Koloid Dan Sifatnya

download Koloid Dan Sifatnya

of 20

description

kimi dasar

Transcript of Koloid Dan Sifatnya

Koloid dan Sifat-sifatnya

Koloid dan Sifat-sifatnya

Sistem koloid (selanjutnya disingkat "koloid" saja) merupakan suatu bentuk campuran (sistem dispersi) dua atau lebih zat yang bersifat homogen namun memiliki ukuran partikel terdispersi yang cukup besar (1-100 nm), sehingga terkena efek tyndall. Bersifat homogen berarti partikel terdispersi tidak terpengaruh oleh gaya gravitasiKoloid mudah dijumpai di mana-mana: susu, agar-agar, tinta, sampo serta awan merupakan contoh-contoh koloid yang dpat dijumpai sehari-hari. Sitoplasma dalam sel juga merupakan sistem koloid. Kimia koloidMacam-macam koloidKoloid memiliki bentuk bermacam-macam, tergantung dari fase zat pendispersi dan zat terdispersinya. Beberapa jenis koloid:

Aerosol yang memiliki zat pendispersi berupa gas. Aerosol yang memiliki zat terdispersi cair disebut aerosol cair (contoh: kabut) sedangkan yang memiliki zat terdispersi padat disebut aerosol padat (contoh: asap).

Sol

Emulsi

Buih

Gel

Sifat-sifat Koloid

Efek TyndallEfek Tyndall ialah gejala penghamburan berkas sinar (cahaya) oleh partikel-partikel koloid. Hal ini disebabkan karena ukuran molekul koloid yang cukup besar. Efek tyndall ini ditemukan oleh John Tyndall (1820-1893), seorang ahli fisika Inggris. Oleh karena itu sifat itu disebut efek tyndall.

Efek tyndall adalah efek yang terjadi jika suatu larutan terkena sinar. Pada saat larutan sejati (gambar kiri) disinari dengan cahaya, maka larutan tersebut tidak akan menghamburkan cahaya, sedangkan pada sistem koloid (gambar kanan), cahaya akan dihamburkan. hal itu terjadi karena partikel-partikel koloid mempunyai partikel-partikel yang relatif besar untuk dapat menghamburkan sinar tersebut. Sebaliknya, pada larutan sejati, partikel-partikelnya relatif kecil sehingga hamburan yang terjadi hanya sedikit dan sangat sulit diamati.

Gerak BrownGerak Brown ialah gerakan partikel-partikel koloid yang senantiasa bergerak lurus tapi tidak menentu (gerak acak/tidak beraturan). Jika kita amati koloid dibawah mikroskop ultra, maka kita akan melihat bahwa partikel-partikel tersebut akan bergerak membentuk zigzag. Pergerakan zigzag ini dinamakan gerak Brown. Partikel-partikel suatu zat senantiasa bergerak. Gerakan tersebut dapat bersifat acak seperti pada zat cair dan gas( dinamakan gerak brown), sedangkan pada zat padat hanya beroszillasi di tempat ( tidak termasuk gerak brown ). Untuk koloid dengan medium pendispersi zat cair atau gas, pergerakan partikel-partikel akan menghasilkan tumbukan dengan partikel-partikel koloid itu sendiri. Tumbukan tersebut berlangsung dari segala arah. Oleh karena ukuran partikel cukup kecil, maka tumbukan yang terjadi cenderung tidak seimbang. Sehingga terdapat suatu resultan tumbukan yang menyebabkan perubahan arah gerak partikel sehingga terjadi gerak zigzag atau gerak Brown.

Semakin kecil ukuran partikel koloid, semakin cepat gerak Brown yang terjadi. Demikian pula, semakin besar ukuran partikel koloid, semakin lambat gerak Brown yang terjadi. Hal ini menjelaskan mengapa gerak Brown sulit diamati dalam larutan dan tidak ditemukan dalam campuran heterogen zat cair dengan zat padat (suspensi). Gerak Brown juga dipengaruhi oleh suhu. Semakin tinggi suhu sistem koloid, maka semakin besar energi kinetik yang dimiliki partikel-partikel medium pendispersinya. Akibatnya, gerak Brown dari partikel-partikel fase terdispersinya semakin cepat. Demikian pula sebaliknya, semakin rendah suhu sistem koloid, maka gerak Brown semakin lambat.

AdsorpsiAdsorpsi ialah peristiwa penyerapan partikel atau ion atau senyawa lain pada permukaan partikel koloid yang disebabkan oleh luasnya permukaan partikel. (Catatan : Adsorpsi harus dibedakan dengan absorpsi yang artinya penyerapan yang terjadi di dalam suatu partikel). Contoh : (i) Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+. (ii) Koloid As2S3 bermuatan negatif karena permukaannya menyerap ion S2.

Muatan koloidDikenal dua macam koloid, yaitu koloid bermuatan positif dan koloid bermuatan negatif.

Koagulasi koloidKoagulasi adalah penggumpalan partikel koloid dan membentuk endapan. Dengan terjadinya koagulasi, berarti zat terdispersi tidak lagi membentuk koloid. Koagulasi dapat terjadi secara fisik seperti pemanasan, pendinginan dan pengadukan atau secara kimia seperti penambahan elektrolit, pencampuran koloid yang berbeda muatan.

Koloid pelindungKoloid pelindung ialah koloid yang mempunyai sifat dapat melindungi koloid lain dari proses koagulasi.

DialisisDialisis ialah pemisahan koloid dari ion-ion pengganggu dengan cara ini disebut proses dialisis. Yaitu dengan mengalirkan cairan yang tercampur dengan koloid melalui membran semi permeable yang berfungsi sebagai penyaring. Membran semi permeable ini dapat dilewati cairan tetapi tidak dapat dilewati koloid, sehingga koloid dan cairan akan berpisah.

ElektroforesisElektroferesis ialah peristiwa pemisahan partikel koloid yang bermuatan dengan menggunakan arus listrik.

Posted by Veronica Chua at 11:59 PM

http://kimiaverr21.blogspot.com/2010/02/koloid-dan-sifat-sifatnya.htmlFebruary 15 2011

Sifat-Sifat Koloid

a.Efek TyndallApabila sinar diarahkan pada sistem koloid dan larutan sejati, contohnya koloid kanji dan larutan Na2Cr207, maka sinar tersebut akan dihamburkan oleh sistem koloid tetapi tidak dihamburkan oleh larutan sejati. Hal ini ditunjukkan oleh adanya berkas sinar.Sifat menghamburkan cahaya ini terkait dengan ukuran partikel. Koloid kanji memiliki partikel-partikel koloid yang relatif besar untuk dapat menghamburkan sinar tersebut. Sebaliknya, larutan sejati Na2Cr207memiliki partikel-partikel yang relatif kecil sehingga hamburan yang terjadi sangat sedikit dan sulit diamati.Sifat penghamburan cahaya oleh sistem koloid ditemukan oleh John Tyndall (1820-1893), seorang ahli fisika Inggris. Oleh karena itu, sifat ini disebut efek Tyndall. Efek Tyndall ini dapat digunakan untuk membedakan sistem koloid dari larutan sejati.b.Gerak BrownSeorang ahli botani Inggris pada tahun 1827 yang bernama Robert Brown (1773-1858), hal yang pertama kali diamati di bawah mikroskop ultra adalah partikel koloid yang tampak sebagai titik cahaya kecil sesuai dengan sifatnya yang menghamburkan cahaya (efek Tyndall). Jika pergerakkan titik cahaya atau partikel tersebut diikuti, ternyata partikel tersebut bergerak terus-menerus dengangerakan zigzag. Gerak acak dari partikel koloid dalam medium pendispersinya tersebut disebut sebagai gerak Brown. Adanya gerak Brown membuat partikel-partikel koloid dapat mengatasi pengaruh gravitasi sehingga partikel-partikel ini tidak memisahkan diri dari medium pendispersinya.Gerak Brown dari suatu partikel koloid

Partikel-partikel suatu zat senantiasa bergerak dan gerakannya ini dapat bersifat acak seperti pada zat cair dan gas, atau hanya bervibrasi di tempat seperti pada zat padat. Pergerakkan partikel-partikel untuk sistem koloid dengan medium pendispersi zat cair atau gas akan menghasilkan tumbukan dengan partikel-partikel koloid itu sendiri. Tumbukan tersebut berlangsung dari segala arah. Oleh karena ukuran partikel koloid cukup kecil, maka tumbukan yang terjadi cenderung tidak seimbang, sehingga terjadi resultan tumbukan yang menyebabkan perubahan arah gerak partikel sehingga terjadi gerak Brown.Adanya resultan tumbukan oleh partikel-partikel medium pendispersi menyebabkan partikel-partikel koloid bergerak secara acak.Semakin besar ukuran partikel koloid, semakin lambat gerak Brown yang terjadi dan sebaliknya, semakin kecil ukuran partikel koloid, maka akan semakin cepat gerak Brown yang terjadi. Hal ini menyebabkan mengapa gerak Brown sulit diamati dalam larutan dan tidak ditemukan dalam suspensi.Suhu dapat mempengaruhi gerak Brown, jadi semakin tinggi suhu sistem koloid, maka semakin besar energi kinetik yang dimiliki partikel-partikel medium pendispersinya. Akibatnya, gerak Brown dari partikel-partikel fase terdispersinya semakin cepat, dan sebaliknya, semakin rendah suhu sistem koloid, maka gerak Brown semakin lambat.c.Adsorpsi KoloidJika partikel-partikel sol padat diletakkan dalam zat cair atau gas maka partikel-partikelnya akan terakumulasi pada permukaan zat padat tersebut. Fenomena ini disebut adsorpsi yang terkait dengan penyerapan partikel pada permukaan zat. Adsorpsi dengan absorpsi itu berbeda. Bedanya adalah absorpsi terkait dengan penyerapan partikel sampai ke bawah permukaan zat.Partikel koloid sol mempunyai kemampuan untuk mengadsopsi partikel-partikel pendispersi pada permukaannya, baik itu partikel netral atau bermuatan (kation dan anion). Daya adsorpsi partikel koloid tergolong besar karena partikel-partikelnya memberikan suatu permukaan yang sangat luas. Sifat adsorpsi ini telah digunakan dalam berbagai proses seperti penjernihan air.d.Muatan Koloid SolSifat koloid yang terpenting adalah muatan partikel koloid. Semua partikel koloid memiliki muatan sejenis (positif atau negatif). Dikarenakan muatan yang sejenis, maka terdapat gaya tolak-menolak antar partikel koloid. Hal ini mengakibatkan partikel-partikel koloid tidak dapat bergabung sehingga memberikan kestabilan pada sistem koloid, tetapi secara keseluruhan, sistem koloid bersifat netral karena partikel-partikel koloid bermuatan ini akan menarik ion-ion dengan muatan berlawanan dalam medium pendispersinya.(i)Sumber Muatan Koloid SolPartikel-partikel koloid mendapat muatan listrik melalui 2 cara, yaitu:a).Proses AdsorpsiPartikel koloid dapat mengadsopsi partikel bermuatan dari fase pendispersinya. Akibatnya, partikel koloid bermuatan. Jenis muatannya tergantung dari jenis partikel bermuatan yang diserap, apakah berupa kation atau anion. Untuk dapat mengerti lebih jelas, simaklah gambar di bawah ini.Partikel solFe(OH)3(bermuatan positif) mempunyai kemampuan untuk mengadsorpsi kation dari medium pendispersinya sehingga bermuatan positif, sedangkan partikel sol As2S3(bermuatan negatif) mengadsorpsi anion dari medium pendispersinya sehingga bermuatan negatif.Partikel koloid sol tidak selalu mengadsorpsi ion yang sama tetapi dapat berbeda tergantung jenis ion berlebih (kation atau anion) dari medium pendispersinya. Contohnya, sol AgCl dalam medium pendispersi dengan kation Ag+berlebih akan mengadsorpsi Ag+sehingga bermuatan positif dan sebaliknya, jika anion Cl-berlebih, maka sol AgCl akan mengadsorpsi ion Cl-sehingga bermuatan negatif.b).Proses Ionisasi Gugus Permukaan PartikelBeberapa partikel koloid memperoleh muatan dari proses ionisasi gugus-gugus yang ada pada permukaan partikel koloid. Contohnya adalah koloid protein dan koloid sabun atau deterjen.(ii)Kestabilan KoloidMuatan partikel-partikel koloid adalah sejenis sehingga cenderung saling tolak-menolak. Gaya tolak-menolak ini mencegah partikel-partikel koloid bergabung dan mengendap akibat gaya gravitasi, sehingga muatan koloid berperan besar dalam menjaga kestabilan koloid.(iii)Lapisan Bermuatan GandaPermukaan partikel koloid mendapat muatan listrik dengan mengadsorpsi ion dari medium pendispersinya. Lapisan bermuatan listrik ini selanjutnya akan menarik ion-ion dengan muatan berlawanan dari medium pendispersinya. Akibatnya, akan terbentuk 2 lapisan yang disebut lapisan permukaan ganda. Adanya lapisan ini menyebabkan sistem koloid secara keseluruhan bersifat netral.(iv)ElektroforesisOleh karena partikel koloid sol bermuatan listrik, maka partikel ini akan bergerak dalam medan listrik. Pergerakkan partikel koloid dalam medan listrik disebut elektroforesis.Dalam tabung U yang berisi sistem koloid sol yang bermuatan positif, dimasukkan sepasang elektrode dan diberi arus searah dari sumber tegangan. Dapat diketahui bahwa partikel-partikel koloid bermuatan positif tersebut bergerak menuju elektrode dengan muatan berlawanan, yaitu elektrode negatif (katode). Apabila sistem koloid tersebut diganti dengan yang bermuatan negatif, maka akan ditemukan bahwa partikel-partikel koloid akan bergerak menuju elektrode positif (anode). Fenomena eletroforesis dapat digunakan untuk menentukan jenis muatan partikel koloid.

Muatan beberapa partikel koloid dalam medium pendispersi air:Partikel Koloid Bermuatan PositifPartikel Koloid Bermuatan Negatif

Fe(OH)3As2S3

Al(OH)3Logam seperti Au, Ag, Pt

Pewarna dasarTepung

HemoglobinTanah liat

e.KoagulasiPartikel-partikel koloid bersifat stabil karena memiliki muatan listrik yang sejenis. Apabila muatan listrik tersebut hilang, maka partikel-partikel koloid tersebut akan bergabung membentuk gumpalan. Proses pengumpulan ini disebut flokulasi (floculation) dan gumpalannya disebut flok (flocculant). Gumpalan ini akan mengendap akibat pengaruh gravitasi. Proses penggumpalan partikel-partikel koloid dan pengendapannya ini disebut koagulasi.Penghilangan muatan listrik pada partikel koloid ini dapat dilakukan dengan empat cara, yaitu :(i)Menggunakan prinsip elektroforesisProses elektroforesis adalah pergerakan partikel-partikel koloid yang bermuatan ke elektrode dengan muatan berlawanan. Ketika partikel-partikel ini mencapai elektrode, maka partikel-partikel tersebut akan kehilangan muatannya sehingga menggumpal dan mengendap di elektrode. Untuk lebih memahaminya, lakukan kegiatan berikut.(ii)Penambahan koloid lain dengan muatan berlawananApabilasuatu sistem koloid bermuatan positif dicampur dengan sistem koloid lain yang bermuatan negatif, maka kedua sistem koloid tersebut akan saling mengadsorpsi dan menjadi netral. Akibatnya, terbentuk koagulasi. Untuk jelasnya, lakukan kegiatan berikut.(iii)Penambahan elektrolitJika suatu elektrolit ditambahkan ke dalam sistem koloid, maka partikel-partikel koloid yang bermuatan negatif akan menarik ion positif (kation) dari elektrolit. Sementara itu, partikel-partikel koloid yang bermuatan positif akan menarik ion negatif (anion) dari elektrolit. Hal ini menyebabkan partikel -partikel koloid tersebutdikelilingi olehpasien kedua yang memiliki muatan berlawanan dengan muatan lapisan pertama. Apabila jarak antara lapisan pertama dan kedua cukup dekat, maka muatan keduanya akan hilang sehingga terjadi koagulasi.(iv)PendidihanSol, seperti belerang dan perak halida yang terdispersi dalam air, dapat mengalami koagulasi dengan mendidihkannya. Kenaikan suhu sistem koloid menyebabkan jumlah tumbukan antara partikel-partikel sol dengan molekul-molekul air bertambah banyak. hal ini menyebabkan lepasnya elektrolit yang teradsorpsi pada permukaan partikel koloid. Akibatnya, partikel-partikel koloid menjadi tidak bermuatansehingga terjadi koagulasi.f. Koloid PelindungBerdasarkan perbedaan daya adsorpsi dari fase terdispersi terhadap medium pendispersinya yang berupa zat cair, koloid dapat dibedakan menjadi dua jenis. Sistem koloid di mana partikel terdispersinya mempunyai daya adsorpsi yang relatif besar disebut koloid liofil. Sedangkan sistem koloid dimana partikel terdispersinya mempunyai daya adsorpsi yang relatif kecil disebut koloid liofob.Koloid liofil bersifat lebih stabil, sedangkan koloid liofob bersifat kurang stabil. Koloid liofil yang berfungsi sebagai koloid pelindung.Koloid liofil dan koloid liofobKoloid yang memiliki medium pendispersi berupa zat cair dapat menjadi koloid liofil dan koloid liofob.-Koloid liofil (suka cairan) adalah koloid dimana terdapatgayatarik menarik yang cukup besar antara fase terdispersi dan medium pendispersinya. Contohnya, dispersi kanji, sabun, deterjen, dan protein dalam air.-Koloid liofob (tidak suka cairan)adalah koloid di mana terdapatgayatarik menarik yang lemahatau bahkan tidak adagayatarik menarik antara fase terdsipersi dan medium pendispersinya. Contohnya, dispersi emas, Fe (OH)3, dan belerang dalam air.Jika medium pendispersi koloid ini adalah air, maka istilah yang digunakan adalah koloid hidrofil dan koloid hidrofob.Gayatarik menarik koloid hidrofil yang lebih kuat dibandingkan koloid hidrofob disebabkan oleh keberadaan ikan hidrogen yang terbentuk antara fase terdispersi dan air (medium pendispersi). Sebagaicontoh ikatan hidrogen antara gugus amino (-NH2atau - NH-) molekul protein dan molekul air, ikatan hidrogen antara gugus -OH molekul kanji dan molekul air. Ikatan hidrogen ini tidak ditemukan dalam koloid liofob seperti dispersi emas atau belerang dalam air.Beberapa perbedaan sifat -sifat koloid liofil / hidrofil dan liofob / hidrofob, khususnya sol dalam medium pendispersi cair diberikan berikut ini.Sifat - sifatSol liofil / hidrofilSol liofob / hidrofob

1.PembuatanSol liofil dapat dibuat langsung dengan mencampurkan fase terdispersi dengan medium pendispersinya. Pembuatannya dapat melibatkan konsentrasi yang relatif besar.Sol liofob tidak dapat dibuat hanyadengan mencampur fase terdispersi dan medium pendispersinya.Perkecualian adalah pada konentrasi yang kecil.

2.Muatan PartikelPartikel-partikel sol hidrofil mempunyai muatan yang kecil atau tidak bermuatanPartikel-partikel sol hidrofob memiliki muatan positif atau negatif.Muatan ini memberikan kestabilan bagi sistem koloid.

3.Adsorpsi medium pendispersi (proses solvasi / hidrasi)Partikel - partikel sol hidrofil mengadsorpsi medium pendispersinya.Akhirnya, terbentuk lapisan medium pendispersi yang teradsorpsi di sekeliling partikel. Lapisan ini yang menyebabkan partikel -partikel sol hidrofil tidak saling bergabung. Proses ini disebut solvasi / hidrasi.Partikel-partikel sol hidrofob tidak mengadsorpsi medium pendispersinya. Muatan partikel-partikel sol diperoleh dari adsorpsipartikel-partikel ion yang bermuatan listrik.

4.Viskositas (kekentalan)Viskositas sol liofil lebih besar dibandingkan viskositas medium pendispersinya. Hal ini disebabkan ukuran partikel meningkat akibat proses solvsi dan karenanya jumlah medium pendispersinya yang bebas berkurang. Sol liofil yang hangat akan membentuk gel jika didinginkan.Viskositas sol hidrofob hampir sama dengan viskositas medium pendispersinya. Oleh karena itu, sol liofob tidak membentuk gel.

5.PenggumpalanTidak mudah menggumpal dengan penambahan elektrolit. Untuk menggumpalkan sol liofil diperlukan elektrolit dengan konsentrasi tinggi, dimana elektrolit ini dapat memecah lapisan medium pendispersi yang melindunginya dan menyebabkan penggumpalan.Mudah menggumpal dengan penambahan elektrolit. Sol liofob akan menggumpal bahkan dengan penambahan elektrolit dengan konsentrasi rendah. Hal ini disebabkan sol liofob tidak memiliki lapisan pelindung seperti halnya sol liofil.

6.Sifat reversibelSol liofil bersifat reversibel. Artinya, fase terdispersi sol liofil dapat dipisahkan dengan koagulasi atau penguapan medium pendispersinya, dan kemudian dapat diubah kembali menjadi sol dengan penambahan medium pendispersinya.Sol liofob bersifat tidak reversibel. Artinya, fase terdispersi sol liofob yang telah digumpalkan atau dipisahkan dari mediumpendispersinya, tidak dapat diubah kembali menjadi sol.

7.Efek TyndallSol liofil memberikan efek Tyndall yang lemah. Hal ini disebabkan ukuran partikel-partikelnya relatif kecil.Sol liofob dapat memberikan efek Tyndall yang jelas. Hal ini disebabkan ukuran partikel-partikelnya cukup besar.

8.Migrasi dalammedanlistrikPartikel-partikel sol liofil dapat bermigrasi ke anode, katode, atau tidak bermigrasi sama sekali dalammedanlistrik. Contohnya protein.Partikel-partikel sol liofob akan bergerak ke anode atau ke katode. Hal ini tergantung jenis muatan partikel apakah negatif atau positif.

http://www.freewebs.com/leosylvi/sifatsifatkoloidsol.htm2011-03-22

What is a Colloidal Dispersion?

Colloidal system or colloidal dispersion is a heterogeneous system which is made up of Dispersed phase and Dispersion medium. In colloidal dispersion one substance is dispersed as very fine particles in another substance called dispersion medium. In case of dust, solid particles are dispersed in air as dispersion medium.

Types of Colloidal Dispersions

Dispersed phase and dispersion medium can be solid, liquid or gas. Depending upon the state of dispersed phase and dispersion medium, eight different types of colloidal dispersions can exist.

Eight DifferentTypes of Colloidal Dispersionsare:

1. Foam

2. Solid foam

3. Liquid Aerosol

4. Emulsions

5. Gels

6. Solid Aerosol

7. Sol (Colloidal suspension)

8. Solid sol (Solid suspension)

Dispersed PhaseDispersion MediumType of Colloidal Dispersions

GasLiquidFoam

GasSolidSolid foam

GasGasDoes not exist

LiquidGasLiquid Aerosol

LiquidLiquidEmulsions

LiquidSolidGel

SolidGasSolid Aerosol

SolidLiquidSol or Colloidal Suspension

SolidSolidSolid sol(solid suspension)

It is important to note that when one gas is mixed with another gas, a homogeneous mixture is formed i.e. gases are completely miscible into each other. Colloidal dispersions are heterogeneous in nature and gas dispersed in another gaseous medium does not form colloidal system.

When the dispersion medium is gas, the solution is called Aerosol and when the dispersion medium is liquid, the colloidal dispersion is known as Sol. Sols can further be classified into different types depending upon the liquid used.

If the liquid used is water, the solution is Hydrosol or Aquasol.

If liquid used is Benzene, the solution is Benzosol

If liquid used is Alcohol, the solution is Alcosol

If any organic compound is used, the solution is Organosol

Example of Colloidal Dispersions

DifferentTypes of Colloidal Dispersionand their examples are summarized in table below.

Type of Colloidal DispersionsExamples

FoamSoap, beer, lemonade

Solid foamPumice stone

Does not exist

Liquid AerosolFog, dust

EmulsionsMilk, rubber

GelButter, Cheese

Solid AerosolDust

Sol or Colloidal SuspensionPaste, ink

Solid sol(solid suspension)Pearls, gem stones

http://www.xamplified.com/colloidal-dispersions/2011-03-22

http://old.iupac.org/goldbook/C01174.pdf2011-03-22

Acolloidis a substance microscopically dispersed evenly throughout another substance.[1]A colloidal system consists of two separate phases: adispersed phase(orinternal phase) and acontinuous phase(ordispersion medium). A colloidal system may besolid,liquid, orgaseous.

Many familiar substances are colloids, as shown in thechartbelow. In addition to these naturally occurring colloids, modern chemical process industries utilizehigh shear mixing technologyto create novel colloids.

The dispersed-phase particles have a diameter of between approximately 5 and 200nanometers.[2]Such particles are normally invisible in an opticalmicroscope, though their presence can be confirmed with the use of anultramicroscopeor anelectron microscope.Homogeneousmixtures with a dispersed phase in this size range may be calledcolloidal aerosols,colloidal emulsions,colloidal foams,colloidal dispersions, orhydrosols. The dispersed-phase particles or droplets are affected largely by thesurface chemistrypresent in the colloid.

Some colloids are translucent because of theTyndall effect, which is the scattering of light by particles in the colloid. Other colloids may be opaque or have a slight color.

Colloidal systems (also called colloidal solutions or colloidal suspensions) are the subject ofinterface and colloid science. This field of study was introduced in 1861 byScottishscientistThomas Graham.

Contents

[hide] 1Classification of colloids 2Hydrocolloids 3Interaction between colloid particles 4Stabilization of a colloidal dispersion (peptization) 5Destabilizing a colloidal dispersion (flocculation) 5.1Technique monitoring colloidal stability 5.2Accelerating methods for shelf life prediction 6Colloids as a model system for atoms 7Colloidal crystals 8Colloids in biology 9Colloids in the environment 10Use in intravenous therapy 11See also 12References 13Further reading 14External links

[edit]Classification of colloidsBecause the size of the dispersed phase may be difficult to measure, and because colloids have the appearance ofsolutions, colloids are sometimes identified and characterized by their physico-chemical and transport properties. For example, if a colloid consists of a solid phase dispersed in a liquid, the solid particles will notdiffusethrough a membrane, whereas with a true solution the dissolved ions or molecules will diffuse through a membrane. Because of the size exclusion, the colloidal particles are unable to pass through the pores of an ultrafiltration membrane with a size smaller than their own dimension. The smaller the size of the pore of the ultrafiltration membrane, the lower the concentration of the dispersed colloidal particules remaining in the ultrafiltred liquid. The exact value of the concentration of a truly dissolved species will thus depend on the experimental conditions applied to separate it from the colloidal particles also dispersed in the liquid. This is, a.o., particularly important forsolubilitystudies of readilyhydrolysedspecies such as Al, Eu, Am, Cm, ... ororganic mattercomplexingthese species.

Colloids can be classified as follows:

Medium/PhasesDispersed phase

GasLiquidSolid

Continuous mediumGasNONE(All gases are mutuallymiscible)LiquidaerosolExamples:fog,mist,hair spraysSolid aerosolExamples:smoke,cloud,air particulates

LiquidFoamExample:whipped cream,Shaving creamEmulsionExamples:milk,mayonnaise,hand creamSolExamples:pigmented ink,blood

SolidSolid foamExamples:aerogel,styrofoam,pumiceGelExamples:agar,gelatin,jelly,opalSolid solExample:cranberry glass

In some cases, a colloid can be considered as a homogeneous mixture. This is because the distinction between "dissolved" and "particulate" matter can be sometimes a matter of approach, which affects whether or not it is homogeneous or heterogeneous.

[edit]HydrocolloidsAhydrocolloidis defined as a colloid system wherein the colloid particles are dispersed inwater. A hydrocolloid has colloid particles spread throughout water, and depending on the quantity of water available that can take place in different states, e.g.,gelorsol(liquid). Hydrocolloids can be eitherirreversible(single-state) orreversible. For example,agar, a reversible hydrocolloid ofseaweedextract, can exist in a gel and sol state, and alternate between states with the addition or elimination of heat.

Many hydrocolloids are derived from natural sources. For example,agar-agarandcarrageenanare extracted from seaweed,gelatinis produced by hydrolysis of proteins ofbovineand fish origins, andpectinis extracted fromcitruspeel and applepomace.

Gelatin dessertslike jelly orJell-Oare made from gelatin powder, another effective hydrocolloid. Hydrocolloids are employed in food mainly to influencetextureorviscosity(e.g., a sauce). Hydrocolloid-basedmedical dressingsare used forskinandwoundtreatment.

Other main hydrocolloids arexanthan gum,gum arabic,guar gum,locust bean gum, cellulose derivatives ascarboxymethyl cellulose,alginateandstarch.

[edit]Interaction between colloid particlesThe following forces play an important role in the interaction of colloid particles:

Excluded volume repulsion: This refers to the impossibility of any overlap between hard particles.

Electrostatic interaction: Colloidal particles often carry an electrical charge and therefore attract or repel each other. The charge of both the continuous and the dispersed phase, as well as the mobility of the phases are factors affecting this interaction.

van der Waals forces: This is due to interaction between two dipoles that are either permanent or induced. Even if the particles do not have a permanent dipole, fluctuations of the electron density gives rise to a temporary dipole in a particle. This temporary dipole induces a dipole in particles nearby. The temporary dipole and the induced dipoles are then attracted to each other. This is known as van der Waals force, and is always present (unless the refractive indexes of the dispersed and continuous phases are matched), is short-range, and is attractive.

Entropic forces: According to the second law of thermodynamics, a system progresses to a state in which entropy is maximized. This can result in effective forces even between hard spheres.

Steric forcesbetween polymer-covered surfaces or in solutions containing non-adsorbing polymer can modulate interparticle forces, producing an additional steric repulsive force (which is predominantly entropic in origin) or an attractive depletion force between them. Such an effect is specifically searched for with tailor-madesuperplasticizersdeveloped to increase the workability of concrete and to reduce itswater content.

[edit]Stabilization of a colloidal dispersion (peptization)Stabilization serves to prevent colloids from aggregating. Steric stabilization andelectrostatic stabilizationare the two main mechanisms for colloid stabilization. Electrostatic stabilization is based on the mutual repulsion of like electrical charges. In general, different phases have different charge affinities, so that aelectrical double layerforms at any interface. Small particle sizes lead to enormous surface areas, and this effect is greatly amplified in colloids. In a stable colloid, mass of a dispersed phase is so low that itsbuoyancyorkinetic energyis too weak to overcome the electrostatic repulsion between charged layers of the dispersing phase. The charge on the dispersed particles can be observed by applying an electric field: All particles migrate to the same electrode and therefore must all have the same sign charge.

[edit]Destabilizing a colloidal dispersion (flocculation)Unstable colloidal dispersions formflocsas the particles aggregate due to interparticle attractions. In this way photonic glasses can be grown. This can be accomplished by a number of different methods:

Removal of the electrostatic barrier that prevents aggregation of the particles. This can be accomplished by the addition of salt to a suspension or changing the pH of a suspension to effectively neutralize or "screen" the surface charge of the particles in suspension. This removes the repulsive forces that keep colloidal particles separate and allows for coagulation due to van der Waals forces.

Addition of a charged polymer flocculant. Polymer flocculants can bridge individual colloidal particles by attractive electrostatic interactions. For example, negatively-charged colloidal silica or clay particles can be flocculated by the addition of a positively-charged polymer.

Addition of non-adsorbed polymers called depletants that cause aggregation due to entropic effects.

Physical deformation of the particle (e.g., stretching) may increase the van der Waals forces more than stabilization forces (such as electrostatic), resulting coagulation of colloids at certain orientations.

Unstable colloidal suspensions of low-volume fraction form clustered liquid suspensions, wherein individual clusters of particles fall to the bottom of the suspension (or float to the top if the particles are less dense than the suspending medium) once the clusters are of sufficient size for theBrownian forcesthat work to keep the particles in suspension to be overcome by gravitational forces. However, colloidal suspensions of higher-volume fraction form colloidal gels with viscoelastic properties. Viscoelastic colloidal gels, such asbentoniteandtoothpaste, flow like liquids under shear, but maintain their shape when shear is removed. It is for this reason that toothpaste can be squeezed from a toothpaste tube, but stays on the toothbrush after it is applied.

[edit]Technique monitoring colloidal stability

Measurement principle of multiple light scattering coupled with vertical scanning

Multiple light scattering coupled with vertical scanning is the most widely used technique to monitor the dispersion state of a product, hence identifying and quantifying destabilisation phenomena.[3]

HYPERLINK "http://en.wikipedia.org/wiki/Colloid" \l "cite_note-3" [4]

HYPERLINK "http://en.wikipedia.org/wiki/Colloid" \l "cite_note-4" [5]

HYPERLINK "http://en.wikipedia.org/wiki/Colloid" \l "cite_note-5" [6]It works on concentrated dispersions without dilution. When light is sent through the sample, it is backscattered by the particles / droplets. The backscattering intensity is directly proportional to the size and volume fraction of the dispersed phase. Therefore, local changes in concentration (e.g.CreamingandSedimentation) and global changes in size (e.g.flocculation,coalescence) are detected and monitored.

[edit]Accelerating methods for shelf life predictionThe kinetic process of destabilisation can be rather long (up to several months or even years for some products) and it is often required for the formulator to use further accelerating methods in order to reach reasonable development time for new product design. Thermal methods are the most commonly used and consists in increasing temperature to accelerate destabilisation (below critical temperatures of phase inversion or chemical degradation). Temperature affects not only the viscosity, but also interfacial tension in the case of non-ionic surfactants or more generally interactions forces inside the system. Storing a dispersion at high temperatures enables to simulate real life conditions for a product (e.g. tube of sunscreen cream in a car in the summer), but also to accelerate destabilisation processes up to 200 times. Mechanical acceleration including vibration,centrifugationand agitation are sometimes used. They subject the product to different forces that pushes the particles / droplets against one another, hence helping in the film drainage. However, some emulsions would never coalesce in normal gravity, while they do under artificial gravity.[7]Moreover segregation of different populations of particles have been highlighted when using centrifugation and vibration.[8][edit]Colloids as a model system for atomsInphysics, colloids are an interesting model system foratoms. Micrometre-scale colloidal particles are large enough to be observed by optical techniques such asconfocal microscopy. Many of the forces that govern the structure and behavior of matter, such as excluded volume interactions or electrostatic forces, govern the structure and behavior of colloidal suspensions. For example, the same techniques used to model ideal gases can be applied tomodelthe behavior of a hard sphere colloidal suspension. In addition, phase transitions in colloidal suspensions can be studied in real time using optical techniques, and are analogous to phase transitions in liquids.

[edit]Colloidal crystalsMain article:Colloidal crystalA colloidal crystal is a highlyorderedarray of particles that can be formed over a very long range (typically on the order of a fewmillimetersto onecentimeter) and that appearanalogousto their atomic or molecular counterparts.[9]One of the finestnaturalexamples of this ordering phenomenon can be found in preciousopal, in which brilliant regions of purespectralcolorresult fromclose-packeddomains ofamorphouscolloidal spheres ofsilicon dioxide(orsilica, SiO2).[10]

HYPERLINK "http://en.wikipedia.org/wiki/Colloid" \l "cite_note-10" [11]These spherical particlesprecipitatein highlysiliceouspools inAustraliaand elsewhere, and form these highly ordered arrays after years ofsedimentationandcompressionunderhydrostaticand gravitational forces. The periodic arrays of submicrometre spherical particles provide similar arrays ofinterstitial

HYPERLINK "http://en.wikipedia.org/wiki/Voids" \o "Voids" voids, which act as a naturaldiffraction gratingforvisiblelightwaves, particularly when the interstitial spacing is of the sameorder of magnitudeas theincidentlightwave.[12]

HYPERLINK "http://en.wikipedia.org/wiki/Colloid" \l "cite_note-12" [13]Thus, it has been known for many years that, due torepulsiveCoulombicinteractions,electrically chargedmacromoleculesin anaqueousenvironment can exhibit long-rangecrystal-like correlations with interparticle separation distances, often being considerably greater than the individual particle diameter. In all of these cases in nature, the same brilliantiridescence(or play of colors) can be attributed to the diffraction andconstructive interferenceof visible lightwaves that satisfyBraggs law, in a matter analogous to thescatteringofX-raysin crystalline solids.

The large number of experiments exploring thephysicsandchemistryof these so-called "colloidal crystals" has emerged as a result of the relatively simple methods that have evolved in the last 20 years for preparing synthetic monodisperse colloids (both polymer and mineral) and, through various mechanisms, implementing and preserving their long-range order formation.

[edit]Colloids in biologyIn the early 20th century, beforeenzymologywas well understood, colloids were thought to be the key to the operation ofenzymes; i.e., the addition of small quantities of an enzyme to a quantity of water would, in some fashion yet to be specified, subtly alter the properties of the water so that it would break down the enzyme's specificsubstrate,[citation needed]such as a solution ofATPasebreaking downATP. Furthermore,lifeitself was explainable in terms of the aggregate properties of all the colloidal substances that make up anorganism. As more detailed knowledge ofbiologyandbiochemistrydeveloped, the colloidal theory was replaced by themacromoleculartheory, which explains an enzyme as a collection of identical hugemoleculesthat act as very tinymachines, freely moving about between the water molecules of the solution and individually operating on the substrate, no more mysterious than afactoryfull of machinery. The properties of the water in the solution are not altered, other than the simpleosmoticchanges that would be caused by the presence of anysolute. In humans, both thethyroid glandand theintermediate lobe(pars intermedia) of thepituitary glandcontain colloid follicles.

[edit]Colloids in the environmentColloidal particles can also serve as transport vector[14]of diverse contaminants in the surface water (sea water, lakes, rivers, fresh water bodies) and in underground water circulating in fissured rocks[15](limestone,sandstone,granite, ...). Radionuclides and heavy metals easilysorbonto colloids suspended in water. Various types of colloids are recognised: inorganic colloids (clayparticles, silicates,iron oxy-hydroxides, ...), organic colloids (humicandfulvicsubstances). When heavy metals or radionuclides form their own pure colloids, the term "Eigencolloid" is used to designate pure phases, e.g., Tc(OH)4, U(OH)4, Am(OH)3. Colloids have been suspected for the long-range transport of plutonium on theNevada Nuclear Test Site. They have been the subject of detailed studies for many years. However, the mobility of inorganic colloids is very low in compactedbentonitesand in deep clay formations[16]because of the process ofultrafiltrationoccurring in dense clay membrane.[17]The question is less clear for small organic colloids often mixed in porewater with truly dissolved organic molecules.[18][edit]Use in intravenous therapyColloid solutions used inintravenous therapybelong to a major group ofvolume expanders, and can be used for intravenousfluid replacement. Colloids preserve a highcolloid osmotic pressurein the blood,[19]and therefore, they should theoretically preferentially increase theintravascular volume, whereas other types of volume expanders calledcrystalloidsalso increases theinterstitial volumeandintracellular volume. However, there is still controversy to the actual difference in efficacy by this difference.[19]Another difference is that crystalloids generally are much cheaper than colloids.[19]Recently, however, it has been determined that the use of colloids was bolstered by faked research studies[1]http://en.wikipedia.org/wiki/Colloid2011-03-22