Modul 1 - Dasar-Dasar Pengukuran Dalam Elektronika

9
Laboratorium Elektronika dan Instrumentasi Fisika ITB MODUL I DASAR-DASAR PENGUKURAN DALAM ELEKTRONIKA 1. TUJUAN PRAKTIKUM 1. Mampu menggunakan multimeter dalam pengukuran arus dan tegangan 2. Mampu menggunakan alat ukur elektronika dan signal generator 3. Mampu menyederhanakan rangkaian dengan menggunakan rangkaian setara Thevenin 4. Mengukur tegangan AC dan DC dengan menggunakan osiloskop dan Multimeter 2. ALAT DAN KOMPONEN 1. Osiloskop 2. Multimeter Digital 3. Kabel jumper 4. Power suply 5. Tiga resisitor 6. Breadboard 3. TEORI DASAR Multimeter 1. Pengukuran tegangan Pengukuran tegangan pada suatu komponen dilakukan dengan memasang voltmeter (multimeter) secara paralel terhadap komponen yang ingin diukur. Komponen-komponen yang terangkai secara paralel akan memiliki besar tegangan yang sama. (a) (b) Gambar 1. (a) Rangkaian paralel dengan nilai V 1 =V 2 =V 3 (b) Pengukuran tegangan dilakukan secara pararel dengan menggunakan alat ukur 2. Pengukuran Arus Untuk pengukuran arus yang mengalir dalam suatu rangkaian, amperemeter (multimeter) dipasang secara seri. Oleh karena itu, nilai arus pada setiap komponen di dalam rangkaian seri akan bernilai sama. (Perhatikan: amperemeter tidak boleh dipasang secara pararel karena hambatan dalam pada alat ukur sangat kecil dibandingkan dengan hambatan pada rangkaian sehingga arus akan lebih besar mengalir pada alat ukur. Jika melewati ambang batas, akan

description

elektronika

Transcript of Modul 1 - Dasar-Dasar Pengukuran Dalam Elektronika

Page 1: Modul 1 - Dasar-Dasar Pengukuran Dalam Elektronika

Laboratorium Elektronika dan Instrumentasi Fisika ITB

MODUL I

DASAR-DASAR PENGUKURAN DALAM ELEKTRONIKA 1. TUJUAN PRAKTIKUM

1. Mampu menggunakan multimeter dalam pengukuran arus dan tegangan 2. Mampu menggunakan alat ukur elektronika dan signal generator 3. Mampu menyederhanakan rangkaian dengan menggunakan rangkaian setara Thevenin 4. Mengukur tegangan AC dan DC dengan menggunakan osiloskop dan Multimeter

2. ALAT DAN KOMPONEN

1. Osiloskop 2. Multimeter Digital 3. Kabel jumper 4. Power suply 5. Tiga resisitor 6. Breadboard

3. TEORI DASAR

Multimeter

1. Pengukuran tegangan Pengukuran tegangan pada suatu komponen dilakukan dengan memasang voltmeter (multimeter) secara paralel terhadap komponen yang ingin diukur. Komponen-komponen yang terangkai secara paralel akan memiliki besar tegangan yang sama.

(a) (b)

Gambar 1. (a) Rangkaian paralel dengan nilai V1=V2=V3 (b) Pengukuran tegangan dilakukan secara pararel dengan menggunakan alat ukur

2. Pengukuran Arus Untuk pengukuran arus yang mengalir dalam suatu rangkaian, amperemeter (multimeter) dipasang secara seri. Oleh karena itu, nilai arus pada setiap komponen di dalam rangkaian seri akan bernilai sama. (Perhatikan: amperemeter tidak boleh dipasang secara pararel karena hambatan dalam pada alat ukur sangat kecil dibandingkan dengan hambatan pada rangkaian sehingga arus akan lebih besar mengalir pada alat ukur. Jika melewati ambang batas, akan

Page 2: Modul 1 - Dasar-Dasar Pengukuran Dalam Elektronika

mengakibatkan kerusakan pada alat ukur)

(a) (b) Gambar 2. (a) Rangkaian seri dengan nilai I1=I2=I3 (b) Pengukuran arus dengan

menggunakan amperemeter

Rangkaian Setara Thevenin

Sebuah rangkaian seringkali terdiri dari sekumpulan komponen yang tersusun secara kompleks. Oleh karena itu perlu dilakukan penyederhanaan agar mudah menentukan hubungan antara rangkaian yang kompleks tersebut dengan suatu komponen lain. Penyederhanaan ini dilakukan secara teoretis (bukan menyederhanakan rangkaian secara langsung). Terdapat dua jenis rangkaian setara untuk menyederhanakan rangkaian, yaitu rangkaian setara Thevenin dan rangkaian setara Norton. Pada praktikum kali ini, praktikan hanya mencoba rangkaian setara Thevenin.

Rangkaian setara Thevenin merupakan rangkaian kompleks yang telah disederhanakan menjadi sebuah rangkaian seri yang terdiri dari sebuah sumber tegangan dan sebuah tahanan (resistor).

Gambar 3. Rangkaian Pembagi Tegangan

Untuk membuat rangkaian setara thevenin dari rangkaian di atas, langkah-langkah yang harus

dilakukan adalah sebagai berikut : 1. Menghitung tegangan Thevenin

Karena rangkaian terbuka (titik A dan B tidak tersambung), maka arus tidak mengalir pada R2. Sehingga Tegangan thevenin dapat ditentukan dengan menggunakan kaidah pembagi tegangan (nilai tegangannya sama dengan nilai tegangan pada R3).

STH VRR

RV

31

3

(1)

Page 3: Modul 1 - Dasar-Dasar Pengukuran Dalam Elektronika

2. Menghitung hambatan Thevenin

Untuk menghitung hambatan Thevenin, sumber tegangan dianggap terhubung (short). Kemudian hitung hambatan Thevenin pada titik A dan B.

Gambar 5. Rangkaian untuk mengukur hambatan Thevenin

Berdasarkan gambar rangkaian di atas, akan diperoleh besar hambatan Thevenin sebagai berikut:

(2)

3. Menggambarkan rangkaian setara thevenin

dari perhitungan hambatan dan tegangan Thevenin, dapat digambarkan ulang rangkaiannya menjadi: (a) (b)

Gambar 6. (a)Rangkaian semula (b) Rangkaian Setara Thevenin

Page 4: Modul 1 - Dasar-Dasar Pengukuran Dalam Elektronika

Breadboard

Breadboard merupakan papan rangkaian yang digunakan untuk percobaan elektronika. Bentuk breadboard adalah seperti gambar berikut

Gambar 1. Breadboard

Tanda garis berwarna merah menunjukkan bahwa titik-titik yang dilaluinya terhubung secara internal atau dapat dianggap sebagai satu node. Node adalah titik dimana 2 atau lebih komponen bertemu/terhubung. Misalnya pada gambar 1a, rangkaian tersebut memiliki 2 buah node, yaitu yang menghubungkan antara kutub negatif sumber tegangan dengan titik percabangan paralel resistor, dan antara kutub positif sumber tegangan dengan titik percabangan resistor pada sisi yang lainnya. Osiloskop Analog

Osiloskop adalah alat untuk mengamati bentuk sinyal listrik yang berubah terhadap waktu ataupun yang konstan.

Gambar 9. Osiloskop analog Goodwill seri 622 G

Page 5: Modul 1 - Dasar-Dasar Pengukuran Dalam Elektronika

Fungsi bagian-bagian osiloskop:

No Bagian Osiloskop Fungsi

1 Volt/Div Mengatur berapa nilai tegangan yang diwakili oleh satu

Kotak (div) di layar.

2 CH1 (Input X) Memasukkan sinyal atau gelombang yang diukur atau

pembacaan posisi horizontal,

3 CH2 (Input Y) Memasukkan sinyal atau gelombang yang diukur atau

pembacaan posisi vertikal

4 AC-DC Memilih besaran yang diukur

5 Ground Untuk memilih besaran yang diukur dan digunakan untuk

melihat posisi ground di layar

7 Source Untuk memilih channel yang digunakan dalam

pengukuran

8 Layar Menampilkan bentuk gelombang

9 Inten Mengatur tingkat kecerahan pada layar osiloskop

11 Focus Menajamkan garis pada layer untuk mendapatkan

gambar yang lebih jelas

12 Position X

Mengatur posisi snyal dalam arah sumbu X

(Horizontal)

13 Position Y (Vertical) Mengatur posisi snyal dalam arah sumbu Y

14 time/div Mengatur periode, frekuensi, mengatur nilai waktu yang

diwakili oleh satu div di layar,

15 Mode Untuk memilih mode yang ada

16 Level Menghentikan gerak pada tampilan layar

Cara membaca besar tegangan dan perioda sinyal AC:

1. Perhatikan nilai Volt/Div yang digunakan. Misalnya digunakan 5 Volt/Div 2. Perhatikan amplitudo sinyal AC (dari nol hingga ke puncak, Vp), hitung berapa division

(segmen kotak-kotak pada osiloskop) ketinggian amplitudonya (secara vertikal). Misakan amplitudonya 2 kotak

3. Maka, besar Vp dari sinyal AC tersebut dapat dihitung, yaitu 5 Volt/Div x 2 Div = 10 Volt 4. Untuk menentukan perioda, digunakan prinsip yang sama, yaitu mula-mula perhatikan

nilai Time/Div yang digunakan. Misalnya 5 ms/div. 5. Perhatikan jumlah div/kotak yang dilalui oleh sinyal dalam satu gelombang (secara

horizontal). Misalnya 2 kotak. 6. Maka, besar perioda dari sinyal AC tersebut adalah 5 ms/div x 2 div = 10 ms, atau

frekuensinya 100 Hz.

Signal Generator (SG)

SG merupakan alat untuk menghasilkan sinyal berupa gelombang sinus, segi empat (square), atau segitiga dengan frekuensi dan amplitudo tertentu.

Page 6: Modul 1 - Dasar-Dasar Pengukuran Dalam Elektronika

Beberapa tombol/saklar pengatur yang biasanya terdapat pada SG adalah:

1. Saklar daya (power switch): Digunakan untuk menyalakan generator sinyal 2. Terminal output : Terminal yang menghasilkan keluaran 3. Amplitude : Untuk mengatur tegangan keluaran 4. Wave form: Untuk memilih bentuk gelombang keluaran 5. Range frekuensi : Mengatur frekuensi yang dikeluarkan

4. TUGAS PENDAHULUAN

1. Diketahui besar R1, R2, dan R3 adalah 100 ohm, 200 ohm, dan 300 ohm, serta sumber tegangan sebesar 12 V a. Tentukan besar tegangan dan arus yang mengalir pada R1, R2, dan R3! b. Berapa jumlah node pada rangkaian tersebut

2. Jelaskan secara singkat mengenai: a. Multimeter b. Resistor c. Osiloskop d. breadboard

3. Jelaskan perbedaan antara sinyal AC dan DC! 4. Mengapa multimeter harus dipasang secara seri untuk mengukur arus dan dipasang

secara paralel untuk mengukur tegangan? Dan apa akibatnya jika multimeter dipasang secara seri untuk mengukur tegangan?

5. PERCOBAAN

Multimeter 1. Buatlah rangkaian seperti pada gambar 1(a) dan 2(a) 2. Hubungkan power supply dengan rangkaian (gunakan masukan tegangan sebesar +3V). 3. Kemudian ukur arus dan tegangan pada masing-masing bagian. Gambar 1(a) Gambar 2(a)

V1 V2 V3 I1 I2 I3 V1 V2 V3 I1 I2 I3

4. Hasil menurut perhitungan teoretis Gambar 1(a) Gambar 2(a)

V1 V2 V3 I1 I2 I3 V1 V2 V3 I1 I2 I3

Page 7: Modul 1 - Dasar-Dasar Pengukuran Dalam Elektronika

Rangkaian Thevenin 1. Buatlah rangkaian seperti pada gambar 3, kemudian titik A dan B dibebankan dengan

sebuah resistor R4. Besar nilai R1, R2, R3, R4, dan sumber tegangan adalah bebas sesuai keinginan praktikan.

2. Hitung besar tegangan pada R4.

Osiloskop

1. Menyusun piranti osiloskop sehingga siap pakai Susun piranti osiloskop sehingga mendapatkan gambar yang tajam, cerah dan sehingga

memudahkan dalam pembacaan skala. Langkah-langkahnya:

1. Hidupkan osiloskop (dengan saklar on-off). Tunggu kira-kira 30 detik 2. Hubungkan probe pada channel 1 osiloskop sehingga muncul garis lurus pada layar osiloskop.

Jika tidak muncul gambar tersebut, rubah posisinya dengan mengatur tombol posisi X dan Y , atur intensitas dan fokus agar garis nampak jelas. Atur posisi X dan Y agar garis tepat berada di tengah-tengah layar.

2. Mengukur tegangan arus searah (DC)

Dalam percobaan ini kita akan mengukur tegangan dari power supply, dengan variasi tegangan dari power supply. Langkah-langkahnya:

1. Siapkan osiloskop untuk pengukuran tegangan DC 2. Perkirakan tegangan yang dikeluarkan untuk menentukan skala yang digunakan didalam

osiloskop agar hasil pengukuran nampak keseluruhan di dalam layar. 3. Ukurlah tegangan dari Power Supply. 4. Setelah memperoleh tegangan dengan osiloskop, ambil gambar pada layar osiloskop (bisa

dengan kamera HP) 5. Ukur pula besar tegangan power supply dengan menggunakan Multimeter. 6. Ambil data sebanyak 3 kali untuk besar tegangan yang berbeda-beda dari power supply.

Multimeter (Volt) Osiloskop (Volt) Bentuk Gelombang

Page 8: Modul 1 - Dasar-Dasar Pengukuran Dalam Elektronika

3. Mengukur tegangan arus bolak-balik (AC).

1. Siapkan osiloskop untuk pengukuran AC. 2. Siapkan sumber tegangan AC dengan menggunakan Signal Generator dan amati

keluarannya pada osiloskop. 3. Catat tegangan maksimum dan periodanya. 4. Ukur pula dengan menggunakan Multimeter 5. Ambil data sebanyak 3 kali untuk besar tegangan yang berbeda-beda dari signal generator.

Multimeter (Volt)

Osiloskop (Volt)

Perioda Osiloskop

Perioda Signal Generator

Bentuk Gelombang

4. Menggambar Lissajous

Pola ini digunakan untuk menghitung beda fasa antara dua gelombang. Langkah-langkahnya: 1. Untuk melakukan percobaan ini harus menggunakan dua channel karena menggunakan dua

sumber tegangan, pada percobaan ini variasi yang dilakukan adalah mengubah frekuensi 2. Channel 1 dan Channel 2 masing-masing di input dari signal generator yang berbeda (gunakan

2 buah signal generator). 3. Pindahkan ke Mode Dual 4. Kemudian time/div nya dirubah menjadi X-Y

Page 9: Modul 1 - Dasar-Dasar Pengukuran Dalam Elektronika

5. Ubahlah frekuensi pada channel 1 dan 2 dengan perbandingan tertentu, misalnya 1:2, 1:3, atau 2:3. Ambil gambar yang terdapat di layar. Lakukan sebanyak 3 kali dengan perbandingan frekuensi yang berbeda-beda.

5. TUGAS LAPORAN

1. Lengkapilah semua tabel hasil percobaan Anda! 2. Apa perbedaan pengukuran dengan menggunakan osiloskop dan multimeter? 3. Pada percobaan “Rangkaian Thevenin”, hitunglah tegangan thevenin dan hambatan thevenin

serta gambarkan rangkaian setara thevenin (seperti yang dicontohkan pada gambar 6b). Kemudian, hitung secara teoretis nilai tegangan pada resistor R4. Apakah hasil yang diperoleh sesuai dengan percobaan? Jelaskan.

4. Apabila kita memiliki sebuah sumber sinyal dengan frekuensi yang telah diketahui, kita dapat menentukan besar frekuensi sinyal dari sumber yang lain dengan memanfaatkan prinsip lissajous. Jelaskan bagaimana caranya!

5. Pada percobaan mengukur arus DC, apakah terdapat perbedaan antara hasil yang diperoleh dengan menggunakan multimeter dan dengan menggunakan osiloskop? Mengapa demikian?

6. Pada percobaan mengukur arus AC, mengapa besar tegangan yang diperoleh dengan multimeter berbeda dengan besar tegangan yang diperoleh dengan menggunakan osiloskop? apakah perioda yang dibaca pada osiloskop memberikan nilai yang sesuai dengan yang dihasilkan oleh SG? jika tidak, mengapa demikian?

6. REFERENSI

1. labdasar.ee.itb.ac.id/lab/EL2195/.../09.%20APENDIKS%20SISDIG.pdf (22.00 WIB 31 Juli 2013) 2. Sutrisno.1986. ELEKTRONIKA: Teori dan Penerapannya, Jilid 1. Bandung: Penerbit ITB.

Bandung, Agustus 2014

Fredy Tantri (10211021)

Channel 1 (Hz) Channel 2 (Hz) Bentuk Pola Lissajous