: NUTRIEN: C  - CARBON

http://commons.wikimedia.org/wiki/File:Simple_photosynthesis_overview.PNG

Page 13: NUTRIEN: C  - CARBON

C6H12O6 + 6 O2 6 CO2 + 6 H2O + energi (674 kcal)

(watt) W0,239 cal/sec 1

(joule) J 4,187 cal 1

cal 3,51 O mg 1

kcal 3,51 32

112,3 O g 1 g 32 O mol 1Berat

kcal 112,36

kcal674 O mol 1

2

22

2

Tiap 1 mol glukosa yang dibakar (dioksidasi) menghasilkan energi Tiap 1 mol glukosa yang dibakar (dioksidasi) menghasilkan energi 674 kcal., maka :674 kcal., maka :

Page 14: NUTRIEN: C  - CARBON

– Bila karbohidrat sederhana terdekomposisi :

RQ = O2/CO2 = 1.0

– Dekomposisi & respirasi yang terjadi tidak hanya pada karbohidrat sederhana, tetapi juga lemak, protein dan berbagai bahan lainnya pada proporsi yang berbeda-beda CO2 yang diproduksi lebih kecil dari O2

terpakai Sehingga CO2/O2 < 1.0 atau RQ = 0.85 Berarti ΣO2 dikonsumsi X 0.85 = CO2

dihasilkan oleh proses dekomposisi aerobik & respirasi dalam jangka waktu tertentu

(Respiratory Quotient)

Page 15: NUTRIEN: C  - CARBON

In waterCyanobacteria possess carboxysomes, which increase the concentration of CO2 around RuBisCO to increase the rate of

photosynthesis. An enzyme, carbonic anhydrase, located within the carboxysome releases CO2 from the dissolved hydrocarbonate ions (HCO3

–). Before the CO2 diffuses out it is

quickly sponged up by RuBisCO, which is concentrated within the carboxysomes. HCO3

– ions are made from CO2 outside the cell by another

carbonic anhydrase and are actively pumped into the cell by a membrane protein. They cannot cross the membrane as they are charged, and within the cytosol they turn back into CO2 very slowly without the help of carbonic anhydrase. This causes the HCO3

– ions to accumulate within the cell from

where they diffuse into the carboxysomes.

Pyrenoids in algae and hornworts also act to concentrate CO2 around rubisco

Page 16: NUTRIEN: C  - CARBON

RuBisCOThe enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, most commonly known by the shorter name RuBisCO or just rubisco is used in the Calvin cycle to catalyze the first major step of carbon fixation. RuBisCO is thought to be the most abundant protein in the world since it is present in every plant that undergoes photosynthesis and molecular synthesis through the Calvin cycle.

RuBisCO catalyzes either the carboxylation or oxygenation of ribulose-1,5-bisphosphate (known as RuBP) with carbon dioxide or oxygen. What makes it unique and different to every other enzyme is the fact that it can survive on its own without the need of the plant so even if it is dead it remains and helps decomposition. This is due to it not being affected by temperature or pH.

Page 17: NUTRIEN: C  - CARBON

http://hyperphysics.phy-astr.gsu.edu/hbase/biology/imgbio/calvine.gif

phosphoglyceric acid

glyceraladehyde-3-phosphate

Page 18: NUTRIEN: C  - CARBON

Carbon dioxide diffuses into the stroma of chloroplasts and combines with a five-carbon sugar, ribulose1,5-biphosphate (RuBP). The enzyme that catalyzes this reaction is referred to as RuBisCo, a large organic molecule. This catalyzed reaction produces a 6-carbon intermediate which decays almost immediately to form two molecules of the 3-carbon compound, 3-phosphoglyceric acid (3PGA).

Carbon dioxide is captured in a cycle of reactions known as the Calvin cycle or the Calvin-Benson cycle. It is also known as just the C3 cycle.

The fact that this 3-carbon molecule is the first stable product of photosynthesis leads to the practice of calling this cycle the C3 cycle.

Page 19: NUTRIEN: C  - CARBON

As carbon dioxide concentrations rise, the rate at which sugars are made by the light-independent reactions increases until limited by other factors.

RuBisCO, the enzyme that captures carbon dioxide in the light-independent reactions, has a binding affinity for both carbon dioxide and oxygen.

When the concentration of carbon dioxide is high, RuBisCO will fix carbon dioxide. However, if the carbon dioxide concentration is low, RuBisCO will bind oxygen instead of carbon dioxide.

This process, called photorespiration, uses energy, but does not produce sugars.

Page 20: NUTRIEN: C  - CARBON

photorespiration is an entirely negative term because it represents a severe loss to the process of using light energy in photosynthetic organisms to fix carbon for subsequent carbohydrate synthesis.

By leading to the loss of up to half of the carbon that has been fixed at the expense of light energy, photorespiration undoes the work of photosynthesis.

But during hot and dry conditions, the stomata close to prevent excessive water loss and the continuing fixation of carbon in the Calvin cycle dramatically reduces the relative concentration of CO2. When it reaches a critical level of about 50 ppm the rubisco stops fixing CO2 and begins to fix O2 instead. Even though the detoured process feeds some PGA back into the cycle, the photorespiration process causes rubisco to operate at only about 25% of its optimal rate.

Page 21: NUTRIEN: C  - CARBON

An increase in the carbon dioxide concentration increases the rate at which carbon is incorporated into carbohydrate in the light-independent reaction, and so the rate of photosynthesis generally increases until limited by another factor. As it is normally present in the atmosphere at very low concentrations (about 0.04%), increasing carbon dioxide concentration causes a rapid rise in the rate of photosynthesis, which eventually plateaus when the maximum rate of fixation is reached.

http://www.rsc.org/learn-chemistry/content/filerepository/CMP/00/001/068/Rate%20of%20photosynthesis%20limiting%20factors.pdf

Page 22: NUTRIEN: C  - CARBON

In 1905, when investigating the factors affecting the rate of photosynthesis, Blackmann formulated the Law of limiting factors. This states that the rate of a physiological process will be limited by the factor which is in shortest supply. Any change in the level of a limiting factor will affect the rate of reaction.

For example, the amount of light will affect the rate of photosynthesis. If there is no light, there will be no photosynthesis. As light intensity increases, the rate of photosynthesis will increase as long as other factors are in adequate supply. As the rate increases, eventually another factor will come into short supply.

The graph below shows the effect of low carbon dioxide concentration. It will eventually be insufficient to support a higher rate of photosynthesis, and increasing light intensity will have no effect, so the rate plateaus.

http://www.rsc.org/learn-chemistry/content/filerepository/CMP/00/001/068/Rate%20of%20photosynthesis%20limiting%20factors.pdf

Page 23: NUTRIEN: C  - CARBON

If a higher concentration of carbon dioxide is supplied, light is again a limiting factor and a higher rate can be reached before the rate again plateaus.

If carbon dioxide and light levels are high, but temperature is low, increasing temperature will have the greatest effect on reaching a higher rate of photosynthesis.

http://www.rsc.org/learn-chemistry/content/filerepository/CMP/00/001/068/Rate%20of%20photosynthesis%20limiting%20factors.pdf

Page 24: NUTRIEN: C  - CARBON
Page 25: NUTRIEN: C  - CARBON

Temp rate of photosynthesis

[CO2] rate of photosynthesis

Page 26: NUTRIEN: C  - CARBON
Page 27: NUTRIEN: C  - CARBON

1% CO2 dalam air berdissosiasi :

Karena mengandung CO2 (berarti juga asam karbonat), maka air melarutkan kapur menjadi kalsium karbonat :

CaCO3 + H2CO3 Ca(HCO3)2

Berkaitan dengan reaksi ini, dikenal:

CO2 pengimbang -- utk mempertahankan jumlah Ca(HCO3)2

CO2 agresif = sejumlah CO2 utk melarutkan kapur lebih lanjut

Bila CO2 pengimbang berkurang, maka:

hidrolisa dissosiasi I dissosiasi II

asam karbonat bikarbonat karbonat

CO2 + H2O H2CO3 H+ + HCO3

- H+ + CO3=

Ca(HCO3)2 CaCO3 + H2O + CO2

Page 28: NUTRIEN: C  - CARBON

asam karbonat bikarbonat karbonat

CO2 + H2O H2CO3 H+ + HCO3

- H+ + CO3=

Selain kesetimbangan di atas, bikarbonat dan karbonat dalam air juga mengalami hidrolisa : HCO3

- + H2O H2CO3 + OH-

CO3= + H2O HCO3

- + OH-

Dissosiasi asam karbonat dapat juga dituliskan: H2CO3 H2O + CO2

Pada perairan basa, kesetimbangan2 di atas dapat merupakansistem buffer (penyangga pH) perairan:

karbonat (garam) --- CaHCO3

asam karbonat (asam lemah) -- H2CO3{ &

Pada sistem buffer ini :

Penambahan basa kuat bereaksi dg. H2CO3 garam + HCO3-

Penambahan asam kuat bereaksi dg. HCO3- atau CO3

= H2CO3

sistem buffer = campuran

Sig

idH

ari

yad

i

Page 29: NUTRIEN: C  - CARBON

4 5 6 7 8 10 12

100%

50%

HCO3

- CO3=

CO2

9 11 pH

& H2CO3

Bentuk-bentuk CO2 di perairan alam:

Ca(HCO3)2 CaCO3

+ CO2+ H2O

garam asam garam netral CO2 bebas

& berupa asam : (H2CO3) hydrated state

Sig

idH

ari

yad

i

29

Page 30: NUTRIEN: C  - CARBON

12C13C14C radioaktif

non radioaktif

98,9 %

14N + n 14C + H14C + O2

14CO2

hanya dari 12CO2

_______

1,2 x 1012

1

neutron

Isotop-isotop C pada COIsotop-isotop C pada CO2 2 ::

Sig

idH

ari

yad

i

Page 31: NUTRIEN: C  - CARBON
Page 32: NUTRIEN: C  - CARBON
Page 33: NUTRIEN: C  - CARBON

CO2 mg/L = 1.589 x 106 [H+] x mg/L alkalinitas sebagai HCO3

CO2 mg/L = 1.589 x 106 [H+] x mg/L alkalinitas total sebagai CaCO31

0.82

Page 34: NUTRIEN: C  - CARBON

pH Alkalinitas (mg/l CaCO3)

Karbondioksida bebas (mg/l)

pH Alkalinitas (mg/l CaCO3)

Karbondioksida bebas (mg/l)

5,0

5,2

5,4

5,6

5,8

6,0

6,2

6,4

6,6

0 1 2 0 2 5 0 2 5 0 5 10 0 5 10 10 15 20 10 20 30 10 30 50 10 50 100

9,7 24,3 48,5 4,9 26,5 66,2 1,5 16,1 40,3 0,6 24,7 49,3 0,2 15,5 30,9 19,5 29,2 28,9 12,3 24,5 36,8 7,7 23,2 38,7 4,9 24,4 48,8

6,8

7,0

7,2

7,4

7,6

7,8

8,0

8,2

10 50 100 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 100 200 300 100 200 300

3,1 15,4 30,7 9,7 19,4 38,7 6,1 12,3 24,5 3,9 7,8 15,6 2,4 4,8 9,7 1,5 3,1 6,1 1,9 3,8 5,7 1,2 2,4 3,6

Page 35: NUTRIEN: C  - CARBON

Referensi:

Page 36: NUTRIEN: C  - CARBON