Mengenal Jenis

download Mengenal Jenis

of 22

Transcript of Mengenal Jenis

POLIMER #1 Polimer tersusun atas perulangan monomer menggunakan ikatan kimia tertentu. Ukuran polimer, dinyatakan dalam massa (massa rata-rata ukuran molekul dan jumlah rata-rata ukuran molekul) dan tingkat polimerisasi, sangat mempengaruhi sifatnya, seperti suhu cair dan viskositasnya terhadap ukuran molekul (misal seri hidrokarbon). Untuk aplikasi yang lebih luas, polimer dapat dibedakan antara polimer termoplastik, polimer termoset dan polimer elastomer. Beberapa contoh polimer termoplastik antara lain adalah PTFE (teflon), Polyethylene Terephthalate (soda bottles), High-Density Polyethylene (Dish Soap Bottles, Milk Jugs), Polyvinyl Chloride (Plumbing, Shampoo Bottles), Low-Density Polyethylene (Film, Stretch Wrap), Polypropylene

(Pediatric Containers), Polystyrenes (Plastic Plates, Styrofoam) dan Composite (Milk Cartons). Sementara itu, beberapa polimer termoset antara lain adalah Phenolic (Cookware, Knobs, dan Handles), UreaFormaldehyde (Bottle Caps, Electrical Fittings), Epoxies (Surface Coatings, Composites) dan SBR Rubbers (ban). Sedangkan polimer elastomer dapat berupa termoset (membutuhkan vulkanisasi) maupun berupa termoplastik. Beberapa contoh polimer elastomer antara lain adalah karet tak saturasi (unsaturated) seperti karet alam, polyisoprene, polybutadine, maupun karet chloroprene. Karet merupakan jenis polimer linier, banyak digunakan sebagai ban. Betapa pentingnya ban untuk mobil maupun pesawat terbang, maka pemprosesan karet dan polimerisasinya (penambahan dan kondensasi) harus melalui standar yang tinggi. Sejalan dengan perkembangan otomotif yang sangat pesat, kebutuhan ban pun semakin meningkat. Terutama, bagi kendaraan yang tingkat mobilitasnya tinggi, seperti tranportasi umum, penggantian ban kendaraan terasa cepat. Pada sisi lain harga ban baru relatif mahal, untuk ban mobil sekisar Rp 310.000,00 hingga Rp 2.500.000,00. Untuk kendaraan darat seperti mobil dan motor, kiranya masih layak jika menggunakan ban vulkanisir (retreading tyres) yang lebih murah asalkan berkualitas baik. Dengan peralatan pembuatan yang modern ban vulkanisir cukup stabil digunakan, aman, dan kualitasnya terjamin. Sementara itu, dari sisi lingkungan karena ban vulkanisir bukan merupakan polimer yang degradable (dapat terurai) tetapi merupakan komoditas green product (menghijaukan lingkungan), sehingga bisa menekan limbah dan menyelamatkan kerusakan pada lingkungan. Polimer Suatu polimer adalah rantai berulang dari atom yang panjang, terbentuk dari pengikat yang berupa molekul identik yang disebut monomer. Sekalipun biasanya merupakan organik (memiliki rantai karbon), ada juga banyak polimer inorganik. Contoh terkenal dari polimer adalah plastik dan DNA. Meskipun istilah polimer lebih populer menunjuk kepada plastik, tetapi polimer sebenarnya terdiri dari banyak kelas material alami dan sintetik dengan sifat dan kegunaan yang beragam. Bahan polimer alami seperti shellac dan amber telah digunakan selama beberapa abad. Kertas diproduksi dari selulosa, sebuah

polisakarida yang terjadi secara alami yang ditemukan dalam tumbuhan. Biopolimer seperti protein dan asam nukleat memainkan peranan penting dalam proses biologi. Klasifikasi polimer Berdasarkan sumbernya 1. Polimer alami : kayu, kulit binatang, kapas, karet alam, rambut 2. Polimer sintetis 1. Tidak terdapat secara alami: nylon, poliester, polipropilen, polistiren 2. Terdapat di alam tetapi dibuat oleh proses buatan: karet sintetis 3. Polimer alami yang dimodifikasi: seluloid, cellophane (bahan dasarnya dari selulosa tetapi telah mengalami modifikasi secara radikal sehingga kehilangan sifat-sifat kimia dan fisika asalnya) Berdasarkan jumlah rantai karbonnya 1. 1 ~ 4 Gas (LPG, LNG) 2. 5 ~ 11 Cair (bensin) 3. 9 ~ 16 Cairan dengan viskositas rendah 4. 16 ~ 25 Cairan dengan viskositas tinggi (oli, gemuk) 5. 25 ~ 30 Padat (parafin, lilin) 6. 1000 ~ 3000 Plastik (polistiren, polietilen, dll) Industri Sekarang ini utamanya ada enam komoditas polimer yang banyak digunakan, mereka adalah polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, polystyrene, dan polycarbonate. Mereka membentuk 98% dari seluruh polimer dan plastik yang ditemukan dalam kehidupan sehari-hari. Masing-masing dari polimer tersebut memiliki sifat degradasi dan ketahanan panas, cahaya, dan kimia. Polimer sintetik sering ditunjuk sebagai plastik, seperti polyethylene dan nylon. Namun, kebanyakan dapat dikelompokan dalam paling tidak tiga kategori utama: thermoplastik, thermoset, dan elastomer. Polimer buatan biasanya digunakan dalam banyak aplikasi: pemaketan makanan, film, fiber, tube, pipa, dll. Industri perawatan pribadi juga menggunakan polimer untuk membantu dalam tekstur produk, pengikatan, dan 'moisture retention' (seperti dalam gel dan conditioner rambut). Contoh Daftar sebagian dari bahan ini adalah sebagai berikut:

acrylonitrile butadiene styrene (ABS) polyamide (PA) polybutadiene poly(butylene terephthalate) (PBT) polycarbonate (PC) poly(ether sulphone) (PES, PES/PEES) poly(ether ether ketone)s (PEEK, PES/PEEK) polyethylene (PE) poly(ethylene glycol) (PEG) poly(ethylene terephthalate) (PET) polyimide polypropylene (PP) polytetrafluoroethylene (PTFE) polystyrene (PS) styrene acrylonitrile (SAN) poly(trimethylene terephthalate) (PTT) polyurethane (PU) polyvinylchloride (PVC) polyvinylidenedifluoride (PVDF) poly(vinyl pyrrolidone) (PVP)

Nama merk Polimer berikut lebih dikenal lewat nama merk mereka, misalnya:

Kevlar Kynar, e.g. PVDF Mylar, e.g. polyethylene terephthalate Nylon, e.g. polyamide 6,6 Rilsan, e.g. polyamide 11 & 12 Teflon, e.g. PTFE Ultem, e.g. polyimide Vectran Viton Zylon

Polimer didefinisikan sebagai substansi yang terdiri dari molekul-molekul yang menyertakan rangkaian satu atau lebih dari satu unit monomer. Manusia sudah berabad-abad menggunakan polimer dalam bentuk minyak, aspal, damar, dan permen karet. Tapi industri polimer modern baru mulai berkembang pada masa

revolusi industri. Di akhir 1830-an, Charles Goodyear berhasil memproduksi sebentuk karet alami yang berguna melalui proses yang dikenal sebagai vulkanisasi. 40 tahun kemudian, Celluloid (sebentuk plastik keras dari nitrocellulose) berhasil dikomersialisasikan. Adalah diperkenalkannya vinyl, neoprene, polystyrene, dan nilon di tahun 1930-an yang memulai ledakan dalam penelitian polimer yang masih berlangsung sampai sekarang. Sifat-Sifat Fisik Polimer Polimer seperti kapas, wol, karet, dan semua plastik digunakan di hampir semua industri. Polimer alami dan sintetik bisa diproduksi dengan beragam kekakuan, kekuatan, ketebalan, dan ketahanan terhadap panas. Elastomer (polimer bersifat elastis) memiliki struktur yang saling bersilangan dan longgar. Struktur rantai bertipe inilah yang menyebabkan elastomer memiliki ingatan. Rata-rata 1 dari 100 molekul saling bersilangan. Saat jumlah rata-rata ikatan saling bersilangan itu meningkat (sekitar 1 dalam 30), material menjadi lebih kaku dan rapuh. Baik karet alami dan sintetis adalah contoh dari elastomer. Di bawah kondisi temperatur dan tekanan tertentu, plastik yang juga termasuk polimer dapat dibentuk atau dicetak. Berbeda dengan elastomer, plastik lebih kaku dan tidak memiliki elastisitas yang dapat dibalik. Selulosa mreupakan salah satu contoh material berpolimer yang harus dimodifikasi secara bertahap sebelum diproses dengan metode yang biasanya digunakan untuk plastik. Beberapa plastik (seperti nilon dan selulosa asetat) dibentuk menjadi fiber. Padatan amorf terbentuk saat rantai memiliki orientasi yang kecil di sepanjang polimer yang besar. Temperatur transisi kaca merupakan titik dimana polimer mengeras menjadi padatan amorf. Istilah ini digunakan sebab padatan amorf punya sifat-sifat yang mirip dengan kaca. Dalam proses kristalisasi, ditemukan bahwa rantai-rantai yang relatif pendek mengorganisir diri mereka sendiri menjadi struktur kristalin lebih cepat daripada molekul yang lebih panjang. Dengan begitu, derajat polimerisasi (DP) merupakan sebuah faktor yang penting dalam menentukan kekristalinan sebuah polimer. Polimer dengan DP yang tinggi sulit diatur menjadi lapisan-lapisan sebab cenderung menjadi kusut. Dalam mempelajari polimer dan aplikasinya, penting untuk memahami konsep temperatur transisi kaca, T g. Polimer yang temperaturnya jatuh di bawah T g akan semakin kusut. Sedang polimer yang temperaturnya naik di atas T g akan menjadi lebih mirip dengan karet. Dengan begitu, pengetahuan akan T g merupakan hal yang penting dalam memilih bahan-bahan untuk berbagai aplikasi. Pada umumnya, nilai T g di bawah temperatur ruangan menentukan bidang elastomer sedang nilai T g di atas temperatur ruangan menyebabkan polimer berstruktur kaku. Perilaku ini bisa dipahami dalam hal struktur bahan berkaca yang biasanya dibentuk oleh substansi yang mengandung rantai-rantai yang panjang, jaringan atom-atom yang berhubungan, atau apapun yang memiliki struktur molekul yang komples. Normalnya dalal keadaan cair, bahan-bahan seperti itu memiliki sifat rekat/kekentalan yang tinggi. Saat temperatur berubah menjadi dingin dengan cepat, kristalin berada dalam keadaan lebih stabil sedang pergerakan molekul menjadi terlalu pelan atau geometri terlalu kaku untuk membentuk kristalin. Istilah kaca bersinonim dengan keadaan tak seimbang yang terus-menerus. Sifat

polimer lainnya, yang juga sangat tergantung pada temperaturnya, adalah responsnya terhadap gaya sebagaimana diindikasikan oleh dua tipe perilaku yang utama: elastis dan plastik. Bahan-bahan bersifat elastis akan kembali ke bentuk asalnya begitu gaya tidak ada lagi. Bahan-bahan plastik takkan kembali ke bentuk asalnya. Di dalam bahan plastik berlangsung aliran yang mirip dengan cairan yang sifat rekat/kekentalannya tinggi. Kebanyakan material mendemonstrasikan kombinasi dari perilaku elastis dan plastik, memperlihatkan perilaku plastik setelah melebihi batasan elastis. Plastik Istilah plastik mencakup produk polimerisasi sintetik atau semi-sintetik. Mereka terbentuk dari kondensasi organik atau penambahan polimer dan bisa juga terdiri dari zat lain untuk meningkatkan performa atau ekonomi. Ada beberapa polimer alami yang termasuk plastik. Plastik dapt dibentuk menjadi film atau fiber sintetik. Nama ini berasal dari fakta bahwa banyak dari mereka "malleable", memiliki properti keplastikan. Plastik didesain dengan varias yang sangat banyak dalam properti yang dapat menoleransi panas, keras, "reliency" dan lain-lain. Digabungkan dengan kemampuan adaptasinya, komposisi yang

umum dan beratnya yang ringan memastikan plastik digunakan hampir di seluruh bidang industri. Plastik dapat juga menuju ke setiap barang yang memiliki karakter yang deformasi atau gagal karena shear stress- lihat keplastikan (fisika) dan ductile. Plastik dapat dikategorisasikan dengan banyak cara tapi paling umum dengan melihat tulang-belakang polimernya (vinyl{chloride}, polyethylene, acrylic, silicone, urethane, dll.). Klasifikasi lainnya juga umum. Plastik adalah polimer; rantai-panjang atom mengikat satu sama lain. Rantai ini membentuk banyak unit molekul berulang, atau "monomer". Plastik yang umum terdiri dari polimer karbon saja atau dengan oksigen, nitrogen, chlorine atau belerang di tulang belakang. (beberapa minat komersial juga berdasar silikon). Tulang-belakang adalah bagian dari rantai di jalur utama yang menghubungkan unit monomer menjadi kesatuan. Untuk mengeset properti plastik grup molekuler berlainan "bergantung" dari tulangbelakang (biasanya "digantung" sebagai bagian dari monomer sebelum menyambungkan monomer bersama untuk membentuk rantai polimer). Pengesetan ini oleh grup "pendant" telah membuat plastik menjadi bagian tak terpisahkan di kehidupan abad 21 dengan memperbaiki properti dari polimer tersebut. Pengembangan plastik berasal dari penggunaan material alami (seperti: permen karet, "shellac") sampai ke material alami yang dimodifikasi secara kimia (seperti: karet alami, "nitrocellulose") dan akhirnya ke molekul buatan-manusia (seperti: epoxy, polyvinyl chloride, polyethylene). Plastik merupakan material yang baru secara luas dikembangkan dan digunakan sejak abad ke-20 yang berkembang secara luar biasa penggunaannya dari hanya beberapa ratus ton pada tahun 1930-an, menjadi 150 juta ton/tahun pada tahun 1990-an dan 220 juta ton/tahun pada tahun 2005. Saat ini penggunaan material plastik di negara-negara Eropa Barat mencapai 60kg/orang/tahun, di Amerika Serikat mencapai 80kg/orang/tahun, sementara di India hanya 2kg/orang/tahun.[1]

Jenis plastik Plastik dapat digolongkan berdasarkan:

Sifat fisikanyao

Termoplastik. Merupakan jenis plastik yang bisa didaur-ulang/dicetak lagi dengan proses pemanasan ulang. Contoh: polietilen (PE), polistiren (PS), ABS, polikarbonat (PC)

o

Termoset. Merupakan jenis plastik yang tidak bisa didaur-ulang/dicetak lagi. Pemanasan ulang akan menyebabkan kerusakan molekul-molekulnya. Contoh: resin epoksi, bakelit, resin melamin, ureaformaldehida

Kinerja dan penggunaanyao

Plastik komoditas

sifat mekanik tidak terlalu bagus tidak tahan panas Contohnya: PE, PS, ABS, PMMA, SAN Aplikasi: barang-barang elektronik, pembungkus makanan, botol minuman

o

Plastik teknik

Tahan panas, temperatur operasi di atas 100 C Sifat mekanik bagus Contohnya: PA, POM, PC, PBT Aplikasi: komponen otomotif dan elektronik

o

Plastik teknik khusus

Temperatur operasi di atas 150 C Sifat mekanik sangat bagus (kekuatan tarik di atas 500 Kgf/cm) Contohnya: PSF, PES, PAI, PAR Aplikasi: komponen pesawat

Proses manufaktur plastik

Injection molding

Bijih plastik (pellet) yang dilelehkan oleh sekrup di dalam tabung yang berpemanas diinjeksikan ke dalam cetakan.

Ekstrusi

Bijih plastik (pellet) yang dilelehkan oleh sekrup di dalam tabung yang berpemanas secara kontinyu ditekan melalui sebuah orifice sehingga menghasilkan penampang yang kontinyu.

Thermoforming

Lembaran plastik yang dipanaskan ditekan ke dalam suatu cetakan.

Blow molding

Bijih plastik (pellet) yang dilelehkan oleh sekrup di dalam tabung yang berpemanas secara kontinyu diekstrusi membentuk pipa (parison) kemudian ditiup di dalam cetakan. Mengenal Jenis-Jenis Plastik Plastik adalah salah satu bahan yang dapat kita temui di hampir setiap barang. Mulai dari botol minum, TV, kulkas, pipa pralon, plastik laminating, gigi palsu, compact disk (CD), kutex (pembersih kuku), mobil, mesin, alat-alat militer hingga pestisida. Oleh karena itu kita bisa hampir dipastikan pernah menggunakan dan memiliki barang-barang yang mengandung Bisphenol-A. Salah satu barang yang memakai plastik dan mengandung Bisphenol A adalah industri makanan dan minuman sebagai tempat penyimpan makanan, plastik penutup makanan, botol air mineral, dan botol bayi walaupun sekarang sudah ada botol bayi dan penyimpan makanan yang tidak mengandung Bisphenol A sehingga aman untuk dipakai makan. Satu tes membuktikan 95% orang pernah memakai barang mengandung Bisphenol-A. Plastik dipakai karena ringan, tidak mudah pecah, dan murah. Akan tetapi plastik juga beresiko terhadap lingkungan dan kesehatan keluarga kita. Oleh karena itu kita harus mengerti plastik-plastik yang aman untuk kita pakai. Apakah arti dari simbol-simbol yang kita temui pada berbagai produk plastik? 1. PETE atau PET (polyethylene terephthalate) biasa dipakai untuk botol plastik yang jernih/transparan/ tembus pandang seperti botol air mineral, botol jus, dan hampir semua botol minuman lainnya. Boto-botol dengan bahan #1 dan #2 direkomendasikan hanya untuk sekali pakai. Jangan pakai untuk air hangat apalagi panas. Buang botol yang sudah lama atau terlihat baret-baret.

#2. HDPE (high density polyethylene) biasa dipakai untuk botol susu yang berwarna putih susu. Sama seperti #1 PET, #2 juga direkomendasikan hanya untuk sekali pemakaian.

#3. V atau PVC (polyvinyl chloride) adalah plastik yang paling sulit di daur ulang. Plastik ini bisa ditemukan pada plastik pembungkus (cling wrap), dan botol-botol. Kandungan dari PVC yaitu DEHA yang terdapat pada plastik pembungkus dapat bocor dan masuk ke makanan berminyak bila dipanaskan. PVC berpotensi berbahaya untuk ginjal, hati dan berat badan.

#4. LDPE (low density polyethylene) biasa dipakai untuk tempat makanan dan botol-botol yang lembek. Barang-barang dengan kode #4 dapat di daur ulang dan baik untuk barang-barang yang memerlukan fleksibilitas tetapi kuat. Barang dengan #4 bisa dibilang tidak dapat di hancurkan tetapi tetap baik untuk tempat makanan. #5. PP (polypropylene) adalah pilihan terbaik untuk bahan plastik terutama untuk yang berhubungan dengan makanan dan minuman seperti tempat menyimpan makanan, botol minum dan terpenting botol minum untuk bayi. Karakteristik adalah biasa botol transparan yang tidak jernih atau berawan. Cari simbol ini bila membeli barang berbahan plastik. #6. PS (polystyrene) biasa dipakai sebagai bahan tempat makan styrofoam, tempat minum sekali pakai, dll. Bahan Polystyrene bisa membocorkan bahan styrine ke dalam makanan kPolystyrene foam containers are a common nuisance worldwide: they cause pollution in their production, they are a waste of resources since they are used only once, they don't biodegrade for hundreds of years, and they release toxic gases when burned. The styrene may even be a health concern as it can leach out of the packaging and into human fat tissue.etika makanan tersebut bersentuhan. Bahan Styrine berbahaya untuk otak dan sistem syaraf. Selain tempat makanan, styrine juga bisa didapatkan dari asap rokok, asap kendaraan dan bahan konstruksi gedung. Bahan ini harus dihindari dan banyak negara bagian di Amerika sudah melarang pemakaian tempat makanan berbahan styrofoam termasuk negara China. #7. Other (biasanya polycarbonate) bisa didapatkan di tempat makanan dan minuman seperti botol minum olahraga. Polycarbonate bisa mengeluarkan bahan utamanya yaitu Bisphenol-A ke dalam makanan dan minuman yang berpotensi merusak sistem hormon. Hindari bahan plastik Polycarbonate. KONSEP DASAR ILMU POLIMER MAKROMOLEKUL adalah molekul raksasa (giant) dimana paling sedikit seribu atom terikat bersama oleh ikatan kovalen. Makromolekul ini mungkin rantai linear, bercabang, atau jaringan tiga dimensi. Makromolekul dibagi atas dua material yaitu 1. Material biologis (makromolekul alam) Contoh : karet alam, wool, selulosa, sutera dan asbes 2. Material non biologis (makromolekul sintetik) Contoh : plastik, serat sintetik, elastomer sintetik Material biologis dapat menunjang tersediaanya pangan dan dibahas dalam biokimia sedang material non biologis mencakup bahan sintetik. Banyak makromolekul sintetik memiliki struktur yang relatif sederhana,

karena mereka terdiri dari unit ulangan yang identik (unit struktural). Inilah sebabnya mereka disebut polimer. Polimer sangat penting karena dapat menunjang tersedianya pangan, sandang, transportasi dan komunikasi (serat optik). Saat ini polimer telah berkembang pesat. Berdasarkan kegunaannya polimer digolongkan atas :

a. Polimer komersial (commodity polymers) Polimer ini dihasilkan di negara berkembang, harganya murah dan banyak dipakai dalam kehidupan sehari hari. Kegunaan sehari-hari dari polimer ini ditunjukkan dalam tabel 1.1

Contoh : Polietilen (PE), polipropilen (PP), polistirena (PS), polivinilklorida (PVC), melamin formaldehid Tabel 1.1 Contoh dan kegunaan polimer komersial

Polimer komersial Polietilena massa jenis rendah(LDPE)

Kegunaan atau manfaat Lapisan pengemas, isolasi kawat, dan kabel, barang mainan, botol yang lentur, bahan pelapis

Polietilena massa jenis rendah(HDPE)

Botol, drum, pipa, saluran, lembaran, film, isolasi kawat dan kabel

Polipropilena (PP)

Tali, anyaman, karpet, film

Poli(vinil klorida) (PVC)

Bahan bangunan, pipa tegar, bahan untuk lantaui, isolasi kawat dan kabel

Polistirena (PS)

Bahan pengemas (busa), perabotan rumah, barang mainan

b. Polimer teknik (engineering polymers) Polimer ini sebagian dihasilkan di negara berkembang dan sebagian lagi di negara maju. Polimer ini cukup mahal dan canggih dengan sifat mekanik yang unggul dan daya tahan yang lebih baik. Polimer ini banyak dipakai dalam bidang transportasi (mobil, truk, kapal udara), bahan bangunan (pipa ledeng), barangbarang listrik dan elektronik (mesin bisnis, komputer), mesin-mesin industri dan barang-barang konsumsi

Contoh : Nylon, polikarbonat, polisulfon, poliester

c. Polimer fungsional (functional polymers)

Polimer ini dihasilkan dan dikembangkan di negara maju dan dibuat untuk tujuan khusus dengan produksinya dalam skala kecil Contoh : kevlar, nomex, textura, polimer penghantar arus dan foton, polimer peka cahaya, membran, biopolimer

1.1.1 Definisi Dan Tata Nama (Nomenklatur)

Definisi

Polimer Molekul besar (makromolekul) yang terbangun oleh susunan unit ulangan kimia yang kecil, sederhana dan terikat oleh ikatan kovalen. Unit ulangan ini biasanya setara atau hampir setara dengan monomer yaitu bahan awal dari polimer.

Monomer Sebarang zat yang dapat dikonversi menjadi suatu polimer. Untuk contoh, etilena adalah monomer yang

dapat dipolimerisasi menjadi polietilena (lihat reaksi berikut). Asam amino termasuk monomer juga, yang dapat dipolimerisasi menjadi polipeptida dengan pelepasan air Reaksi :

polimerisasiMonomer polimer

monomer

Unit Ulangan terikat secara kovaken dengan unit ulangan lainnya

n H2C etilena

CH2

CH2

CH2

n

Polimer polietilena

R n H2N C H asam amino

O C OH - H2O

H N

R C H

O C n

polipeptida

Unit ulangan dapat memiliki struktur linear atau bercabang. Unit ulangan bercabang dapat membentuk polimer jaringan tiga dimensi. Tabel 1.2 menunjukkan beberapa contoh polimer, monomer, dan unit ulangannya.

Tabel 1.2 Polimer, monomer, dan unit ulangannya

Polimer

Monomer unit ulangan

Polietilena

CH2 = CH2 - CH2CH2

poli(vinil klorida)

CH2 = CHCl - CH2CHCl

CH3 CH2Poliisobutilena

CH3 CH2 C CH3CH2 CH

C CH3

CH2polistirena

CH

Polikaprolaktam (nylon-6)

H - N(CH2)5C - OH H O

- N(CH2)5C H O

Poliisoprena (karet alam)

CH2 = CH - C = CH2 CH3

- CH2CH = C - CH2 CH3

Tata Nama (Nomenklatur)Jumlah yang sangat besar dari struktur polimer menuntut adanya sistem tata nama yang masuk akal. Berikut ini adalah aturan pemberian nama polimer vinil yang didasarkan atas nama monomer (nama sumber atau umum), taktisitas dan isomer :

Nama monomer satu kata : Ditandai dengan melekatkan awalan poli pada nama monomer Contoh :

CH2 CH

Polistirena

polietilena

CH2CH2

Politetrafluoroetilena (teflon, merk dari du Pont)

CF2CF2

Nama monomer lebih dari satu kata atau didahului sebuah huruf atau angka Nama monomer diletakkan dalam kurung diawali poli

Contoh : Poli(asam akrilat)

CH2CH CO 2H

Poli(-metil stirena)

CH3 CH2C

Poli(1-pentena)

CH2CH CH2CH2CH3

Untuk taktisitas polimer diawali huruf i untuk isotaktik atau s (sindiotaktik) sebelum poli Contoh : i-polistirena (polimer polistirena dengan taktisitas isotaktik)

Untuk isomer struktural dan geometrik Ditunjukkan dengan menggunakan awalan cis atau trans dan 1,2- atau 1,4- sebelum poli Contoh : trans-1,4-poli(1,3-butadiena)

IUPAC merekomendasikan nama polimer diturunkan dari struktur unit dasar, atau unit ulang konstitusi (CRU singkatan dari constitutional repeating unit) melalui tahapan sebagai berikut : 1. Pengidentifikasian unit struktural terkecil (CRU) 2. Sub unit CRU ditetapkan prioritasnya berdasarkan titik pengikatan dan ditulis prioritasnya menurun dari kiri ke kanan (lihat penulisan nama polistirena)

CH

CH2

3. Substituen-substituen diberi nomor dari kiri ke kanan 4. Nama CRU diletakkan dalam kurung biasa (atau kurung siku dan kurung biasa kalau perlu), dan diawali dengan poli

Tabel 1.3 Contoh pemberian beberapa nama polimer menurut sumber monomernya dan IUPAC

Nama Sumber Polietilena Politetrafluoroetilena Polistirena Poli(asam akrilat) Poli(-metilstirena) Poli(1-pentena)

Nama IUPAC Poli(metilena) Poli(difluorometilena) Poli(1-feniletilena) Poli(1-karboksilatoetilena) Poli(1-metil-1-feniletilena) Poli[1-(1-propil)etilena]

Untuk tata nama polimer non vinil seperti polimer kondensasi umumnya lebih rumit darpada polimer vinil. Polimer polimer ini biasanya dinamai sesuai dengan monomer mula-mula atau gugus fungsional dari unit ulangan.

Contoh : nylon, umumnya disebut nylon-6,6 (66 atau 6/6), lebih deskriptif disebut

poli(heksametilen

adipamida) yang menunjukkan poliamidasi heksametilendiamin (disebut juga 1,6-heksan diamin) dengan asam adipat. Lihat gambar berikut

n HO - C - (CH2)4 - C - OH + n H2N - (CH2)6 - NH2 asam adipat heksametilediamin

O

O

C - (CH2)4 - C - NH - (CH2)6 - NH nylon-6,6

n

Mengikuti rekomendasi IUPAC, kopolimer (polimer yang diturunkan dari lebih satu jenis monomer) dinamai dengan cara menggabungkan istilah konektif yang ditulis miring antara nama nama monomer yang dimasukkan dalam kurung atau antara dua atau lebih nama polimer. Istilah konektif menandai jenis kopolimer sebagaimana enam kelas kopolimer yang ditunjukkan dalam tabel 1.4 berikut

Tabel 1.4 Berbagai jenis kopolimer Jenis kopolimer Tak dikhususkan Statistik Random/acak Alternating (bergantian) Blok Graft (cangkok/tempel) Konektif -co-stat-ran-alt-blok-graftContoh Poli[stirena-co-(metil metakrilat)] Poli(stirena-stat-butadiena) Poli[etilen-ran-(vinil asetat)] Poli(stirena-alt-(maleat anhidrida)] Polistirena-blok-polibutadiena Polibutadiena-graft-polistirena

1.1.2 Proses Polimerisasi Polimerisasi kondensasi adalah polimerisasi yang disertai dengan pembentukan molekul kecil (H2O, NH3). Contoh : Alkohol + asam ester + air

HOCH2CH2OH +

+ H2O HOC - (CH2)4COH

O

O

Polimerisasi adisi adalah polimerisasi yang disertai dengan pemutusan ikatan rangkap diikuti oleh adisi monomer. Contoh :

H n H2C = CH Cl vinilklorida CH2 C n Cl polivinilklorida (PVC)

1.1.3 Klasifikasi Polimer

Polimer dapat diklasifikasikan atas dasar asalnya (sumbernya), dan strukturnya. a. Asal atau sumbernya 1. Polimer Alam : tumbuhan : karet alam, selulosa hewan mineral : wool, sutera

2. Polimer Sintetik : hasil polimerisasi kondensasi hasil polimerisasi adisi

b. Struktur Berdasarkan strukturnya polimer dibedakan atas : 1. Polimer linear Polimer linear terdiri dari rantai panjang atom-atom skeletal yang dapat mengikat gugus substituen. Polimer ini biasanya dapat larut dalam beberapa pelarut, dan dalam keadaan padat pada temperatur normal. Polimer ini terdapat sebagai elastomer, bahan yang fleksibel (lentur) atau termoplastik seperti gelas).

Rantai utama linear

Contoh : Polietilena, poli(vinil klorida) atau PVC, poli(metil metakrilat) (juga dikenal sebagai PMMA, Lucite, Plexiglas, atau perspex), poliakrilonitril (orlon atau creslan) dan nylon 66

2. Polimer bercabang Polimer bercabang dapat divisualisasi sebagai polimer linear dengan percabangan pada struktur dasar yang sama sebagai rantai utama. Struktur polimer bercabang diilustrasikan sebagai berikut Rantai utama

(terdiri dari atom-atom skeletal)

3. Polimer jaringan tiga dimensi (three-dimension network) Polimer jaringan tiga dimensi adalah polimer dengan ikatan kimianya terdapat antara rantai, seperti digambarkan pada gambar berikut. Bahan ini biasanya diswell (digembungkan) oleh pelarut tetapi tidak sampai larut. Ketaklarutan ini dapat digunakan sebagai kriteria dari struktur jaringan. Makin besar persen sambung-silang (cross-links) makin kecil jumlah penggembungannya (swelling). Jika derajat sambungsilang cukup tinggi, polimer dapat menjadi kaku, titik leleh tinggi, padat yang tak dapat digembungkan, misalnya intan (diamond). Ikatan kimia

Polimer linear dan bercabang memiliki sifat : 1. Lentur 2. Berat Molekul relatif kecil 3. Termoplastik

1.1.4 Kopolimer Kopolimer adalah suatu polimer yang dibuat dari dua atau lebih monomer yang berlainan. Berikut ini adalah jenis jenis kopolimer yang terbentuk dari monomer pertama (A) dan monomer ke dua (B).

Jenis kopolimer : 1. Kopolimer blok Kopolimer blok mengandung blok dari satu monomer yang dihubungkan dengan blok monomer yang lain. Kopolimer blok biasanya terbentuk melalui proses polimerisasi ionik. Untuk polimer ini, dua sifat fisik yang khas yang dimiliki dua homopolimer tetap terjaga.

-A-A-A-A-A----------B-B-B-B-B-

A

m

B

n

Poli(A-b-B)

2. Kopolimer graft (tempel/cangkok) Kopolimer graft biasanya dibuat dengan mengikatkan bersama dua polimer yang berbeda. Untuk contoh, homopolimer yang diturunkan dari monomer A dapat diinduksi untuk bereaksi dengan homopolimer yang diturunkan dari monomer B untuk menghasilkan kopolimer graft, yang ditunjukkan pada gambar berikutA B B B B A A B B B B B A A A

Poli(A-g-B)

Perkembangan selanjutnya ada yang berbentuk kopolimer sisir (comb copolymer) dan bintang (star copolymer).

A B kopolimer sisir

A A A A A A A A

B

kopolimer bintang

3. Kopolimer bergantian (alternating) Kopolimer yang teratur yang mengandung sequensial (deretan) bergantian dua unit monomer. Polimerisasi olefin yang terjadi lewat mekanisme jenis ionik dapat menghasilkan kopolimer jenis ini.

A

B

A

B

Poli(A-alt-B)

4. Kopolimer Acak Dalam kopolimer acak, tidak ada sequensial yang teratur. Kopolimer acak sering terbentuk jika jenis monomer olefin mengalami kopolimerisasi lewat proses jenis radikal bebas. Sifat kopolimer acak sungguh berbeda dari homopolimernya.

A

B

A

B

B

A

B

poli(A-co-B)

1.2 BERAT MOLEKULAR DAN DISTRIBUSI BERAT MOLEKULAR Berat molekular polimer merupakan salah satu sifat yang khas bagi polimer yang penting untuk ditentukan. Berat molekular (BM) polimer merupakan harga rata-rata dan jenisnya beragam yang akan dijelaskan kemudian. Dengan mengetahui BM kita dapat memetik beberapa manfaat. 1.2.1 Manfaat berat molekular rata-rata polimer Menentukan aplikasi polimer tersebut Sebagai indikator dalam sintesa dan proses pembuatan produk polimer Studi kinetika reaksi polimerisasi Studi ketahanan produk polimer dan efek cuaca terhadap kualitas produk

1.2.2 Sifat dan konsep Berat Molekular polimer Hal yang membedakan polimer dengan spesies berat molekul rendah adalah adanya distribusi panjang rantai dan untuk itu derajat polimerisasi dan berat molekular dalam semua polimer yang diketahui juga terdistribusi (kecuali beberapa makromolekul biologis). Distribusi ini dapat digambarkan dengan Memplot berat polimer (BM diberikan) lawan BM, seperti terlihat pada gambar 1.1. Panjang rantai polimer ditentukan oleh jumlah unit ulangan dalam rantai, yang disebut derajat polimerisasi (DPn). Berat molekular polimer adalah hasil kali berat molekul unit ulangan dan DPn.

M n DP n . M 0Mn = berat molekul rata-rata polimer M0 = berat molekul unit ulangan ( sama dengan berat molekul monomer) DP = derajat polimerisasi Contoh : polimer poli(vinil klorida), PVC memiliki DP = 1000 maka berat molekulnya (Mn) adalah

Mn = DP x M0 Mn = 63 x 1000 = 63000.

M0 ( CH2CHCl - ) = 63, DP = 1000

Rata-rata jumlah, M n

Jumlah polimer

Rata-rata berat, M w

Berat molekular Gambar 1.1 Distribusi berat molekular dari suatu jenis polimer Karena adanya distribusi dalam sampel polimer, pengukuran eksperimental berat molekular dapat memberikan hanya harga rata-rata. Beberapa rata-rata yang berlainan adalah penting. Untuk contoh, beberapa metoda pengukuran berat molekular perlu perhitungan jumlah molekul dalam massa material yang diketahui. Melalui pengetahuan bilangan Avogadro, informasi ini membimbing ke berat molekul rata-rata jumlah M n sampel. Untuk polimer sejenis, rata-rata jumlah terletak dekat puncak kurva distribusi berat atau berat molekul paling boleh jadi (the most probable molecular weight). Jika sampel mengandung N i molekul jenis ke i, untuk jumlah total molekul total semua molekul adalah

i 1

N i dan setiap jenis molekul ke i memiliki massa mi, maka massa

i 1

N i mi . Massa molekular rata-rata jumlah adalah

mN m N i 1 i i i 1 i

i

(1-1)

dan perkalian dengan bilangan bilangan Avogadro memberikan berat molekul rata-rata jumlah (berat mol) :

Mn

M N N i 1 i i 1 i

i

(1-2)

Berat molekular rata-rata jumlah dari polimer komersial biasanya terletak dalam kisaran 10000 100000. Setelah berat molekular rata-rata jumlah M n , berat molekular rata-rata berat M w . Besaran ini didefinisikan sebagai berikut

Mw

i 1

N i M i2

(1-3)

Ni M i i 1

Seharusnya dicatat bahwa setiap molekul menyumbang kepada M w yang sebanding dengan kuadrat massanya. Besaran yang sebanding dengan pangkat pertama dari M mengukur hanya konsentrasi dan bukan berat molekularnya. Dalam istilah konsentrasi ci = Ni Mi dan fraksi berat wi = ci/c, dimana c

i 1 i

c ,

Mw

i 1 i

c Mi

c

wi M ii 1

(1-4)

Karena molekul yang lebih berat menyumbang lebih besar kepada M w daripada yang ringan, M w selalu lebih besar daripada M n , kecuali untuk polimer monodispers hipotetik. Harga M w terpengaruh sekali oleh adanya spesies berat molekul tinggi, sedangkan M n dipengaruhi oleh spesies pada ujung rendah dari kurva distribusi BM . Besaran indeks dispersitas, I

Mw adalah ukuran yang bermanfaat dari lebarnya kurva distribusi Mn

berat molekular dan merupakan parameter yang sering digunakan untuk menggambarkan situasi (lebar kurva distribusi) ini. Kisaran harga I dalam tabel 1.5.

Mw dalam polimer sintetik sungguh besar, sebagaimana diilustrasikan Mn

Tabel 1.5 Kisaran indeks polidispersitas (I) berbagai macam polimer Polimer Polimer monodispers hipotetik Polimer living monodispers nyata Polimer adisi, terminasi secara coupling Polimer adisi, terminasi secara disproporsionasi, atau polimer kondensasi 25 Polimer vinil konversi tinggi 5 10 8 30 Polimer yang dibuat dengan autoakselerasi 20 - 50 Polimer adisi yang dibuat melalui polimerisasi koordinasi Polimer bercabang Kisaran I 1,00 1,01 1,05 1,5 2,0

Pada umumnya berlaku hal berikut :

Mn Mw Mv MzBila distribusinya sempit maka M n M w Bila distribusinya lebar maka M n M w Indeks dispersitas (I)

I

Mw Mn

1.2.3 Penentuan Berat molekular rata-rata Berat molekular polimer dapat ditentukan dengan berbagai metoda. Metoda ini dapat disebutkan sebagai berikut :

Analisis gugus fungsional secara fisik atau kimia Pengukuran sifat koligatif

Hamburan cahaya Ultrasentrifugasi Pengukuran viskositas larutan encer Gel Permeation chromatograph