MATERI SPEC VIS.docx

24
http://id.wikipedia.org/wiki/Spektrum_kasat_mata Spektrum kasat mata Spektrum kasat mata (bahasa Inggris:Visible spektrum) adalah bagian dari [[spektrum elektrog tepat dari spektrum optik; mata normal manusia akan dapat menerima panjang gelombang dari 400 sampai 700 nm, meskipun beberapa orang dapat menerima panjang gelombang dari 380 sampai 780 nm (atau dalam frekuensi 790-400 terahertz). Mata yang telah beradaptasi dengan cahaya biasanya memiliki sensitivitas maksimum di sekitar 555 nm, di wilayah hijau dari spektrum optik. Warna pencampuran seperti pink atau ungu, tidak terdapat dalam spektrum ini karena warna-warna tersebut hanya akan didapatkan dengan mencampurkan beberapa panjang gelombang. Panjang gelombang yang kasat mata didefinisikan oleh jangkauan spektral jendela optik, wilayah spektrum elektromagnetik yang melewati atmosfer Bumi hampir tanpa mengalami pengurangan intensitas atau sangat sedikit sekali (meskipun cahaya biru dipencarkan lebih banyak dari cahaya merah, salah satu alasan menggapai langit berwarna biru). Radiasi elektromagnetik di luar jangkauan panjang gelombang optik, atau jendela transmisi lainnya, hampir seluruhnya diserap oleh atmosfer. Dikatakan jendela optik karena manusia tidak bisa menjangkau wilayah di luar spektrum optik. Inframerah terletak sedikit di luar jendela optik, namun tidak dapat dilihat oleh mata manusia.

Transcript of MATERI SPEC VIS.docx

http://id.wikipedia.org/wiki/Spektrum_kasat_mataSpektrum kasat mataSpektrum kasat mata (bahasa Inggris:Visible spektrum) adalah bagian dari [[spektrum elektrog tepat dari spektrum optik; mata normal manusia akan dapat menerima panjang gelombang dari 400 sampai 700 nm, meskipun beberapa orang dapat menerima panjang gelombang dari 380 sampai 780 nm (atau dalam frekuensi 790-400 terahertz). Mata yang telah beradaptasi dengan cahaya biasanya memiliki sensitivitas maksimum di sekitar 555 nm, di wilayah hijau dari spektrum optik. Warna pencampuran seperti pink atau ungu, tidak terdapat dalam spektrum ini karena warna-warna tersebut hanya akan didapatkan dengan mencampurkan beberapa panjang gelombang.

Panjang gelombang yang kasat mata didefinisikan oleh jangkauan spektral jendela optik, wilayah spektrum elektromagnetik yang melewati atmosfer Bumi hampir tanpa mengalami pengurangan intensitas atau sangat sedikit sekali (meskipun cahaya biru dipencarkan lebih banyak dari cahaya merah, salah satu alasan menggapai langit berwarna biru). Radiasi elektromagnetik di luar jangkauan panjang gelombang optik, atau jendela transmisi lainnya, hampir seluruhnya diserap oleh atmosfer. Dikatakan jendela optik karena manusia tidak bisa menjangkau wilayah di luar spektrum optik. Inframerah terletak sedikit di luar jendela optik, namun tidak dapat dilihat oleh mata manusia.

Banyak spesies yang dapat melihat panjang gelombang di luar jendela optik. Lebah dan serangga lainnya dapat melihat cahaya ultraviolet, yang membantu mereka mencari nektar di bunga. Spesies tanaman bergantung pada penyerbukan yang dilakukan oleh serangga sehingga yang berkontribusi besar pada keberhasilan reproduksi mereka adalah keberadaan cahaya ultraviolet, bukan warna yang bunga perlihatkan kepada manusia. Burung juga dapat melihat ultraviolet (300-400 nm).

Warna-warna di dalam spektrum

Meskipun spektrum optik adalah spektrum yang kontinu sehingga tidak ada batas yang jelas antara satu warna dengan warna lainnya, tabel berikut memberikan batas kira-kira untuk warna-warna spektrum :

ungu 380-450 nm biru 450-495 nm hijau 495-570 nm kuning 570-590 nm jingga 590-620 nm merah 620-750 nm pink 1000-000 nm

http://restipratita.blogspot.com/2012/05/spektrofotometer-visible.htmlSpektrofotometri Sinar Tampak(Visible)7 Komentar Posted by Emel Seran pada 4 Juli 2011 Spektrofotometri visible disebut juga spektrofotometri sinar tampak. Yang dimaksud sinar tampak adalah sinar yang dapat dilihat oleh mata manusia. Cahaya yang dapat dilihat oleh mata manusia adalah cahaya dengan panjang gelombang 400-800 nm dan memiliki energi sebesar 299149 kJ/mol. Elektron pada keadaan normal atau berada pada kulit atom dengan energi terendah disebut keadaan dasar (ground-state). Energi yang dimiliki sinar tampak mampu membuat elektron tereksitasi dari keadaan dasar menuju kulit atom yang memiliki energi lebih tinggi atau menuju keadaan tereksitasi. Cahaya yang diserap oleh suatu zat berbeda dengan cahaya yang ditangkap oleh mata manusia. Cahaya yang tampak atau cahaya yang dilihat dalam kehidupan sehari-hari disebut warna komplementer. Misalnya suatu zat akan berwarna orange bila menyerap warna biru dari spektrum sinar tampak dan suatu zat akan berwarna hitam bila menyerap semua warna yang terdapat pada spektrum sinar tampak. Untuk lebih jelasnya perhatikan tabel berikut.

Panjang gelombang (nm)Warna warna yang diserapWarna komplementer (warna yang terlihat)

400 435UnguHijau kekuningan

435 480BiruKuning

480 490Biru kehijauanJingga

490 500Hijau kebiruanMerah

500 560HijauUngu kemerahan

560 580Hijau kekuninganUngu

580 595KuningBiru

595 610JinggaBiru kehijauan

610 800MerahHijau kebiruan

Pada spektrofotometer sinar tampak, sumber cahaya biasanya menggunakan lampu tungsten yang sering disebut lampu wolfram. Wolfram merupakan salah satu unsur kimia, dalam tabel periodik unsur wolfram termasuk golongan unsur transisi tepatnya golongan VIB atau golongan 6 dengan simbol W dan nomor atom 74. Wolfram digunakan sebagai lampu pada spektrofotometri tidak terlepas dari sifatnya yang memiliki titik didih yang sangat tinggi yakni 5930 C.

Gambar 2 jenis spektronic-20 yang bekerja pada rentang panjang gelombang sinar tanpak. Gambar atas merupakan spectronic-20 lama yang sudah jarang bahkan mungkin tidak diproduksi lagi. Sedangkan gambar kedua adalah spectronic-20 terbaru. Panjang gelombang yang digunakan untuk melakukan analisis adalah panjang gelombang dimana suatu zat memberikan penyerapan paling tinggi yang disebut maks. Hal ini disebabkan jika pengukuran dilakukan pada panjang gelombang yang sama, maka data yang diperoleh makin akurat atau kesalahan yang muncul makin kecil. Berdasarkan hukum Beer absorbansi akan berbanding lurus dengan konsentrasi, karena b atau l harganya 1 cm dapat diabaikan dan merupakan suatu tetapan. Artinya konsentrasi makin tinggi maka absorbansi yang dihasilkan makin tinggi, begitupun sebaliknya konsentrasi makin rendah absorbansi yang dihasilkan makin rendah. (Hukum Lamber-Beer dan syarat peralatan yang digunakan agar terpenuhi hukum Lambert-Beer Baca Pengertian Dasar Spektrofotometer Vis, UV, UV-Vis) Hubungan antara absorbansi terhadap konsentrasi akan linear (AC) apabila nilai absorbansi larutan antara 0,2-0,8 (0,2 A 0,8) atau sering disebut sebagai daerah berlaku hukum Lambert-Beer. Jika absorbansi yang diperoleh lebih besar maka hubungan absorbansi tidak linear lagi. Kurva kalibarasi hubungan antara absorbansi versus konsentrasi dapat dilihat pada Gambar.

Gambar Kurva hubungan absorbansi vs konsentrasiFaktor-faktor yang menyebabkan absorbansi vs konsentrasi tidak linear:1. Adanya serapan oleh pelarut. Hal ini dapat diatasi dengan penggunaan blangko, yaitu larutan yang berisi selain komponen yang akan dianalisis termasuk zat pembentuk warna.2. Serapan oleh kuvet. Kuvet yang ada biasanya dari bahan gelas atau kuarsa, namun kuvet dari kuarsa memiliki kualitas yang lebih baik.3. Kesalahan fotometrik normal pada pengukuran dengan absorbansi sangat rendah atau sangat tinggi, hal ini dapat diatur dengan pengaturan konsentrasi, sesuai dengan kisaran sensitivitas dari alat yang digunakan (melalui pengenceran atau pemekatan). Zat yang dapat dianalisis menggunakan spektrofotometri sinar tampak adalah zat dalam bentuk larutan dan zat tersebut harus tampak berwarna, sehingga analisis yang didasarkan pada pembentukan larutan berwarna disebut juga metode kolorimetri. Jika tidak berwarna maka larutan tersebut harus dijadikan berwarna dengan cara memberi reagen tertentu yang spesifik. Dikatakan spesifik karena hanya bereaksi dengan spesi yang akan dianalisis. Reagen ini disebut reagen pembentuk warna (chromogenik reagent). Berikut adalah sifat-sifat yang harus dimiliki oleh reagen pembentuk warna:1. Kestabilan dalam larutan. Pereaksi-pereaksi yang berubah sifatnya dalam waktu beberapa jam, dapat menyebabkan timbulnya semacam cendawan bila disimpan. Oleh sebab itu harus dibuat baru dan kurva kalibarasi yang baru harus dibuat saat setiap kali analisis.2. Pembentukan warna yang dianalisis harus cepat.3. Reaksi dengan komponen yang dianalisa harus berlangsung secara stoikiometrik.4. Pereaksi tidak boleh menyerap cahaya dalam spektrum dimana dilakukan pengukuran.5. Pereaksi harus selektif dan spesifik (khas) untuk komponen yang dianalisa, sehingga warna yang terjadi benar-benar merupakan ukuran bagi komponen tersebut saja.6. Tidak boleh ada gangguan-gangguan dari komponen-komponen lain dalam larutan yang dapat mengubah zat pereaksi atau komponen komponen yang dianalisa menjadi suatu bentuk atau kompleks yang tidak berwarna, sehingga pembentukan warna yang dikehandaki tidak sempurna.7. Pereaksi yang dipakai harus dapat menimbulkan hasil reaksi berwarna yang dikehendaki dengan komponen yang dianalisa, dalam pelarut yang dipakai. Setelah ditambahkan reagen atau zat pembentuk warna maka larutan tersebut harus memiliki lima sifat di bawah ini:1. Kestabilan warna yang cukup lama guna memungkinkan pengukuran absorbansi dengan teliti. Ketidakstabilan, yang mengakibatkan menyusutnya warna larutan (fading), disebabkan oleh oksidasi oleh udara, penguraian secara fotokimia, pengaruh keasaman, suhu dan jenis pelarut. Namun kadang-kadang dengan mengubah kondisi larutan dapat diperoleh kestabilan yang lebih baik.2. Warna larutan yang akan diukur harus mempunyai intensitas yang cukup tinggi (warna harus cukup tua) yang berarti bahwa absortivitas molarnya () besar. Hal ini dapat dikontrol dengan mengubah pelarutnya. Dalam hal ini dengan memilih pereaksi yang memiliki kepekaan yang cukup tinggi.3. Warna larutan yang diukur sebaiknya bebas daripada pengaruh variasi-variasi kecil kecil dalam nilai pH, suhu maupun kondisis-kondisi yang lain.4. Hasil reaksi yang berwarna ini harus larut dalam pelarut yang dipakai.5. Sistem yang berwarna ini harus memenuhi Hukum Lambert-Beer.Menentukan konsentrasi sampel dengan cara kurva kalibrasi Konsentrasi sampel dalam suatu larutan dapat ditentukan dengan rumus yang diturunkan dari hukum lambert beer (A= a . b . c atau A = . b . c). Namun ada cara lain yang dapat digunakan untuk menentukan konsentrasi suatu spesi yang ada dalam suatu larutan yakni dengan cara kurva kalibarasi. Cara ini sebenarnya masih tetap bertumpu pada hukum Lambert-Beer yakni absorbansi berbanding lurus dengan konsentrasi. Langkah-langkah yang perlu dilakukan dalam penentuan konsentrasi zat dengan kurva kalibarasi:1. Maching kuvet : mencari dua buah kuvet yang memiliki absorbansi atau transmitansi sama atau hampir sama. Dua buah kuvet inilah yang akan digunakan untuk analisis, satu untuk blanko, satu untuk sampel. Dalam melakukan analisis Maching kuvet harus dilakukan agar kesalahannya makin kecil.2. Membuat larutan standar pada berbagai konsentrasi. Larutan standar yaitu larutan yang konsentrasinya telah diketahui secara pasti. Konsentrasi larutan standar dibuat dari yang lebih kecil sampai lebih besar dari konsentrasi analit yang diperkirakan. 3. Ambilah salah satu larutan standar, kemudian ukur pada berbagai panjang gelombang. Hal ini dilakukan untuk mengetahui pada panjang gelombang berapa, absorbansi yang dihasilkan paling besar. Panjang gelombang yang menghasilkan absorbansi paling besar atau paling tinggi disebut panjang gelombang maksimum (lmaks).4. Ukurlah absorbansi semua larutan standar yang telah dibuat pada panjang gelombang maksimum.5. Catat absorbansi yang dihasilkan dari semua larutan standar, kemudian alurkan pada grafik absorbansi vs konsentrasi sehingga diperoleh suatu kurva yang disebut kurva kalibarasi. Dari hukum Lambart-Beer jika absorbansi yang dihasilkan berkisar antara 0,2-0,8 maka grafik akan berbentuk garis lurus, namun hal ini tidak dapat dipastikan.Misalkan absorbansi yang dihasilkan dari larutan standar yang telah dibuat adalah Absorbansi0,20,30,40,50,60,70,80,9

konsentrasi2 ppm4 ppm6 ppm8 ppm10 ppm12 ppm14 ppm16 ppm

Grafiknya adalah

6. Ukurlah absorbansi larutan yang belum diketahui konsentrasinya. Setelah diperoleh absorbansinya, masukan nilai tersebut pada grafik yang diperoleh pada langkah 5. Misalkan absorbansi yang diperoleh 0,6. Maka jika ditarik garis lurus konsentrasi sampel akan sama dengan konsentrasi larutan standar 10 ppm. Maka grafiknya sebagai berikut:

Selain dengan cara diatas konsentrasi sampel dapat dihitung dengan persamaan regresi linear:

persamaan di atas dapat dihitung dengan bantuan kalkulator. Setelah diperoleh persamaan di atas, absorbansi sampel yang diperoleh dimasukan sebagai nila y sehingga diperoleh nila x. Nilai x yang diperoleh merupakan konsentrasi sampel yang dianalisis.

http://ruvictazhar.blogspot.com/2012/04/analisa-dengan-spektrofotometri-sinar.htmlANALISA DENGAN SPEKTROFOTOMETRI SINAR TAMPAKSpektrofotometri merupakan metoda analisa didasarkan pada pengukuran serapan sinar monokromatis oleh suatu lajur larutan berwarna pada panjang gelombang spesifik. Dengan menggunakan monokromator prisma atau kisi difraksi dengan detector fototube. Spektrofotometer adalah alat untuk mengukur transmitan atau absorban suatu sampel sebagai fungsi panjang gelombang. Spektrofotometri dapat dianggap sebagai perluasan suatu pemeriksaan visual dengan studi yang lebih mendalam dari absorbsi energi. Absorbsi radiasi oleh suatu sampel diukur pada berbagai panjang gelombangdan dialirkan oleh suatu perkam untuk menghasilkan spektrum tertentu yang khas untuk komponen yang berbeda. Panjang gelombang merupakan jarak linier dari satu titik pada satu gelombang ke titik yang bersebelahan pada gelombang yang berdekatan. Panjang gelombang yang digunakan untuk analisis kuantitatif adalah panjang gelombang yang mempunyai absorbansi maksimal. Untuk memilih panjang gelombang maksimal, dilakukan dengan membuat kurva hubungan antara absorbansi dengan panjang gelombang dari suatu larutan baku pada konsentrasi tertentu.

Komponen-komponen dalam spektrofotometri adalah sebagai berikut: - Sumber cahaya Sebagai sumber cahaya pada spektrofotometer, haruslah memiliki pancaran radiasi yang stabil dan intensitasnya tinggi. Sumber energi cahaya yang biasa untuk daerah tampak ultraviolet dekat, dan inframerah dekat adalah sebuah lampu pijar dengan kawat rambut terbuat dari wolfram (tungsten). Lampu ini mirip dengan bola lampu pijar biasa, daerah panjang gelombang (l ) adalah 350 2200 nanometer (nm). Di bawah kira-kira 350 nm, keluaran lampu wolfram itu tidak memadai untuk spektrofotometer dan harus digunakan sumber yang berbeda. Paling lazim adalah lampu tabung tidak bermuatan (discas) hidrogen (atau deuterium) 175 ke 375 atau 400 nm. - Monokromator Monokromator adalah alat yang berfungsi untuk menguraikan cahaya polikromatis menjadi beberapa komponen panjang gelombang tertentu yang berbeda. Ada dua macam monokromator: - Prisma Prisma dapat mendispersikan atau menyebarkan suatu berkas cahaya putih menjadi spectrum, yang didalamnya bermacam-macam warna yang menyusun cahaya putih itu dapat dikenal secara terpisah. Dengan monokromator prisma, suatu lebar celah tertentu tidak menghasilkan derajat monokromatis yang sama pada seluruh spectrum. - Kisi difraksi Keunutngan menggunakan kisi difraksi adalah: - Dispersi sinar merata - Dispersi lebih baik dengan ukuran pendispersi yang sama - Dapat digunaka dalam seluruh jangkauan spectrum - Kuvet Kuvet spektrofotometer adalah suatu alat yang digunakan sebagai tempat contoh atau cuplikan yang akan dianalisis. Kuvet harus memenuhi syarat-syarat sebagai berikut: - Tidak berwarna sehingga dapat mentransmisikan semua cahaya - Permukaannya secara optis harus benar-benar sejajar - Harus tahan (tidak bereaksi) dengan bahan-bahan kimia - Tidak boleh rapuh - Mempunyai bentuk (design) yang sederhana Kuvet biasanya terbuat dari kwars, plexigalass, kaca, plastic dengan bentuk tabung empat persegi panjang 1 x 1 cm dan tinggi 5 cm. Pada pengukuran di daerah UV dipakai kuvet kwarsa atau plexiglass, sedangkan cuvet dari kaca tidak dapat dipakai sebab kaca mengabsorbsi sinar UV. Semua macam kuvet dapat dipakai untuk pengukuran di daerah sinar tampak (visible). - Detektor Peranan detektor penerima adalah memberikan respon terhadap cahaya pada berbagai panjang gelombang. Detektor akan mengubah cahaya menjadi sinyal listrik yang selanjutnya akan ditampilkan oleh penampil data dalam bentuk jarum penunjuk atau angka digital. Syarat detector adalah: - Kepekaan yang tinggi - Perbandingan isyarat atau signal dengan bising tinggi - Respon konstan pada berbagai panjang gelombang - Waktu respon cepat dan signal minimum tanpa radiasi - Signal listrik yang dihasilkan harus sebanding dengan tenaga radiasi Prinsip kerja spektrofotometri berdasarkan hukum Lambert Beer, bila cahaya monokromatik (Io) melalui suatu media (larutan), maka sebagian cahaya tersebut diserap (Ia), sebagian dipantulkan (Ir), dan sebagian lagi dipancarkan (It). Besarnya Ia oleh media tergantung pada kepekatan dan jenis media serta panjang media yang dilalui. Biasanya panjang media sudah tetap dalam suatu alat. Persamaan hukum Lambert Beer adalah: T = o t I Ibc I I log o t log T bc log T bc log T A bc Transmitans adalah perbandingan intensitas cahaya yang ditransmisikan ketika melewati sampel (It) dengan intensitas cahaya mula-mula sebelum melewati sampel (Io). e adalah absorpsifitas molar atau koefisien molar extinction, nilainya dipengaruhi oleh sifat-sifat khas dari materi yang diradiasi. Jika konsentrasi dalam satuan gram/liter maka e dapat diganti dengan a disebut sebagai absorpsivitas spesifik. Jadi, A = a.b.c . Persyaratan hukum Lambert Beer, antara lain: 1. Radiasi yang digunakan harus monokromatik, 2. Energi radiasi yang diabsorpsi oleh sampel tidak menimbulkan reaksi kimia, jadi proses yang terjadi benar-benar absorpsi, 3. Sampel (larutan) yang mengabsorpsi harus homogen, 4. Tidak terjadi fluoresensi atau phosporesensi, dan 5. Indeks refraksi tidak berpengaruh terhadap konsentrasi, jadi larutan tidak pekat (harus encer). A. Spektrofotometri terdiri dari beberapa jenis berdasarkan sumber cahaya yang digunakan diantaranya sebagai berikut: 1. Spektrofotometri Visible (Spektro Vis) Pada spektrofotometri ini yang digunakan sebagai sumber sinar/energiadalah cahaya tampak (visible). Cahaya visible termasuk spektrumelektromagnetik yang dapat ditangkap oleh mata manusia. Panjanggelombang sinar tampak adalah 380 sampai 750 nm. Sehingga semua sinar yang dapat dilihat oleh kita, entah itu putih, merah, biru, hijau, apapun..selama ia dapat dilihat oleh mata, maka sinar tersebut termasuk ke dalamsinar tampak (visible). 2. Spektrofotometri UV (ultraviolet) Berbeda dengan spektrofotometri visible, pada spektrofotometri UV berdasarkan interaksi sample dengan sinar UV. Sinar UV memiliki panjang gelombang 190-380 nm. Sebagai sumber sinar dapat digunakan lampu deuterium. Karena sinar UV tidak dapat dideteksi oleh mata kita, maka senyawa yang dapat menyerap sinar ini terkadang merupakan senyawa yang tidak memiliki warna (bening) dan transparan. 3. Spektrofotometri UV Vis Spektrofotometri ini merupakan gabungan antara spektrofotometri UVdan Visible. Menggunakan dua buah sumber cahaya berbeda, sumber cahaya UV dan sumber cahaya visible. 4. Spektrofotometri IR (Infra Red) Dari namanya sudah bisa dimengerti bahwa spektrofotometri ini berdasar pada penyerapan panjang gelombang infra merah. Cahaya inframerah terbagi menjadi infra merah dekat, pertengahan, dan jauh. Inframerah pada spektrofotometri adalah infra merah jauh dan pertengahan yang mempunyai panjang gelombang 2.5-1000 m. B. Macam - macam spektrofotometer berdasarkan jenis instrumennya antara lain: 1. Spektrofotometer berkas tunggal Spektrofotometer berkas tunggal mengukur intensitas cahaya relatif berkas (blangko) sebelum dan sesudah pengujian sampel dimasukkan. 2. Spektrofotometer berkas rangkap Spektrofotometer berkas rangkap membandingkan intensitas cahaya lampu antara dua jalur, satu jalur berisi referensi sampel dan pengujian sampel lainnya. 3. Spektrofotometer diferensial Teknik ini biasanya meliputi dua metode yaitu absorbansi tinggi dan metode absorbansi rendah. Yang pertama digunakan untuk analisis larutan yang sangat pekat, sedangkan absorbansi rendah digunakan unruk larutan yang sangat encer. Pada kedua teknik tersebut, konsentrasi sama sekali tidak dipengaruhui oleh perubahan luar. 4. Spektrofotometer serapan atom Spektrofotometer Serapan Atom (AAS) adalah salah satu alat yang digunakan pada metode analisis untuk penentuan unsur-unsur logam dan metaloid yang berdasarkan pada penyerapan absorbansi radiasioleh atom bebas. Metode AAS berprinsip pada absorbansi cahaya oleh atom. Atom-atom menyerap cahaya tersebut pada panjang gelombang tertentu. Tergantung pada sifat unsurnya. Dengan absorpsi energi, berarti memperoleh lebih banyak energi, suatu atom pada keadaan dasar dinaikkan tingkat energinya ketingkat eksitasi. Keberhasilan ini tergantung pada proses eksitasi dan memperoleh garis resonansi yang tepat.

Diposkan oleh Ruvict Adzhar di Minggu, April 22, 2012

http://wahyuriyadi.blogspot.com/2009/07/macam-spektrofotometri-dan-perbedaannya.htmlSpektrofotometri Visible (Spektro Vis)

Pada spektrofotometri ini yang digunakan sebagai sumber sinar/energi adalah cahaya tampak (visible). Cahaya visible termasuk spektrum elektromagnetik yang dapat ditangkap oleh mata manusia. Panjang gelombang sinar tampak adalah 380 sampai 750 nm. Sehingga semua sinar yang dapat dilihat oleh kita, entah itu putih, merah, biru, hijau, apapun.. selama ia dapat dilihat oleh mata, maka sinar tersebut termasuk ke dalam sinar tampak (visible).Sumber sinar tampak yang umumnya dipakai pada spektro visible adalah lampu Tungsten. Tungsten yang dikenal juga dengan nama Wolfram merupakan unsur kimia dengan simbol W dan no atom 74. Tungsten mempunyai titik didih yang tertinggi (3422 C) dibanding logam lainnya. karena sifat inilah maka ia digunakan sebagai sumber lampu.Sample yang dapat dianalisa dengan metode ini hanya sample yang memilii warna. Hal ini menjadi kelemahan tersendiri dari metode spektrofotometri visible.

Oleh karena itu, untuk sample yang tidak memiliki warna harus terlebih dulu dibuat berwarna dengan menggunakan reagent spesifik yang akan menghasilkan senyawa berwarna. Reagent yang digunakan harus betul-betul spesifik hanya bereaksi dengan analat yang akan dianalisa. Selain itu juga produk senyawa berwarna yang dihasilkan harus benar-benar stabil.Salah satu contohnya adalah pada analisa kadar protein terlarut (soluble protein). Protein terlarut dalam larutan tidak memiliki warna. Oleh karena itu, larutan ini harus dibuat berwarna agar dapat dianalisa. Reagent yang biasa digunakan adalah reagent Folin.Saat protein terlarut direaksikan dengan Folin dalam suasana sedikit basa, ikatan peptide pada protein akan membentuk senyawa kompleks yang berwarna biru yang dapat dideteksi pada panjang gelombang sekitar 578 nm. Semakin tinggi intensitas warna biru menandakan banyaknya senyawa kompleks yang terbentuk yang berarti semakin besar konsentrasi protein terlarut dalam sample.