Kon Duk to Metri

76
Konduktometri Published November 15, 2011 by hannanahan pada postingan kali ini aku mau ngebahas tentang salah satu teknik analisis dalam analisis elektrokimia yaitu Konduktometri Konduktometri adalah metode analisis yang menggunakan dua elektroda inert (platinum yang terplatinasi) untuk mengukur konduktansi/daya hantar larutan elektrolit antara kedua elektroda tersebut. Biasanya digunakan arus bolak balik dan alat penyeimbang jembatan Wheatstone. Dalam bagian ini akan dibicarakan sifat-sifat listrik suatu larutan yang tidak tergantung pada reaksi elektrodanya. Menurut hokum Ohm: I = E/R Dimana: I = arus (ampere) E = tegangan (volt) R = tahanan (ohm) Hukum diatas berlaku bila difusi dan reaksi elektroda tidak terjadi. Konduktansi didefinisikan sebagai kebalikan dari tahanan sehingga I = EL. Satuan dari hantaran (konduktansi) adalah mho. Hantaran L suatu larutan berbanding lurus dengan luas permukaan elektroda (a), konsentrasi ion per satuan volume (Ci), pada hantaran ekuivalen ionic (λi) tetapi berbanding terbalik dengan jarak elektroda (d) sehingga : L = a/d × Σi Ci λi Tanda Σ menyatakan bahwa sumbangan berbagai ion terhadap konduktansi sifatnya aditif. Karena a dan d dalam satuan cm maka konsentrasi C satuannya dalam mL. bila konsentrasinya dinyatakan dalam satuan Normalitas maka harus dikalikan faktor 1000. Nilai a/d = θ merupakan faktor geometri selnya dengan nilai konstan untuk suatu sel tertentu sehingga disebut tetapan sel, seperti :

description

strategi

Transcript of Kon Duk to Metri

Page 1: Kon Duk to Metri

KonduktometriPublished November 15, 2011 by hannanahan

pada postingan kali ini aku mau ngebahas tentang salah satu teknik analisis dalam analisis elektrokimia yaitu Konduktometri

Konduktometri adalah metode analisis yang menggunakan dua elektroda inert (platinum yang terplatinasi) untuk mengukur konduktansi/daya hantar larutan elektrolit antara kedua elektroda tersebut. Biasanya digunakan arus bolak balik dan alat penyeimbang jembatan Wheatstone.

Dalam bagian ini akan dibicarakan sifat-sifat listrik suatu larutan yang tidak tergantung pada reaksi elektrodanya. Menurut hokum Ohm:

I = E/R

Dimana: I = arus (ampere)

E = tegangan (volt)

R = tahanan (ohm)

Hukum diatas berlaku bila difusi dan reaksi elektroda tidak terjadi. Konduktansi didefinisikan sebagai kebalikan dari tahanan sehingga I = EL. Satuan dari hantaran (konduktansi) adalah mho. Hantaran L suatu larutan berbanding lurus dengan luas permukaan elektroda (a), konsentrasi ion per satuan volume (Ci), pada hantaran ekuivalen ionic (λi) tetapi berbanding terbalik dengan jarak elektroda (d) sehingga :

L = a/d × Σi Ci λi

Tanda Σ menyatakan bahwa sumbangan berbagai ion terhadap konduktansi sifatnya aditif. Karena a dan d dalam satuan cm maka konsentrasi C satuannya dalam mL. bila konsentrasinya dinyatakan dalam satuan Normalitas maka harus dikalikan faktor 1000. Nilai a/d = θ merupakan faktor geometri selnya dengan nilai konstan untuk suatu sel tertentu sehingga disebut tetapan sel, seperti :

L = Σi Ci λi / 1000 θ = Σi Ci λi a / 1000 d

Selain hantaran ekuivalen ionik, dikenal pula ekuivalen hantaran A, yang nilainya = Σλt, sedangkan konduktivitas spesifik didefinisikan sebagai :

K = L (a/d) = Lθ

Tetapan sel dapat ditentukan dengan cara eksperimental dengan persamaan tersebut dimana pengukuran hantaran dilakukan pada larutan yang diketahui hantaran spesifiknya. Pada umumnya KCL digunakan sebagai larutan pembanding. Nilai konduktansi spesifik (K) pada 20⁰C pada konsentrasi berbeda-beda ialah

Page 2: Kon Duk to Metri

71,13 g/kg = 0,11134 mho/cm

7,414 g/kg = 0,01265 mho/cm

0,749 g/kg = 0,00140 mho/cm

Hantaran elektronik merupakan besaran yang tergantung pada temperatur, berarti pengukuran harus dilakukan pada temperatur yang tetap. Biasanya semua pengukuran dibuat pada 25⁰C, λ tergantung pada konsentrasi ionik suatu larutan dan bertambah besar dengan adanya pengenceran.

Analisis analitik

Pengukuran-pengukuran hantaran biasanya dilakukan pada larutan berair (H2O adalah penghantar buruk, LH2O = 5 × 10-8 mho/cm pada 25⁰C). Pada konsentrasi tinggi, kenaikan konsentrasi menyebabkan naiknya hantaran secara linier. Ini akan mencapai maksimum, untuk selanjutnya menurun. Contoh aplikasinya, misalkan pada analisis kandungan NO2 : H2O dalam HNO3 pekat hantaran diukur pada HNO3 sebelum dan sesudah pengolahan dengan KNO3. Air alam serta air pendingin dalam industry juga umumnya ditentukan hantarannya dengan KNO3. Ini merupakan prosedur yang cepat dan baik untuk melakukan analisis air. Dan juga bermanfaat untuk penentuan NH3 dalam materi biologis, dimana NH3 dikeluarkan kemudian ditampung dalam H3BO3 kemudian hantaran spesifiknya diukur. Ini juga digunakan untuk menentukan ion-ion spesifik pada lingkungan ion-ion lain yang mudah diendapkan, sedangkan ion spesifik itu sendiri larutannya kecil. Nilai K ditentukan sebelum dan sesudah penambahan pereaksi pengendap.

Pengunaan alat konduktometer di laboratorium yaitu untuk mengukur daya hantar larutan zat elektrolit baik secara langsung, seperti pengukuran daya hantar larutan sampel air atau air limbah, sampel makanan/minuman atau obat-obatan atau digunakan di laboratorium pada proses titrasi netralisasi, titrasi pengendapan bahkan dapat juga digunakan untuk menentukan kelarutan dan hasil kali kelarutan (K dan Ksp) suatu larutan elektrolit yang sulit larut. Pada titrasi secara konduktometri akan terjadi perubahan ion ataupun jumlah ion yang mengakibatkan perubahan hantaran larutan selama titrasi tersebut.

cuma segitu aja pembahasan tentang konduktometri

next post insya allah aku bakal ngebahas tentang teknik analisis yang lain

semoga bermanfaat bagi yang udah baca ..

thanks for read !!

anakmuda

Page 3: Kon Duk to Metri

Sabtu, 24 Desember 2011

KONDUKTOMETRI

TUJUAN

Menentukan titik ekivalen dari titrasi dengan cara mengukur daya hantar listrik suatu larutan

elektrolit.

Untuk mengetahui hubungan antara penambahan pentiter terhadap daya hantar listrik secara

konduktometri.

Mengetahui cara menghitung konsentrasi larutan Cx berdasarkan kurva larutan standar.

TEORI DASAR

Prinsip kerja dari konduktometri ini adalah sel hantaran dicelupkan kedalam

larutan ion positif dan negative yang ada dalam larutan menuju sel hantaran

menghasilkan sinyal listrik berupa hambatan listrik larutan. Hambatan listrik

dikonversikan oleh alat menjadi hantaran listrik larutan.

Konduktometri adalah suatu metoda analisi yang berdasarkan kepada pengukuran

daya hantar listrik yang dihasilkan oleh sepasang elektroda inert yang mempunyai luas

penampang (A) dan jarak tertentu (d). Daya hantar listrik tersebut merupakan fungsi

konsentrasi dari larutan elektrolit yang di ukur. Daya hantar listrik berhubungan dengan

pergerakan suatu ion di dalam larutan ion yang mudah bergerak mempunyai daya hantar

listrik yang besar.

Daya hantar listrik (G) merupakan kebalikan dari tahanan (R), sehingga daya hantar

listrik mempunyai satuan ohm-1 . Bila arus listrik dialirkan dalam suatu larutan mempunyai

dua elektroda, maka daya hantar listrik (G) berbanding lurus dengan luas permukaan

elektroda (A) dan berbanding terbalik dengan jarak kedua elektroda (l).

G = l/R = k (A / l)

dimana k adalah daya hantar jenis dalam satuan ohm -1 cm -1

Daya Hantar Ekivalen (Equivalen Conductance)

Kemampuan suatu zat terlarut untuk menghantarkan arus listrik disebut daya hantar

ekivalen (^) yang didefinisikan sebagai daya hantar satu gram ekivalen zat terlarut di antara

dua elektroda dengan jarak kedua electroda 1cm. Yang dimaksud dengan berat ekuivalen

adalah berat molekul dibagi jumlah muatan positif atau negatif. Contoh berat ekivalen BaCl2

Page 4: Kon Duk to Metri

adalah BM BaCl2 dibagi dua. Volume larutan (cm3) yang mengandung satu gram ekivalen

zat terlarut diberikan oleh,

V = 100 / C

dengan C adalah konsentrasi (ekivalen per cm-3), bilangan 1000 menunjukkan 1 liter = 1000

cm3. Volume dapat juga dinyatakan sebagai hasil kali luas (A) dan jarak kedua elektroda (1).

V= l A

Dengan l sama dengan 1 cm ,

V = A = 100 / C

Substitusi persamaan ini ke dalam persamaan G diperoleh,

G = 1/R = 1000k/C

Daya hantar ekivalen (^) akan sama dengan daya hantar listrik (G) bila 1 gram ekivalen

larutan terdapat di antara dua elektroda dengan jarak 1 cm.

^ = 1000k/C

Daya hantar ekivalen pada larutan encer diberi simbol yang harganya tertentu untuk setiap

ion.

Pengukuran Daya Hantar Listrik

Pengukuran daya hantar memerlukan sumber listrik, sel untuk menyimpan larutan dan

jembatan (rangkaian elektronik) untuk mengukur tahanan larutan.

1. Sumber listrik

Hantaran arus DC (misal arus yang berasal dari batrei) melalui larutan merupakan

proses faradai, yaitu oksidasi dan reduksi terjadi pada kedua elektroda. Sedangkan arus AC

tidak memerlukan reaksi elektro kimia pada elektroda- elektrodanya, dalam hal ini aliran arus

listrik bukan akibat proses faradai. Perubahan karena proses faradai dapat merubah sifat

listrik sel, maka pengukuran konduktometri didasarkan pada arus nonparaday atau arus AC.

2. Tahanan Jembatan

Jembatan Wheatstone merupakan jenis alat yang digunakan untuk pengukuran daya

hantar.

3. Sel

Page 5: Kon Duk to Metri

Salah satu bagian konduktometer adalah sel yang terdiri dari sepasang elektroda yang

terbuat dari bahan yang sama. Biasanya elektroda berupa logam yang dilapisi logam platina

untuk menambah efektifitas permukaan elektroda.

PROSEDUR KERJA

Alat

Seperangkat alat konduktometer : mengukur DHL dari larutan

Buret : sebagai tempat zat, baik yang digunakan sebagai sampel atau penitar

Labu ukur : membuat larutan sampel dan Cx dengan volume yang teliti

Gelas piala : wadah larutan sampel atau cx pada saat pengukuran DHL

Pipet tetes: untuk memipet aquades pada saat menepatkan larutan

Pipet takar : untuk memipet zat

Bahan

Asam sulfat (H2SO4) 0,1 N : sebagai sampel

Natrium hidroksida (NaOH) 0,1N : sebagai larutan penitar

Aquadest: sebagai penetral konduktometer, mengencerkan larutan dan membilas alat.\

Cara kerja

Pengukuran Daya Hantar Listrik

Pasang dengan peralatan konduktometer dan celupkan system elektroda ini pada larutan akuades.

Hidupka alat dengan memutar tombol function dari posisi off ke line. Biarkan alat stabil selama

lebih kurang 5 menit.

Minimumkan tombol sensitivity amati indicator alat, atur range selector sampai didapatkan posisi

paling jarak terjauh pada bayangan system indicator.

Sensitivity dimaksimumkan lalu atur tombol drive sedemikian rupa sampai didapat posisi

maksimum pengamatan bayangan pada system indicator.

Baca dan catat nilai skala yang ditunjukkan. Nilai DHL merupakan nilai skala dikalikan dengan

nilai factor pada range yang terpilih.

Siapkan dengan memipet 10 mL H2SO4 masukkan kedalam beker gelas, tambahkan akuades

sampai volumenya menjadi 50 mL.

Page 6: Kon Duk to Metri

Celupkan elektroda dan lakukan titrasi dengan NaOH 0,1 N dengan tahapan penambahan pentiter

tiap 0,5 mL sampai didapatkan kenaikan nilai DHL, dalam hal ini dibutuhkan minimal 5 data

kenaikan sebelum titrasi dihentikan.

Daya hantar terkoreksi didapat dengan memasukkan factor pengenceran pada tiap tahapan titrasi

yakni :

DHL terkoreksi = DHL terbaca x V0 + y / V0

Buat kurva titrasi antara DHL terkoreksi Vs volume pentiter. Didapatkan dua pola garis

percobaan DHL sebelum dan sesudah titik ekivalensi dimana garis ini akan berpotongan pada

satu titik, titik inilah merupakan titik ekivalensi titrasi.

Lakukan hal yang sama dengan larutan Asam Sulfat dan selanjutnya larutan tugas Cx yang

diberikan.

Skema kerja NaOH

Ukur DHL (daya hantar listrik) sampai dicapai angka optimum dengan

konduktometer

Page 7: Kon Duk to Metri

Sampel Asam Sulfat

Larutan Cx

HASIL PENGAMATAN

Tabel. Hasil pengamatan untuk sampel dan Cx

Volume

NaOH DHL (Sampel) DHL (Cx)

0.5 18.78 14.2

1 18.43 13.5

1.5 17.29 12.5

2 16.78 11.6

2.5 16.21 10.9

3 15.32 9.8

3.5 14.51 9.1

4 13.9 8.2

4.5 13.06 8

5 12.29 6.7

5.5 11.66 5.9

6 10.78 5.1

6.5 10.16 4.7

7 9.45 5.1

7.5 8.75 5.6

8 8.08 6.3

8.5 7.42 7

9 6.84 7.7

9.5 7.03

Page 8: Kon Duk to Metri

10 7.6

10.5 8.16

11 8.71

11.5 9.27

Kurva Titrasi Sampel

Konsentrasi asam sulfat :

Vas.sulfat . Nas.sulfat = VNaOH . NNaOH

10 mL x N = 9 mL x 0,1

N = 0,9 : 10

Nas.sulfat = 0,09N

Kurva Titrasi Cx

Volume Asam sulfat :

Vas.sulfat . Nas.sulfat = VNaOH . NNaOH

V x 0,09 = 6,5 mL x 0,1

V = 0,65 : 0,09

Vas.sulfat = 7,222 mL

PEMBAHASAN

Page 9: Kon Duk to Metri

Pada praktikum kali ini yaitu uji daya hantar listrik suatu larutan dengan

metode konduktometri, digunakan larutan asam sulfat sebagai sampel yang akan

diukur dan natrium hidroksida sebagai pentitarnya. Perlakuannya adalah larutan

asam sulfat dipipet 10 mL ke Erlenmeyer, kemudian dititar dengan NaOH 0,1 N.

Volume NaOH pertama 0,5 N, lalu ukur DHL asam sulfat tersebut. Setelah itu

tambahkan NaOH lagi sebanyak 0,5 mL, lalu ukur DHL, begitu seterusnya. Dengan

catatan, penambahan NaOH harus rangenya 0,5 mL sampai didapatkan titik akhir

yang ditandai dengan naiknya angka DHL setelah turun. Data yang didapatkan

harus dibuat dalam bentuk grafik supaya titik akhir bisa dibaca dan diketahui.

Asam sulfat yang digunakan belum diketahui konsentrasinya, maka perlu dihitung

dengan menggunakan rumus (V.N)1 = (V.N)2. Setelah didapatkan nilai konsentrasi dari asam

sulfat maka ditentukan nilai Cx dari analis. Konsentrasi asam sulfat yang digunakan setelah

dilakukan perhitungan adalah 0,09 N. Dan nilai untuk Cx yaitu berapa volume asam sulfat

yang dipakai dapat diketahui setelah didapatkan nilai konsentrasinya. Volume asam sulfat

yang digunakan untuk Cx adalah 7,222 mL.

KESIMPULAN

Dari hasil pengamatan dan pembahasan diatas, dapat disimpulkan bahwa :

Titik ekivalen untuk sampel adalah pada penambahan NaOH 9 mL, sedangkan titik ekivalen

untuk Cx adalah pada penambahan NaOH 6,5 mL.

Konsentrasi asam sulfat yang didapatkan adalah 0,09 N

Konduktometri digunakan untuk mengukur daya hantar listrik suatu larutan dengan metode titrasi

dan diukur dengan konduktometer.

DAFTAR PUSTAKA

Hafnimardiyanti dan Martalius.2011.Modul praktikum instrument analisis II. ATIP:Padang

http://masykuri.staff.fkip.uns.ac.id/files/2010/01/konduktometri.pdf. diakses pada tanggal 14

Januari 2011

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Page 10: Kon Duk to Metri

Pengembangan teknik analisis kimia terus dikembangkan menjadi lebih canggih dan

minimalis ukurannya. Tidak hanya pengembangan metode potensiometri yang dimulai dengan

pengembangan elektoda yang digunakan. Analisis suatu sampel larutan dapat juga didasarkan pada

kemampuan suatu ion untuk menghantarkan muatan listrik di antara kedua elektroda. Teknik

tersebut dikenal sebagai konduktometri. Teknik ini menggunakan dua elektroda yang bersifat inert.

Pengukuran pada teknik ini berbeda dengan potensiometri. Potensiometri mengukur potensial

antara dua elektroda sedangkan konduktometri mengukur konduktansi elektrolit antara kedua

elektroda.

Salah satu teknik pengukuran konduktivitas suatu larutan yang akan dipraktikkan adalah

titrasi konduktometri. Hal ini dikarenakan pengukuran konduktovitas (hantaran) dapat digunakan

untuk penentuan titik ahir titrasi atau titik ekivalen titrasi. Larutan yang akan diukur konduktansinya

adalah penghantar listrik yang baik. Beberapa contoh titrasi konduktometri yang sering ditemui

adalah titrasi asam kuat basa kuat seperti larutan HCl dititrasi oleh NaOH.

1.2 Tujuan

- Melakukan analisis kuantitatif menggunakan teknik konduktometri.

- Menghitung konsentrasi dari suatu elektrolit dengan titrasi.

Page 11: Kon Duk to Metri

BAB 2. TINJAUAN PUSTAKA

2.1 Material Safety Data Sheet (MSDS)

2.1.1 HCl

HCl atau asam klorida merupakan golongan asam kuat. Asam ini memiliki massa molar 36,46

g/mol. Asam ini merupakan senyawa polar yang mudah larut dalam air. Wujudnya cair, tidak

berwarna, dan bau menyengat. Hal yang perlu diperhatikan adalah sifat korosifnya terhadap

jaringan tubuh dan beracun bila dikonsumsi. Asam klorida akan menimbulkan permasalahan pada

sistem pernapasan, mata, kulit, paru-paru. Jika terjadi kecelakaan pada penggunaannya cari

pertolongan medis profesional setelah tindakan pertolongan pertama dilakukan. Jika mengenai

mata segera siram mata dengan air berlebih selama 15 menit, mengangkat kelopak mata bawah dan

atas sesekali. Jika kontak dengan kulit maka segera siram kulit dengan air mengalir selama 15 menit

dan sesaat kemudian melepaskan pakaian yang terkontaminasi. Jika tertelan hubungi pihak medis

segera. Jangan memaksakan muntah. Bilas mulut dengan air dingin. Berikan korban 1-2 cangkir air

atau susu untuk diminum. Jika masuk ke saluran pernafasan pindahkan ke udara segar. Jika tidak

bernapas, berikan pernapasan buatan (Anonim, 2012).

2.1.2 NaOH

Natrium hidroksida (NaOH) yang biasa disebut dengan soda api atau soda kaustik

merupakan basa kuat. Natrium hidroksida akan membentuk larutan alkali yang kuat ketika

dilarutkan dalam air. Dalam bidang industri senyawa ini digunakan sebagai basa dalam proses

produksi bubur kayu, kertas, tekstil, air minum, sabun, maupun deterjen. NaOH mempunyai massa

molar 39,99 gram/mol dan berwujud kristal putih padat. Kristal NaOH bersifat mudah menyerap air

atau uap air dalam keadaan terbuka (higroskopis). Massa jenis NaOH adalah 2,1 gram/cm3 pada

wujud padat. Titik leleh dan titik didih dari natrium hidroksida berturut-turut adalah 318oC dan

1390oC. NaOH sangat larut dalam air hingga 111 gram/100 mL air pada suhu 20oC. Tingkat kebasaan

(pKb) dari senyawa ini adalah -2,43. Natrium hidroksida tersedia dalam bentuk pellet, serpihan,

butiran ataupun larutan jenuh 50 %. Senyawa ini bersifat lembab cair dan secara spontan menyerap

karbon dioksida dari udara bebas. Senyawa ini sangat larut dalam air dan akan melepaskan panas

ketika dilarutkan, dan senyawa ini juga larut dalam etanol dan methanol. Senyawa ini dapat

menyebabkan luka bakar pada mata yang memu ngkinkan menimbulkan kebutaan atau

menyebabkan kornea mata rusak. NaOH juga bisa menyebabkan luka bakar pada kulit. Ketika

Page 12: Kon Duk to Metri

tertelan senyawa ini dapat menyebabkan gangguan perncernaan. Natrium hidroksida juga

menyebabkan iritasi saluran pernapasan, susah bernafas, dan memungkinkan terjadinya koma. Jika

terkena kulit secara terus menerus dan jangka waktu lama dapat menyebabkan dermatitis.

Pertolongan yang seharusnya diberikan adalah segera membilas mata dan kulit dengan air bersih

selama kurang lebih 15 menit. Jika terkena pakaian segera dilepas dan diganti dengan pakaian yang

bersih. Jika tertelan berikan segelas air namun jangan berikan makanan lewat mulut sebelum ada

perintah dari petugas medis. Jika terhirup, korban dibawa ke udara terbuka dan jika tidak bernafas

maka diberikan oksigen untuk membantunya. Penyimpanannya seharusnya diletakkan pada tempat

yang tertutup agar tidak terkontaminasi dengan udara luar kemudian diletakkan pada tempat yang

sejuk dan kering (Anonim, 2012).

2.1.3 CH3COOH

Asam asetat merupakan salah satu asam karboksilat yang mudah ditemui. Asam ini memiliki

nama lain asam etanoat, asam asetat glasial, asam ethylic, asam methanecarboxylic, atau biasa

disebut asam cuka. Rumus molekul dari asam asetat ini adalah C2H4O2 atau biasa ditulis CH3COOH.

Asam asetat mempunyai titik lebur 16,7oC dan memiliki titik didih pada 118oC. Asam ini memiliki

massa jenis 1,05 gram/mL. Berbeda dengan massa jenis cairannya, massa jenis uap dari asam asetat

adalah 2,07 gram/L. Tekanan uap dari asam cuka adalah 11 mmHg pada suhu 20 oC, dan 30 mmHg

pada suhu 30oC. Asam asetat termasuk zat yang stabil. Zat yang harus dihindari termasuk alkohol,

aldehida, senyawa halogen-halogen, oksidasi agen, logam, hidroksida alkali, anhidrida, halida non-

logam, permanganates, peroksida, etanolamin, karbonat. Bahan ini sangat korosif dan menyebabkan

luka bakar yang serius. Sangat berbahaya jika tertelan. Jika dihirup, lepaskan ke udara segar. Jika

tidak bernapas, berikan pernapasan buatan. Jika sulit bernapas, berikan oksigen. Dapatkan medis

perhatian segera. Pertolongan Pertama, jika kontak mata maka periksa dan lepaskan lensa kontak.

Dalam kasus kontak, segera siram mata dengan banyak air sekurang-kurangnya 15 menit. Air dingin

dapat digunakan. Mendapatkan perhatian medis segera. Dalam kasus kontak kulit, segera siram kulit

dengan banyak air sekurang-kurangnya 15 menit saat mengeluarkan pakaian yang terkontaminasi

dan sepatu. Tutupi kulit yang teriritasi dengan bahan lunak. Cuci pakaian sebelum digunakan

kembali. Bersihkan sepatu sebelum digunakan kembali. Mendapatkan perhatian medis segera.

Perlindungan pribadi, keselamatan kacamata atau masker, sarung tangan nitril, ventilasi yang baik.

Penanganan dan Penyimpanan yang baik seharusnya adalah menjauhkan dari panas. Jauhkan dari

sumber penyulutan. Ground semua bahan peralatan yang berisi. Jangan menelan. Jangan menghirup

gas/ asap/ uap/ semprotan. Jangan pernah menambahkan air untuk produk ini. Dalam hal ventilasi

cukup, pakai cocok pernafasan peralatan. Jika tertelan, segera dapatkan saran medis dan tunjukkan

Page 13: Kon Duk to Metri

wadah atau label. Hindari kontak dengan kulit dan mata. Jauhkan dari bahan seperti agen oksidator,

reduktor, logam, asam, alkali. Asam asetat sebaiknya disimpan di kawasan terpisah dan disetujui.

Simpan wadah di tempat yang sejuk dan berventilasi baik. Jaga agar wadah tertutup rapat dan

disegel sampai siap untuk digunakan. Hindari semua kemungkinan sumber api (Anonim, 2012).

2.1.4 NH3

Amonia adalah senyawa kimia dengan rumus N H 3. Biasanya senyawa ini didapati berupa gas

dengan bau tajam yang khas (disebut bau amonia). Walaupun amonia memiliki sumbangan penting

bagi keberadaan nutrisi di bumi, amonia sendiri adalah senyawa kaustik dan dapat merusak

kesehatan. Kontak dengan gas amonia berkonsentrasi tinggi dapat menyebabkan kerusakan paru-

paru dan bahkan kematian. Sekalipun amonia di Amerika diatur sebagai gas tak mudah terbakar,

amonia masih digolongkan sebagai bahan beracun jika terhirup. Amonia yang digunakan secara

komersial dinamakan amonia anhidrat. Istilah ini menunjukkan tidak adanya air pada bahan

tersebut. Karena amonia mendidih di suhu -33 °C, cairan amonia harus disimpan dalam tekanan

tinggi atau temperatur amat rendah. Amonia umumnya bersifat basa (pKb=4.75), namun dapat juga

bertindak sebagai asam yang amat lemah (pKa=9.25). Jika terkena kulit secara terus menerus dan

jangka waktu lama dapat menyebabkan dermatitis. Pertolongan yang seharusnya diberikan adalah

segera membilas mata dan kulit dengan air bersih selama kurang lebih 15 menit. Jika terkena

pakaian segera dilepas dan diganti dengan pakaian yang bersih. Jika tertelan berikan segelas air

namun jangan berikan makanan lewat mulut sebelum ada perintah dari petugas medis. Jika terhirup,

korban dibawa ke udara terbuka dan jika tidak bernafas maka diberikan oksigen untuk

membantunya. Penyimpanannya seharusnya diletakkan pada tempat yang tertutup agar tidak

terkontaminasi dengan udara luar kemudian diletakkan pada tempat yang sejuk dan kering (Anonim,

2012).

2.2 Titrasi Konduktometri

Metode elektroanalitik dapat diklasifikasikan sebagai berikut:

Potensiometri merupakan aplikasi langsung dari persamaan Nernst dengan cara pengukuran potensial

dua elektroda tidak terpolarisasi pada kondisi arus nol.

Voltametri dan polarografi merupakan metode penelaahan komposisi larutan elektrolit encer dengan

mengalurkan kurva arus-tegangan. Voltametri adalah nama umum, sedangkan polarografi khusus

mengacu pemakaian elektroda tetes merkuri. Pada amperometri kedua elektroda dapat

terpolarisasi.

Page 14: Kon Duk to Metri

Coulometri merupakan metode analisis yang meliputi pemakaian hukum elektrolisis Faraday.

Konduktometri merupakan metode yang menggunakan due elektroda inert dan konduktansi elektrolit

antara kedua elektroda ini diukur.

Oscillometri meruapak metode yang menggunakan sumber arus bolak-balik berfrekuensi tinggi,

perubahan konduktansi dan tetapan dialektrikum.

Kronopotensiometri merupakan metode menguunakan arus yang konstan dan diketahui dilewatkan

melalui larutan, potensial terbentuk antara dua elektroda dan larutan yang diamati sebagai fungsi

waktu.

Pemisahan dengan logam terkendali merupakan metode dengan bermacam spesies dapat dipisahkan

secara kuantitatif dengan oksidasi atau reduksi elektrolitik pada suatu elektroda dengan potensial

yang benar-benar terkendali (Khopkar, 1990: 336-337).

Metode konduktometeri dapat digunakan untuk mengikuti reaksi titrasi jika perbedaan antar

konduktansi cukup besar sebelum dan sesudah penambahan reagen. Tetapan sel harus diketahui.

Berarti selama pengukuran yang berturut– turut jarak elektrode harus tetap. Hantaran sebanding

dengan konsentrasi larutan pada temperature tetap, tetapi pengenceran akan menyebabkan

hantarannya tidak berfungsi secara linear lagi dengan konsentrasi. Titrasi asam lemah terhadap basa

lemah dapat dengan mudah dilaksanakan dengan cara konduktometri. Titrasi konduktometri sangat

berguna bila hantaran sebelum dan sesudah reaksi cukup banyak berbeda. Metode ini kurang

bermanfaat untuk larutan dengan konsentrasi ionik terlalu tinggi, misalkan titrasi Fe3+ dengan

KMnO4, dimana perubahan hantaran sebelum dan sesudah titik ekivalen terlalu kecil bila

dibandingkan dengan besarnya konduktansi total (Khopkar, 1990: 373-374).

Konduktivitas suatu larutan elektrolit, pada setiap temperatur hanya bergantung pada ion–

ion yang ada, dan konsentrasi ion–ion tersebut. Bila larutan suatu elektrolit diencerkan,

konduktivitas akan turun karena lebih sedikit ion berada per cm3 larutan untuk membawa arus. Jika

semua larutan itu ditaruh antara dua elektrode yang terpisah 1 cm satu sama lain dan cukup besar

untuk mencakup seluruh larutan, konduktivitas akan naik selagi larutan diencerkan. Ini sebagian

besar disebabkan oleh berkurangnya efek–efek antar ionik untuk elektrolit kuat dan oleh kenaikan

derajat disosiasi untuk elektrolit–elektrolit lemah. Hukum Ohm menyatakan bahwa arus I (ampere)

yang mengalir dalam sebuah penghantar, berbanding lurus dengan daya gerak listrik (daya

elektromotif), E (volt), dan berbanding terbalik dengan resistans (tahanan), R (ohm) dari penghantar.

I = E / R

Page 15: Kon Duk to Metri

Kebalikan dari resistans adalah konduktans (G) (hantaran), yang diukur dalam kebalikan ohm (ohm-1),

yang dalam satuan SI adalah konduktans dari satu meter kubik zat dan mempunyai satuan ohm -1 m-1,

tetapi jika ρ diukur dalam ohm cm, maka konduktivitas harus diukur dalam ohm -1 cm-1 (Hendayana,

1994: 721-722).

Penambahan suatu elektrolit kepada suatu larutan elektrolit lain pada kondisi-kondisi yang

tak menghasilkan perubahan volume yang berarti akan mempengaruhi konduktan (hantaran)

larutan, tergantung apakah ada atau tidak terjadi reaksi–reaksi ionik. Jika tidak terjadi reaksi ionik,

seperti pada penambahan satu garam sederhana kepada garam sederhana lain (misal, kalium klorida

kepada natrium nitrat), konduktans hanya akan naik semata-mata. Jika terjadi reaksi ionik,

konduktans dapat naik atau turun, begitulah pada penambahan suatu basa kepada suatu asam kuat,

hantaran turun disebabkan oleh penggantian ion hidrogen yang konduktivitasnya tinggi oleh kation

lain yang konduktivitasnya yang rendah. ini adalah prinsip yang mendasari titrasi konduktometri

yaitu, substitusi ion–ion dengan suatu konduktivitas oleh ion–ion dengan konduktivitas yang lain

(Hendayana, 1994: 723).

Titrasi konduktometri merupakan metode untuk menganalisa larutan berdasarkan

kemampuan ion dalam menghantarkan muatan listrik di antara dua elektroda. Pengukuran

konduktovitas (hantaran) dapat pula digunakan untuk penentuan titik ahir titrasi. Titrasi

konduktometri dapat dilakukan dengan dua cara, tergantung pada frekuensi arus yang digunakan

(Hiskia, 2001: 342).

Jika frekuensi arus bertambah cukup besar, maka pengaruh kapasitan dan induktif akan

makin besar. Adapun jenis titrasi tersebut adalah sebagai berikut:

1. Titrasi konduktometri yang dilakukan dengan frekuensi arus rendah (maksimum 300Hz).

Penambahan suatu elektolit ke elektrolit lain pada keadaan yang tidak ada perubahan volum yang

begitu besar akan mempengaruhi konduktovitas larutan terjadi reaksi ionik atau tidak. Jika tidak

terjadi reaksi ionic, maka perubahan konduktovitas sedikit sekali atau hampir tidak ada. Bila terjadi

reaksi ionik, maka perubahan konduktivitas yang relatif cukup besar sehingga dapat diamati, seperti

pada titrasi basa kuat oleh asam kuat. Dalam titrasi ini terjadi penurunan konduktivitas karena

terjadi penggantian ion hydrogen, yang mempunyai konduktovitas tinggi, dengan kation lain yang

mempunyai konduktovitas rendah. Pada titrasi penetralan, pengendapan dll, penentuan titik ahir

titrasi titrasi ditentukan berdasarkan perubahan koduktivitas (hantaran) dari reaksi kimia yang

terjadi. Hantaran di ukur pada setian penambahan sejumlah pereaksi dan titik pengukuran tersebut

bila dialurkan memberikan 2 garis lurus yang saling perpotongan dinamakan titik ekivalen titrasi.

Page 16: Kon Duk to Metri

Ketepatan metode ini bergantung pada sudut perpotongan dan kerapatan titik pengukuran. Secara

praktik konsentrasi penitran 20-100 kali lebih kali pekat dari larutan yang di titrasi. Kelebihan titrasi

ini, baik untuk asam yang sangat lemah seperti asam borat dan fenol yang secara potensiometri

tidak dapat di lakukan. Selain itu, titrasi konduktometri tidak diperlukan control suhu.

2. Titrasi yang dilakukan dengan menggunakan frekuensi arus tinggi disebut titrasi frekuensi tinggi.

Metode ini sesuai untuk sel yang terdiri atas sistem kimia yang dibuat bagian dari atau di pasangkan

dengan sirkuit osilator beresonasi pada frekuensi beberapa mega hertz. Keuntungan Keuntungan

cara ini antara lain elektroda di tempatkan di luar sel dan tidak langsung kontak dengan larutan uji.

Kerugiannya adalah respon tidak spesifik karena bergantung pada konduktovitas (hantaran) dan

tetapan di elektrik dari sistem (Hiskia, 2001: 348).

Titrasi konduktometri dapat digunakan untuk menentukan titik ekuivalen suatu titrasi,

berupa beberapa contoh titrasi konduktometri adalah titrasi asam kuat basa kuat sebagai contoh

larutan HCl dititrasi oleh NaOH. Kedua larutan ini adalah penghantar listrik yang baik. Kurva titrasi

ditunjukkan pada gambar di bawah ini:

Daya hantar H+ turun sampai titik ekuivalen tercapai. Dalam hal ini jumlah H+ makin berkurang di

dalam larutan, sedangkan daya hantar OH- berrtambah setelah titik ekuivalen (TE) tercapai karena

jumlah OH- di dalam larutan bertambah. Jumlah ion Cl- di dalam larutan tidak berubah, karena itu

daya hantar konstan dengan penambahan NaOH. Daya hantar ion Na+ bertambah secara perlahan-

lahan sesuai dengan jumlah ion Na+ (Svehla, 1990: 312).

Page 17: Kon Duk to Metri
Page 18: Kon Duk to Metri

BAB 3. METODOLOGI PERCOBAAN

3.1 Alat dan Bahan

3.1.1 Alat

- Konduktometer

- Sel konduktansi

- Stirrer magnet

- Buret dan statifnya

- Pipet

- Gelas beaker

3.1.2 Bahan

- HCl 0,01 N

- NaOH 0,01 N

- NH3 0,01 N

- CH3COOH 0,01 N

- KCl 0,01 N

3.2 Skema Kerja

Larutan Standar

Hasil

- Dimasukkan konduktivitas ke dalam 14 µS/cm larutan standar.

- Distabilkan hingga termistor mencapai termperatur seperti larutan standar.

- Diatur Cal sehingga terbaca 1413 untuk K=1 dan daerah pada 2 mS/cm.

- Dibilas dengan air dan dikocok sisanya.

Page 19: Kon Duk to Metri

- Dicocokkan pada daerah lain, jika akurasinya lebih dari 2% maka tidak diperlukan.

3.2.1

Kalibrasi Konduktometer

Page 20: Kon Duk to Metri

Larutan NaOH

Hasil

- Diencerkan larutan NaOH sampai 0,01 N.

- Dipipet 25 ml dalam beaker 100 mL dan diititrasi dengan larutan standar HCl 0,01 N yang

disediakan.

- Dibuat penambahan 0,5 mL dan digoyang- goyang.

- Dicatat konduktansi larutan setelah penambahan.

- Dihentikan paling tidak 2 mls melebihi titik.

- Ditentukan konsentrasi dengan menggambar kurva volume titran terhadap konduktansi

Page 21: Kon Duk to Metri

3.2.2

Titrasi 0,01 N NaOH dengan 0,01 N HCl

Larutan NH3

Hasil

Page 22: Kon Duk to Metri

- Diencerkan larutan NH3 sampai 0,01 N.

- Dipipet 25 ml dalam beaker 100 mL dan diititrasi dengan larutan standar HCl 0,01 N yang

disediakan.

- Dibuat penambahan 0,5 mL dan digoyang- goyang.

- Dicatat konduktansi larutan setelah penambahan.

- Dihentikan paling tidak 2 mls melebihi titik.

- Ditentukan konsentrasi dengan menggambar kurva volume titran terhadap konduktansi

3.2.3

Titrasi 0,01 N NH3 dengan 0,01 N HCl

Page 23: Kon Duk to Metri
Page 24: Kon Duk to Metri

Larutan CH3COOH

Hasil

- Diencerkan larutan CH3COOH sampai 0,01 N.

- Dipipet 25 ml dalam beaker 100 mL dan diititrasi dengan larutan standar NH3 0,01 N yang

disediakan.

- Dibuat penambahan 0,5 mL dan digoyang- goyang.

- Dicatat konduktansi larutan setelah penambahan.

- Dihentikan paling tidak 2 mls melebihi titik.

- Ditentukan konsentrasi dengan menggambar kurva volume titran terhadap konduktansi

3.2.4

Titrasi 0,01 N CH3COOH dengan 0,01 N NH3

Page 25: Kon Duk to Metri
Page 26: Kon Duk to Metri

BAB 4. HASIL DAN PEMBAHASAN

4.1 Hasil

4.1.1 Titrasi HCl dan NaOH

Volume HCl (mL) Konduktansi (µs)

0,5 1999

1,0 1981

1,5 1881

2,0 1831

2,5 1721

3,0 1656

3,5 1599

4,0 1536

4,5 1462

5,0 1431

5,5 1362

6,0 1325

6,5 1272

4.1.2 Titrasi HCl dan NH3

Volume HCl (mL) Konduktansi (µs)

0,5 178

1,0 224

1,5 240

Page 27: Kon Duk to Metri

2,0 255

2,5 274

3,0 334

3,5 346

4,0 371

4,5 425

5,0 437

5,5 448

6,0 477

6,5 488

4.1.3 Titrasi CH3COOH dan NH3

Volume NH3 (mL) Konduktansi (µs)

0,5 147

1,0 184

1,5 177

2,0 196

2,5 199

3,0 208

3,5 222

4,0 222

Page 28: Kon Duk to Metri

4,5 241

5,0 233

5,5 240

6,0 251

6,5 253

4.2 Pembahasan

Konduktometri termasuk salah satu metode elektroanalitik yang berdasarkan pada

konduktansi atau daya hantar listrik suatu elektrolit menggunakan elektroda. Titrasi konduktometri

merupakan metode untuk menganalisa larutan berdasarkan kemampuan ion dalam menghantarkan

muatan listrik di antara dua elektroda melalui tindakan titrasi. Pengukuran konduktovitas dapat pula

digunakan untuk penentuan titik ahir titrasi. Titrasi konduktometri dapat dilakukan dengan dua cara,

tergantung pada frekuensi arus yang digunakan. Titrasi konduktometri arus rendah dan titrasi

konduktometri arus tinggi. Pada titrasi konduktometri arus rendah, frekuensi maksimalnya 300 Hz

penambahan suatu elektolit ke elektrolit lain pada keadaan yang tidak ada perubahan volume yang

begitu besar akan mempengaruhi konduktovitas larutan terjadi reaksi ionik atau tidak. Jika tidak

terjadi reaksi ionik, maka perubahan konduktovitas sedikit sekali atau hampir tidak ada. Sedangkan

pada titrasi arus tinggi frekuensinya hingga mega hertz. Prinsip dasar dari metode ini adalah

substitusi ion-ion dengan suatu konduktivitas tertentu oleh ion-ion dengan konduktivitas yang lain.

Titrasi konduktometri tidak memerlukan indikator, hal ini dikarenakan titik ekivalen dapat

diamati dengan mudah melalui grafik antara volume titran yang ditambahkan dan besarnya

konduktansi suatu larutan hasil titrasi tersebut. Titrasi konduktometri dapat dilakukan jika larutan-

larutan yang akan digunakan dapat membentuk suatu larutan elektrolit. Larutan elektrolit tersebut

dapat menghantarkan arus listrik atau aliran elektron sehingga mempunyai daya hantar. Larutan

elektrolit biasanya merupakan garam karena dalam air dapat mengion dan menghantarkan arus

listrik. Titrasi konduktometri juga dapat dilakukan terhadap asam lemah dan basa lemah, asam kuat

dan basa kuat, maupun asam kuat dengan basa lemah seperti yang dipraktikumkan kali ini. Titrasi

konduktometri ini tidak dapat dilakukan pada larutan non elektrolit atau larutan yang tidak dapat

menghasilkan ion-ion dalam air.

Page 29: Kon Duk to Metri

Titrasi konduktometri ini akan dipengaruhi oleh faktor suhu dan konsentrasi. Suatu ion

dalam sebuah larutan akan bergerak bebas. Ketika dipanaskan atau diberikan kenaikan suhu maka

gerakan dari ion-ion dalam larutan akan semakin acak sehingga kemampuan untuk menghantarkan

elektron atau listrik akan semakin meningkat. Hal ini berati konduktansinya meningkat. Begitu

sebaliknya jika suhu diturunkan. Semakin besar konsentrasi maka semakin banyak jumlah ion-ion

yang berada dalam larutan akibatnya kemungkinan menghantarkan listrik akan semakin meningkat.

Ketika konsentrasi diturunkan maka jumlah ion dalam satuan volum pelarut akan menurun sehingga

konduktansi akan menurun juga. Muatan ion juga mempengaruhi, misalnya ion A2- akan lebih mudah

menghantarkan listrik dibandingkan A-. Pergerakan ion dalam larutan selain pengaruh suhu juga

mempengaruhi konduktansi, di antarnya penggunaan pelarut air yang berlebih menyebabkan

pergerakan ion lambat, viskositas yang terlalu besar juga menyebabkan ion menjadi lebih lambat.

Pergerakan ion yang lambat akan menurunkan konduktansi.

Titrasi konduktometri dilakukan dengan menggunakan alat konduktometer untuk

mempermudah dalam pengukuran konduktansi suatu larutan. Prinsip kerja konduktometer adalah

bagian konduktor (elektroda) dimasukkan ke dalam larutan akan menerima rangsang dari suatu ion-

ion yang menyentuh permukaan konduktor, lalu hasilnya akan diproses dan sebagai outputnya

berupa angka konduktansi. Semakin banyak konsentrasi suatu ion dalam larutan maka semakin

besar nilai daya hantarnya karena semakin banyak ion-ion dari larutan yang menyentuh konduktor

dan semakin tinggi suhu suatu larutan maka semakin besar nilai daya hantarnya, hal ini karena saat

suatu partikel berada pada lingkungan yang suhunya semakin bertambah maka pertikel tersebut

secara tidak lansung akan mendapat tambahan energi dari luar dan dari sinilah energi kinetik yang

dimiliki suatu partikel semakin tinggi (gerakan molekil semakin cepat).

Penambahan titran dalam praktikum dilakukan secara bertahap menggunakan buret. Setiap

penambahan 0,5 mL titran dilakukan pencatatan konduktansi larutan tersebut. Hal ini dimaksudkan

untuk memudahkan dalam pembuatan grafik titrasi. Setelah penambahan titran larutan

dihomogenkan menggunakan stirer magnetik. Hal tersebut selain memudahkan praktikan dalam

menggoyang gelas kimia juga mempercepat terjadinya reaksi pada larutan sehingga semua titran

yang ditambahkan benar-benar sudah bereaksi dan konduktansinya yang terukur sudah

representatif atau mewakili konduktansi disetiap bagian larutan. Selanjutnya elektroda dari

konduktometer dicelupkan ke dalam larutan dan terukur konduktansinya. Elektroda tersebut

dibersihkan dengan akuades dari sisa larutan pada pengukuran sebelumnya kemudian dikalibrasi

dengan larutan KCl hingga menunjukkan konduktansi 1413 µs agar konduktansi yang terukur dari

larutan adalah tepat.

Page 30: Kon Duk to Metri

Titrasi yang pertama adalah titrasi asam kuat dengan basa kuat antara HCl dan NaOH. Reaksi

yang terjadi dalam titrasi ini adalah

HCl (aq) + NaOH (aq) NaCl (aq) + H2O (l)

Konduktansi larutan awalnya 1999 µs kemudian menurun terus setelah ditambahkan HCl. Jika

diplotkan antara penambahan HCl dan konduktansi adalah sebagai berikut

Percobaan yang sudah dilakukan yaitu larutan NaOH dititrasi dengan HCl. Kurva titrasinya

ditunjukkan pada grafik di atas. Pada literatur ditunjukkan daya hantar H+ turun sampai titik ekivalen

tercapai. Dalam hal ini jumlah H+ makin berkurang di dalam larutan, sedangkan daya hantar OH-

berrtambah setelah titik ekivalen tercapai karena jumlah OH- di dalam larutan bertambah. Pada

percobaan ini titik ekivalen belum tercapai karena mol ekivalen dari titrasi belum sampai akibat H+

yang ditambahkan kurang. Jika kedua larutan memiliki konsentrasi sama yaitu 0,01 M maka

dibutuhkan 25 mL HCl agar tercapai titik ekivalen. Grafik asam kuat dengan basa kuat adalah

Titrasi yang kedua adalah titrasi basa lemah dengan asam kuat. Larutan yang digunakan

adalah NH3 dan HCl. Persamaan reaksi yang terjadi adalah

HCl (aq) + NH3 (aq) NH4Cl (aq)

Page 31: Kon Duk to Metri

Konduktansi larutan NH3 perlahan-lahan naik setelah ditambahkan HCl mulai dari konduktansi awal

sebesar 178 µs hingga 488 µs pada saat penambahan HCl hingga 6,5 mL. Grafik konduktansi

terhadap volume HCl yang ditambahkan adalah sebagai berikut

Jika dibandingkan dengan literatur, konduktansinya akan naik secara perlahan kemudian akan

konstan.

Cabang pertama dari grafik mencerminkan hilangnya ion-ion hidrogen selama penetralan, tetapi

setelah titik akhir dicapai, grafik menjadi horisontal karena larutan air ammonia yang berlebih tidak

terionisasi dengan cukup. Ketidaksesuaian grafik dengan literatur dikarenakan titik akhir belum

tercapai akibatnya tidak terbentuk garis horisontal. Titrasi yang dilakukan hanya penambahan 6,5 mL

HCl.

Titrasi yang ketiga adalah asam lemah dengan basa lemah. Larutan yang digunakan adalah

CH3COOH dan NH3. Reaksi yang terjadi adalah

CH3COOH (aq) + NH3 (aq) CH3COONH4 (aq)

Page 32: Kon Duk to Metri

Konduktansi awal dari larutan adalah 147 µs kemudian setelah penambahan NH3 perlahan-lahan

naik hingga mencapai 251 µs. Grafik literatur menunjukkan bahwa setelah titik ekivalen tercapai,

larutan air-amoniak yang berlebih hanya mempunyai sedikit efek atas konduktansi karena

disosiasinya ditekan oleh garam ammonium yang berbeda dalam larutan.

Grafik literatur menunjukkankan bahwa grafik menurun sedikit karena di akibatkan kurangnya H+,

kemudian terjadi kenaikan hal ini diakibatkan karena bertambahnya NH4+. Grafik dari percobaan

yang dilakukan adalah

Jika dibandingkan maka grafik kurang sesuai, hal ini dikarenakan konsentrasi dari larutan yang jauh

berbeda sehingga dibutuhkan semakin banyak NH3 untuk menetralkan CH3COOH. Kesalahan-

kesalahan praktikan juga dapat mempengaruhi hasil. Ketidakbersihan peralatan yang digunakan

maupun ketidaktepatan dalam penggunaan konduktometer dapat menyebabkan hasil yang

menyimpang.

Page 33: Kon Duk to Metri

BAB 5. PENUTUP

5.1 Kesimpulan

- Analisis kuantitatif larutan dapat dilakukan dengan titrasi potensiometri dengan cara pengukuran

konduktansi suatu larutan terhadap penambahan titran.

- Konsentrasi larutan dalam praktikum kali ini belum dapat ditentukan karena belum mencapai titik

ekivalen titrasi.

5.2 Saran

- Sebaiknya pengalibrasian konduktometer harus tepat agar konduktansi yang ditunjukkan sesuai.

- Sebaiknya pengenceran dilakukan dengan teliti.

- Sebaiknya larutan NaOH yang digunakan dikalibrasi terlebih dahulu karena sifatnya yang

higroskopis.

Page 34: Kon Duk to Metri

DAYA HANTAR LISTRIK Daya hantar listrik adalah ukuran seberapa kuat suatu larutan dapat menghantarkan listrik. Daya hantar listrik merupakan kebalikan dari hambatan listrik (R), dimana:

R = ρ L/A

Suatu hambatan dinyatakan dalam ohm disingkat Ω, oleh karena itu daya hantar listrik dinyatakan : DHL = 1/R = k A/L

Dimana, k = 1/R x L/A

Daya hantar listrik disebut konduktivitas. Satuannya ohm-1 disingkat Ω-1, tetapi secara resmi satuan yang digunakan adalah siemen, disingkat S, dimana S = Ω -1 maka satuan k adalah Sm-1 atau SCm-1.

Konduktivitas digunakan untuk ukuran larutan / cairan elektrolit. Konsentrasi elektrolit sangat menentukan besarnya konduktivitas, sedang konduktivitas sendiri tidak dapat dapat digunakan untuk ukuran suatu larutan. Ukuran yang lebih spesifik yaitu konduktivitas molar (∆m). Konduktivitas molar adalah konduktivitas suatu larutan apabila konsentrasi larutan sebesar satu molar, yang dirumuskan sebagai:

∆m = k/C

Dimana:

k : Konduktivitas spesifik (SCm-1)

C : Konsentrasi larutan (mol/L)

∆m: Hantaran molar (SCm2mol-1)

Jika satuan volume yang digunakan adalah cm3 maka persamaan yang digunakan adalah

∆m = 1000k

C

Dimana satuan-satuannya sama dengan diatas.

Page 35: Kon Duk to Metri

Besarnya daya hantar jenis dapat dicari dari tahanan larutan. Jadi dengan mengukur tahanan larutan dapat ditentukan daya hantar ekivalen. Untuk ini biasanya dipakai jembatan wheat stone.

Faktor-faktor yang mempengaruhi kecepatan ion adalah:

Berat dan muatan ion

Adanya hidrasi

Orientasi atmosfer pelarut

Gaya tarik antar ion

Temperatur

Viskositas

Jika larutan diencerkan maka untuk elektrolit lemah α-nya semakin besar dan untuk elektrolit kuat gaya tarik antar ion semakin kecil. Pada pengenceran tidak terhingga, daya hantar ekivalent elektrolit hanya tergantung pada jenis ionnya. Masing-masing ion mempunyai daya hantar ekivalent yang tergantung pada:

- Jumlah ion yang ada

- Kecepatan ion pada beda potensial antara kedua elektroda yang ada

Jumlah ion yang ada tergantung dari jenis elektrolit (kuat/lemah) dan konsentrasi selanjutnya pengenceran baik untuk elektrolit lemah/kuat memperbesar daya hantar dan mencapai harga maksimum pada pengenceran tak berhingga.

Penghantar logam disebut penghantar kelas utama, dalam penghantar ini listrik mengalir sebagai electron. Tekanan dari penghantar ini bertambah dengan naiknya temperatur. Larutan elektrolit juga dapat menghantarkan listrik, penghantar ini disebut penghantar kedua. Dalam penghantar ini disebabkan oleh gerakan dari ion-ion kutub satu ke kutub lainnya. Berbeda dengan penghantar logam, penghantar elektrolit tahanannya berkurang bila temperature naik.

Daya hantar listrik suatu larutan tergantung dari:

1. Jumlah ion yang ada

Jumlah ion yang ada tergantung dari elektrolit (kuat/lemah) dan konsentrasi. Pengenceran larutan baik untuk elektroda memperbesar daya hantar dan mencapai harga maksimal pada pengancaran tak tarhingga.

Page 36: Kon Duk to Metri

2. Kecepatan dari ion pada beda potensial antara kedua elektroda.

Pengukuran daya hantar listrik mempunyai arti penting dalam proses-proses kimia. Pada pembuatan akuades, efisiensi dari penghilang zat terlarut yang berupa garam-garam dapat diikuti dengan mudah dengan cara mengukur daya hantar larutan selama titrasi dan dengan menggunakan grafik dapt digunakan untuk menentukan titik akhir titrasi. Derajat ionisasi elektrolit lemah dapat ditentukan dengan pengukuran daya hantarnya. Seperti diketahui, daya hamtar berbanding lurus dengan jumlah ion yang ada dalam larutan.

Tabel jumlah ion dan ∆m dalam pelarut air

Jumlah ion Range ∆m

2

3

4

5

118-131

235-273

408-435

>560

Tabel jumlah ion dan∆m dalam pelarut DMF

Jumlah ion Range ∆m

1:1

2:1

3:1

4:1

65-90

130-170

200-240

>300

Daya hantar ekuivalen didefenisikan sebagai daya hantar satu gram ekuivalen suatu zat terlarut diantara 2 elektroda dengan jarak kedua elektroda 1 cm. Daya hantar ekuivalen pada larutan encer diberi symbol “0″ yang harganya tertentu untuk setiap ion.

Page 37: Kon Duk to Metri

Pengaruh konsentrasi pada daya hantar ekuivalen, misal:

Konsentrasi NaCl 0

0,1

0,01

0,001

~

106,7

118,5

123,7

126,4

Konduktivitas molar elektrolit tidak tergantung pada konsentrasi. Jika K tepat sebanding dengan konsentrasi elektrolit. Walaupun demikian pada praktiknya, konduktivitas molar bervariasi terhadap konsentrasi, salah satu alasannya adalah jumlah ion dalam larutan mungkin tidak sebanding dengan konsentrasi larutan elektrolit, misalnya konsentrasi ion dalam larutan asam lemah tergantung pada konsentrasi asam secara rumit dan penduakalian konsentrasi nominal asam itu tidak menduakalikan jumlah ion tersebut. Kedua, karena ion saling berinteraksi dengan kuat, maka konduktivitas larutan tidak tepat sebanding dengan jumlah ion yang ada.

Pengukuran konduktivitas mula-mula pada konsentrasi menunjukkan adanya dua golongan elektrolit yaitu:

1. Elektrolit kuatKonduktivitas mula-mula elektrolit kuat hanya sedikit berkurang dengan bertambahnya konsentrasi

2. Elektrolit lemahKonduktivitas molar elektrolit lemah normal pada konsentrasi mendekati nol, tetapi turun tajam sampai nilai terendah saat konsentrasi bertambah.

Berdasarkan sifat daya hantar listriknya, larutan dibagi menjadi dua yaitu larutan elektrolit dan larutan non elektrolit. Sifat elektrolit dan non elektrolit didasarkan pada keberadaan ion dalam larutan yang akan mengalirkan arus listrik. Jika dalam larutan terdapat ion, larutan tersebut bersifat elektrolit. Jika dalam larutan tersebut tidak terdapat ion larutan tersebut bersifat non elektrolit. Larutan elektrolit adalah larutan yang dapat menghantarkan arus listrik. Larutan non elektrolit

Page 38: Kon Duk to Metri

adalah larutan yang tidak dapat menghantarkan arus listrik. Hantaran listrik melalui larutan dapat dtunjukkan dengan alat uji elektrolit seperti pada Gambar 7. Jika larutan menghantarkan arus listrik, maka lampu dalam rangkaian tersebut akan menyala dan timbul gas atau endapan pada salah satu atau kedua elektroda.

Contoh lain adalah, bila NaCl dilarutan dalam air akan terurai menjadi ion positif dan ion negatif. Ion positif yang dihasilkan dinamakan kation dan ion negatif yang dihasilkan dinamakan anion. Larutan NaCl adalah contoh larutan elektrolit. Perhatikan reaksi berikut.

Bila gula dilarutkan dalam air, molekul-molekul gula tersebut tidak terurai menjadi ion tetapi hanya berubah wujud dari padat menjadi larutan. Larutan gula adalah contoh dari larutan non elektrolit. Perhatikan reaksi berikut:

Dalam kehidupan sehari-hari kita banyak menemukan contoh larutan elektrolit maupun non elektrolit. Contoh larutan elektrolit: larutan garam dapur, larutan cuka makan, larutan asam sulfat, larutan tawas, air sungai, air laut. Contoh larutan non elektrolit adalah larutan gula, larutan urea, larutan alkohol, larutan glukosa.

Daya hantar listrik larutan elektrolit bergantung pada jenis dan konsentrasinya. Beberapa larutan elektrolit dapat menghantarkan arus listrik dengan baik meskipun konsentrasinya kecil, larutan ini dinamakan elektrolit kuat. Sedangkan larutan elektrolit yang mempunyai daya hantar lemah meskipun konsentrasinya tinggi dinamakan elektrolit lemah.

Perhatikan hasil uji elektrolit yang ditunjukkan pada Gambar 8. Pada larutan elektrolit lampu yang digunakan menyala dan timbul gas pada elektrodanya. Beberapa larutan elektrolit dapat mengahantarkan listrik dengan baik sehingga lampu menyala terang dan gas yang terbentuk relatif banyak (Gambar 8a). Larutan ini dinamakan elektrolit kuat, beberapa elektrolit yang lain dapat menghantarkan listrik tetapi kurang baik, sehingga lampu nyala, redup atau bahkan tidak menyala dan gas yang terbentuk relatif sedikit. (Gambar 8b). Dari uraian di atas kita dapat golongkan larutan elektrolit menjadi dua macam, yaitu elektrolit kuat dan elektrolit lemah.

Larutan elektrolit kuat adalah larutan yang dapat menghantarkan arus listrik dengan baik. Hal ini disebabkan karena zat terlarut akan terurai sempurna (derajat ionisasi ? = 1) menjadi ion-ion sehingga dalam larutan tersebut banyak mengandung ion-ion. Sebagai contoh larutan NaCl. Jika padatan NaCl dilarutkan dalam air maka NaCl akan terurai empurna menjadi ion Na+ dan Cl-. Perhatikan reaksi berikut.

Page 39: Kon Duk to Metri

Dari reaksi diatas jika 100 mol NaCl dilarutkan dalam air akan terbentuk 100 mol ion Na + dan 100 mol ion Cl-. Jadi jika 100 mol NaCl dilarutkan akan terbentuk 200 mol ion.

Larutan elektrolit lemah adalah larutan yang dapat menghantarkan arus listrik dengan lemah. Hal ini disebabklan karena zat terlarut akan terurai sebagian (derajat ionisasi ? << 1) menjadi ion-ion sehingga dalam larutan tersebut sedikit mengandung ion. Tabel berikut menggambarkan larutan-larutan yang termasuk elektrolit kuat, elektrolit lemah dan non elektrolit.

Daya Hantar Listrik Senyawa Ion

Sebagai contoh dari kegiatan percobaan yang tergolong larutan elektrolit yang berikatan ion adalah garam dapur.Dapatkah Anda membedakan daya hantar listrik untuk garam pada saat kristal, lelehan dan larutan?

Cobalah perhatikan uraian berikut.NaCl adalah senyawa ion, jika dalam keadaan kristal sudah sebagai ion-ion, tetapi ion-ion itu terikat satu sama lain dengan rapat dan kuat, sehingga tidak bebas bergerak. Jadi dalam keadaan kristal (padatan) senyawa ion tidak dapat menghantarkan listrik, tetapi jika garam yang berikatan ion tersebut dalam keadaan lelehan atau larutan, maka ion-ionnya akan bergerak bebas, sehingga dapat menghantarkan listrik.

Pada saat senyawa NaCl dilarutkan dalam air, ion-ion yang tersusun rapat dan terikat akan tertarik oleh molekul-molekul air dan air akan menyusup di sela-sela butir-butir ion tersebut (proses hidasi) yang akhirnya akan terlepas satu sama lain dan bergerak bebas dalam larutan.NaCl (s) + air Na+(aq) + Cl-(aq)

Proses pelarutan padatan Kristal

Pada percobaan akan ditentukan jumlah muatan larutan sampel dengan metode pengukuran daya hantar listriknya kemudian dilakukan pendekatan antara larutan sampel tehadap larutan standar elektrolit yang juga telah diketahui jumlah muatan ionnya. Daya hantar listrik pada larutan diukur dengan menggunakan konduktivity meter menghasilkan harga konduktivitas larutan dalam satuan µscm-1

Pengukuran konduktivitas larutan standar yang telah diketahui jumlah muatan ionnya dilakukan pada beberapa jenis larutan baik elektrolit kuat dan elektrolit lemah. Suatu larutan elektrolit kuat memiliki konduktivitas lebih tinggi dari pada larutan elektrolit lemah. Karena dalam elektrolit kuat, zat elektrolit akan terdisosiasi sempurna menjadi ion-ionnya. Jumlah ion pada suatu larutan juga berpengaruh pada nilai konduktivitas larutan.

Daya hantar listrik (konduktivitas) adalah ukuran seberapa kuat suatu larutan dapat menghantarkan listrik. Konduktivitas digunakan untuk ukuran larutan atau cairan elektrolit. Semakin besar jumlah ion dari suatu larutan maka akan semakin tinggi nilai konduktivitasnya. Jumlah muatan

Page 40: Kon Duk to Metri

dalam larutan sebanding dengan nilai hantar molar larutan dimana hantaran molar juga sebading dengan konduktivitas larutan. Konsentrasi elektrolit sangat menentukan besarnya konduktivitas molar (∆m). Konduktivitas molar adalah konduktivitas suatu larutan apabila konsentrasi larutan sebesar satu molar, sehingga secara matematis dirumuskan :

∆m = k/C

Jika satuan volume yang digunakan adalah cm3 maka persamaan yang menjadi

∆m = 1000k

C

Dimana: k : Konduktivitas spesifik (SCm-1)

C : Konsentrasi larutan (mol/L)

∆m: Hantaran molar (SCm2mol-1)

Dalam percobaan digunakan larutan standar dan larutan sampel dengan konsentrasi sama, sehingga C dianggap constant. Jika nilai C konstan, maka hantaran molar (∆M) hanya diperbaharui oleh konduktivitas larutan (K), dimana ∆M sebanding dengan nilai K. Nilai K didapat dari hasil percobaan. Jadi, semakain tinggi konduktivitas larutan maka hantaran molar (∆M) larutan tsb akan meningkat. Jumlah muatan juga berpengaruh pada hantaran molarnya. Pada kosentrasi yang sama, semakin besar jumlah muatan suatu larutan, maka akan semakin besar pula hantaran molarnya (∆M).

Dalam suatu larutan elektrolit bila diberi dua batang elektroda inert dan diberi tegangan listrik diantaranya, maka anion-anion akan bergerak ke elektroda negatif (katoda). Proses ini merupakan fenomena transport seperti halnya yang terjadi dalam molekul gas adalah adanya pengaruh medan listrik dan molekul pelarut. Analisis kimia yang didasarkan pada daya hantar listrik berhubungan dengan pergerakan suatu ion didalam larutan ion yang mudah bergerak mempunyai daya hantar listrik yang besar.

Langkah pertama yang dilakukan adalah membuat larutan KCl 0,01M sebagai larutan yang mengkalibrasi alat konduktivitymeter. Konduktivitymeter dikalibrasi hingga menunjukkan sekitar angka 1413 µs (bias kurang atau lebih/mendekati). Dalam hal ini pelarut yang digunakan adalah aquadest. Pada percobaan ini juga menggunakan larutan blanko yaitu larutan KCL 0,01 M , yang dalam teoritis memiliki konduktivitas 1413 µScm-1, sehingga sebelum digunakan alat harus kalibasi dengan larutan. KCL 0,01 M dan diseting untuk menunjukan angka 1413 µScm-1 larutan alat digunakan. Hal ini dilakukan untuk mengetahui kesensitifan konduktivitymeter, apabila pengukuran larutan KCl menunjukkan 1413 µs, maka alat tersebut sensitif/baik. Untuk membuat larutan KCl

Page 41: Kon Duk to Metri

0,01M, diambil 4ml KCl 0,25 lalu diencerkan dengan akuades hingga volume 100ml. Larutan ini kemudian digunakan untuk kalibrasi alat. Dimana larutan blanko KCl dimasukkan dalam gelas beker, lalu dimasukkan sebuah magnet dan diletakkan di atas stirrer. Kemudian stirrer dihidupkan, fungsi dari stirrer dan memasukkan magnet adalah agar larutan homogen. Kemudian elektroda di masukkan dalam larutan, lalu di ukur dengan konduktymeter dan di setting hingga menunjukkan angka 1413 µScm-1. . Dalam hal ini, diantara 2 elektroda terdapat 2 elektroda, yaitu katoda dan anoda, Antara kedua elektroda tersebut terdapat beda potensial akibat dari desakan electron atau aktivitas elektron. Bila kedua elektroda tersebut dihubungkan, maka akan terjadi ariran listrik dari kutub negatif ke kutub positif melalui hubungan luar.

Setelah itu dibuat larutan standar. Larutan standar yang pertama, dibuat dengan mengambil 2ml larutan KCl, NaCl, KNO3, CuSO4.5H2O, NiSO4.6H2O, MgCl2, CuCl2.2H2O, AlCl3.6H2O masing-masing mempunyai konsentrasi 0,25 gram yang diencerkan dengan 100ml akuades untuk menjadika konsentrasi 5.10-3M. Semua larutan dalam konsentrasi sama yaitu 5.10-3M, sehingga dalam percobaan ini konsentrasi dianggap konstan.

Larutan standar yang kedua, dibuat dengan mengambil 2ml larutan KCl, NaCl, KNO3, CuSO4.5H2O, NiSO4.6H2O, MgCl2, CuCl2.2H2O, AlCl3.6H2O masing-masing mempyunyai konsentrasi 0,125 yang diencerkan dengan 50ml metanol untuk menjadika konsentrasi 5.10 -3M. Hal ini sesuai persaman

V1M1=V2M2

Dalam percobaan digunakan konsentrasi larutan sama yaitu 5.10-3M. Konsentrasi elektrolit sangat menentukan besarnya konduktivitas suatu larutan. Dari harga konduktivitas yang terukur dapat digunakan untuk mencari harga konduktivitas molarnya sehingga dapat diketahui jumlah muatan yang terdapat dalam larutan standar.

Pada larutan encer, ion-ion dalam larutan tersebut mudah bergerak sehingga daya hantarnya semakin besar. Pada larutan yang pekat, pergerakan ion lebih sulit sehingga daya hantarnya menjadi lebih rendah. Hal lain yang mempengaruhi daya hantar listrik selain konsentrasi adalah jenis larutan. Pengukuran ketergantungan konduktivitas molar pada konsentrasi tertentu menunjukkan adanya 2 golongan elektrolit, yaitu elektrolit lemah dan elektrolit kuat. Sifat umum dari elektrolit kuat adalah konduktivitas akan berkurang dengan bertambahnya konsentrasi, sedangkan elektrolit lemah konduktivitas molarnya normal pada konsentrasi mendekati nol, tetapi turun tajam sampai nilai yang rendah pada saat konsentrasi bertambah. Larutan elektrolit kuat mempunyai konduktiviyaslebih tinggi daripada elektrolit lemah, hal ini karena zat elektrolit terdisosiasi secara sempurna didalam larutan, berarti larutan elektrolit kuat dapat menghantarkan listrik dengan baik. Penggolongan dengan cara ini juga bergantung pada zat terlarut dari pelarut yang digunakan.

Page 42: Kon Duk to Metri

Jumlah ion dan ∆m dalam pelarut air sesuai literatur:

Jumlah ion Range ∆m

2

3

4

5

118-131

235-273

408-435

>560

Dalam pengukuran konduktivitas spesifik larutan dipilih harga yang paling konstan karena harga konduktivitas cenderung berubah setiap saat sehingga harga yang paling konstan merupakan harga yang mendekati harga sebenarnya. Setiap pergantian larutan, alat cuci dengan akuades. Pengukuran disertai dengan pengukuran akuades (pelarut) karena harga konduktivitas spesifik merupakan koreksi dari konduktivitas larutan dengan konduktivitas pelarut

k= klarutan - kpelarut

Dari konduktivitas spesifik, dicari harga antara molarnya sehingga dapat ditentukan jumlah ion yang ada dalam sampel.

Berdasarkan daya hantar listriknya, larutan dibedakan menjadi :

a.Larutan Elektrolit.

Larutan elektrolit adalah larutan yang dapat menghantarkan arus listrik. Zat terlarutnya disebut elektrolit. Contoh : natrium klorida (NaCl), hidrogen klorida (HCl), natrium hidroksida (NaOH), dan amoniak (NH3).

Page 43: Kon Duk to Metri

b.Larutan Nonelektrolit.

Larutan nonelektrolit adalah larutan yang tidak dapat menghantarkan arus listrik. Zat terlarutnya disebut nonelektrolit. Contoh : air suling, larutan gula, dan alkohol.

Pada tahun 1884, Svante Arrchenius mengajukan teorinya bahwa dalam larutan elektrolit, yang berperan menghantarkan arus listrik adalah partikel-partikel bermuatan (ion) yang bergerak bebas di dalam larutan. Ia menemukan bahwa zat elektrolit dalam pelarut air akan terurai menjadi ion-ion, sedangkan nonelektrolit dalam pelarut air tidak terurai menjadi ion-ion.

Daya Hantar Arus Listrik Dalam Larutan Elektrolit.

Berdasarkan kekuatan daya hantarnya, larutan elektrolit dibedakan menjadi dua, yaitu elektrolit kuat dan elektrolit lemah.

1.Elektrolit Kuat.

Elektrolit kuat adalah elektrolit yang dapat menghasilkan larutan dengan daya hantar listrik yang baik. Senyawa NaCl, HCl, dan H2SO4 dapat terurai sempurna dalam pelarut air membentuk banyak ion.

2.Elektrolit Lemah.

Elektrolit lemah adalah elektrolit yang dapat menghasilkan larutan dengan daya hantar listrik yang buruk. Senyawa CH3COOH dan NH3 hanya terurai sebagian kecil dalam pelarut air membentuk sedikit ion. Secara kuantitatif, kuat atau lemahnya suatu larutan elektrolit dapat dinyatakan dengan derajat ionisasi (α).

Untuk larutan elektrolit kuat; α = 1 atau α mendekati 1.

Untuk larutan elektrolit lemah; 0

Untuk larutan nonelektrolit; α = 0.

Tabel 1.

Jenis Larutan Jenis Zat Terlarut (dengan

Pelarut Air)

Nyala Lampu Contoh Larutan

Page 44: Kon Duk to Metri

Elektrolit KuatØSenyawa ion

ØSenyawa kovalen polaryang

terhidrolisis

sempurna/hampir

sempurna

Terang Natrium klorida (NaCl)

Asam nitrat (HNO3)

Asam sulfat (H2SO4)

Natrium hidroksida (NaOH)

Kalium asetat (CH3COOK)

Elektrolit LemahØSenyawa kovalen polar yang

terhidrolisis sebagian kecil

Redup Asam cuka (CH3COOK)

Amonia (NH3)

Asam karbonat (H2CO3)

Nonelektrolit ØSenyawa kovalen polar yang

tidak terhidrolisis

Tidak Menyala Sukrosa (C12H22O11)

Etanol (C2H5OH)

Urea (CO(NH2)2)

Glukosa (C6H12O6)

Gliserin (C3H5(OH)3)

Etilen glikol (C2H4(OH)2)

Menurut Michael Faraday, elektrolit merupakan suatu zat yang dapat menghantarkan listrik jika berada dalam bentuk larutan atau lelehannya.

Tabel 2.

Jenis

Senyawa

Padatan Lelehan Larutan (dalam Pelarut

Air)

Senyawa ion Tidak dapat

menghantarkan arus

listrik, karena dalam

bentuk padatan, ion-

ionnya tidak dapat

Dapat menghantarkan

arus listrik, karena dalam

bentuk lelehan, ion-

ionnya dapat bergerak

jauh lebih bebas

Dapat menghantarkan

arus listrik, karena dalam

bentuk larutan, ion-

ionnya dapat bergerak

Page 45: Kon Duk to Metri

bergerak bebas. dibandingkan ion-ion

dalam zat padat

bebas

Senyawa

kovalen polar

Tidak dapat

menghantarkan arus

listrik, karena

padatannya terdiri dari

molekul-molekul netral

meskipun bersifat polar

Tidak dapat

menghantarkan arus

listrik, karena lelehannya

terdiri dari molekul-

molekul netral meski

Dapat bergerak lebih

bebas

Dapat menghantarkan

arus listrik, karena dalam

larutan molekul-

molekulnya dapat

terhidrolisis menjadi ion-

ion yang Dapat bergerak

bebas

Peran larutan elektrolit dan larutan nonelektrolit dalam kehidupan sehari-hari sangat penting, contohnya :

1.Aki

Sel aki terdiri anoda Pb dan katoda PbO2 dengan larutan elektrolit H2SO4. adanya larutan elektrolit memungkinkan terjadinya reaki kimia yang menghasilkan arus listrik untuk menghidupkan kendaraan.

2.Air sungai dan air tanah

Air sungai dan air tanah mengandung ion-ion sehingga dapat menghantarkan listrik. Sifat ini digunakan untuk menangkap ikan atau belut di sungai atau di persawahan dengan cara setrum listrik.

3.Air suling

Merupakan larutan nonelektrolit, karena mengandung ion-ion dalam jumlah yang sangat kecil. Air suling digunakan untuk membuat larutan dalam percobaan kimia nonelektrolit.

4.Cairan tubuh

Cairan tubuh mengandung komponen larutan elektrolit. Komponen larutan elektrolit memungkinkan terjadinya daya hantar listrik yang diperlukan untuk kerja impuls. Orang yang kekurangan cairan tubuh (dehidrasi) harus mengkonsumsi larutan elektrolit, seperti larutan oralit.

KESIMPULAN

Konduktivitas tergantung pada konsentrasi jenis ion dan pelarut larutan. Jumlah muatan suatu larutan berbanding lurus dengan daya hantar listriknya (DHL) ,

semakin besar jumlah muatan maka daya hantar listriknya (DHL) juga semakin besar Adanya pengenceran dalam larutan akan menurunkan hantaran molar suatu larutan

Page 46: Kon Duk to Metri

DHL digunakan untuk menentukan jumlah ion dalam larutan elektrolithttp://www-supadi.blogspot.com/2010/12/daya-hantar-listrik.html

Diposkan oleh agungm92 di 22:43

Kirimkan Ini lewat EmailBlogThis!Berbagi ke TwitterBerbagi ke Facebook

Tidak ada komentar:

Poskan KomentarPosting Lama Beranda

Langganan: Poskan Komentar (Atom)

Pengikut

Arsip Blog

2012 (4) o Juni (2)

Konduktometri Praktikum 1 Titrasi Potensiometri

o Februari (2)

Mengenai Saya

agungm92

Lihat profil lengkapku

Kimia Fisika_ Daya Hantar Listrik Percobaan IDaya Hantar Listrik1.1 Tujuan Perobaan :Mengukur daya hantar listrik berbagai senyawa.Mempelajari pengaruh konsentrasi terhadap daya hantar listrik larutan elektrolit.

Page 47: Kon Duk to Metri

Dasar Teori.Daya hantar listrik adalah ukuran seberapa kuat suatu larutan dapat menghantarkan listrik. Daya hantar listrik merupakan kebalikan dari hambatan listrik (R),R = ρ l/ASuatu hambatan dinyatakan dalam ohm (Ω) , ρ adalah tahanan spesifik atau resistivitas dalam ohm cm (satuan SI, ohm m), l adalah panjang dalam cm, dan A luas penampang lintang dalam cm2. Oleh karena itu daya hantar listrik dinyatakan,K = 1/ρDaya hantar listrik disebut Konduktivitas. Satuannya disingkat Ω-1cm-1. Konduktivitas digunakan untuk pengukuran larutan / cairan elektrolit. Konsentrasi elektrolit sangat menentukan besarnya konduktivitas. Energi listrik dapat di transfer melalui materi berupa hantaran yang bermuatan listrik yang berwujud arus listrik. Ini berarti bahwa hars terdapat pembawa muatan listrik di dalam materi serta adanya gaya yang menggerakkan pembawa muatan tersebut.Pembawa muatan dapat berupa elektron seperti logam, dapat pula berwujud ion positif dan ion negative seperti dalam larutan elektrolit dan lelehan garam. Pembawa muatan yang berwujud logam disebut elektrolit atau metalik, sedangkan pembawa muatan yang berupa larutan disebut ionic atau elektrolit. Gaya listrik yang membuat muatan bergerak biasanya berasal dari baterai, generator atau sumber energy listrik yang lain.Perpindahan muatan listrik dapat terjadi bila terdapat beda potensial antara satu tempat terhadap yang lain, dan arus listrik akan mengalir dari tempat yang meiliki potensial tinggi ke tempat potensial rendah. Didalam suatu larutan, terjadinya arus listrik dikarenakan adanya ion yang bergerak.

Adapun Faktor-faktor yang mempengaruhi kecepatan ion adalah:Berat dan muatan ionAdanya hidrasiOrientasi atmosfer pelarutGaya tarik antar ionTemperaturViskositasJika larutan diencerkan maka untuk elektrolit lemah α-nya semakin besar dan untuk elektrolit kuat gaya tarik antar ion semakin kecil. Pada pengenceran tidak terhingga, daya hantar ekivalent elektrolit hanya tergantung pada jenis ionnya. Masing-masing ion mempunyai daya hantar ekivalent yang tergantung pada:Jumlah ion yang adaKecepatan ion pada beda potensial antara kedua elektroda yang adaJumlah ion yang ada tergantung dari jenis elektrolit (kuat/lemah) dan konsentrasi selanjutnya pengenceran baik untuk elektrolit lemah/kuat memperbesar daya hantar dan mencapai harga maksimum pada pengenceran tak berhingga. Penghantar logam disebut penghantar kelas utama, dalam penghantar ini listrik mengalir sebagai electron. Tekanan dari penghantar ini bertambah dengan naiknya temperatur. Larutan elektrolit juga dapat menghantarkan listrik, penghantar ini disebut penghantar kedua. Dalam penghantar ini disebabkan oleh gerakan dari ion-ion kutub satu ke kutub lainnya. Berbeda dengan penghantar logam, penghantar elektrolit tahanannya berkurang bila temperatur naik.Pengukuran daya hantar listrik mempunyai arti penting dalam proses-proses kimia. Pada pembuatan

Page 48: Kon Duk to Metri

aquades, efisiensi dari penghilang zat terlarut yang berupa garam-garam dapat diikuti dengan mudah dengan cara mengukur daya hantar larutan. Derajat ionisasi elektrolit lemah dapat ditentukan dengan pengukuran daya hantarnya. Seperti diketahui, daya hamtar berbanding lurus dengan jumlah ion yang ada dalam larutan.

Larutan elektrolitElektrolit adalah suatu senyawa yang bila dilarutkan dalam pelarut (misalnya air) akan menghasilkan larutan yang dapat menghantarkan arus listrik. Elektrolit diklasifikasikan berdasarkan kemampuannya dalam menghantarkan arus listrik yaitu elektrolit kuat dan elektrolit lemah. Suatu elektrolit dapat berupa asam, basa maupun garam. Menurut Michael Faraday, elektrolit merupakan suatu zat yang dapat menghantarkan listrik jika berada dalam bentuk larutan atau lelehannya. Dalam suatu larutan elektrolit bila diberi dua batang elektroda inert dan diberi tegangan listrik diantaranya, maka anion-anion akan bergerak ke elektroda negatif (katoda). Proses ini merupakan fenomena transport seperti halnya yang terjadi dalam molekul gas adalah adanya pengaruh medan listrik dan molekul pelarut. Analisis kimia yang didasarkan pada daya hantar listrik berhubungan dengan pergerakan suatu ion didalam larutan ion yang mudah bergerak mempunyai daya hantar listrik yang besar. Larutan Elektrolit KuatLarutan elektrolit kuat adalah larutan yang mempunyai daya hantar arus listrik, karena zat terlarut yang berada didalam pelarut (biasanya air), seluruhnya dapat berubah menjadi ion-ion dengan harga derajat ionisasi adalah satu (α = 1). Yang tergolong elektrolit kuat adalah :Asam kuat, : HCl, HClO3, HClO4, H2SO4, HNO3 dan lain-lain.Basa kuat, yaitu basa-basa golongan alkali dan alkali tanah, : NaOH, KOH, Ca(OH)2, Mg(OH)2, Ba(OH)2 dan lain-lain.Garam-garam yang mempunyai kelarutan tinggi, : NaCl, KCl, KI, Al2(SO4)3 dan lain-lain.

Larutan Elektrolit LemahLarutan elektrolit lemah adalah larutan yang mampu menghantarkan arus listrik dengan daya yang lemah, dengan harga derajat ionisasi lebih dari nol tetapi kurang dari satu (0 < α < 1). Yang tergolong elektrolit lemah adalah:Asam lemah, : CH3COOH, HCN, H2CO3, H2S dan lain-lain.Basa lemah, : NH4OH, Ni(OH)2 dan lain-lain.Garam-garam yang sukar larut, : AgCl, CaCrO4, PbI2 dan lain-lain.

Daya Hantar Listrik Senyawa IonSebagai contoh dari kegiatan percobaan yang tergolong larutan elektrolit yang berikatan ion adalah garam dapur. Dapatkah Anda membedakan daya hantar listrik untuk garam pada saat kristal, lelehan dan larutan?Cobalah perhatikan uraian berikut :NaCl adalah senyawa ion, jika dalam keadaan kristal sudah sebagai ion-ion, tetapi ion-ion itu terikat satu sama lain dengan rapat dan kuat, sehingga tidak bebas bergerak. Jadi dalam keadaan kristal (padatan) senyawa ion tidak dapat menghantarkan listrik, tetapi jika garam yang berikatan ion tersebut dalam keadaan lelehan atau larutan, maka ion-ionnya akan bergerak bebas, sehingga dapat menghantarkan listrik.Pada saat senyawa NaCl dilarutkan dalam air, ion-ion yang tersusun rapat dan terikat akan tertarik

Page 49: Kon Duk to Metri

oleh molekul-molekul air dan air akan menyusup di sela-sela butir-butir ion tersebut (proses hidasi) yang akhirnya akan terlepas satu sama lain dan bergerak bebas dalam larutan.Reaksi : NaCl (s) + air Na+(aq) + Cl-(aq)

Gambar : Proses pelarutan padatan Kristal

Suatu larutan elektrolit kuat memiliki konduktivitas lebih tinggi dari pada larutan elektrolit lemah. Karena dalam elektrolit kuat, zat elektrolit akan terdisosiasi sempurna menjadi ion-ionnya. Jumlah ion pada suatu larutan juga berpengaruh pada nilai konduktivitas larutan.Daya hantar listrik (konduktivitas) adalah ukuran seberapa kuat suatu larutan dapat menghantarkan listrik. Konduktivitas digunakan untuk ukuran larutan atau cairan elektrolit. Semakin besar jumlah ion dari suatu larutan maka akan semakin tinggi nilai konduktivitasnya. Jumlah muatan dalam larutan sebanding dengan nilai daya hantar molar larutan dimana hantaran molar juga sebading dengan konduktivitas larutan. Konsentrasi elektrolit sangat menentukan besarnya konduktivitas molar (∆m). Konduktivitas molar adalah konduktivitas suatu larutan apabila konsentrasi larutan sebesar satu molar.Pada larutan encer, ion-ion dalam larutan tersebut mudah bergerak sehingga daya hantarnya semakin besar. Pada larutan yang pekat, pergerakan ion lebih sulit sehingga daya hantarnya menjadi lebih rendah. Hal lain yang mempengaruhi daya hantar listrik selain konsentrasi adalah jenis larutan. Pengukuran ketergantungan konduktivitas molar pada konsentrasi tertentu menunjukkan adanya 2 golongan elektrolit, yaitu elektrolit lemah dan elektrolit kuat. Sifat umum dari elektrolit kuat adalah konduktivitas akan berkurang dengan bertambahnya konsentrasi, sedangkan elektrolit lemah konduktivitas molarnya normal pada konsentrasi mendekati nol, tetapi turun tajam sampai nilai yang rendah pada saat konsentrasi bertambah. Larutan elektrolit kuat mempunyai konduktiviyaslebih tinggi daripada elektrolit lemah, hal ini karena zat elektrolit terdisosiasi secara sempurna didalam larutan, berarti larutan elektrolit kuat dapat menghantarkan listrik dengan baik. Penggolongan dengan cara ini juga bergantung pada zat terlarut dari pelarut yang digunakan.

Tabel : perbandingan sifat elektrolit dari senyawa ion dan senyawa kovalen polar.Jenis Senyawa Padatan Lelehan Larutan (dalam Pelarut Air)Senyawa ion Tidak dapat menghantarkan arus listrik, karena dalam bentuk padatan, ion-ionnya tidak dapat bergerak bebas. Dapat menghantarkan arus listrik, karena dalam bentuk lelehan, ion-ionnya dapat bergerak jauh lebih bebas dibandingkan ion-ion dalam zat padat Dapat menghantarkan arus listrik, karena dalam bentuk larutan, ion-ionnya dapat bergerak bebasSenyawa kovalen polar Tidak dapat menghantarkan arus listrik, karena padatannya terdiri dari molekul-molekul netral meskipun bersifat polar Tidak dapat menghantarkan arus listrik, karena lelehannya terdiri dari molekul-molekul netral meski Dapat bergerak lebih bebas Dapat menghantarkan arus listrik, karena dalam larutan molekul-molekulnya dapat terhidrolisis menjadi ion-ion yang Dapat bergerak bebas

Page 50: Kon Duk to Metri

Teori disosiasi elektrolitArus listrik dihantarkan oleh pergerakan partikel-partikel bermuatan dalam larutan elektrolit. Jumlah partikel adalah 2,3,4….dan seterusnya berkali lipat lebih banyak dari jumlah molekul yang larut. Untuk menjelaskan fakta tersebut, Arhenius mengemukakan teorinya tentang disosiasi elektrolit bila dilarutkan dalam air maka akan berdisosiasi menjadi atom-atom atau gugus-gugus atom yang bermuatan, yang sesungguhnya merupakan ion-ion yang menghantarkan arus listrik dalam elektolit dengan migrasi. Disosiasi merupakan suatu proses reversible (dapat balik). Derajat disosiasi berbeda-beda menurut tiap pengenceran. Pada larutan yang sangat encer, disosiasi praktis sempurna untuk semua elektrolit.

Manfaat larutan elektrolitAkiSel aki terdiri anoda Pb dan katoda PbO2 dengan larutan elektrolit H2SO4. adanya larutan elektrolit memungkinkan terjadinya reaki kimia yang menghasilkan arus listrik untuk menghidupkan kendaraan.Air sungai dan air tanahAir sungai dan air tanah mengandung ion-ion sehingga dapat menghantarkan listrik. Sifat ini digunakan untuk menangkap ikan atau belut di sungai atau di persawahan dengan cara setrum listrik.Air sulingMerupakan larutan nonelektrolit, karena mengandung ion-ion dalam jumlah yang sangat kecil. Air suling digunakan untuk membuat larutan dalam percobaan kimia nonelektrolit.Cairan tubuhCairan tubuh mengandung komponen larutan elektrolit. Komponen larutan elektrolit memungkinkan terjadinya daya hantar listrik yang diperlukan untuk kerja impuls. Orang yang kekurangan cairan tubuh (dehidrasi) harus mengkonsumsi larutan elektrolit, seperti larutan oralit.

Alat dan BahanAlatMultimeter/ Volmeter 5. Labu takarElektroda platina 6. Pipet Baterai 7. Botol semprotBeaker gelas 100 ml, 250 ml

Bahan Aquadest 5. Larutan NaCl 9. NaBrMinyak tanah 6. NH4OH 10. NH4ClAsam asetat 7. HCl 11. NaIKristal NaCl 8. NaOH

Prosedur PercobaanMenentukan daya hantar listrik berbagai senyawa :

Page 51: Kon Duk to Metri

Sediakan lima buah beker gelas ukuran 100 ml, kemudian masing-masing diisi 50 ml minyak tanah, Asam Cuka, Aquadest, larutan NaCl dan Kristal NaCl.Cucilah elektroda dengan HNO3 (1 : 1) kemudian bilas dengan aquadest dan bilas lagi dengan aseton, keringkan dengan kertas tissue atau alat pengering (hati-hati permukaan elektroda sngat tipis dan udah patah).Celupkan elektroda tersebut kedalam larutan yang akan diamati gunakan klem dan usahakan elektroda tidak menyentuh dasar beker gelass/bejana.Sebelum pengamatan catatlah suhu percobaan, dan jaga agar suhu percobaan konstan.Ukurlah daya listrik setiap larutan diatas.Setelah pengamatan daya hantar, elektroda dicuci kembali seperti langkah

Mempelajari pengaruh konsentrasi terhadap daya hantar listrik larutan elektolit ;Buatlah masing-masing 50 ml larutan dibawah ini dengan konsentrasi 0,00 M; 0,001 M; 0,005 M; 0,01 M; 0,05 M.Kelompok I : CH3COOH, NH4OH, HCl, NaOHKelompok II : NaCl, NaBr, NaI, NH4ClMencuci elektroda (seperti langkah 1-2)Celukan elektroda ke dalam larutan tersebut.Amati suhu permukaan.Ukurlah daya hantar masing-masing larutan. Pengukuran selalu dimulai dari larutan yang paling encer.Mencuci elektroda (langkah 1 dan 2), bila elektroda tidak digunakan lagi, rendamlah dalam aquadest.

TugasTentukan sifat zat terhadap arus listrik pada percobaan (konduktor atau isolator).Buatlah grafik daya hantar larutan kelompok 1 dan II Vs konsentrasi.Tentukan senyawa mana yang merupakan elektrolit kuat dan mana yang elektrolit elektrolit lemah.Bandingkan daya hantar listrik kation/anion segolongan (antara Cl, Br, I dan antara Na, NH4). Apa komentar anda ?.

soalApa yang disebut konduktor dan sebutkan ada berapa jenis serta apa perbedaan masing-masing konduktor tersebut ?Faktor apa saja yang mempengaruhi daya hantar suatu elektrolit ? jelaskan !Tentukan perbedaan pengaruh pengenceran pada elektrolit kuat dan lemah ! Data Hasil PengamatanMenentukan daya hantar listrik berbagai senyawaZat Kimia L = 1/R (Ohm-1)Minyak TanahAsam CukaAquadestLarutan NaClKristal NaCl

Page 52: Kon Duk to Metri

Daya hantar Listrik pada berbagai konsentrasiElektrolit kelompok 1Konsentrasi CH3COOHL (Ohm-1) NH4OHL (Ohm-1)0,001 M0,005 M0,01 M0,05 M

Konsentrasi HClL (Ohm-1) NaOHL (Ohm-1)0,001 M0,005 M0,01 M0,05 M

Elektrolit Kelompok IIKonsentrasi NaClL (Ohm-1) NaBrL (Ohm-1)0,001 M0,005 M0,01 M0,05 M

Konsentrasi NaIL (Ohm-1) NH4ClL (Ohm-1)0,001 M0,005 M0,01 M0,05 M

Tanggal ……………………2011Asisten Pembimbing

(…………………….)

Page 53: Kon Duk to Metri

 1.8 Pengolahan DataMenentukan grafik daya hantar listrik larutan elektrolit pada kelompok I dan II.Elektrolit Kelompok ILarutan CH3COOHDimana : X = Konsentrasi.Y = Daya hantar listrik.No. X Y XY X21234 ∑

Slope (A) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Intersep (B) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Jadi persamaannya adalah : Y = Ax + BY = ………………….X Y

 Larutan NH4OHDimana : X = Konsentrasi.Y = Daya hantar listrik.No. X Y XY X21234

Page 54: Kon Duk to Metri

Slope (A) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Intersep (B) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Jadi persamaannya adalah : Y = Ax + BY = ………………….X Y

 Larutan HClDimana : X = Konsentrasi.Y = Daya hantar listrik.No. X Y XY X21234 ∑

Slope (A) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Intersep (B) = (………………………………………………)/(………………………………………………)

Page 55: Kon Duk to Metri

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Jadi persamaannya adalah : Y = Ax + BY = ………………….X Y

 Larutan NaOHDimana : X = Konsentrasi.Y = Daya hantar listrik.No. X Y XY X21234 ∑

Slope (A) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Intersep (B) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Jadi persamaannya adalah : Y = Ax + BY = ………………….X Y

Page 56: Kon Duk to Metri

 Elektrolit Kelompok IILarutan NaClDimana : X = Konsentrasi.Y = Daya hantar listrik.No. X Y XY X21234 ∑

Slope (A) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Intersep (B) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Jadi persamaannya adalah : Y = Ax + BY = ………………….X Y

 Larutan NaBrDimana : X = Konsentrasi.Y = Daya hantar listrik.No. X Y XY X21234 ∑

Page 57: Kon Duk to Metri

Slope (A) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Intersep (B) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Jadi persamaannya adalah : Y = Ax + BY = ………………….X Y

 Larutan NaIDimana : X = Konsentrasi.Y = Daya hantar listrik.No. X Y XY X21234 ∑

Slope (A) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Intersep (B) = (………………………………………………)/(………………………………………………)

=

Page 58: Kon Duk to Metri

(…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Jadi persamaannya adalah : Y = Ax + BY = ………………….X Y

 Larutan NH4ClDimana : X = Konsentrasi.Y = Daya hantar listrik.No. X Y XY X21234 ∑

Slope (A) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Intersep (B) = (………………………………………………)/(………………………………………………)

= (…………………………………………………………………………………………………..)/(…………………………………………………………………………………………………...)

= (……………….)/(………………) = …………..

Jadi persamaannya adalah : Y = Ax + BY = ………………….X Y

1.9 Pembahasan

Page 59: Kon Duk to Metri

………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

Page 60: Kon Duk to Metri

………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………Kesimpulan

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

Page 61: Kon Duk to Metri

………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

Daftar Pustaka………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………  Gambar Alat dan Rangkaian 2.3 Grafik Larutan CH3COOH

larutan NH4OH Larutan HCl

 Larutan NaOH Larutan NaCl Larutan NaBr Larutan NaI Larutan NH4Cl