Modul Praktikum Biokimia Dan Analisis Pangan

60
MODUL PRAKTIKUM BIOKIMIA DAN ANALISIS PANGAN Disusun Oleh : Tim Dosen PS ITP - THP - FTP UB PROGRAM STUDI ILMU DAN TEKNOLOGI PANGAN JURUSAN TEKNOLOGI HASIL PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS BRAWIJAYA MALANG 2012

description

menjelaskan tentang cara kerja dlam praktikum analisi zat gizi dalamkehidupan perkuliahan

Transcript of Modul Praktikum Biokimia Dan Analisis Pangan

MODUL PRAKTIKUM

BIOKIMIA DAN ANALISIS PANGAN

Disusun Oleh :

Tim Dosen PS ITP - THP - FTP UB

PROGRAM STUDI ILMU DAN TEKNOLOGI PANGAN

JURUSAN TEKNOLOGI HASIL PERTANIAN

FAKULTAS TEKNOLOGI PERTANIAN

UNIVERSITAS BRAWIJAYA

MALANG

2012

1

TIM PENYUSUN MODUL

PRAKTIKUM BIOKIMIA DAN ANALISIS PANGAN

1. Dr. Teti Estiasih, STP. MP.

2. Novita Wijayanti, STP.

3. Indria Purwantiningrum, STP. MSi.

4. Wenny Bekti S. STP. MFood.St.

5. Mochamad Nurcholis, STP.MP.

6. Feronika Heppy S, STP. MP.

7. Jaya Mahar Maligan, STP. MP.

8. Irma Sarita R, STP. MP. MSc.

2

PRAKTIKUM BIOKIMIA DAN ANALISIS PANGAN

A. DESKRIPSI

Mata kuliah ini mencakup prinsip analisis kimia berbagai komponen bahan

pangan seperti karbohidrat, lemak, protein, kadar air dan abu. Praktikum ini juga

mencakup prinsip penggunaan alat instrumen diantaranya spektrofotometer,

elektroforesis dan kromatografi kolom.

B. TUJUAN INSTRUKSIONAL UMUM

Setelah menyelesaikan praktikum Biokimia dan Analisis Pangan, mahasiswa

mampu mengetahui masing-masing prinsip dasar analisis kimia berbagai komponen

pangan. Selain itu, mahasiswa mampu menerapkan prinsip analisis untuk menentukan

kandungan kimia bahan pangan hasil pertanian.

C. MATERI PRAKTIKUM

1. Analisis kadar air (metode oven, oven vakum, distilasi)

2. Analisis kadar abu dan mineral (pengabuan kering, penentuan kadar kalsium, AAS)

3. Analisis karbohidrat (penentuan kadar total gula, kadar pati, kadar serat)

4. Ekstraksi dan uji aktivitas enzim amilase

5. Uji kualitatif dan kuantitatif karbohidrat (Molisch, Barfoed, Benedict, Yodium,

hidrolisis pati non-enzimatis)

6. Analisis lemak (penentuan kadar lemak, asam lemak bebas dan bilangan peroksida)

7. Ekstraksi dan uji aktivitas enzim lipase

8. Kadar protein (penentuan kadar protein kasar, kadar protein Biuret, kadar N-amino,

uji ninhidrin)

9. Uji aktivitas enzim proteolitik

10. Analisis kadar vitamin c

11. Kromatografi (kolom adsorpsi)

12. Elektroforesis

D. PENILAIAN HASIL BELAJAR

1. Pre-lab

2. Aktivitas Praktikum

3. Laporan

4. Pre Test / Post Test

5. UAP

3

PERATURAN PRAKTIKUM BIOKIMIA DAN ANALISIS PANGAN

1. Mahasiswa yang boleh mengikuti praktikum Biokimia dan Analisis Pangan ialah

mereka yang telah mengisi KRS untuk mata praktikum Biokimia dan Analisis Pangan.

2. Setiap peserta harus hadir tepat pada waktu yang telah ditentukan. Apabila peserta

terlambat lebih dari 10 menit, maka tidak diperkenankan untuk mengikuti praktikum.

3. Sebelum mengikuti praktikum, peserta diharuskan mengisi pre-test dan

mempersiapkan diagram alir dari prosedur analisis yang akan dikerjakan.

4. Selama mengikuti praktikum, peserta harus memakai jas praktikum.

5. Setiap kelompok praktikum diwajibkan mentabulasi data hasil pengamatan untuk

dibahas oleh masing-masing peserta di dalam lembar kerja praktikum.

6. Setiap peserta praktikum harus mengembalikan alat-alat yang telah dipakai dalam

keadaan bersih dan kering serta mengembalikan ke tempat semula.

7. Setiap peserta harus mengembalikan bahan-bahan kimia yang diambil ke tempat

semula dengan tutup botol jangan sampai tertukar.

8. Setiap mahasiswa harus bertanggung jawab terhadap kebersihan laboratorium

sesudah praktikum selesai.

9. Bagi mahasiswa yang memecahkan/merusak alat harus mengganti alat atau

memperbaiki kerusakan tersebut.

4

BAB I

ANALISIS KADAR AIR

Pendahuluan

Penentuan kadar air merupakan analisis penting selama pengolahan dan

pengujian produk pangan. Kadar komponen dalam produk pangan berhubungan dengan

kadar air dan kadar air tersebut mempengaruhi kualitas dan stabilitas produk selama

penyimpanan. Sebagai contoh, kecepatan pencoklatan sayuran kering dan daya serap

air tepung telur meningkat dengan meningkatnya kadar air.

Penentuan kadar air penting dilakukan di industri pangan misal dalam penentuan

kesetimbangan massa dan penyusutan. Kadar air optimum untuk suatu proses

pengolahan seringkali harus diketahui seperti penepungan biji-bijian, pengulenan

adonan sampai konsistensi optimum, dan produksi roti dengan tekstur dan remah yang

baik.

Kadar air dalam bahan pangan sangat bervariasi mulai dari susu yang

mengandung air 87-91%, keju dengan kadar air 40-75%, sampai susu bubuk dengan

kadar air 4%.

Penentuan kadar air yang cepat dan akurat dalam bahan dan produk pangan yang

bervariasi sifat fisik dan kimianya masih terus dikembangkan. Berbagai metode

penentuan kadar air telah tersedia. Masing-masing metode tersebut mempunyai

kelebihan dan kekurangan. Penetapan metode yang sesuai untuk menentukan kadar air

suatu bahan atau produk pangan harus mempertimbangkan sifat fisikokimia bahan atau

produk pangan tersebut.

Tujuan

1. Mengetahui prinsip dasar analisis kadar air

2. Mengetahui perbedaan prinsip dari masing-masing metode

3. Dapat menentukan metode penentuan kadar air yang tepat sesuai sifat bahan

4. Mengetahui keuntungan dan kekurangan masing-masing metode

A. METODE OVEN

Pendahuluan

Prosedur untuk menentukan kadar air dalam bahan pangan, biasanya dengan

menggunakan metode pengeringan panas. Bahan dipanaskan pada kondisi tertentu dan

kehilangan berat bahan diukur sebagai kadar air. Metode pengeringan ini sangat

5

sederhana relative cepat dan dapat digunakan untuk jumlah sampel yang banyak.

Prosedur pengeringan yang ideal untuk menentukan kadar air yaitu kehilangan berat

seharusnya merupakan hasil dari penguapan air secara cepat saja. Namun prakteknya,

pemanasan zat organik juga menyebabkan penguapan zat lain dan gas yang terbentuk

oleh dekomposisi panas dari zat organik

Keakuratan penentuan kadar air dipengaruhi oleh suhu pemanasan, suhu dan

kelembaban relatif cawan, kelembaban relatif dan pergerakan udara di dalam cawan,

kevakuman dalam cawan, ketebalan dan ukuran sampel, konstruksi oven pengering dan

posisi sampel di dalam oven. Permukaan bahan menjadi kering dan laju difusi uap air

dalam zat yang dikeringkan juga mempengaruhi hasil analisa.

Alat

1. Oven dengan kisaran suhu 100-102oC

2. Cawan (stainless steel, aluminium, nikel atau porselen). Gunakan cawan lengkap

dengan tutupnya. Untuk bahan-bahan yang memberikan efek korosif, sebaiknya tidak

menggunakan cawan logam.

3. Desikator yang berisi bahan pengering (fosfor pentoksida kering, kalsium klorida

atau butiran halus silica gel).

4. Penjepit cawan

5. Timbangan analitik

Prosedur Kerja

1. Timbang contoh yang telah berupa serbuk atau bahan yang telah dihaluskan

sebanyak 1-2 g dalam botol timbang yang telah diketahui beratnya.

2. Kemudian keringkan dalam oven pada suhu 100-105(C selama 3-5 jam tergantung

bahannya. Kemudian dalam eksikator dan ditimbang. Panaskan lagi dalam oven 30

menit, didinginkan dalam eksikator dan ditimbang, perlakuan ini diulangi sampai

tercapai berat konstan (selisih penimbangan berturut-turut kurang dari 0.2 mg).

3. Pengurangan berat merupakan banyaknya air dalam bahan.

B. METODE OVEN VAKUM

Pendahuluan

Penentuan kadar air dengan pengeringan dalam oven vakum akan menghasilkan

kadar air yang lebih tepat. Biasanya air dapat dihilangkan dengan relatif mudah tetapi

untuk menghilangkan 1 % yang terakhir sangat sulit. Sisa air tersebut dapat dihilangkan

6

dengan lebih mudah, lebih cepat dan perubahan minimal dari komponen organik

dengan menggunakan pengeringan vakum daripada menggunakan metode lain.

Selama pengeringan, tidak ada air yang di dalam oven vakum, karena tekanan uap

air di dalam oven akan keluar dari oven, kecuali di dalam sampel yang kadar airnya

tinggi. Efisiensi dari oven dibatasi oleh laju difusi air ke dalam pompa.

Alat

1. Oven vakum lengkap dengan pompa vakum, gelas pengaman pompa, dan botol

pengering udara yang berisi silika gel.

2. Cawan logam atau porselen

3. Desikator

4. Penjepit cawan

5. Timbangan analitik

Prosedur Kerja

1. Keringkan cawan dan tutupnya dalam oven dengan suhu 105oC selama 30 menit,

dinginkan dalam desikator dan timbang.

2. Timbang dengan cepat lebih kurang 5 gram sampel yang telah dihomogenkan dalam

cawan

3. Letakkan cawan beserta isinya dan tutup cawan dalam oven vakum. Panaskan pada

suhu 70oC dengan vakum dipertahankan sekitar 25 mmHg. Lakukan pengeringan

selama 6 jam. Selama pengeringan berjalan biarkan udara mengalir melalui botol

pengering gas yang berisi H2SO4 dengan kecepatan rendah (sekitar 2 gelembung

per detik).

4. Tutup aliran vakum ke pompa (pompa jangan ditutup dulu sebelum tekanan vakum

dalam gelas pengaman dihilangkan, untuk mencegah agar oli tidak terhisap ke

dalam gelas)

5. Naikkan aliran udara kering yang melewati H2SO4 untuk menghilangkan tekanan

vakum dalam oven.

6. Tutup cawan, dinginkan dalam desikator selama 15 menit dan timbang.

7. Lakukan pemanasan kembali sampai diperoleh berat yang tetap.

Perhitungan

Berat sampel (gram) = W1

Berat sampel setelah dikeringkan (gram) = W2

Kehilangan berat (gram) = W3

Persen kadar air (dry basis) = W3 / W2 x 100

Persen kadar air (wet basis) = W3 / W1 x 100

Total padatan (%) = W2 / W1 x 100

7

C. METODE DISTILASI

Pendahuluan

Prinsip penentuan kadar air dengan distilasi adalah menguapkan air dengan

menggunakan zat kimia yang mempunyai titik didih lebih tinggi sebagai pembawa, tidak

dapat bercampur dengan air dan memiliki berat jenis lebih rendah daripada air. Zat

kimia yang dapat digunakan antara lain: toluen, benzena dan xylene.

Distilasi dengan memanaskan cairan sangat efektif dalam tranfer panas,

penghilangan air lebih cepat, kerusakan oksidasi lebih rendah. Metode distilasi dapat

meminimalkan dekomposisi zat organik daripada pengeringan biasa.

Bahan

1. n-amil alkohol : silena = 1 : 2

2. Toluena

3. Silena

Alat

1. Pemanas listrik

2. Tabung penerima Bidwell Sterling

3. Kondensor tipe cold finger

4. Labu didih

Prosedur Kerja

1. Persiapan alat distilasi dan pereaksi

2. Persiapan labu didih atau erlenmeyer yang sudah dikeringkan lebih dulu dalam oven

dengan suhu 105oC

3. Timbang sampel secukupnya sedemikian rupa, sehingga air yang terkandung di

dalamnya sekitar 3-4 gram

4. Masukkan sampel ke dalam labu didih atau erlenmeyer yang telah dikeringkan dan

tambahkan 60-100 ml pereaksi (toluena atau lainnya)

5. Panaskan campuran tersebut dengan pemanas listrik (jangan menggunakan api) dan

refluks perlahan-lahan dengan suhu rendah, selama 45 menit, dan teruskan dalam

keadaan panas yang tinggi selama 1-1.5 jam.

6. Baca volume air yang terdistilasi.

8

7. Perhitungan

Jumlah sampel (gram) = W

Volume air yang terdistilasi (ml) = V

Persen kadar air = V/W x 100

9

BAB II

ANALISIS ABU DAN KADAR MINERAL

A. ABU

Pendahuluan

Abu merupakan residu anorganik dari pembakaran zat organik. Jumlah dan

komposisi abu dalam bahan pangan tergantung dari pembakaran bahan pangan dan

metode pengabuan. Penentuan kadar abu dapat digunakan untuk tujuan: menentukan

baik tidaknya suatu proses pengolahan, mengetahui jenis bahan yang digunakan dan

sebagai parameter nilai gizi bahan pangan.

Tujuan

1. Mengetahui prinsip dasar analisis kadar abu

2. Mengetahui perbedaan prinsip masing-masing metode

3. Mengaplikasikan metode pengabuan berdasarkan sifat bahan

Alat

1. Cawan pengabuan

2. Tanur pengabuan

3. Penjepit cawan

4. Timbangan analitik

Prosedur Kerja

1. Siapkan cawan pengabuan, kemudian bakar dalam tanur, dinginkan dalam desikator

dan timbang.

2. Sampel yang ada dalam cawan dibakar pada pembakar gas sampai asapnya habis.

3. Timbang sebanyak 3-5 gram sampel dalam cawan tersebut, kemudian letakkan

dalam tanur pengabuan, bakar sampai didapat abu berwarna abu-abu atau sampai

beratnya tetap. Pengabuan dilakukan dalam dua tahap: pertama pada suhu sekitar

400oC dan kedua pada suhu 550oC.

4. Dinginkanlah dalam desikator, kemudian timbang.

Perhitungan :

Berat abu (g)

% Abu = _________________ x 100 Berat sampel (g)

10

B. PENGABUAN KERING

Pendahuluan

Penentuan kadar abu dengan mengoksidasi zat organik pada suhu tinggi yaitu

sekitar 500-600oC dan kemudian melakukan penimbangan zat tertinggal setelah proses

pembakaran tersebut.

Pengabuan yang lama akan menghasilkan abu yang bebas karbon, residu yang

lembab, dikeringkan dan dipanaskan kembali hingga menjadi abu yang putih keabu-

abuan.

Bahan yang mempunyai kadar air tinggi sebelum pengabuan harus dikeringkan

lebih dahulu. Bahan yang mempunyai kandungan zat yang mudah menguap dan

berlemak banyak, pengabuan dilakukan pada suhu rendah sampai asam hilang dan

kemudian suhunya ditingkatkan sesuai dengan yang dikehendaki.

Bahan

1. HNO3 pekat

2. HCl encer (1+1)

3. Kertas saring

Alat

1. Cawan

2. Timbangan analitik

3. Burner

4. Tanur

5. Gelas arloji

6. Waterbath

7. Labu takar 100 ml

8. Corong

Prosedur kerja

1. Timbang sampel sebanyak yang dikehendaki di dalam cawan silika yang sudah

diketahui beratnya dengan tepat.

2. Mula-mula panaskan sampel pada pembakar burner dengan api sedang untuk

menguapkan sebanyak mungkin zat organik yang ada (sampai sampel tak berasap

lagi).

3. Pindahkan cawan ke dalam tanur dan panaskan pada suhu 300oC sampai semua

karbon berwarna keabuan, kemudian naikkan suhu sampai 420oC. Pada umumnya

11

pengabuan dilakukan pada 450oC, waktu yang dibutuhkan tergantung pada sifat

bahan, biasanya 5-7 jam (apabila dikehendaki penggunaan suhu rendah misalnya

420oC dengan waktu semalam).

4. Jika diperkirakan belum semua karbon teroksidasi ambil cawan dari dalam tanur dan

dinginkan. Tambahkan 1-2 ml HNO3 pekat, uapkan sampai kering dan masukkan lagi

ke dalam tanur sampai pengabuan dianggap selesai.

5. Ambil cawan dari tanur, dinginkan dan jika diperlukan catat berat abu yang

dihasilkan.

6. Tutup cawan dengan gelas arloji, perlahan-lahan tambahkan 40-50 ml HCl encer

dengan pertolongan pipet. Gelas arloji berfungsi untuk mencegah cipratan

campuran.

7. Panaskan cawan di atas waterbath selama 30 menit, angkat tutupnya dan bilas.

Lanjutkan pemanasan selama 30 menit unyuk mendehidrasi silika.

8. Tambahkan 10 ml HCl dan air untuk melarutkan garam-garam.

9. Saring dengan menggunakan kertas saring, masukkan filtrat ke dalam labu takar 100

ml.

10. Bilas residu yang tertinggal dalam cawan 1-2 kali mengunakan HCl kemudian cuci

residu yang tertinggal dalam kertas saring menggunakan HCl juga.

11. Encerkan sampai tanda tera dengan menggunakan akuades.

12. Kembalikan kertas saring ke dalam cawan, bakar dan abukan dalam tanur pada suhu

450oC selama 1 jam, kemudian dinginkan dan timbang. Perlakuan ini dapat memberi

perkiraan kandungan silika di dalam sampel.

C. PENENTUAN KADAR KALSIUM

Pendahuluan

Mineral yang terdapat pada bahan pangan ada dua macam yaitu garam organic dan

anorganik. Selain kedua garam tersebut, mineral berbentuk senyawa komplek yang

bersifat organic. Penentuan mineral dalam bentuk asli sangat sulit karena biasanya

dilakukan dengan menentukan sisa-sisa pembakaran garam mineral yang diketahui

sebagai pengabuan.

Penentuan mineral dalam bahan pangan dapat dibedakan menjadi dua tahap yaitu

pertama penetuan abu (larut dan tidak larut), kedua penentuan komponen mineral. Untuk

tahap kedua, banyak cara yang dapat dipakai antara lain secara kimia dan secara

spektrofotometri.

12

Tujuan

1. Mengetahui prinsip dasar penentuan kadar mineral kalsium

Bahan

1. Amonium oksalat jenuh

2. Indikator merah metil larutkan 0.5 gram merah metil dalam 100 ml alkohol 95 %.

3. Asam asetat encer (1+4)

4. Asam sulfat encer (1+4), masukkan dengan perlahan asam sulfat pekat ke dalam air

sambil diaduk, dinginkan dan encerkan hingga volume tertentu.

5. Amonium hidroksida encer (1+4).

6. KMnO4 0.1 N

7. KMnO4 0.1 N, encerkan 10 ml KMnO4 0.1 N sampai 100 ml dengan aquades (1 ml = 0.2

mg Ca) dan buat jika akan segera digunakan.

8. Akuades

9. Kertas saring

Alat

1. Glass ware

2. Kompor listrik

3. Corong

4. Buret

5. pH-meter

Prosedur Kerja

1. Pipet 20-100 ml larutan abu hasil pengabuan kering, masukkan ke dalam gelas piala

250 ml. Jika perlu tambahkan 25-50 ml akuades.

2. Tambahkan 10 ml larutan amonium oksalat jenuh dan 2 tetes indikator metil merah.

3. Buat larutan menjadi sedikit basa dengan menambah amonia encer kemudian buat

larutan menjadi sedikit asam dengan manambah beberapa tetes asam asetat sampai

warna larutan merah muda (pH 5.0)

4. Panaskan larutan sampai mendidih, kemudian diamkan selama minimum 4 jam atau

semalam pada suhu kamar

5. Saring dengan menggunakan kertas saring dan bilas dengan akuades sampai filtrat

bebas oksalat (jika digunakan HCl dalam pembuatan larutan abu, filtrat hasil saringan

terakhir harus bebas Cl dengan mengujinya menggunakan AgNO3).

13

6. Lubangi ujung kertas saring menggunakan batang gelas. Bilas dan pindahkan

endapan dengan H2SO4 encer panas ke dalam gelas piala bekas tempat

mengendapkan kalsium. Kemudian bilas satu kali lagi dengan air panas.

7. Selagi panas (70-80oC) titrasi dengan larutan KMnO4 0.01 N sampai larutan berwarna

merah jambu permanen yang pertama.

8. Masukkan kertas saring dan lanjutkan titrasi sampai tercapai warna merah jambu

yang kedua.

Perhitungan:

Jika normalitas KMnO4 tidak sama dengan 0.01 N maka:

D. Penentuan Mineral dengan Spektroskopi Serapa Atom (AAS/Atomic

Absorption Spectroscopy)

Pendahuluan

Spektrometri merupakan suatu metode analisis kuantitatif yang

pengukurannya berdasarkan banyaknya radiasi yang dihasilkan atau yang

diserap oleh spesi atom atau molekul analit. Salah satu bagian dari spektrometri

ialah Spektrometri Serapan Atom (SSA/AAS), merupakan metode analisis unsur

secara kuantitatif yang pengukurannya berdasarkan penyerapan cahaya dengan

panjang gelombang tertentu oleh atom logam dalam keadaan bebas. Apabila

cahaya dengan panjang gelombang tertentu dilewatkan pada suatu sel yang

mengandung atom-atom bebas yang bersangkutan maka sebagian cahaya

tersebut akan diserap dan intensitas penyerapan akan berbanding lurus dengan

banyaknya atom bebas logam yang berada dalam sel.

Tujuan

1. Mengetahui prinsip dan penggunaan pengabuan basah

2. Dapat melakukan analisis mineral dengan AAS

hasil titrasi x 0.2 x total volume larutan abu x 100 mg Ca /100g sample = __________________________________________________ vol. lar. abu yang digunakan x berat sampel yang diabukan

hasil titrasi x N KMnO4 x 20 x total volume larutan abu x 100 mg Ca /100 g sampel = ____________________________________________________ vol. lar. abu yang digunakan x berat sampel yang diabukan

14

Alat

1. Labu ukur

2. Pipet ukur

3. Spektroskopi serapan atom

Bahan

1. Larutan standar Ca

2. HNO3

3. H2SO4

Prosedur Kerja

a. Pengabuan Basah

1. Timbang sejumlah sampel yang mengandung 5-10 g padatan dan

masukkan ke dalam labu Kjedahl

2. Tambah 10 ml H2SO4 dan 10 ml (atau lebih) HNO3 dan beberapa buah batu

didih

3. Panaskan perlahan-lahan sampai larutan berwarna gelap, hindari

pembentukan buih yang berlebihan

4. Tambah 1-2 ml HNO3 dan pemanasan selama 5-10 menit sampai larutan

tidak gelap lagi

5. Lanjutkan penambahan HNO3 dan pemanasan selama 5-10 menit sampai

larutan tidak gelap lagi (semua zat organik telah teroksidasi) kemudian

dinginkan

6. Tambahkan 10 ml akuades (larutan akan menjadi tidak berwarna atau

menjadi kuning muda jika mengandung Fe) dan panaskan sampai berasap

7. Diamkan larutan sampai dingin kembali kemudian tambahkan 5 ml

akuades, didihkan sampai berasap

8. Dinginkan dan encerkan sampai volume 100 ml

b. Pembuatan Kurva Standar

1. Larutan standar Ca 1000 ppm diambil 5 ml dan dimasukkan labu takar 50 ml

2. Tepatkan volume menjadi 50 ml dengan akuades, dan laruta ini menjadi

larutan induk untuk larutan standar Ca

15

3. Ambil dari larutan yang sudah diencerkan sebanyak 0, 2, 4, 6, 8, dan 10 ml,

4. Tepatkan volume masing-masing menjadi 100 ml

c. Analisis Dengan Spektroskopi Serapan Atom

1. Buka kran gas ( Flame:Acetylene pressure=0.09 MPa; nitrous=0.35MPa.

Furnace: Argon=0.35MPa)

2. Nyalakan kompresor (Auto Setting)(tidak digunakan pada Furnace)

3. Nyalakan auto sampler ASC6100

4. Nyalakan AA-6300

5. Nyalakan computer. Tunggu sampai tampilan Windows muncul

6. Klik dua kali pada icon wizard

7. Pilih Operation lalu double klik gambar AAS

8. Pada Wizard Selection, klik OK

9. Pada Element Selection, klik Select Element.

10. Isikan unsur yang akan di periksa.

11. Klik Flame/Furnace

12. Pada Lamp Mode pilih mode lampu sesuai dengan kebutuhan.

13. Klik OK

14. Klik Calibration Curve set up

15. Klik Conc., Unit dipilih sesuai satuan standar yang dibuat

16. Pada Number of lines masukkan jumlah deret standar

17. Masukkan konsentrasi standar pada tabel ( juga nomor posisi standar pada

ASC).

18. Klik OK.

19. Klik Sample group setup

20. Isikan Actual Conc.Unit

22. Isikan jumlah sample ( juga nomor posisi ssampel pada ASC)

22. Pada Sample ID masukkan nama sampel

23. Masukkan angka 1 untuk Weight Factor, Volume Factor, Dilution Factor, dan

Coefficien Factor kecuali parameter tersebut dibutuhkan dalam

perhitungan sampel

24. Klik OK

25. Klik Next

16

26. Klik Connect/send parameter

27. Tunggu sampai inisialisasi selesai (yang ditandai dengan semua

parameter berwarna hijau)

28. Check list semua, kemudian klik OK

29. Klik Next

30. Klik pada Lamp On

31. Klik Line Search

32. Tunggu sampai Line Search/Beam Balance OK.

26. Klik Close

27. Klik Next

39. Klik Finish

42 Lalu tekan Ignite pada instrument sampai keluar api(untuk Flame

saja)/untuk Furnace nyalakan Cooling Water

43. Pada tabel pengukuran, klik autozero untuk mengenolkan, klik blank untuk

mengukur blangko, klik start untuk mengukur standar atau sampel.

44. Pengukuran akan berjalan otomatis untuk auto sampler (ASC)

Menyimpan Data

1. KLik File

2. Klik Save As

3. Ketikkan nama file pada File Nama

4. Klik Save

Mencetak Data

1. Klik File

2. Pilih Print Table Data

3. Klik lambang unsur pada Selection Schedule

4. Klik OK > OK

Mematikan Alat

1. Klik Instrument

2. Klik Connect > OK (tanda check list hilang)

3. Klik Files

4. Klik Exit

17

BAB III

ANALISIS KARBOHIDRAT

A. TOTAL GULA METODE ANTHRONE

Pendahuluan

Karbohidrat dalam asam sulfat akan dihidrolisis menjadi monosakarida dan

selanjutnya monosakarida mengalami dehidrasi oleh asam sulfat menjadi furfural atau

hidroksil metil furfural. Selanjutnya senyawa furfural ini dengan anthrone (9, 10 dihidro-

9-oxoanthracene) membentuk senyawa kompleks yang berwarna biru.

Tujuan

1. Mengetahui prinsip dasar analisis total gula

2. Menentukan secara kuantitatif kadar gula dalam produk makanan

Bahan

1. Pereaksi anthrone 0.1% dalam asam sulfat pekat. Dibuat hanya pada waktu hari akan

digunakan, tidak stabil, hanya tahan 1 hari.

2. Larutan glukosa standar 0.2 mg/ml. Larutan 200 mg glukosa dalam 100 ml akuades.

Ambil 10 ml encerkan menjadi 100 ml (1 ml = 0.2 mg glukosa)

Alat

4. Pipet 1 ml, 5 ml.

5. Tabung reaksi

6. Kelereng/corong kecil

7. Waterbath 100oC

8. Spektrofotometer dan kuvet

Persiapan Sampel

Sampel cair

1. Timbang sampel sebanyak 29 gram dan dilarutkan dalam 500 ml akuades.

2. Pindahkan ke gelas beker, tambahkan 200-300 ml air dan 2 gram CaCO3, dididihkan

selama 30 menit. Kemudian didinginkan.

3. Masukkan ke dalam labu takar 500 ml dan masukkan 3-5 ml Pb-asetat. Tambahkan

akuades hingga tanda tera.

4. Saring dengan kertas saring whatman no.2

18

5. Tambahkan 1 gram Natrium oksalat untuk mengendapkan Pb-asetat, kemudian

disaring lagi

6. Filtrat siap dipakai.

Sampel padat

1. Timbang sampel sebanyak 20-30 gram, ditambahkan alkohol 80% dengan

perbandingan 1:1 atau 1:2.

2. Hancurkan dengan waring blender

3. Pindahkan ke dalam gelas beker

4. Saring sampel dan cuci padatannya dengan alkohol 80%.

5. Ukur pH dan jika asam tambahkan CaCO3. Panaskan dalam penangas air 100oC

selama 30 menit.

6. Sampel disaring lagi.

7. Filtrat dipanaskan suhu 85oC untuk menghilangkan alkohol.

8. Jika masih ada endapan, disaring lagi.Tambahkan Pb asetat dan kemudian Pb

dihilangkan dengan penambahan Na-oksalat seperti persiapan sampel cair.

9. Filtrat siap digunakan

Prosedur Kerja

Pembuatan kurva standar

1. Pipet ke dalam tabung reaksi 0 (blanko), 0.2, 0.4, 0.6, 0.8 dan 1.0 ml larutan glukosa

standar. Tambahkan air sampai total volume masing-masing tabung reaksi 1.0 ml.

2. Tambahkan dengan cepat 5 ml pereaksi Anthron ke dalam masing-masing tabung

reaksi.

3. Tutup tabung reaksi campur merata.

4. Tempatkan dalam waterbath 100oC selama 12 menit (rendam dalam air mendidih).

5. Dinginkan dengan cepat menggunakan air mengalir.

6. Pindahkan ke dalam kuvet, baca absorbansnya pada 630 nm.

7. Buat kurva hubungan antara absorbans dengan mg glukosa.

Penetapan sampel

1. Masukkan 1 ml sampel (dari persiapan sampel) ke dalam tabung reaksi

2. Selanjutnya lakukan seperti pada pembuatan kurva standar .

3. Tentukan konsentrasi total gula dalam sample.

19

B. KADAR PATI METODE HIDROLISIS ASAM

Pendahuluan

Metode ini digunakan untuk menetapkan kadar pati dalam bahan pangan yang

diketahui hanya mengandung pati dan dekstrin. Prinsipnya adalah pati dihidrolisis

dengan asam, kemudian gula hasil hidrolisis diukur. Dengan demikian kadar pati dalam

sampel dapat diketahui.

Bahan

1. Eter

2. Alkohol 10% dan 80%

3. HCl 25 % (berat jenis 1.125)

4. NaOH 45 %

5. Kertas saring

6. Akuades

Alat

1. Timbangan analitik

2. Erlenmeyer 250 ml

3. Gelas piala 250 ml

4. Pendingin balik

5. Penangas air

6. Gelas ukur 50 ml

7. Pengaduk

8. Labu takar 500 ml

9. Corong

10. Blender

Prosedur Kerja

1. Timbang 2-5 g contoh yang berupa bahan padat yang telah dihaluskan atau bahan

cair dalam gelas piala 250 ml, tambahkan 50 ml etanol 80% dan aduk selama 1 jam.

Suspensi disaring dengan kertas saring dan dicuci dengan aquades sampai volume

filtrat 250 ml. Filtrat ini mengandung karbohidrat yang larut dan dibuang.

2. Untuk bahan yang mengandung lemak, maka pati yang terdapat sebagai residu pada

kertas saring dicuci 5 kali dengan 10 ml eter, biarkan eter menguap dari residu,

kemudian cuci lagi dengan 150 ml alkohol 10% untuk membebaskan lebih lanjut

karbohidrat yang terlarut.

20

3. Residu dipindahkan secara kuantitatif dari kertas saring ke dalam erlenmeyer dengan

pencucian 200 ml aquades dan tambahkan 20 ml HCl 25% (bj 1.125), tutup dengan

pendingin balik dan panaskan di atas penangas air mendidih selama 2,5 jam.

4. Setelah dingin netralkan dengan larutan NaOH 45% dan encerkan sampai volume 500

ml, kemudian saring. Tentukan kadar gula yang dinyatakan sebagai glukosa dari

filtrat yang diperoleh. Penentuan glukosa seperti pada penentuan total gula. Berat

glukosa dikalikan 0.9 merupakan berat pati.

C. SERAT KASAR

Pendahuluan

Serat kasar merupakan residu dari bahan makanan atau produk pertanian setelah

diberi perlakuan asam dan alkali mendidih, yang terdiri dari selulosa dan sedikit lignin

dan pentosan.

Tujuan

1. Mengetahui prinsip dasar analisis serat kasar

2. Menerapkan prosedur yang benar sesuai dengan sifat bahannya

Bahan

1. Antifoam agent

2. Asbes

3. Larutan H2SO4 (1.25 g H2SO4 pekat / 100ml = 0.255N H2SO4)

4. NaOH (1.25 g NaOH/100ml = 0.313 N NaOH)

5. Larutan K2SO4 10%

6. Alkohol 95%

Alat

1. Penggiling 9. Krus gooch

2. Timbang analitik 10. Kertas Lakmus

3. Soxhlet 11. Desikator

4. Erlenmeyer 600 ml

5. Pendingin balik

6. Kertas saring

7. Spatula

8. Oven 110oC

21

Prosedur Kerja

1. Haluskan bahan sehingga dapat melalui ayakan diameter 1 mm dan campurlah baik-

baik. Kalau bahan tak dapat dihalusksan, hancurkan sebaik mungkin.

2. Timbang 2 g bahan kering dan ekstraksi lemaknya dengan soxhlet. Kalau bahan

sedikit mengandung lemak, misalnya sayur-sayuran gunakan 10 g bahan; tidak perlu

dikeringkan dan diekstraksi lemaknya,

3. Pindahkan bahan ke dalam erlenmeyer 600 ml. Kalau ada tambahkan 0,5 g asbes

yang telah dipijarkan dan 3 tetes zat anti buih (antifoam agent).

4. Tambahkan 200 ml larutan H2SO4 mendidih (125 g H2SO4 pekat/100 ml = 0.255 N

H2SO4) dan tutuplah dengan pendidngin balik, didihkan selama 30 menit dengan

kadangkala digoyang-goyangkan.

5. Saring suspensi melalui kertas saring dan residu yang tertinggal dalam erlenmeyer

dicuci dengan aquades mendidih. Cucilah residu dalam kertas saring sampai air

cucian tidak bersifat asam lagi (uji dengan kertas lakmus).

6. Pindahkan secara kuantitatif residu dari kertas saring ke dalam erlenmeyer kembali

dengan spatula dan sisanya dicuci dengan larutan NaOH mendidih (1.25g

NaOH/100ml = 0,313 N NaOH) sebanyak 200 ml sampai semua residu masuk ke

dalam erlenmeyer. Dididihkan dengan pendingin balik sambil kadangkala digoyang-

goyangkan selama 30 menit.

7. Saringlah melalui kertas saring kering yang diketahui beratnya atau krus Gooch yang

telah dipijarkan dan diketahui beratnya, sambil dicuci dengan larutan K2SO4 10%.

Cuci lagi residu dengan aquades mendidih dan kemudian dengan lebih kurang 15 ml

alkohol 95%.

8. Keringkan kertas saring atau krus dengan isinya pada 110C sampai berat konstant

(1-2 jam), dinginkan dalam desikator dan timbang. Jangan lupa mengurangkan berat

asbes, kalau digunakan.

Berat residu = berat serat kasar

22

BAB IV

EKSTRAKSI DAN PENGUJIAN AKTIVITAS AMILASE

A. EKSTRAKSI ENZIM AMILASE

Pendahuluan

Amilase bekerja pada pati, glikogen dan turunan polisakarida dengan

menghidrolisa ikatan - 1,4 – dan / - 1,6 - glikosidik . Enzim amilase dapat diisolasi

dari jaringan tanaman, hewan dan sel mikrobia. Enzim amilase banyak terdapat pada

kecambah biji gandum, sorgum, kedele, kacang hijau, beras dan biji-bijian yang lain.

Enzim amilase dalam kecambah termasuk enzim endoselluler sehingga untuk

mengekstraksi terlebih dahulu harus menghancurkan biji kecambah.

Amilase dikelompokkan menjadi 3 golongan enzim yaitu:

1. - Amilase yang memecah pati secara acak dari tengah atau dari bagian dalam

molekul, karena itu disebut endoamilase.

2. - Amilase, yang menghidrolisa unit-unit glukosa dari ujung molekul pati,

karenanya disebut eksoamilase.

3. Glukoamilase, yang dapat memisahkan glukosa dari terminal gula non-pereduksi

substrat pati.

Alfa Amilase ( -1,4 glukan glukanohidrolase, E.C. 3.2.1.1)

Alfa - Amilase terdapat pada jaringan tanaman, hewan mamalia dan mikrobia.

Alfa Amilase murni dapat diperoleh dari berbagai sumber misalnya malt (barley),

ludah manusia dan pancreas. Dapat juga diisolasi dari Aspergillus oryzae dan Basillus

subtilis.

Pemecahan oleh - amilase pada amilosa terdiri atas 2 tahap:

a. Tahap degradasi cepat yang menghasilkan maltotriosa dan maltosa

Pemecahan tahap pertama ini ditandai dengan penurunan viskositas yang

cepat dan hilangnya kemampuan pewarnaan iodin terhadap amilosa

b. Tahap degradasi lambat terhadap oligosakarida menghasilkan glukosa dan

maltosa

Pemecahan oleh - amilase terhadap amilopektin akan menghasilkan

dekstrin BM (berat molekul) rendah dan maltosa dan oligosakarida yang lebih

besar. Setiap molekul -amilase mengandung satu ion Ca++ yang perannya tidak

langsung untuk pembentukan enzim substrat, tetapi mendukung molekul enzim

membentuk keadaan optimum guna aktivitas dan stabilitasnya.

23

Beta– Amilase (- 1,4- glukan malto hidrolase, EC. 3.2.1.2)

Enzim amilase bekerja pada substrat dari gugus terminal non-reduktif, pada

ikatan glikosidis kedua dari ujung tersebut. Pada substrat amilosa, bila aktivitasnya

tinggi dapat menghidrolisis sempurna menghasilkan maltosa. Pada substrat

amilopektin akan menghasilkan maltosa dan sisa dekstrin BM- tinggi.

Glukoamilase

Memecah pati dari luar dengan mengeluarkan unit-unit glukosa dari ujung non

reduksi polimer pati. Hasil reaksinya hanya glukosa, sehingga dapat dibedakan

dengan dan amilase. Secara komersial diproduksi dari Aspergillus, Rhizopus.

Glukoamilase dapat memecah ikatan -1,3 dan - 1,4. Dengan pengaruh enzim

glukoamilase posisi glukosa dapat diubah menjadi , pH optimum 4-5 suhu 50-

60C.

Tujuan

1. Mengisolasi enzim amilase dari kecambah kacang hijau.

Bahan:

1. biji kering

2. biji direndam semalam ( 12 jam)

3. biji dikecambahkan (12 jam)

4. biji dikecambahkan 24 jam

5. biji dikecambahkan 48 jam

6. buffer asetat (0.1-0.5 M) pH 5.5

7. pati 4 %

8. pati 1 %

9. iodin 1 %

10. glukosa anhidrat

11. reagen nelson

12. reagen arsenomolibdat

Alat:

1. Mortar

2. Kertas saring

3. sentrifuse

4. Karet hisap

24

5. Pipet volume 1 ml

6. Tabung reaksi

7. Rak tabung reaksi

8. waterbath

9. Spektrofotometer

10. kuvet

11. beker glass 250 ml

Prosedur Kerja:

a. Hancurkan 5 g kecambah biji, kemudian tambahkan 50 ml buffer asetat (0.1 – 0.5

M) pH 5.5; biarkan selama 30 menit sambil kadangkala diaduk

b. Saring dengan kertas saring Whatman, filtratnya merupakan larutan enzim kasar.

Sentrifugasi 1500 rpm selama 30 menit. Ambil supernatannya untuk uji aktivitas.

B. PENGUJIAN KUALITATIF ENZIM AMILASE

Pendahuluan

Parameter umum yang digunakan untuk mempelajari aktivitas hidrolitik enzim

amilase terhadap substrat pati diantaranya :

1. Penurunan viskositas

2. Kehilangan kemampuan untuk memberikan warna biru dengan iodin

Ketiga tipe enzim amilase dapat dibedakan satu dengan lainnya berdasarkan 2

atau lebih kriteria ini.

Tujuan

Mengukur aktivitas enzim amilase yang diisolasi dari kecambah kacang hijau

Kriteria Laju relatif

-amilase - amilase glukoamilase

Pembentukan gugus pereduksi Sama atau hampir sama

Kehilangan viskositas Cepat Lambat lambat

Kehilangan warna biru dgn iodin Cepat Lambat Lambat

Produksi maltosa Lambat Cepat Tidak ada

Produksi glukosa Tidak ada Tidak ada Cepat

25

Bahan

1. Pati 4% (DE=15-20) sebagai substrat

2. Buffer asetat sebagai pelarut substrat

3. Larutan iodin 1% sebagai indikator reaksi

4. Ekstrak kasar amilase

Alat

1. Tabung reaksi

2. Pipet mikro

Prosedur Kerja

a. Substrat yang digunakan larutan pati 4% (DE= 15-20) dengan pelarutnya buffer

asetat pH 5.5.

b. Sebanyak 1 ml substrat ditambah larutan iodin 1% selanjutnya tambahkan dengan

0.5 ml larutan enzim. Pengamatan aktivitas amilase didasarkan terjadinya

perubahan warna biru dari pati setelah ditambah larutan iodin 1%. Inkubasi pada

suhu kamar dengan pengamatan setiap 10 menit, selama 60 menit.

Waktu (menit)

Sampel 0 10 20 30 40 50 60

Biji kering

Biji direndam

Kecambah umur 12 jam

Kecambah umur 24 jam

Kecambah umur 36 jam

Notasi :

(-) bila belum terjadi perubahan warna

(+) bila terjadi perubahan warna

(++) perubahan warna lebih jelas

(+++) warna merah coklat

(++++) warna lebih terang

26

BAB V

UJI KUALITATIF DAN KUANTITATIF KARBOHIDRAT

Pendahuluan

Pada tanaman, karbohidrat dibentuk dari reaksi CO2 dan H2O dengan bantuan sinar

matahari melalui proses fotosintesis dalam sel tanaman berklorofil. Berdasarkan

strukturnya karbohidrat didefinisikan sebagai polihidroksi aldehid dan polihidroksi

keton.

Pada umumnya karbohidrat dapat dikelompokkan menjadi monosakarida,

oligosakarida, dan polisakarida. Monosakarida merupakan suatu molekul yang terdiri

dari lima atau enam atom C, oligosakarida merupakan polimer dari 2 – 10 monosakarida,

sedangkan polisakarida merupakan polimer lebih dari 10 monomer monosakarida.

Molekul-molekul polisakarida sangat besar, oleh karena itu daya larutnya sangat

kecil. Pati merupakan polisakarida yang terdapat pada tumbuh-tumbuhan, sedangkan

glikogen merupakan polisakarida hewan / manusia. Pati atau glikogen apabila

dihidrolisis akan menghasilkan unit-unit glukosa.

Karbohidrat ada yang bersifat pereduksi dan non pereduksi. Sifat pereduksi ini

disebabkan adanya gugus aldehid dan gugus keton yang bebas, sehingga dapat

mereduksi ion-ion logam seperti tembaga (Cu) dan perak (Ag) dalam larutan basa.

Dalam larutan benedict yang terbuat dari campuran CuSO4, NaOH, dan Na-sitrat, gula

tersebut akan mereduksi Cu yang berupa Cu(OH)2 menjadi Cu2O yang tidak larut.

Tujuan

1. Mengenalkan jenis-jenis karbohidrat (monosakarida, disakarida, polisakarida,

gula pereduksi dan gula non pereduksi) dengan uji kualitatif.

2. Mengenalkan jenis-jenis dan prinsip uji kualitatif

3. Mempraktikkan uji kualitatif karbohidrat

4. Mengenalkan tahapan dan tingkat hidrolisis pati secara non enzimatis melalui

analisis gula reduksi dengan perlakuan suhu dan waktu pemanasan yang sama.

A. UJI MOLISCH

Bahan :

1. 1 ml glukosa 5%,

2. 1 ml sukrosa 5%,

3. 1 ml pati 1%

27

4. Reagen Molish

Alat :

1. Tabung reaksi

2. Rak tabung reaksi

3. Pipet ukur 1 ml

4. Labu hisap

5. Pipet tetes

Prosedur kerja :

1. Masukkan ke dalam tabung reaksi 1 ml sample

2. Tambahkan 2 tetes reagen Molish dan dikocok.

3. Tambahkan 1 ml H2SO4 .

4. Amati hasilnya

B. UJI BENEDICT

Bahan :

1. 2 tetes glukosa 5%,

2. 2 tetes galaktosa 5%,

3. 2 tetes fruktosa 5%

4. Reagen benedict

Alat :

1. Tabung reaksi

2. Rak tabung reaksi

3. Pipet ukur 1 ml

4. Labu hisap

5. Pipet tetes

6. Beker glass 250 ml

7. Penangas air

Prosedur Kerja :

1. Masukkan ke dalam tabung reaksi 2 tetes sample

2. Tambahkan 1 ml Benedict.

3. Panaskan dalam penangas air.

28

4. Amati hasilnya

C. UJI BARFOED

Bahan :

1. 5 tetes glukosa 5%,

2. 5 tetes laktosa 5%,

3. 5 tetes maltosa 5%

4. Reagen barfoed

Alat :

1. Tabung reaksi

2. Rak tabung reaksi

3. Pipet ukur 1 ml

4. Labu hisap

5. Pipet tetes

6. Beker glass 250 ml

7. Penangas air

Prosedur Kerja :

1. Masukkan 5 tetes larutan sample ke dalam tabung reaksi.

2. Tambahkan 1 ml reagen Barfoed.

3. Panaskan dalam penangas air.

4. Amati hasilnya.

D. UJI YODIUM

Reaksi dengan Yodium, pati akan menghasilkan warna biru bila direaksikan

dengan yodium, glikogen berwarna coklat, sedang monosakarida dan disakarida

tidak berwarna.

Bahan :

1. Larutan Yodium 5%

2. Glikogen

3. Maltosa

4. Glukosa

5. Pati

29

Alat:

1. Pipet tetes

2. Druppel plate

Prosedur Kerja:

1. Teteskan 1 tetes sample di atas druppel plate.

2. Tambahkan 1 tetes larutan yodium.

3. Amati warna yang terjadi.

D. UJI KUANTITATIF HIDROLISIS PATI NON-ENZIMATIS

Bahan:

1. larutan pati 4%

2. NaOH 2%

3. aquades

4. HCl 2 N

5. Indikator pp 1%

6. Reagen arsenomolibdat

7. reagen nelson

Alat :

1. Water bath

2. Pipet volume 1 ml

3. Tabung reaksi

4. Gelas ukur 50 ml

5. Labu ukur 100 ml

6. Pipet tetes

7. Spektrofotometer

Prosedur Kerja :

a. Hidrolisis Pati Non - enzimatis

1. Pipet 50 ml larutan pati 4%.

2. Tambahkan 15 ml larutan HCl 2 N

3. Masukkan dalam labu ukur 100 ml.

4. Inkubasi dalam penangas air mendidih selama 120 menit.

30

5. Pada saat hidrolisis berjalan 115-118 menit, tambahkan 3 tetes indikator pp ke

dalam labu ukur.

6. Setelah 120 menit labu diangkat dan tambahkan NaOH 2% sampai netral

7. Dinginkan pada suhu kamar dalam air mengalir.

8. Setelah dingin tambahkan aquades sampai tepat 100 ml.

9. Ambil 1 ml untuk dianalisis gula reduksinya (prosedur b no. 4 – 9) dengan

menggunakan spektrofotometer.

Catatan: Lakukan pengenceran apabila konsentrasi larutan sampel terlalu pekat

(catat tingkat pengenceran). Pengenceran dilakukan sebelum ditambah reagen-

reagen.

b. Pembuatan Larutan glukosa Standart

1. Buat larutan glukosa standart ( 10 mg glukosa anhidrat/ 100 ml).

2. Buat 5 pengenceran dengan konsentrasi 2,4,6,8,10 mg/100 ml.

3. Siapkan 6 tabung reaksi masing-masing diisi dengan 1 ml larutan glukosa

standard di atas. Kemudian satu tabung reaksi dengan 1 ml aquades sebagai

blangko.

4. Tambahkan 1 ml reagen Nelson dan panaskan tabung reaksi.

5. Dinginkan dalam beker glas yang berisi air dingin .

6. Tambah 1 ml reagen arsenomolibdat.

7. Gojog sampai endapan larut kembali.

8. Tambah 7 ml aquades.

9. Baca dengan spektro pada panjang gelombang 540 nm.

10. Buat kurva standard yang menunjukkan hubungan antara konsentrasi gula

dengan absorbansinya.

31

BAB VI

ANALISIS LEMAK

A. KADAR LEMAK METODE SOXHLET

Pendahuluan

Prinsip analisis kadar lemak adalah lemak diekstrak dengan pelarut lemak seperti

petroleum eter, petroleum benzena, dietil eter, dll. Lemak yang ada dalam pelarut

dipisahkan dengan cara menguapkan pelarut, sehingga berat lemak dapat diketahui.

Tujuan

1. Mengetahui prinsip dasar analisis lemak dengan menggunakan metode soxhlet

2. Membandingkan kadar lemak dari berbagai produk olahan ayam

Bahan

1. Dietil eter, petroleum eter, heksan atau pelarut lemak lainnya

2. Sampel

Alat

1. Alat ekstraksi soxhlet lengkap dengan kondenser dan labu lemak

2. Alat pemanas listrik atau penangas uap

3. Oven

4. Timbangan analitik

5. Desikator

6. Kapas wool

7. Kertas saring

Prosedur Kerja

1. Sediakan labu lemak yang ukurannya sesuai dengan alat ekstraksi Soxhlet yang akan

digunakan, keringkan dalam oven, dinginkan dalam desikator dan timbang.

2. Timbang 5 gram sampel dalam bentuk tepung langsung dalam saringan timbel, yang

sesuai ukurannya, kemudian tutup dengan kapas wool yang bebas lemak

3. Letakkan timbel atau kertas saring yang berisi sampel tersebut dalam alat ekstraksi

soxhlet, kemudian pasang alat kondensor di atasnya dan labu lemak di bawahnya.

4. Tuang pelarut dietil eter atau petroleum eter ke dalam labu lemak secukupnya, sesuai

dengan ukuran soxhlet yang digunakan.

32

5. Lakukan refluks selama minimum 5 jam sampai pelarut yang turun kembali ke labu

lemak berwarna jernih.

6. Distilasi pelarut yang ada di dalam labu lemak, tampung pelarutnya. Selanjutnya labu

lemak yang berisi lemak hasil ekstraksi dipanaskan dalam oven pada suhu 105oC.

7. Setelah dikeringkan sampai berat tetap dan dinginkan dalam desikator, timbang labu

beserta lemaknya tersebut. Berat lemak dapat dihitung.

8. Perhitungan:

B. BILANGAN PEROKSIDA

Pendahuluan

Penentuan bilangan peroksida dilakukan dengan pengukuran sejumlah iod yang

dibebaskan dari kalium iodida (KI). Iod dilepaskan dari KI akibat reaksi oksidasi oleh

peroksida yang ada dalam sampel di dalam medium asam asetat-kloroform.

Bahan

1. Pelarut, terdiri dari 60% asam asetat glasial dan 40% kloroform.

2. Kalium iodida jenuh.

3. Larutan pati 1%

4. Natrium tiosulfat 0,1 N

5. Akuades

6. Sampel

Peralatan

1. Neraca analitik

2. Buret

3. Erlenmeyer 250 ml

4. Stirer/shaker

5. Pipet

Cara kerja

1. Timbang 5 g contoh minyak ke dalam erlenmeyer 250 ml.

2. Tambahkan 30 ml pelarut, kocok sampai semua minyak larut.

Berat lemak (g) % lemak = _______________ x 100 Berat sampel

33

3. Tambahkan 0,5 ml larutan KI jenuh, kocok selama 2 menit.

4. Tambahkan 30 ml akuades.

5. Lakukan titrasi dengan Na-tiosulfat 0,1 N atau 0,01 N.

6. Titrasi berakhir sampai warna biru mulai menghilang.

7. Dengan cara yang sama buat blanko.

8. Angka peroksida dinyatakan sebagai miliekuivalen peroksida dari setiap 1000 g

sampel.

Perhitungan

C. KADAR ASAM LEMAK BEBAS

Pendahuluan

Asam lemak bebas merupakan hasil hidrolisis minyak. Kadar asam lemak bebas

menunjukkan jumlah asam lemak bebas dalam sampel dan merupakan parameter mutu

minyak/lemak atau produk pangan yang mengandung lemak/minyak. Karena bersifat

asam, kadar asam lemak bebas ditetapkan berdasarkan prinsip titrasi asam-basa dalam

medium etanol. Indikator yang digunakan untuk menunjukkan titik akhir titrasi adalah

fenolftalein.

Bahan

1. Etanol

2. Larutan NaOH 0,1 N

3. Indikator fenolftalein (PP)

4. Sampel

Peralatan

1. Neraca analitik

2. Erlenmeyer 250 ml

3. Buret

ml Na-tiosulfat X Normalitas X1000 Bilangan peroksida (mek/kg) = ______________________________ Berat contoh (g)

34

Cara kerja

1. Timbang sampel sebanyak 28,2±0,2 g. Masukkan dalam erlenmeyer.

2. Tambahkan 50 ml alkohol dan 2 ml larutan indikator PP.

3. Lakukan titrasi dengan larutan NaOH 0,1 N sampai terbentuk warna merah jambu

yang permanen selama 30 detik.

Perhitungan

Berat molekul asam lemak dominan untuk jenis minyak dapat dilihat pada tabel berikut:

Jenis Minyak Asam Lemak Dominan Berat Molekul

Susu, minyak sawit Palmitat 256

Minyak inti sawit, kelapa Laurat 200

Susu, kacang tanah Oleat 282

Jagung, kedelai Linoleat 278

ml NaOH x Normalitas x BM asam lemak Kadar asam lemak bebas (%) = __________________________________ berat sampel x 1000

35

BAB VII

EKSTRAKSI DAN UJI AKTIVITAS ENZIM LIPASE

A. EKSTRAKSI ENZIM LIPASE

Pendahuluan

Lipase (triacyl glycerol acylhydrolase, EC. 3.1.1.3) adalah enzim yang

menghidrolisis triasilgliserol menjadi asam lemak bebas dan gliserol dan mempunyai

aktivitas maksimum pada daerah interface minyak dan air (Brockerhoff dan Jensen,

1974). Produk hasil hidrolisis yang lain adalah monogliserida dan digliserida. Jenis

produk tersebut sangat ditentukan oleh enzim lipase yang digunakan. Lipase

mempunyai sifat yang berbeda antara lain sifat spesifik terhadap posisi dan jenis asam

lemak. Saat ini penggunaan enzim lipase antara lain pankreas, susu, tanaman yang

menghasilkan trigliserida (seperti kacang, kedelai), kapang dan bakteri.

Berat Molekul lipase berkisar 20.000-60.000. Sumber lipase akan berpengaruh

terhadap spesifisitas asam lemak, pH optimum dan thermostabilitas. Stabilitas enzim

sangat dipengaruhi oleh suhu dan waktu. Reaksi hidrolisis minyak dengan lipase harus

mempertimbangkan suhu dan lama waktu reaksi agar aktivitas enzim lipase dapat

dipertahankan.

Berdasarkan sifat spesifisitasnya Macrae (1983) membagi enzim lipase yang

diisolasi dari mikrobia menjadi 3 kelompok :

1. Lipase yang menghidrolisis asam lemak secara acak terhadap posisi asam

lemak, contoh : Corynebacterium acne, Staphylococcus aureus.

2. Lipase yang menghidrolisis asam lemak pada posisi sn-1, dan sn-2. Contoh :

Lipase dari Aspergillus niger. Mucor miehei. Rhizopus arrhizus

3. Lipase yang menghidrolisis secara spesifik asam lemak tertentu. Contoh :

Geotrichum candidum, memiliki spectrum terhadap asam lemak rantai

panjang.

36

Reaksi kimia hidrolisis sempurna trigliserida sebagai berikut :

Trigliserida air asam lemak bebas gliserol

Tujuan

Mempraktikkan cara membuat ekstrak kasar enzim lipase

Bahan

1. dedak padi 5. alkohol

2. susu sapi segar 6. indikator PP

3. dietil eter 7. NaOH 0.1 N

4. buffer phospat pH 7.5

Alat

1. corong 9. pipet volume 10 ml

2. kertas saring 10. bola hisap

3. magnetik stirer 11. gelas ukur 50 ml

4. sentrifuse 12. gelas beker

5. mortar 13. buret

6. Water bath 14. pengaduk

7. erlenmeyer 100 ml 15. pipet tetes

8. neraca analitik

Prosedur Kerja

1. Dedak padi sebanyak 10 gram ditambah 50 ml dietileter, aduk-aduk dan gojog untuk

melarutkan lemak.

2. Saring dengan kertas saring, filtratnya berisi lemak dan turunannya yang larut dalam

dietil eter. Ampas yang diperoleh ditambah dengan 40 ml 50 mM bufer phosphat pH 7

atau 40 ml 10 mM Tris HCL Bufer pH 7,5

3. Campuran tersebut dimagnetik stirer selama 30 menit.

R – COOH

R´- COOH

R” - COOH

+ H2O

H2C – OH

HC - OH

H2C - OH

+

37

4. Selanjutnya saring dengan kain saring dua lapis.

5. Filtratnya disentrifugasi, supernatan merupakan ekstrak enzim kasar yang terlarut

dalam buffer.

6. Lakukan uji aktivitas enzim sesuai dengan prosedur. Tentukan aktivitas enzim lipase

tersebut sesuai dengan rumus aktivitas lipase. Aktivitas dinyatakan dalam Unit / ml

B. UJI AKTIVITAS ENZIM LIPASE

Pendahuluan

Reaksi hidrolisis minyak secara enzimatis dipengaruhi oleh beberapa faktor,

diantaranya suhu, pH, konsentrasi substrat, konsentrasi enzim, aktivator dan inhibitor.

1.Suhu

Setiap enzim mempunyai suhu tertentu untuk aktivitas. Whitaker (1994) parameter

yang dipengaruhi oleh perubahan suhu antara lain : stabilitas enzim, perubahan

kelarutan gas, pH, buffer, affinitas enzim terhadap enzim terhadap substrat dan

kecepatan perubahan subtrat menjadi produk.

Kenaikan suhu akan mempunyai 2 macam pengaruh yaitu :

1. Menunjukkan kecepatan reaksi

2. Menunjukkan kecepatan inaktivasi enzim

Perubahan suhu reaksi hidrolisis trigliserida selain mempertimbangkan suhu

optimum enzim juga dipengaruhi oleh sifat substrat pada suhu kamar, ketahanan substrat

dan produknya terhadap suhu dan penggunaan pelarut organik.

2. pH

Enzim adalah protein yang mempunyai gugus yang dapat terionisasi gugus amino.

Gugus amino ini sangta dipengaruhi oleh perubahan pH, oleh karena itu enzim

mempunyai pH optimum untuk aktivitasnya.

3. Konsentrasi Substrat.

Selama reaksi enzimatis enzim dan substrat akan berikatan membentuk kompleks.

Pada konsentrasi substrat rendah semua substrat akan berikatan dengan enzim, jika

konsentrasi substrat naik maka akan lebih banyak lagi enzim yang berikatan dengan

substrat sehingga konsentrasi substrat yang tinggi semua molekul enzim akan terikat

substrat. Selanjutnya semakin tinggi konsentrasi substrat tidak akan meningkatkan

kecepatan reaksi. Pada saat ini kecepatan reaksi sudah mencapai maksimum.

4. Konsentrasi Enzim

Jumlah enzim yang dighunakan untuk menghidrolisis terrgantung pada tingkat

hidrolisis dan waktu reaksi yang diinginkan. Tingkat hidrolisis yang tinggi dapat dicapai

38

dengan memperlama waktu reaksi dengan konsentrasi enzim yang rendah atau

meningkatkan konsentrasi enzim untuk waktu reaksi yang pendek.

Faktor –faktor yang mempengaruhi kondisi interface

Reaksi hidrolisis enzimatis berlangsung pada daerah interface minyak dan air.

Daerah interface ini merupakan faktor pembatas kontak antara enzim dan substrat.

Beberapa peneliti mencoba memperluas interface dengan menambahkan pelarut

organik. Penambahan pelarut organik yang befungsi untuk melarutkan lemak agar

dalam suhu kamar berada dalam bentuk cair. Faktor –faktor yang harus

dipertimbangkan dalam penggunaan pelarut organik adalah jenis pelarut organik dan

volume. Pelarut yang sering dipergunakan adalah pelarut yang bersifat nonpolar antara

lain heksan, heptan dan isooktan.

Unit Aktivitas Enzim

Jumlah enzim yang digunakan untuk suatu reaksi atau proses sangat sulit jika

dinyatakan hanya dalam satuan gram atau ml. Karena enzim mempunyai tingkat

kemurnian yang berbeda-beda dan bisa kemungkinan enzim tersebut sudah tidak aktif

lagi. Sehingga perlu parameter lain untuk menyatakan aktivitasnya. Enzim-enzim yang

dipasarkan biasanya dinyatakan dalam satuan aktivitas tidak dengan satuan berat.

Aktivitas enzim dapat dinyatakan dengan 2 macam cara yaitu :

1. satuan unit ( U ) yang didfinisikan sebagai jumlah enzim yang dapat mengkatalisis

perubahan 1 mol substrat per menit pada kondisi tertentu. Satuan 1 Unit Enzim

(UE) : mol per menit

2. Sistem SI; dengan satuan KATAL yang didefinisikan sebagai : jumlah enzim yang

dapat mengkatalisis perubahan 1 mol substrat per detik ( 1 KAT = 60 x 106 Unit)

atau 1 Unit = 16.67 nanokatal . Sistem ini belum banyak diterima secara luas

Aktivitas spesifik : jml mol substrat yg dikonversi per satuan wkt per unit berat enzim

(mmol mg-1 mnt-1 atau mmol mg-1 mnt -1 ). Sistem SI = katal kg-1

Kadang-kadang aktivitas enzim dinyatakan dengan cara lain (tidak standar) misalnya :

1. Papain aktivitasnya dinyatakan dengan TU (tyrosine unit), MCU ( milk clot unit)

2. Bromelin di nyatakan dengan BTU (bromelin tyrosine unit), MCU (milk clot unit),

CDU (casein digestion unit), GDU (gelatin digestion Unit)

Aktivitas enzim perlu diukur untuk mengetahui berapa jumlah enzim yang

dibutuhkan untuk mengkatalisis suatu reaksi dengan waktu tertentu. Contoh : 1 gram

laktase hasil pengujian menunjukkan 1000 FCC laktase Unit per gram yang dapat

mengkonversi hampir 99% laktose dalam 1 liter susu pada suhu tertentu dalam jangka

39

waktu 24 jam. Laktase dengan aktivitas 10.000 FCC unit per gram hanya membutuhkan

0.1 gram enzim untuk melakukan aktivitas yang sama.

Enzim merupakan protein, isolasi enzim dari sumbernya diharapkan meghasilkan

enzim 100% murni protein (misal enzim untuk keperluan analisis). Tetapi beberapa

enzim tidak harus mempunyai kemurnian yang tinggi (misal enzim untuk proses industri).

Sehingga pada berat yang sama aktivitas enzim dengan tingkat kemurniannya tinggi

akan lebih tinggi dibanding enzim yang kemuniannya rendah. Dalam hal ini Aktivitas

enzim bisa dinyatakan dengan aktivitas spesifik. Aktivitas spesifik adalah jumlah mol

substrat yang dikonversi per satuan waktu per unit berat enzim. Jika aktivitas spesifik

enzim murni diketahui maka suatu sampel enzim yang belum dimurnikan akan

mempunyai aktivitas spesifik yang lebih rendah karena mengandng bahan non enzim

(impuritis), rumus perhitungan :

Tujuan

1. Mempraktikkan cara menguji aktivitas lipase dari kacang tanah dan dedak padi

2. Menghitung aktivitas enzim

Bahan

1. susu sapi segar

2. kacang tanah

3. alkohol

4. buffer phospat pH 6.5

5. indikator PP

6. NaOH 0.1 N

Alat

1. corong

2. kertas saring

3. sentrifuse

4. mortar

5. Water bath

6. erlenmeyer 100 ml

7. neraca analitik

8. pipet volume 10 ml

9. bola hisap

10. gelas ukur 50 ml

40

11. gelas beker 250 ml

12. buret

13. pengaduk

14. pipet tetes

Prosedur Kerja

1. Hancurkan 5 gram kacang tanah

2. Tambahkan 50 ml 0,1 N NaCl atau 0,1 M buffer phospat pH 6,5 biarkan 30 menit pada

suhu kamar.

3. Saring dengan kertas saring kasar. Filtrat yang diperoleh merupakan ekstrak enzim

lipase kasar.

4. Substrat (susu sapi segar) dipanaskan suhu 80oC selama 10 menit.

5. Sebanyak 8 ml substrat (susu sapi pasteurisasi) dimasukkan dalam labu Erlenmeyer

100 ml dan seimbangkan suhunya dalam penangas air 370C.

6. Tambahkan 2 ml ekstrak enzim lipase kasar.

7. Inkubasikan pada suhu tersebut selama 10 menit, 370C. Setelah inkubasi tambahkan

40 ml alkohol.

8. Sebagai blanko adalah susu sebanyak 8 ml ditambah 2 ml larutan pengekstrak enzim

(Larutan NaCl atau Buffer phosphat) 40 ml alkohol tanpa dilakukan inkubasi.

9. Tambahkan 5 tetes indikator pp pada msing-masing sampel dan blanko, kemudian

titrasi dengan 0,1 N NaOH sehingga berubah menjadi mencapai warna pink .

Aktivitas enzim dinyatakan dalam mol / menit ml enzim atau Unit/ml

Aktivitas lipase = ( ts- tb ) NaOH x M NaOH x1000

Volume enzim x menit

Satuan aktivitas lipase = μmol/ ml enz mnt

Dengan : ts = titrasi sample

tb = titrasi blanko

waktu inkkubasi = 10 menit

M NaOH = Molaritas NaOH

1000 berasal dari konversi mmol = 1000 μmol

% kemurnian = 100% x aktivitas spesifik sampel enzim

aktivitas spesifik enzim murni

41

BAB VIII

ANALISIS PROTEIN

A. KADAR PROTEIN KASAR METODE KJEDAHL

Pendahuluan

Protein merupakan senyawa makromolekul kompleks yang terdiri dari unsur C, H,

O, N, S, dan dalam bentuk kompleks mengandung unsur P. Penetapan kadar protein

dengan metode Kjedahl merupakan metode empiris (secara tidak langsung) yaitu

melalui penetapan kadar N dalam bahan. Dengan metode ini senyawa-senyawa

bernitrogen yang lain selain protein juga terukur sebagai protein sehingga metode ini

sering disebut penentapan protein kasar. Tahapan analisis protein dengan metode

Kjedahl meliputi destruksi, destilasi, dan titrasi. Destruksi bertujuan melepaslan unsur N

dari protein yang diubah menjadi amonium sulfat. Pada tahap destilasi amonium sulfat

diubah menjadi amoniak yang ditangkap oleh larutan asam standar berlebih. Sisa asam

yang tidak bereaksi dengan amoniak dititrasi, sehingga dapat diketahui jumlah amoniak

dari N protein sampel.

Tujuan

1. Mengetahui prinsip dasar analisis protein dari masing-masing metode

2. Menerapkan metode analisis protein sesuai dengan sifat bahannya.

Bahan

1. Asam sulfat pekat, berat jenis 1.84

2. Air raksa oksida

3. Kalium sulfat

4. Larutan natrium hidroksida-natrium tiosulfat (larutkan 60 gram NaOH dan 5 gram

NaS2O2.5H2O dalam air dan encerkan sampai 100 ml)

5. Larutan asam borat jenuh

6. Larutan asam klorida 0.02 N

7. Sampel

Alat

1. Pemanas Kjedahl lengkap yang dihubungkan dengan penghisap uap melalui

aspirator.

2. Labu kjedahl berukuran 30 ml/50 ml.

42

3. Alat distilasi lengkap dengan erlenmeyer berpenampung berukuran 125 ml

4. Buret 25 ml/50 ml

5. Erlenmeyer

6. Statif

7. Gelas beker

8. Pipet tetes

Prosedur Kerja

1. Timbang 1 gram bahan yang telah dihaluskan dan masukkan ke dalam labu kjeldahl.

Kalau kandungan protein bahan tinggi, gunakan bahan kurang dari 1 gram. Kemudian

tambahkan 7.5 g K2S2O4 dan 0.35 g HgO (Awas: zat ini beracun) dan akhirnya

tambahkan 15 ml H2SO4 pekat.

2. Panaskan semua bahan dalam labu kjeldahl dalam almari asam sampai berhenti

berasap. Teruskan pemanasan dengan api besar sampai mendidih dan cairan

menjadi jernih. Teruskan pemanasan tambahan lebih kurang satu jam. Matikan api

pemanas dan biarkan bahan menjadi dingin.

3. Kemudian tambahkan 100 ml aquades dalam labu kjeldahl yang didinginkan dalam

air es dan beberapa lempeng Zn, juga tambahkan 15 ml larutan K2SO4% (dalam air)

dan akhirnya tambahkan perlahan-lahan larutan NaOH 50% sebanyak 50 ml yang

sudah didinginkan dalam lemari es. Pasanglah labu kjeldahl dengan segera pada alat

distilasi.

4. Panaskan labu kjeldahl perlahan-lahan sampai dua lapisan cairan tercampur

kemudian panaskan dengan cepat sampai mendidih.

5. Distilat ini ditampung dalam erlenmeyer yang telah diisi dengan 50 ml larutan standar

HCl (0.1 N) dan 5 tetes indikator metil merah. Lakukan distilasi sampai distilat yang

tertampung sebanyak 75 ml.

6. Titrasilah distilat yang diperoleh dengan standar NaOH (0.1 N) (lampiran) sampai

warna kuning. Buatlah juga larutan blanko dengan mengganti bahan dengan

aquades, lakukan destruksi, distilasi dan titrasi seperti seperti pada bahan contoh.

Perhitungan:

%N = (ml NaOH blanko – ml NaOH contoh) x N HCl x 100 x 14.008 g sampel x 1000

% protein = %N x faktor konversi (tergantung jenis sampel)

43

B. KADAR PROTEIN METODE BIURET

Pendahuluan

Metode ini merupakan cara terbaik untuk menentukan kadar protein sampel.

Prinsip penetapan protein metode Biuret adalah pada kondisi basa, Cu2+ membentuk

kompleks dengan ikatan peptida (-CO-NH-) suatu protein menghasilkan warna ungu,

sehingga kadar protein sampel dapat ditetapkan dengan spektrofotometer.

Bahan

1. Sampel (seperti analisis protein dengan metode kjedahl)

2. Pereaksi biuret

Larutkan 3 gram CuCO4.5H2O dan 9 gram Na-K-Tartrat dalam 500 ml NaOH 0.2 N.

Tambahkan 5 gram KI kemudian encerkan sampai 1000 ml dengan menggunakan

NaOH 0.2 N.

3. Larutan protein standar

Larutan bovine serum albumin atau kasein 5 mg/ml

Alat

1. Spektrofotometer

2. Sentrifuse

3. Waring blender

4. Tabung reaksi

Prosedur Kerja

Pembuatan kurva standar

1. Buat larutan standar BSA atau kasein dalam air dengan konsentrasi 5 mg/ml.

2. Masukkan ke dalam tabung reaksi 0 (blanko), 0.1, 0.2, 0.4, 0.6, 0.8. dan 1.0 ml larutan

protein standar. Tambahkan air sampai volume total masing-masing 4 ml.

3. Tambahkan 6 ml pereaksi Biuret ke dalam masing-masing tabung reaksi. Campur

rata.

4. Simpan tabung pada suhu 37C selama 10 menit atau pada suhu kamar selama 30

menit sampai terbentuk warna ungu yang sempurna.

5. Ukur absorbansi pada panjang gelombang 520 nm.

44

Persiapan sampel

1. Timbang sampel padat. Hancurkan sampel padat dengan menggunakan waring

blender. Hancuran yang diperoleh disaring lalu disentrifugasi. Supernatan

didekantasi untuk dipergunakan selanjutnya (protein yang terdapat dalam

supernatan adalah soluble protein).

2. Sampel cair yang berupa protein konsentrat, isolat yang tidak keruh, maka persiapan

sampel cukup dengan pengenceran saja. Jika cairannya keruh atau mengandung

bahan-bahan yang menganggu seperti glukosa maka harus dilakukan perlakuan

sebagai berikut:

Timbang ekstrak. Ekstrak dimasukkan ke dalam tabung reaksi seperti pada

waktu penetapan standar, kemudian tambahkan air sampai volume total masing-

masing 1 ml.

Tambahkan 1 ml TCA (Tri Chloroacetic Acid) 10% pada masing-masing tabung

reaksi sehingga protein akan terdenaturasi.

Sentrifusa pada 3000 rpm selama 10 menit sampai protein yang terdenaturasi

mengendap, supernatan dibuang dengan cara dekantasi.

Ke dalam endapan tambahkan 2 ml etil eter, campur merata lalu sentrifusa

kembali untuk menghilangkan residu TCA. Biarkan mengering pada suhu kamar.

Ke dalam endapan kering ditambahkan air 4 ml, campur merata.

Tambahkan 6 ml pereaksi biuret, alkali dalam pereaksi ini akan melarutkan

endapan yang tersisa.

Penetapan sampel

0.1-1.0 ml sampel (dipipet tepat) dimasukkan ke dalam tabung reaksi, kemudian

diperlakukan seperti penetapan standar

C. KADAR N-AMINO (CARA TITRASI FORMOL)

Pendahuluan

Prinsip analisis ini adalah larutan protein dinetralkan dengan basa (NaOH),

kemudian penambahan formalin akan membentuk dimethilol. Pembentukan dimethilol

ini menunjukkan gugus amino sudah terikat dan tidak akan mempengaruhi reaksi antara

asam (gugus karboksil asam amino) dengan basa NaOH sehingga akhir titrasi dapat

diakhiri dengan tepat. Indikator yang digunakan adalah fenolftalein dan akhir titrasi

ditunjukkan dengan perubahan warna menjadi merah muda yang tidak hilang selama 30

detik. Titrasi formol hanya tepat untuk menunjukkan proses hidrolisis protein dan kurang

tepat untuk menentukan kadar protein.

45

Bahan

1. K-oksalat

2. Fenolftalein 1%

3. NaOH

4. Rosanilin klorida

5. Formaldehid 40 %

6. Akuades

7. Sampel seperti analisis protein metode Kjeldahl

Alat

1. Erlenmeyer 250 ml

2. Pipet volume 1 ml dan 10 ml

3. Buret

4. Statif

Prosedur Kerja

1. Pindahkan 10 ml susu atau larutan protein ke dalam erlenmeyer 125 ml dan

tambahkan 20 ml aquades dan 0.4 ml larutan Kalium oksalat jenuh (kalium oksalat : air

= 1:3) dan 1 ml phenolphtalein 1%. Diamkan selama 2 menit.

2. Titrasilah larutan contoh dengan 0.1 N NaOH sampai mencapai warna seperti warna

standar di bawah ini atau sampai warna merah jambu.

3. Warna standar : 10 ml susu + 10 ml aquades + 0.4 ml K-oksalat jenuh + 1 tetes 0.01%

indikator rosanilin-chlorida.

4. Setelah warna tercapai, tambahkan 2 ml larutan formaldehid 40% dan titrasilah

kembali dengan larutan NaOH sampai warna seperti warna standar tercapai lagi.

Catatlah titrasi kedua ini.

5. Buatlah titrasi blanko yang terdiri dari : 20 ml aquades + 0,4 ml larutan K-oksalat

jenuh + 1 ml indikator phenolphtalein + 2 ml larutan formaldehid dan titrasi dengan

larutan NaOH.

6. Titrasi terkoreksi yaitu titrasi yang kedua dikurangi titrasi blanko merupakan titrasi

formol.

titrasi formol % N = ____________ x N NaOH x 14.008 g bahan x 10

46

D. UJI NINHIDRIN

Pendahuluan

Reaksi antara asam alfa amino dan ninhidrin akan terbentuk warna, melibatkan

reaksi :

Asam Alfa amino + ninhidrin -- ninhidrin tereduksi + asam alfa amino + H2O

Asam alfa amino + H2O - asam alfa keto + NH3

Asam Alfa keto + NH3 - aldehid + CO2

Reaksi lengkap :

Asam alfa amino + 2 ninhidrin - CO2 + aldehid + kompleks warna biru + 3 H2O

Secara singkat ninhidrin mengalami deaminasi oksidatif dan asam amino

dekarboksilasi menjadi CO2, NH3 dan aldehid. Kemudian Ninhidrin yang tereduksi akan

bereaksi dengan amonia dan dengan molekul ninhidrin lain sehingga terbentuk senyawa

kompleks berwarna ungu ( ungu Ruhemann).

Ninhidrin hanya akan bereaksi dengan asam alfa amino bebas NH2-C-COOH, gugus

ini terdapat pada semua asam amino, peptida dan protein. Sedangkan dekarboksilasi

hanya terjadi pada asam amino bebas saja tidak terjadi pada peptida dan protein.

Sehingga hanya asam amino bebas saja yang akan membentuk kompleks warna biru.

Metode ini bisa digunakan untuk penentuan kadar asam amino secara kualitatif dan

kuantitatif. Protein atau peptida yang mempunyai gugus asam amino bebas (pada satu

sisi rantainya) juga bereaksi positif dengan ninhidrin.

Bahan:

1. reagen ninhidrin

2. larutan susu skim (10%),

3. gelatin (5%),

4. putih telur,

5. enzim,

6. keju,

7. pemanis sintetik diasweet,

8. MSG (5%),

9. akuades sebagai (kontrol)

47

Alat:

1. Tabung reaksi

2. Rak tabung reaksi

3. Kertas label

4. Karet hisap

5. Pipet volume 10 ml

6. Beker glas 500 ml

Prosedur kerja:

1. Siapkan sejumlah tabung reaksi yang telah diberi label sesuai dengan sampel yang

akan diuji.

2. Ambil sampel sebanyak 2 ml kemudian tambahkan 2 ml larutan ninhidrin.

3. Masukkan tabung reaksi tersebut pada air mendidih selama 15- 20 detik.

4. Amati warna larutannya. Catat hasil pengamatan dan tulislah hasilnya pada hasil

pengamatan. Tulis + jika hasil test positif (berwaarna ungu, berarti sampel

mengandung gugus amina bebas), tulis – jika hasil test negatif.

5. Warna ungu menunjukkan sampel mengandung asam amino (uji +) . Jika terbentuk

warna lain seperti (kuning, orange dan merah) maka uji negatif.

Catatan: sampel yang mengandung prolin, hydroxyproline, dan 2-, 3-, and 4-asam

aminobenzoat hasil uji yang positif tidak akan memberikan biru tapi kuning. Garam

Ammonium memberikan hasil positif.Beberapa amina seperti anilin dengan uji ninhidrin

memberikan warna orange hingga merah (uji negatif).

48

BAB IX

UJI AKTIVITAS ENZIM PROTEOLITIK

Pendahuluan

Enzim proteolitik merupakan kelompok enzim yang memegang peranan penting

dalam industri. Enzim proteolitik tergolong dalam enzim hidrolitik (peptida hidrolase).

Enzim ini dipakai dalam produksi keju, bir, pelunakan daging, dan modifikasi sifat-sifat

protein sereal dalam pembuatan roti dan produk sereal lain. Reaksi umum yang

dikatalisis oleh enzim proteolitik adalah hidrolisis ikatan peptida pada protein sebagai

berikut:

H R1 H O

X C N C H2O

X-NH-CHR1-COOH + H2N-CHR2-C-Y

N C C Y

H O R2 H

Setiap enzim memiliki spesifisitas substrat yang berbeda-beda. Spesifisitas

substrat untuk enzim proteolitik diantaranya adalah:

A. Sifat R1 dan R2

Kebutuhan spesifik terhadap sifat R1 dan/ atau R2 dapat digunakan untuk

membedakan enzim proteolitik. Misalnya -kimotripsin menghidrolisis ikatan peptida

dengan cepat hanya jika R1 merupakan rantai sisi berupa residu tirosil, fenilalanil, atau

triptofanil. Sedangkan pepsin dan karboksipetidase mempunyai spesifisitas dihubungkan

dengan sifat rantai sisi R2. Kedua enzim ini menghidrolisis ikatan peptida dengan

kecepatan maksimum jika R2 merupakan rantai sisi berupa residu fenilalanil. Untuk

karboksilase, konstituen Y harus gugus OH.

B. Konfigurasi Asam Amino

Spesifisitas enzim proteolitik juga harus dikontribusi oleh kongfigurasi asam

amino, yaitu dalam konfigurasi-L. Kadang-kadang residu asam amino-D berikatan pada

sisi aktif , tetapi ikatan peptida tidak terhidrolisis.

49

C. Ukuran Senyawa

Ukuran senyawa untuk beberapa enzim proteolitik merupakan faktor yang sangat

penting, khususnya untuk protease aspartat, sedangkan untuk beberapa enzim lain

ukuran senyawa bukan merupakan faktor penting.

D. Sifat X dan Y

Kebutuhan enzim terhadap X dan Y sebagai gugus hidrogen dan hidroksil atau

sebagai bentuk terderivatisasi dapat dipakai untuk menentukan sifat enzim sebagai

endopeptidase atau eksopeptidase. Pada endopeptidase, yang menghidrolisis ikatan

peptida secara acak pada sisi dalam protein, aktivitas maksimum dicapai jika X dan Y

terderivatisasi. X berupa gugus asil (asetil, benzoil, benziloksikarbonil) dan Y berupa

gugus amida atau ester.

E. Kebutuhan terhadap Ikatan Peptida

Kebanyakan enzim proteolitik juga menghidrolisis ikatan lain selain ikatan

peptida. Ikatan peptida dapat digantikan dengan gugus amida (-NH2), ester (-COOR),

tiolester (-COSR), atau hidroksamat (-CONHOH).

Bahan :

1. enzim papain

2. susu skim

3. formaldehid

4. aquades

5. indikator pp

6. NaOH 0,1 N

Alat :

1. Water bath

2. Buret

3. neraca analitik

4. erlenmeyer

5. gelas ukur 50 ml

6. pipet volume 10 ml

7. gelas beker 250 ml

8. pengaduk

9. pipet tetes

50

Prosedur Kerja:

1. Buat larutan susu skim 5%.

2. Buat larutan enzim konsentrasi 20, 30 dan 40%

3. Siapkan 4 erlenmeyer, isi masing-masing dengan 40 ml larutan susu skim,

masukkan 3 erlenmeyer dalam waterbath suhu 37 C(kira-kira 10 menit).

Erlenmeyer yang satu tidak perlu dimasukkan dalam water bath (untuk perlakuan

kontrol/blangko)

4. Masukkan masing masing ke dalam erlenmeyer 10 ml larutan enzim dengan

konsentrasi yang berbeda. Untuk perlakuan kontrol/blangko tidak ditambah

enzim tetapi di tambah 10 ml akuades ( dan tidak perlu di inkubasi).

5. Ketiga erlenmeyer diinkubasi pada suhu 37 C selama 1 jam.

6. Sesudah itu ambil 10 ml sampel tambah dengan 2 ml formaldehid , tambah

indikator pp 3 tetes, lalu titrasi dengan 0,1 N NaOH

ts = titrasi sampel

tb = titrasi blanko

berat sampel = berat susu skim dalam gram

FP = Faktor pengenceran , jika sesuai dengan prosedur maka FP = 50/10= 5

% N = (ts-tb) ml x N NaOH x 14,008 x FP x100%

berat sampel (g) x 1000

51

BAB X

ANALISIS KADAR VITAMIN

A. Penentuan Kadar Vitamin C

Pendahuluan

Vitamin C adalah vitamin yang tergolong vitamin yang larut dalam air. Sumber Vitamin C

sebagian besar tergolong dari sayur-sayuran dan buah-buahan terutama buah-buahan

segar. Asupan gizi rata-rata sehari sekitar 30 sampai 100 mg vitamin C yang dianjurkan

untuk orang dewasa. Namun, terdapat variasi kebutuhan dalam individu yang berbeda.

Vitamin C atau asam askorabat mempunyai berat molekul 178 dengan rumus molekul

C6H8O6. Dalam bentuk Kristal tidak berwarna, Vitamin C memiliki titik cair 190-192oC,

bersifat larut dalam air dan sedikit larut dalam aseton atau alkohol yang mempunyai

berat molekul rendah. Akan tetapi vitamin C sukar larut dalam pelarut organic yang pada

umumnya dapat melarutkan lemak. Hal yang pertama kali dilakukan dalam analisa

kuantitatif vitamin C adalah standardisasi larutan I2 0,01 N, proses ini dilakukan dengan

menggunakan larutan Natrium Tiosulfat (Na2S2O3), larutan natrium tiosulfat juga

sebelumnya telah distandardisasi dengan menggunakan KIO3 sebagai baku primer.

Titrasi iodimetri dilakukan dengan menggunakan amilum sebagai indikator. Prinsip dari

titrasi iodimetri adalah reduksi analat oleh I2 menjadi I-.

Penentuan kadar vitamin C dengan metode titrasi iodimetri ini didasarkan pada prinsip

tereduksinya analat oleh I2 menjadi ion I-. Iod merupakan oksidator yang tidak terlalu

kuat, sehingga hanya zat-zat yang merupakan reduktor yang cukup kuat yang dapat

dititrasi. Sehingga penerapannya tidak terlalu luas, salah satu penerapan titrasi dengan

metode iodimetri adalah pada penentuan bilangan iod minyak dan lemak juga vitamin C.

Tujuan

Tujuan dari praktikum ini adalah mempelajari penerapan metode titrimetri dalam analisis

vitamin C, melakukan analisis vitamin C pada berbagai bahan pangan dengan metoda

titrasi, dan melatih keterampilan dalam melakukan analisis secara titrimetri.

Bahan

1. Sampel

2. Aquadest

3. Amilum 1%

4. Larutan I2 0,01 N

52

Alat

1. Spatula

2. Beaker glass 250 mL

3. Neraca analitik

4. Labu ukur 100 mL

5. Corong gelas

6. Batang pengaduk

7. Pipet tetes

8. Botol semprot

9. Pipet ukur 10 mL

10. Erlenmeyer 250 mL

11. Gelas ukur 25 mL

12. Buret coklat 25 mL

PROSEDUR

1. Menimbang 10 g sampel

2. Memasukkan ke dalam labu ukur 100 mL dan mengencerkannya dengan aquadest

sampai tanda batas.

3. Memipet 10 mL filtrat kemudian memasukkannya ke dalam Erlenmeyer 250 mL.

4. Menambahkan 2 mL larutan amilum 1% dan bila perlu menambahkan 20 mL

aquadest.

5. Menitrasi dengan larutan I2 0,01 N sampai larutan berwarna biru.

Perhitungan :

1 mg 0,01 N Iodium = 0,88 mg Asam askorbat

Mg Asam askorbat = 0,88 x V titrasi sampel

Kadar Vitamin C (%) = 100 x mg asam askorbat x fp

mg sampel

fp= faktor pengenceran

53

BAB XII

KROMATOGRAFI KOLOM

B. Penentuan Kadar Beta Karoten dengan Kromatografi Kolom Adsorpsi

Pendahuluan

Ada empat jenis kromatografi yang dikategorikan kromatografi kolom, yaitu

kromatografi adsorbsi, kromatografi partisi, kromatografi pertukaran ion, dan

kromatografi filtrasi gel. Dalam kromatografi adsorbsi, komponen yang dipisahkan

secara selektif teradsorbsi pada permukaan adsorben yang dipakai untuk bahan isian

kolom. Nama lain kromatografi adsorbsi adalah Solid Liquid Adsorption Chromatography,

karena pada kromatograsi ini digunakan zat padat sebagai adsorben yang berperan

sebagai fase stasioner dan zat cair yang berperan sebagai fase mobil.

Permukaan partikel padat biasanya lebih aktif dibandingkan bagian dalamnya

sehingga sering disebut mempunyai aktivitas permukaan (surface activity). Bila partikel

dimasukkan ke dalam suatu larutan, permukaan partikel tersebut mempunyai daya tarik

baik pada zat terlarut (solut) maupun pada pelarutnya (solven). Partikel padat yang

mempunyai aktivitas permukaan dalam kromatografi disebut adsorben. Adsorben harus

mempunyai permukaan yang luas dan mempunyai aktivitas kimia.

Tujuan

1. Mengetahui prinsip dasar kromatografi kolom

2. Menentukan kadar betakaroten

Bahan

1. Larutan standar: beta karoten ditimbang sebanyak 10 mg lalu dilarutkan dalam 10 ml

petroleum eter-aston (10:1). Ambil masing-masing 0.1 ml, 0.2 ml, 0.3 ml, 0.4 ml dan

0.5 ml lalu diencerkan dalam petroleum eter-aseton (10:1) hingga 25 ml

2. Petroleum eter-aseton (1:1)

3. Na2SO4

4. Minyak sawit (Kelas A)

54

Alat

1. Kolom kromatografi ukuran 16 mm x 150 mm

2. Bagian bawah kolom diisi kapas absorben dengan tinggi 15 mm, diatasnya

dimasukkan alumina setinggi 100 mm, kemudian dimasukkan Na2SO4 setinggi 20 mm

dan bagian atas kolom diisi kapas setinggi 15 mm.

3. Timbangan analitik

4. Mixer magnet

5. labu ukur 100 ml

6. Kertas saring

7. Corong pemisah

Prosedur Kerja Kromatografi Kolom Adsorbsi

(Cagampang, B.G. and Rodriques, F.M. 1980. Methods of Analysis for Screening Crops of

Appropriate Qualities. Institute of Plant Breeding University of the Philipines, Los Banos)

1. Sampel ditimbang sebanyak 5 gram dalam erlenmeyer lalu ditambahkan 35 ml

petroleum eter-aseton (1:1)

2. Erlenmeyer ditutup dan diaduk dengan mixer magnet selama 10 menit

3. Residu dibiarkan sampai mengendap lalu dituangkan ke dalam labu ukur 100 ml

melalui kertas saring

4. Kertas saring dicuci dengan petroleum eter-aseton (1:1)

5. Ekstraksi diulangi

6. Filtrat yang diperoleh diencerkan hingga 100 ml dengan petroleum eter-aseton (1:1)

kemudian digojog

7. Larutan diambil 25 ml lalu dimasukkan dalam corong pemisah

8. 25 ml aquades dimasukkan corong pemisah kemudian dikocok

9. Dibiarkan hingga terjadi pemisahan lalu lapisan bawah (air-aseton) dialirkan keluar

dari corong pemisah dan dibuang.

10. Pencucian diulang dua kali

11. Fase eter yang diperoleh ditambahkan Na2SO4 sebanyak 5 gram untuk tiap 100 ml

fase eter

12. Fase eter dimasukkan dalam kolom kromatografi

13. Larutan petroleum eter-aseton (10:1) dielusikan ke dalam kolom

14. Beta karoten yang diperoleh diencerkan dengan petroleum eter-aseton (10:1) lalu

absorbansinya diukur pada panjang gelombang 450 nm

15. Buat kurva standard an carai persamaan regresinya

16. Hitung kadar beta karoten (mg/100 g atau mg/100 ml)

55

BAB XII

ELEKTROFORESIS

Pendahuluan

Elektroforesis adalah suatu metode untuk memisahkan makromolekul seperti asam

nukleat dan protein berdasarkan ukuran, muatan listrik dan ciri fsik. Protein mempunyai

muatan positif dan muatan negatif yang merupakan gabungan muatan asam amino-asam

amino yang terkandung di dalamnya. Karena muatan listrik tersebut protein akan

bergerak ke elektroda melewati gel poliakrilamid yang bertindak sebagai penyaring

yang akan memisahkan molekul berdasarkan ukuran dan bentuk molekul, kekuatan

medan listrik, sifat hidrofobik reatif sampel dan kekuatan ionik.

Tujuan

1. Mengetahui prinsip dasar pemisahan protein dengan metode elektroforesis

2. Menentukan berat molekul kasein

Bahan

1. Sampel: kasein 0,1% (b/v), soy 0,1 % (b/v)

2. Sampel buffer: 0.5 M larutan Tris, 2 % SDS, 0.05% merkaptoetanol, HCl 0,5 M, pH 6,8

3. Buffer Tris-HCl 0.5 M, pH 6.8

4. Larutan stock akrilamid 30%: 29.2 gram akrilamid ditambah 0.8 gram N’N’-bis-

methylene acrylamid dalam 100 ml aquades.

5. Larutan SDS 10 %

6. Amonium persulfat 10% (di buat setiap akan digunakan)

7. TEMED

8. Larutan pewarna : 0.1 % commasie blue dalam larutan metanol : air : asam asetat

(5:5:2)

9. Larutan pembilas terdiri dari metanol : air : asam asetat (5:5:2)

10. Aquades

Alat

1. Seperangkat alat elektroforesis (Gamabar 3.)

2. Mikropipet

3. Tip

4. Beker glass 100 ml

56

5. Beker glas 50 ml

6. Eppendorf

7. Shaker

Gambar 1. Seperangkat alat elektroforesis

Prosedur Kerja Elektroforesis

Pembuatan gel

1. Pasanglah alat gelas untuk mencetak gel ke tempat yang disediakan (seperti gambar

4.)

2. Untuk membuat 20 ml gel 20% campurkan 13.3 ml larutan stok akrilamid 30%, 5 ml

buffer Tris-HCl 0.5 M, pH 6.8, 0.2 ml SDS 10%, 1.5 ml aquades.

3. Tambahkan segera 100 µl APS 10% dan TEMED 10 µl

4. Aduk hingga tercampur merata

5. Tuangkan ke dalam cetakan gel dengan menggunakan mikropipet hingga tinggi yang

dikehendaki. Beri sisa tempat untuk stacking gel di bawah area peletakan gigi sisir.

6. Biarkan gel terpolimerisasi selama 15-30 menit dalam suhu ruang.

7. Tuangkan aquades dengan mikropipet ke permukaan gel pemisah dan kemudian

buang aquades tersebut dengan menyerapkan tisu

8. Sementara itu buat lagi gel untuk membuat 4 ml stacking gel 4% dengan mencampur

1.2 ml larutan stok akrilamid 30%, 0.5 ml buffer Tris-HCl 6.8, 40 µl SDS 10%, 2.26 ml

aquades.

9. Tambahkan segera 20 µl 10% APS dan 5 µl TEMED.

10. Tuangkan larutan ke atas gel pemisah

57

11. Sisipkan gigi sisir pada stacking gel dengan perlahan, jangan sampai terbentuk

gelembung.

12. Biarkan gel terpolimerisasi selama 15-30 menit dalam suhu ruang

13. Ambillah sisir secara perlahan dari gel.

14. Pindahkan gel secara perlahan ke dalam tank elektroforesis (seperti gambar 5.)

15. Masukkan buffer tank ke dalam tank elektroforesis

58

Gambar 2. Manual prosedur pemasangan alat elektroforasis

Persiapan sampel

1. Larutkan 0.1 gram kasein ke dalam 4.9 gram sampel buffer

2. Panaskan pada suhu 90oC selama 5 menit.

Pemisahan protein dengan elektroforesis

1. Masukkan sampel ke dalam sumuran sebanyak 5 µl

2. Pasanglah elektrode sesuai dengan warnanya.

3. Gel dijalankan pada tegangan 200 V selama 45 menit atau hingga sampel telah

mencapai bagian dasar.

59

Gambar 3. Pemisahan protein berdasarkan ukuran molekul

Pewarnaan gel

1. Hentikan listrik, pindahkan gel dari tank

2. Pindahkan glass plate dari gel kedua sisi

3. Tuangkan larutan pewarna pada gel dalam wadah

4. Tutup dengan plastik dan letakkan di atas shaker selama 15-30 menit

5. Pindahkan larutan pewarna dari gel. Simpan untuk digunakan kembali.

6. Bilas gel dengan aquades

7. Tuangkan larutan pembilas selama dan masukkan potongan kertas saring, biarkan

selama 10-15 menit di atas shaker

8. Ganti larutan pembilas dengan yang baru hingga yang terlihat pada gel adalah pita-

pita protein.

Pengamatan

Amati pita-pita yang terbentuk pada gel elektroforesis. Cari dalam literatur berat

molekul masing-masing komponen penyusun kasein dan tentukan letak komponen

tersebut pada pita gel elektroforesis.