Laporan Praktikum FDM - Gesekan Pipa

22
MS 3202 - PRAKTIKUM FENOMENA DASAR MESIN LAPORAN PRAKTIKUM MODUL 11 PERCOBAAN SISTEM ALIRAN FLUIDA Kelompok : 12 Aggota Kelompok : Almas Hardiantoro 13112026 F X Arnold Giovanni Heryanto 13112029 Kevin Angga Gunawan 13112036 Eko Budi Satriyo 13112041 Irvin Shandy 13112044 Dionisius Denny Bramantyo 13112046 Singgih Candra Prayoga 13112048 Tanggal Praktikum : 18 Maret 2015 Tanggal Pengumpulan Laporan : 23 Maret 2015 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK MESIN DAN DIRGANTARA INSTITUT TEKNOLOGI BANDUNG 2015

description

Laporan mata kuliah praktikum fenomena dasar mesin program studi teknik mesin, FTMD, ITB modul gesekan pipa tahun 2015.

Transcript of Laporan Praktikum FDM - Gesekan Pipa

  • MS 3202 - PRAKTIKUM FENOMENA DASAR MESIN

    LAPORAN PRAKTIKUM MODUL 11

    PERCOBAAN SISTEM ALIRAN FLUIDA

    Kelompok : 12

    Aggota Kelompok : Almas Hardiantoro 13112026

    F X Arnold Giovanni Heryanto 13112029

    Kevin Angga Gunawan 13112036

    Eko Budi Satriyo 13112041

    Irvin Shandy 13112044

    Dionisius Denny Bramantyo 13112046

    Singgih Candra Prayoga 13112048

    Tanggal Praktikum : 18 Maret 2015

    Tanggal Pengumpulan Laporan : 23 Maret 2015

    PROGRAM STUDI TEKNIK MESIN

    FAKULTAS TEKNIK MESIN DAN DIRGANTARA

    INSTITUT TEKNOLOGI BANDUNG

    2015

  • 1. Tujuan Praktikum

    Berikut tujuan dari dilaksanakannya praktikum ini:

    a. Mengetahui sifat-sifat aliran fluida inkompresibel dalam pipa, b. Mengetahui bilangan Reynolds pada sistem aliran fluida yang diuji dan mencari friction factor

    pada grafik, c. Mengetahui head loss pada sistem aliran fluida yang diuji dan membandingkan dengan grafik

    yang telah ada.

  • 2. Landasan Teori

    2.1. Penjelasan Umum Pada dasarnya, sifat aliran suatu fluida dapat dibedakan menjadi 2 macam, yaitu aliran laminar dan aliran turbulen. Parameter yang digunakan untuk membedakan kedua sifat aliran ini adalah bilangan Reynolds dari aliran fluida tersebut. Bilangan Reynolds adalah suatu bilangan tak berdimensi dimana bilangan tersebut menyatakan perbandingan antara gaya inersia dan gaya viskos. Suatu aliran fluida dikatakan laminar apabila bilangan Reynolds-nya di bawah bilangan kritiknya (2300 untuk aliran fuida dalam pipa). Sedangkan apabila bilangan Reynolds-nya di atas bilangan kritik tersebut, aliran disebut sebagai aliran turbulen. Pada daerah di antara aliran laminar dan aliran turbulen terdapat daerah transisi. Gambar berikut menjelaskan perbedaan antara ketiga jenis aliran tersebut.

    Rumus dari bilangan Reynolds dinyatakan dengan rumus di bawah ini :

    =

    Dimana,

    adalah massa jenis dari fluida yang mengalir ( 3

    )

    adalah kecepatan aliran fluida saat masuk ke dalam pipa / saluran (

    )

    adalah diameter pipa / saluran ( m )

    adalah viskositas kinematik (

    )

    Secara kasat mata, aliran laminar tampak teratur berupa lapisan-lapisan. Hal ini disebabkan oleh gaya viskos yang besar. Sedangkan aliran turbulen tampak tidak teratur. Hal ini disebabkan oleh ada pusaran-pusaran yang tidak beraturan pada aliran turbulen. Penyebab utama terjadinya aliran turbulen adalah fluida masuk ke dalam saluran / pipa dengan kecepatan tinggi. Maka dari itu lapisan batas dari suatu aliran hanya dapat ditentukan apabila aliran tersebut laminar. Aliran turbulen sangat tidak beraturan sehingga kita tidak dapat mengetahui besar lapisan batasnya. Gambar berikut menjelaskan perbedaan lapisan batas pada kedua aliran.

  • 2.2. Head Loss Head Loss adalah energi yang hilang akibat adanya Minor Loss dan Major Loss. Head Loss sering disebut juga sebagai energi yang hilang per satuan berat jenis karena satuan dari Head Loss adalah meter (m). Head Loss ada 2 jenis yaitu Minor Loss dan Major Loss. Minor Loss adalah energi yang hilang akibat adanya komponen-komponen pendukung dari suatu saluran seperti katup, belokan, sambungan, dsb. Sedangkan Major Loss adalah energi yang hilang akibat adanya gesekan antara fluida yang mengalir dengan dinding pipa / saluran.

    Gambar di samping adalah penjelasan Major Loss dengan membandingkan saluran permukaan kasar dengan saluran permukaan halus

  • ++++

    ++++= out

    outoutoutoutin

    inininincvcv

    cv zgVvPuMzgVvPuMWQdt

    dE 2

    2

    22

    2

    2

    )( 2

    2

    2

    2

    22

    22

    22

    Loutoutout

    ininin

    inoutoutoutout

    ininin

    outoutout

    outininin

    in

    Hzg

    vpz

    gvp

    uuzg

    vpz

    gvp

    zg

    vpuz

    gvp

    u

    +++=++

    +++=++

    +++=+++

    Head Loss dapat dihitung dengan menggunakan rumus di bawah ini.

    Dengan menggunakan asumsi :

    1. Aliran dalam kondisi tunak 0=dt

    dEcv

    2. Fluida yang mengalir adalah fluida inkompresibel 3. Tidak ada perpindahan panas 0=cvQ

    4. Tidak ada kerja yang dihasilkan maupun kerja yang diberikan 0=cvW

    Maka persamaan diatas dapat disederhanakan menjadi

    Pada persamaan terakhir kita dapat melihat bahwa dalam menghitung Head Loss kita dapat menggunakan persamaan Bernoulli. Selain itu kita juga dapat menggunakan rumus Darcy-Weisbach untuk mencari besar dari Head Loss. Perhatikan rumus Darcy-Weisbach di bawah ini.

    gV

    DLfHL 2

    2

    =

    Dimana,

    f adalah koefisien gesek pipa / saluran yang diperoleh dari diagram Moody

    V adalah kecepatan aliran fluida saat masuk ke dalam pipa / saluran (

    )

    L adalah panjang pipa ( m )

    D adalah diameter dalam pipa ( m )

    g adalah percepatan gravitasi (m/s2)

  • Untuk menghubungkan antara bilangan Reynolds, koefisien gesek pipa, dan persamaan Darcy-Weisbach pada halaman sebelumnya, digunakanlah diagram Moody. Berikut diagramnya:

    Rumus Darcy-Weisbach hanya dapat digunakan untuk mencari besar Head Loss yang disebabkan oleh Major Loss. Sedangkan untuk mencari besar Head Loss yang disebabkan oleh Minor Loss kita membutuhkan rumus yang ada di bawah ini.

    gVKH LL 2

    2

    =

    Dimana, KL adalah konstanta yang bergantung pada geometri dan bentuk dari pipa / saluran fluida. Rumus dari KL adalah

    Dl

    fK eqL.=

    Dimana, Ieq adalah panjang ekivalen dari bentuk geometri yang menyebabkan kehilangan energi.

  • =

    4

    1

    2

    212

    1

    )(2

    DD

    ppAQ

    2.3. Pengukuran Laju Aliran Dalam melakukan pengukuran laju aliran dalam pipa / saluran kita dapat menggunakan alat bantu sebagai berikut :

    1. Sharp edge orifice plate 2. Ventury meter 3. Pipa penduga.

    Namun, pada percobaan ini kami menggunakan ventury meter untuk mengukur laju aliran dari aliran fluida di dalam pipa. Ventury meter adalah alat pengukur yang menggunakan prinsip pengecilan luas penampang pipa / saluran, sehingga hal ini akan menyebabkan aliran fluida akan mengalami peningkatan kecepatan serta mengalami penurunan tekanan. Selain itu, untuk menentukan kecepatan aliran fluida kita juga membutuhkan persamaan Bernoulli dan persamaan kontinuitas. Untuk dua persamaan tersebut kita dapat lihat persamaan di bawah ini :

    +122 + = (1)

    = = (2)

    Persamaan (1) adalah persamaan Bernoulli, persamaan tersebut dapat kita gunakan apabila kita gunakan asumsi sebagai berikut :

    1. Aliran fluida dalam kondisi tunak 2. Fluida yang mengalir adalah fluida inkompresibel 3. Aliran tanpa gesekan (inviscous) 4. Aliran di sepanjang garis lurus.

    Dengan menggabungkan kedua persamaan di atas maka kita bisa sederhanakan dan mendapatkan rumus sebagai berikut yang menyatakan debit dari aliran tersebut.

  • 3. Prosedur Praktikum

    Berikut prosedur praktikum yang telah kami lakukan:

    1. Mengisi tangki air pada sistem aliran fluida hingga penuh. 2. Menjalankan motor pompa hingga ada aliran air untuk sirkuit tertutup. 3. Mengatur katup-katup sedemikian hingga seluruh bagian sirkuit dapat mengalirkan air

    dengan sempurna. 4. Mengatur katup agar debit yang mengalir sesuai dengan yang diinginkan, lalu mengalirkan

    fluida ke pipa yang pertama. 5. Selanjutnya mengamati tinggi air pada manometer untuk mengetahui debit yang mengalir. 6. Memastikan selang berada pada saluran 1 dan 3 lalu mengamati tinggi air pada manometer

    untuk mengetahui head loss pada pipa pertama saluran 1-3. 7. Mengganti selang pada saluran 1 dan 3 menjadi saluran 1 dan 2, lalu mengamati ketinggian

    air pada manometer. 8. Pada saluran 1 dan 2 diganti menjadi saluran 2 dan 3, lalu amati kembali ketinggian air pada

    manometer. 9. Melakukan percobaa f h untuk pipa 2 dan 3 dengan debit yang sama. 10. Setelah selesai hingga pipa ketiga, maka ulangi percobaan d h dengan debit ke-2 dan debit

    ke-3. 11. Jika pada manometer terdapat gelembung udara pada waktu operasi, prosedur

    pengeluaran gelembung harus dilakukan.

  • =

    4

    1

    2

    212

    1

    )(2

    DD

    ppAQ

    H 21 = gpp

    4. DATA PENGAMATAN

    4.1. Data Instalasi Pengamatan dilakukan pada instalasi Fluid Circuit System dengan data instalasi sebagai berikut :

    Instalasi terdiri dari 4 pipa (no 1 s/d 4), set pompa motor , tangki , katub dan fitting, pengukur aliran , tap manometer serta manometer

    Dimensi ketiga pipa uji sebagai berikut : (material pipa adalah kuningan (Brass)) o Pipa no.1 : Diameter = 3/4 in, sepanjang (L= 60 in) o Pipa no.2 : Diameter = 1/2 in, sepanjang (L= 60 in) o Pipa no.3 : Diameter = 3/8 in, sepanjang (L= 60 in)

    Jarak titik pengamatan : o Jarak dari titik 1 ke titik 2 adalah ( L = 36 in) o Jarak dari titik 2 ke titik 3 adalah ( L = 24 in)

    Sifat fisik air terhadap perubahan temperatur adalah sebagai berikut : Temperatur ( F) 32 40 60 80

    Massa Jenis (lbm/ft3) 62,4 62,4 62,4 62,2

    Viskositas (lbf s/ft2) 3,75 E-5 3,23 E-5 2,36 E-5 1,8 E-5

    Sumber : Gerhart Fluid Mechanics

    Berdasarkan interpolasi tabel di atas untuk temperatur ruangan T = 27C(80F), maka: Massa jenis = 62,2 lbm/ft3 (1,93 slug/ft3) dan Viskositas = 0,000018 lbf/ft .s

    4.2. Data Hasil Pengamatan Temperatur Air 80 F

    Masa Jenis Air () 1,93 Slug/ft3

    Percepatan Gravitasi (g) 32,2 ft/s2

    Diameter (Entrance) Venturimeter 1,025 In

    Diameter (Throat) Venturimeter 0,625 In

    Luas Penampang (Entrance) Venturimeter 0,825 In2

    Luas Penampang (Throat) Venturimeter 0,307 In2

    Dengan menggunakan rumus :

    dan

    Maka dapat dihitung debit air melalui pipa.

  • Titik 1 Titik 2 Titik 3

    Head Loss Pipa 1 (3/4 in)

    (in 20)

    (in)

    Q GPH 1-2 2-3 1-3 Venturimeter

    I 316.109 0.875 0.375 1.25 4.875

    II 175.346 0.5 0.25 0.875 1.5

    III 226.371 0.5 0.25 0.5 2.5

    Head Loss Pipa 2 (1/2 in)

    (in 20)

    (in)

    Q GPH 1-2 2-3 1-3 Venturimeter

    I 316.109 2 1.5 3.5 4.875

    II 175.346 1.25 1 2.25 1.5

    III 226.371 1 0.75 1.75 2.5

    Head Loss Pipa 3 (3/8 in)

    (in 20)

    (in)

    Q GPH 1-2 2-3 1-3 Venturimeter

    I 316.109 7 6 13 4.875

    II 175.346 5 4 9 1.5

    III 226.371 3.5 2.75 6 2.5

    80 cm 60 cm

  • HHL : maka

    H g p-p vv ; zz :

    2

    2

    212121

    2

    222

    1

    211

    =

    ===

    +++=++

    dandengan

    Hzg

    vpzg

    vpL

    5. PERHITUNGAN DAN ANALISIS

    5.1. Perhitungan Perhitungan kami lakukan dengan beberapa tahapan yaitu :

    1. Menghitung Head Loss diantara dua titik pengamatan berdasarkan perbedaan ketinggian air pada manometer.

    2. Mencari nilai koefisien gesek (f) tiap pipa pada setiap panjang acuan.

    3. Dari 3 nilai (f) untuk (Q) dibuat kurva f vs. panjang pipa untuk setiap Q.

    4. Untuk debit tertentu hitung bilangan Reynold dan tentukan kekasaran pipa dengan

    menggunakan diagram Moody.

    5. Membandingkan kekasaran pipa hasil percobaan dengan kekasaran pipa standar.

    5.1.1. Menghitung Head Loss (HL)

    Berdasarkan persamaan energi diantara 2 titik yang diamati pada 1 buah pipa :

    Head loss dari tiap titik pengamatan adalah sama dengan (H) pada tabel data pengamatan.

    5.1.2. Menentukan koefisien gesek pipa (f)

    gV

    DLH

    f L

    2

    2

    =

    Contoh perhitungan :

    Untuk pipa 1 (d=3/8 in) untuk titik pengamatan (22 - 26), koefisien geseknya adalah :

    0212,0

    )/ 2,32(2)/ 852,5(

    375,0 36

    ) 083,1(

    2

    2 =

    =

    sftsft

    inin

    ftf

  • Berikut ditampilkan tabel hasil perhitungan f, Q, serta kurva f vs. L pipa

    Pipa 1 (d = 3/4 inch)

    Head Loss (ft) V Koefisien Gesek [ f ]

    Q GPH 1-2 2-3 1-3 (ft/s) 1-2 2-3 1-3

    1 316.109 0.073 0.031 0.104 3.826 0.0067 0.0043 0.0057

    2 175.346 0.042 0.021 0.073 2.122 0.0124 0.0093 0.0130

    3 226.371 0.042 0.021 0.042 2.740 0.0074 0.0056 0.0045

    Pipa 2 (d = 1/2 inch)

    Head Loss (ft) V Koefisien Gesek [ f ]

    Q GPH 1-2 2-3 1-3 (ft/s) 1-2 2-3 1-3

    1 316.109 0.167 0.125 0.292 8.609 0.0020 0.0015 0.0035

    2 175.346 0.104 0.083 0.188 4.776 0.0041 0.0033 0.0074

    3 226.371 0.083 0.063 0.146 6.165 0.0020 0.0015 0.0034

    Pipa 3 (d = 3/8 inch)

    Head Loss

    (ft) V Koefisien Gesek [ f ]

    Q GPH 1-2 2-3 1-3 (ft/s) 1-2 2-3 1-3

    I 316.109 0.583 0.500 1.083 15.313 0.0014 0.0021 0.0019

    II 175.346 0.417 0.333 0.750 8.494 0.0039 0.0046 0.0042

    III 226.371 0.292 0.229 0.500 10.966 0.0016 0.0019 0.0017

  • 0.00000.00100.00200.00300.00400.00500.00600.00700.00800.00900.0100

    0 1 2 3 4 5 6

    f vs L (feet)

    f rata

    Kurva gesekan rata-rata terhadap panjang pipa 3

    Kurva gesekan rata-rata terhadap panjang pipa 2

    Kurva gesekan rata-rata terhadap panjang pipa 1

    0.0000

    0.0005

    0.0010

    0.0015

    0.0020

    0.0025

    0.0030

    0.0035

    0 1 2 3 4 5 6

    f vs L (feet)

    f rata

    0.0000

    0.0010

    0.0020

    0.0030

    0.0040

    0.0050

    0.0060

    0 1 2 3 4 5 6

    f vs L (feet)

    f rata

  • 5.1.3. Menentukan Kekasaran Pipa ()

    Dilakukan perhitungan bilangan Re terlebih dahulu, untuk kemudian dengan menggunakan data f dan Re yang telah diperoleh, kekasaran pipa , dapat dicari den

    Diameter Pipa Q Kecepatan Bilangan faktor gesekan Kekasaran

    (in) (GPH) Aliran Reynolds rata-rata Pipa

    (ft/s) ( f ) ( )

    0.375 316.106 15.313 1422332 0.0023

    175.346 8.494 788968 0.0029 0.0026

    226.371 10.966 1018553 0.0026

    0.5 316.106 8.609 799656 0.0027

    175.346 4.776 443569 0.0021 0.0032

    226.371 6.165 572646 0.0048

    0.75 316.106 3.826 355403 0.0064

    175.346 2.122 197142 0.0088 0.0077

    226.371 2.740 254509 0.0077

  • 5.2. Grafik-grafik dari Hasil Perhitungan Tabel Pengamatan Pipa 1:

    Head Loss Pipa 1 (3/8 in) Q (GPH) L (ft) f 133.923 1.967 0.0065

    2.623 0.0164

    4.590 0.0120 375.393 1.967 0.0006

    2.623 0.0016

    4.590 0.0012 303.708 1.967 0.0013

    2.623 0.0031

    4.590 0.0022

    Grafik Koefisien Gesek Pipa 1:

    0.0000

    0.0050

    0.0100

    0.0150

    0.0200

    0.000 1.000 2.000 3.000 4.000 5.000Koe

    fisie

    n G

    esek

    (f)

    Panjang Pipa ( L [ ft ] )

    Grafik Koefisien Gesek Pipa 1 (d=3/8 in) Q = 133.923 GPH

    0.00000.00020.00040.00060.00080.00100.00120.00140.00160.0018

    0.000 1.000 2.000 3.000 4.000 5.000

    Koe

    fisie

    n G

    esek

    (f)

    Panjang Pipa ( L [ ft ] )

    Grafik Koefisien Gesek Pipa 1 (d=3/8 in) Q = 375.393 GPH

  • Tabel Pengamatan Pipa 2:

    Head Loss Pipa 2 (1/2 in) Q (GPH) L (ft) f 182.506 1.967 0.0176

    2.623 0.0384

    4.590 0.0601 438.365 1.967 0.0012

    2.623 0.0027

    4.590 0.0041 577.134 1.967 0.0031

    2.623 0.0034

    4.590 0.0050

    Grafik Koefisien Gesek Pipa 2:

    0.0000

    0.0010

    0.0020

    0.0030

    0.0040

    0.000 1.000 2.000 3.000 4.000 5.000Koe

    fisie

    n G

    esek

    (f)

    Panjang Pipa ( L [ ft ] )

    Grafik Koefisien Gesek Pipa 1 (d=3/8 in) Q = 303.708 GPH

    0.00000.01000.02000.03000.04000.05000.06000.0700

    0.000 1.000 2.000 3.000 4.000 5.000

    Koe

    fisie

    n G

    esek

    (f)

    Panjang Pipa ( L [ ft ] )

    Grafik Koefisien Gesek Pipa 2 (d=1/2 in) Q = 182.506 GPH

  • Tabel Pengamatan Pipa 3:

    Head Loss Pipa 3 (3/4 in) Q (GPH) L (ft) f 335.762 1.967 0.0324

    2.623 0.0304

    4.590 0.0417 435.432 1.967 0.0062

    2.623 0.0015

    4.590 0.0040 503.643 1.967 0.0063

    2.623 0.0012

    4.590 0.0034

    0.00000.00050.00100.00150.00200.00250.00300.00350.00400.0045

    0.000 1.000 2.000 3.000 4.000 5.000

    Koe

    fisie

    n G

    esek

    (f)

    Panjang Pipa ( L [ ft ] )

    Grafik Koefisien Gesek Pipa 2 (d=1/2 in) Q = 438.365 GPH

    0.00000.00100.00200.00300.00400.00500.0060

    0.000 1.000 2.000 3.000 4.000 5.000

    Koe

    fisie

    n G

    esek

    (f)

    Panjang Pipa ( L [ ft ] )

    Grafik Koefisien Gesek Pipa 2 (d=1/2 in) Q = 577.134 GPH

  • Grafik Koefisien Gesek Pipa 3:

    0.00000.00500.01000.01500.02000.02500.03000.03500.04000.0450

    0.000 1.000 2.000 3.000 4.000 5.000

    Koe

    fisie

    n G

    esek

    (f)

    Panjang Pipa ( L [ ft ] )

    Grafik Koefisien Gesek Pipa 3 (d=3/4 in) Q = 335.762 GPH

    0.00000.00100.00200.00300.00400.00500.00600.0070

    0.000 1.000 2.000 3.000 4.000 5.000

    Koe

    fisie

    n G

    esek

    (f)

    Panjang Pipa ( L [ ft ] )

    Grafik Koefisien Gesek Pipa 3 (d=3/4 in) Q = 435.432 GPH

    0.00000.00100.00200.00300.00400.00500.00600.0070

    0.000 1.000 2.000 3.000 4.000 5.000

    Koe

    fisie

    n G

    esek

    (f)

    Panjang Pipa ( L [ ft ] )

    Grafik Koefisien Gesek Pipa 3 (d= 3/4 in) Q = 503.643 GPH

  • Tabel harga f untuk setiap pipa

    Diameter Pipa Q Kecepatan Bilangan faktor gesekan f rata-rata (in) (GPH) Aliran Reynolds rata-rata tiap pipa

    (ft/s) ( f ) (f) 0.375 133.923 6.522 605812 0.0116

    375.393 18.185 1689079 0.0011 0.0050 303.708 14.712 1366532 0.0022

    0.5 182.506 3.647 338782 0.0387 438.365 10.224 949625 0.0027 0.0151 577.134 8.272 768285 0.0038

    0.75 335.762 1.621 150570 0.0348 432.432 4.544 422056 0.0039 0.0141 503.643 3.676 341460 0.0036

    y = 0.0508x + 0.0009

    y = 0.007x - 0.0012

    y = 0.0032x + 0.0015

    0.00000.00500.01000.01500.02000.02500.03000.03500.04000.0450

    0.000 0.200 0.400 0.600 0.800

    Koe

    fisie

    n G

    esek

    ( f )

    Diameter Pipa [in]

    Grafik ( f VS D)

    Q = 335,762 GPH Q = 365,012 GPH

  • 5.3. Analisis: Beberapa hal yang kami temukan dari percobaan ini:

    1. Bilangan Reynolds yang didapat untuk setiap pipa pada 3 debit yang berbeda nilainya di atas 4000 (Re >> 4000). Ini menunjukkan bahwa aliran yang terjadi merupakan aliran turbulen.

    2. Pengukuran koefisien gesek pipa pada setiap pipa, jika dipetakan terhadap L, menunjukkan tren kurva yang relatif sama untuk setiap pipa dengan tiga debit yang berbeda. Hal ini berarti faktor gesekan rata-rata yang didapat menunjukkan nilai yang mewakili faktor gesekan dari pipa itu.

    3. Faktor gesekan rata rata untuk pipa berdiameter 0.375 in. lebih kecil dibandingkan pipa berdiameter 0.75 in. , dan pipa berdiameter 0.5 in. memiliki faktor gesekan rata-rata terbesar.

    4. Pada diagram Moody, hanya debit terkecil yang bisa dicari harga f untuk tiap pipa melalui diagram tersebut, sedangkan untuk debit yang lebih besar angkanya tidak tertulis di diagram karena sangat kecil.

    5. Dari diagram Moody, harga untuk pipa 1 adalah lebih kecil dari 10-6 , untuk pipa 2 dan 3 adalah 0.007.

  • 6. Simpulan dan Saran

    6.1. Simpulan 1. Karena aliran yang terjadi pada sistem merupakan aliran turbulen, maka sifat-sifat aliran

    tersebut menjadi sulit diprediksi. 2. Melalui berbagai perhitungan, nilai dari bilangan Reynolds untuk semua aliran berada di

    atas 4000. Sedangkan nilai friction factornya berkisar antara 0.001 hingga 0.06, bergantung pada debit aliran, panjang pipa, dan diameter pipa.

    3. Head loss sistem aliran fluida dapat ditentukan dengan menggunakan diagram Moody sebagai acuan. Namun, diagram tersebut memiliki beberapa keterbatasan sehingga head loss dalam beberapa kasus (misal untuk debit yang cukup besar) tidak dapat diketahui atau sulit didapatkan.

    6.2. Saran 1. Sebaiknya perawatan mesin dilakukan dengan lebih sering dan lebih baik sehingga

    mengurangi kemungkinan kerusakan mesin dan kesalahan pengambilan data. 2. Sebaiknya praktikum juga dilakukan untuk aliran laminar sehingga karakteristik kedua

    jenis aliran dapat dibandingkan.

  • Daftar Pustaka

    Munson, Bruce R. & Young, Donald F. 2009. Fundamentals of Fluid Mechanics. 6th ed. USA: John Wiley & Sons, Inc.

    Nurprasetio, Ignatius Pulung, dan Tandian, Nathanael Panagung. Panduan Praktikum Fenomena Dasar Mesin. 2008. Bandung: ITB.

    1. Tujuan Praktikum2. Landasan Teori2.1. Penjelasan Umum2.2. Head Loss2.3. Pengukuran Laju Aliran

    3. Prosedur Praktikum4. DATA PENGAMATAN4.1. Data Instalasi4.2. Data Hasil Pengamatan

    5. PERHITUNGAN DAN ANALISIS5.1. Perhitungan5.1.2. Menentukan koefisien gesek pipa (f)5.1.3. Menentukan Kekasaran Pipa (()

    5.2. Grafik-grafik dari Hasil Perhitungan5.3. Analisis:

    6. Simpulan dan Saran6.1. Simpulan6.2. Saran