Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

19
Klasifikasi kualitas batubara secara umum terbagi 2, yaitu pembagian secara ilmiah dalam hal ini berdasarkan tingkat pembatubaraaan, dan pembagian berdasarkan tujuan penggunaannya. Berdasarkan urutan pembatubaraannya, batubara terbagi menjadi batubara muda (brown coal atau lignite), sub bituminus, bituminus, dan antrasit. Sedangkan berdasarkan tujuan penggunaannya, batubara terbagi menjadi batubara uap (steam coal), batubara kokas (coking coal atau metallurgical coal), dan antrasit. Batubara uap merupakan batubara yang skala penggunaannya paling luas. Berdasarkan metodenya, pemanfataan batubara uap terdiri dari pemanfaatan secara langsung yaitu batubara yang telah memenuhi spesifikasi tertentu langsung digunakan setelah melalui proses peremukan (crushing/milling) terlebih dulu seperti pada PLTU batubara, kemudian pemanfaatan dengan memproses terlebih dulu untuk memudahkan penanganan (handling) seperti CWM (Coal Water Slurry), COM (Coal Oil Mixture), dan CCS (Coal Cartridge System), dan selanjutnya pemanfataan melalui proses konversi seperti gasifikasi dan pencairan batubara Pada PLTU batubara, bahan bakar yang digunakan adalah batubara uap yang terdiri dari kelas sub bituminus dan bituminus. Lignit juga mulai mendapat tempat sebagai bahan bakar pada PLTU belakangan ini, seiring dengan perkembangan teknologi pembangkitan yang mampu mengakomodasi batubara berkualitas rendah. Gambar 1. Skema pembangkitan listrik pada PLTU batubara (Sumber: The Coal Resource, 2004) Pada PLTU, batubara dibakar di boiler menghasilkan panas yang digunakan untuk mengubah air dalam pipa yang dilewatkan di boiler tersebut menjadi uap, yang selanjutnya digunakan untuk menggerakkan turbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi panas pada proses pembakaran batubara tersebut, karena selain

Transcript of Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

Page 1: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

Klasifikasi kualitas batubara secara umum terbagi 2, yaitu pembagian secara ilmiah dalam hal ini

berdasarkan tingkat pembatubaraaan, dan pembagian berdasarkan tujuan penggunaannya.

Berdasarkan urutan pembatubaraannya, batubara terbagi menjadi batubara muda (brown

coal atau lignite), sub bituminus, bituminus, dan antrasit. Sedangkan berdasarkan tujuan

penggunaannya, batubara terbagi menjadi batubara uap (steam coal), batubara kokas (coking

coal atau metallurgical coal), dan antrasit.

Batubara uap merupakan batubara yang skala penggunaannya paling luas. Berdasarkan metodenya,

pemanfataan batubara uap terdiri dari pemanfaatan secara langsung yaitu batubara yang telah

memenuhi spesifikasi tertentu langsung digunakan setelah melalui proses peremukan

(crushing/milling) terlebih dulu seperti pada PLTU batubara, kemudian pemanfaatan dengan

memproses terlebih dulu untuk memudahkan penanganan (handling) seperti CWM (Coal Water

Slurry), COM (Coal Oil Mixture), dan CCS (Coal Cartridge System), dan selanjutnya pemanfataan

melalui proses konversi seperti gasifikasi dan pencairan batubara

Pada PLTU batubara, bahan bakar yang digunakan adalah batubara uap yang terdiri dari kelas sub

bituminus dan bituminus. Lignit juga mulai mendapat tempat sebagai bahan bakar pada PLTU

belakangan ini, seiring dengan perkembangan teknologi pembangkitan yang mampu mengakomodasi

batubara berkualitas rendah.

Gambar 1. Skema pembangkitan listrik pada PLTU batubara

(Sumber: The Coal Resource, 2004)

Pada PLTU, batubara dibakar di boiler menghasilkan panas yang digunakan untuk mengubah air

dalam pipa yang dilewatkan di boiler tersebut menjadi uap, yang selanjutnya digunakan untuk

menggerakkan turbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat

ditentukan oleh efisiensi panas pada proses pembakaran batubara tersebut, karena selain

berpengaruh pada efisiensi pembangkitan, juga dapat menurunkan biaya pembangkitan. Kemudian

dari segi lingkungan, diketahui bahwa jumlah emisi CO2 per satuan kalori dari batubara adalah yang

terbanyak bila dibandingkan dengan bahan bakar fosil lainnya, dengan perbandingan untuk batubara,

minyak, dan gas adalah 5:4:3. Sehingga berdasarkan uji coba yang mendapatkan hasil bahwa

kenaikan efisiensi panas sebesar 1% akan dapat menurunkan emisi CO2 sebesar 2,5%, maka

Page 2: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

efisiensi panas yang meningkat akan dapat mengurangi beban lingkungan secara signifikan akibat

pembakaran batubara. Oleh karena itu, dapat dikatakan bahwa teknologi pembakaran (combustion

technology) merupakan tema utama pada upaya peningkatan efisiensi pemanfaatan batubara secara

langsung sekaligus upaya antisipasi isu lingkungan ke depannya.

Pada dasarnya metode pembakaran pada PLTU terbagi 3, yaitu pembakaran lapisan tetap (fixed bed

combustion), pembakaran batubara serbuk (pulverized coal combustion /PCC), dan pembakaran

lapisan mengambang (fluidized bed combustion / FBC). Gambar 3 di bawah ini menampilkan jenis –

jenis boiler yang digunakan untuk masing – masing metode pembakaran.

Gambar 2. Tipikal boiler berdasarkan metode pembakaran

(Sumber: Idemitsu Kosan Co., Ltd)

Pembakaran Lapisan Tetap

Metode lapisan tetap menggunakan stoker boiler untuk proses pembakarannya. Sebagai bahan

bakarnya adalah batubara dengan kadar abu yang tidak terlalu rendah dan berukuran maksimum

sekitar 30mm. Selain itu, karena adanya pembatasan sebaran ukuran butiran batubara yang

digunakan, maka perlu dilakukan pengurangan jumlah fine coal yang ikut tercampur ke dalam

batubara tersebut. Alasan tidak digunakannya batubara dengan kadar abu yang terlalu rendah adalah

karena pada metode pembakaran ini, batubara dibakar di atas lapisan abu tebal yang terbentuk di

atas kisi api (traveling fire grate) padastoker boiler. Bila kadar abunya sangat sedikit, lapisan abu tidak

akan terbentuk di atas kisi tersebut sehingga pembakaran akan langsung terjadi pada kisi, yang dapat

menyebabkan kerusakan yang parah pada bagian tersebut. Oleh karena itu, kadar abu batubara yang

disukai untuk tipe boiler ini adalah sekitar 10 – 15%. Adapun tebal minimum lapisan abu yang

diperlukan untuk pembakaran adalah 5cm.

Page 3: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

Gambar 3. Stoker Boiler

(Sumber: Idemitsu Kosan Co., Ltd)

Pada pembakaran dengan stoker ini, abu hasil pembakaran berupa fly ash jumlahnya sedikit, hanya

sekitar 30% dari keseluruhan. Kemudian dengan upaya seperti pembakaran NOx dua tingkat, kadar

NOx dapat diturunkan hingga sekitar 250 – 300 ppm. Sedangkan untuk menurunkan SOx, masih

diperlukan tambahan fasilitas berupa alat desulfurisasi gas buang.

Pembakaran Batubara Serbuk (Pulverized Coal Combustion/PCC)

Saat ini, kebanyakan PLTU terutama yang berkapasitas besar masih menggunakan metode PCC

pada pembakaran bahan bakarnya. Hal ini karena sistem PCC merupakan teknologi yang sudah

terbukti dan memiliki tingkat kehandalan yang tinggi. Upaya perbaikan kinerja PLTU ini terutama

dilakukan dengan meningkatkan suhu dan tekanan dari uap yang dihasilkan selama proses

pembakaran. Perkembangannya dimulai dari sub critical steam, kemudian super critical steam,

serta ultra super critical steam (USC). Sebagai contoh PLTU yang menggunakan teknologi USC

adalah pembangkit no. 1 dan 2 milik J-Power di teluk Tachibana, Jepang, yang boilernya masing –

masing berkapasitas 1050 MW buatan Babcock Hitachi. Tekanan uap yang dihasilkan adalah

sebesar 25 MPa (254.93 kgf/cm2) dan suhunya mencapai 600℃/610℃ (1 stage reheat cycle).

Perkembangan kondisi uap dan grafik peningkatan efisiensi pembangkitan pada PCC ditunjukkan

pada gambar 4 di di bawah ini.

Page 4: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

Gambar 4. Perkembangan kondisi uap PLTU

(Sumber: Clean Coal Technologies in Japan, 2005)

Pada PCC, batubara diremuk dulu dengan menggunakan coal pulverizer (coal mill) sampai berukuran

200 mesh (diameter 74μm), kemudian bersama – sama dengan udara pembakaran disemprotkan ke

boiler untuk dibakar. Pembakaran metode ini sensitif terhadap kualitas batubara yang digunakan,

terutama sifat ketergerusan (grindability), sifat slagging, sifat fauling, dan kadar air (moisture content).

Batubara yang disukai untuk boiler PCC adalah yang memiliki sifat ketergerusan dengan HGI

(Hardgrove Grindability Index) di atas 40 dan kadar air kurang dari 30%, serta rasio bahan bakar (fuel

ratio) kurang dari 2. Pembakaran dengan metode PCC ini akan menghasilkan abu yang terdiri diri

dari clinker ash sebanyak 15% dan sisanya berupa fly ash.

Gambar 5. PCC Boiler

(Sumber: Idemitsu Kosan Co., Ltd)

Ketika dilakukan pembakaran, senyawa Nitrogen yang ada di dalam batubara akan beroksidasi

membentuk NOx yang disebut dengan fuel NOx, sedangkan Nitrogen pada udara pembakaran akan

mengalami oksidasi suhu tinggi membentuk NOx pula yang disebut dengan thermal NOx. Pada total

Page 5: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

emisi NOx dalam gas buang, kandungan fuel NOx mencapai 80 – 90%. Untuk mengatasi NOx ini,

dilakukan tindakan denitrasi (de-NOx) di boiler saat proses pembakaran berlangsung, dengan

memanfaatkan sifat reduksi NOx dalam batubara.

Gambar 6. Proses denitrasi pada boiler PCC

(Sumber: Coal Science Handbook, 2005)

Pada proses pembakaran tersebut, kecepatan injeksi campuran batubara serbuk dan udara ke dalam

boiler dikurangi sehingga pengapian bahan bakar dan pembakaran juga melambat. Hal ini dapat

menurunkan suhu pembakaran, yang berakibat pada menurunnya kadar thermal NOx.

Selain itu, sebagaimana terlihat pada gambar 6 di atas, bahan bakar tidak semuanya dimasukkan ke

zona pembakaran utama, tapi sebagian dimasukkan ke bagian di sebelah atas burner utama. NOx

yang dihasilkan dari pembakara utama selanjutnya dibakar melalui 2 tingkat. Di zona reduksi yang

merupakan pembakaran tingkat pertama atau disebut pula pembakaran reduksi (reducing

combustion), kandungan Nitrogen dalam bahan bakar akan diubah menjadi N2. Selanjutnya,

dilakukan pembakaran tingkat kedua atau pembakaran oksidasi (oxidizing combustion), berupa

pembakaran sempurna di zona pembakaran sempurna. Dengan tindakan ini, NOx dalam gas buang

dapat ditekan hingga mencapai 150 – 200 ppm. Sedangkan untuk desulfurisasi masih memerlukan

peralatan tambahan yaitu alat desulfurisasi gas buang.

Pembakaran Lapisan Mengambang (Fluidized Bed Combustion/FBC)

Pada pembakaran dengan metode FBC, batubara diremuk terlebih dulu dengan

menggunakan crusher sampai berukuran maksimum 25mm. Tidak seperti pembakaran

menggunakan stoker yang menempatkan batubara di atas kisi api selama pembakaran atau metode

Page 6: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

PCC yang menyemprotkan campuran batubara dan udara pada saat pembakaran, butiran batubara

dijaga agar dalam posisi mengambang, dengan cara melewatkan angin berkecepatan tertentu dari

bagian bawah boiler. Keseimbangan antara gaya dorong ke atas dari angin dan gaya gravitasi akan

menjaga butiran batubara tetap dalam posisi mengambang sehingga membentuk lapisan seperti

fluida yang selalu bergerak. Kondisi ini akan menyebabkan pembakaran bahan bakar yang lebih

sempurna karena posisi batubara selalu berubah sehingga sirkulasi udara dapat berjalan dengan baik

dan mencukupi untuk proses pembakaran.

Karena sifat pembakaran yang demikian, maka persyaratan spesifikasi bahan bakar yang akan

digunakan untuk FBC tidaklah seketat pada metode pembakaran yang lain. Secara umum, tidak ada

pembatasan yang khusus untuk kadar zat terbang (volatile matter), rasio bahan bakar (fuel ratio) dan

kadar abu. Bahkan semua jenis batubara termasuk peringkat rendah sekalipun dapat dibakar dengan

baik menggunakan metode FBC ini. Hanya saja ketika batubara akan dimasukkan ke boiler, kadar air

yang menempel di permukaannya (free moisture) diharapkan tidak lebih dari 4%. Selain kelebihan di

atas, nilai tambah dari metode FBC adalah alat peremuk batubara yang dipakai tidak terlalu rumit,

serta ukuran boiler dapat diperkecil dan dibuat kompak.

Bila suhu pembakaran pada PCC adalah sekitar 1400 – 1500℃, maka pada FBC, suhu pembakaran

berkisar antara 850 – 900℃ saja sehingga kadar thermalNOx yang timbul dapat ditekan. Selain itu,

dengan mekanisme pembakaran 2 tingkat seperti pada PCC, kadar NOx total dapat lebih dikurangi

lagi.

Kemudian, bila alat desulfurisasi masih diperlukan untuk penanganan SOx pada metode pembakaran

tetap dan PCC, maka pada FBC, desulfurisasi dapat terjadi bersamaan dengan proses pembakaran

di boiler. Hal ini dilakukan dengan cara mencampur batu kapur (lime stone, CaCO3) dan batubara

kemudian secara bersamaan dimasukkan ke boiler. SOx yang dihasilkan selama proses pembakaran,

akan bereaksi dengan kapur membentuk gipsum (kalsium sulfat). Selain untuk proses desulfurisasi,

batu kapur juga berfungsi sebagai media untuk fluidized bed karena sifatnya yang lunak sehingga

pipa pemanas (heat exchanger tube) yang terpasang di dalam boiler tidak mudah aus.

Page 7: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

Gambar 7. Tipikal boiler FBC

(Sumber: Coal Science Handbook, 2005)

Berdasarkan mekanisme kerja pembakaran, metode FBC terbagi 2 yaitu Bubbling FBC

dan Circulating FBC (CFBC), seperti ditampilkan pada gambar 7 di atas. Dapat dikatakan

bahwa Bubbling FBC merupakan prinsip dasar FBC, sedangkan CFBC merupakan

pengembangannya.

Pada CFBC, terdapat alat lain yang terpasang pada boiler yaitu cyclone suhu tinggi. Partikel

media fluidized bed yang belum bereaksi dan batubara yang belum terbakar yang ikut terbang

bersama aliran gas buang akan dipisahkan di cyclone ini untuk kemudian dialirkan kembali ke boiler.

Melalui proses sirkulasi ini, ketinggian fluidized bed dapat terjaga, proses denitrasi dapat berlangsung

lebih optimal, dan efisiensi pembakaran yang lebih tinggi dapat tercapai. Oleh karena itu, selain

batubara berkualitas rendah, material seperti biomasa, sludge, plastik bekas, dan ban bekas dapat

pula digunakan sebagai bahan bakar pada CFBC. Adapun abu sisa pembakaran hampir semuanya

berupa fly ash yang mengalir bersama gas buang, dan akan ditangkap lebih dulu dengan

menggunakan Electric Precipitator sebelum gas buang keluar ke cerobong asap (stack).

Gambar 8. CFBC Boiler

(Sumber: Idemitsu Kosan Co., Ltd)

Pada FBC, bila tekanan di dalam boiler sama dengan tekanan udara luar, disebut

dengan Atmospheric FBC (AFBC), sedangkan bila tekanannya lebih tinggi dari pada tekanan udara

luar, sekitar 1 MPa, disebut dengan Pressurized FBC (PFBC).

Faktor tekanan udara pembakaran memberikan pengaruh terhadap perkembangan teknologi FBC ini.

Untuk Bubbling FBC berkembang dari PFBC menjadiAdvanced PFBC (A-PFBC), sedangkan untuk

CFBC selanjutnya berkembang menjadi Internal CFBC (ICFBC) dan kemudian Pressurized ICFBC

(PICFBC).

PFBC

Page 8: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

Pada PFBC, selain dihasilkan panas yang digunakan untuk memanaskan air menjadi uap untuk

memutar turbin uap, dihasilkan pula gas hasil pembakaran yang memiliki tekanan tinggi yang dapat

memutar turbin gas, sehingga PLTU yang menggunakan PFBC memiliki efisiensi pembangkitan yang

lebih baik dibandingkan dengan AFBC karena mekanisme kombinasi (combined cycle) ini. Nilai

efisiensi bruto pembangkitan (gross efficiency) dapat mencapai 43%.

Sesuai dengan prinsip pembakaran pada FBC, SOx yang dihasilkan pada PFBC dapat ditekan

dengan mekanisme desulfurisasi bersamaan dengan pembakaran di dalam boiler, sedangkan NOx

dapat ditekan dengan pembakaran pada suhu relatif rendah (sekitar 860℃) dan pembakaran 2

tingkat. Karena gas hasil pembakaran masih dimanfaatkan lagi dengan mengalirkannya ke turbin gas,

maka abu pembakaran yang ikut mengalir keluar bersama dengan gas tersebut perlu dihilangkan

lebih dulu. Pemakaian CTF (Ceramic Tube Filter) dapat menangkap abu ini secara efektif. Kondisi

bertekanan yang menghasilkan pembakaran yang lebih baik ini secara otomatis akan menurunkan

kadar emisi CO2 sehingga dapat mengurangi beban lingkungan.

Gambar 9. Prinsip kerja PFBC

(Sumber: Coal Note, 2001)

Untuk lebih meningkatkan efisiensi panas, unit gasifikasi sebagian (partial gasifier) yang

menggunakan teknologi gasifikasi lapisan mengambang (fluidized bed gasification) kemudian

ditambahkan pada unit PFBC. Dengan kombinasi teknologi gasifikasi ini maka upaya peningkatan

suhu gas pada pintu masuk (inlet) turbin gas memungkinkan untuk dilakukan.

Pada proses gasifikasi di partial gasifier tersebut, konversi karbon yang dicapai adalah sekitar 85%.

Nilai ini dapat ditingkatkan menjadi 100% melalui kombinasi dengan pengoksidasi (oxidizer).

Pengembangan lebih lanjut dari PFBC ini dinamakan dengan Advanced PFBC (A-PFBC), yang

prinsip kerjanya ditampilkan pada gambar 10 di bawah ini. Efisiensi netto pembangkitan (net

efficiency) yang dihasilkan pada A-PFBC ini sangat tinggi, dapat mencapai 46%.

Page 9: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

Gambar 10. Prinsip kerja A-PFBC

(Sumber: Coal Science Handbook, 2005)

ICFBC

Penampang boiler ICFBC ditampilkan pada gambar 11 di bawah ini.

Gambar 11. Penampang boiler ICFBC

(Sumber: Coal Note, 2001)

Seperti terlihat pada gambar, ruang pembakaran utama (primary combustion chamber) dan ruang

pengambilan panas (heat recovery chamber) dipisahkan oleh dinding penghalang yang terpasang

miring. Kemudian, karena pipa pemanas (heat exchange tube) tidak terpasang langsung pada ruang

pembakaran utama, maka tidak ada kekhawatiran terhadap keausan pipa sehingga pasir silika

digunakan sebagai pengganti batu kapur untuk media FBC. Batu kapur masih tetap digunakan

sebagai bahan pereduksi SOx, hanya jumlahnya ditekan sesuai dengan keperluan saja.

Di bagian bawah ruang pembakaran utama terpasang windbox untuk mengalirkan angin ke boiler,

dimana angin bervolume kecil dialirkan melalui bagian tengah untuk menciptakan lapisan bergerak

(moving bed) yang lemah, dan angin bervolume besar dialirkan melewati kedua sisi windbox tersebut

Page 10: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

untuk menimbulkan lapisan bergerak yang kuat. Dengan demikian maka pada bagian tengah ruang

pembakaran utama akan terbentuk lapisan bergerak yang turun secara perlahan, sedangkan pada

kedua sisi ruang tersebut, media FBC akan terangkat kuat ke atas menuju ke bagian tengah ruang

pembakaran utama dan kemudian turun perlahan – lahan, dan kemudian terangkat lagi oleh angin

bervolume besar dari windbox. Proses ini akan menciptakan aliran berbentuk spiral (spiral flow) yang

terjadi secara kontinyu pada ruang pembakaran utama. Mekanisme aliran spiral dari media FBC ini

dapat menjaga suhu lapisan mengambang supaya seragam. Selain itu, karena aliran tersebut

bergerak dengan sangat dinamis, maka pembuangan material yang tidak terbakar juga lebih mudah.

Kemudian, ketika media FBC yang terangkat kuat tersebut sampai di bagian atas dinding

penghalang, sebagian akan berbalik menuju ke ruang pengambilan panas. Karena pada ruang

pengambilan panas tersebut juga dialirkan angin dari bagian bawah, maka pada ruang tersebut akan

terbentuk lapisan bergerak yang turun perlahan juga. Akibatnya, media FBC akan mengalir dari ruang

pembakaran utama menuju ke ruang pengambilan panas kemudian kembali lagi ke ruang

pembakaran utama, membentuk aliran sirkulasi (circulating flow) di antara kedua ruang tersebut.

Menggunakan pipa pemanas yang terpasang pada ruang pengambilan panas, panas dari ruang

pembakaran utama diambil melalui mekanisme aliran sirkulasi tadi.

Secara umum, perubahan volume angin yang dialirkan ke ruang pengambilan panas berbanding lurus

dengan koefisien hantar panas secara keseluruhan. Dengan demikian maka hanya dengan mengatur

volume angin tersebut, tingkat keterambilan panas serta suhu pada lapisan mengambang dapat

dikontrol dengan baik, sehingga pengaturan beban dapat dilakukan dengan mudah pula.

Untuk lebih meningkatkan kinerja pembangkitan, proses pada ICFBC kemudian diberi tekanan

dengan cara memasukkan unit ICFBC ke dalam wadah bertekanan (pressurized vessel), yang

selanjutnya disebut dengan Pressurized ICFBC (PICFBC). Dengan mekanisme ini maka selain uap

air, akan dihasilkan pula gas hasil pembakaran bertekanan tinggi yang dapat digunakan untuk

memutar turbin gas sehingga pembangkitan secara kombinasi (combined cycle) dapat diwujudkan.

Pembangkitan Kombinasi Dengan Gasifikasi Batubara

Peningkatan efisiensi pembangkitan dengan mekanisme kombinasi melalui pemanfaatan gas sintetis

hasil proses gasifikasi seperti pada A-PFBC, selanjutnya mengarahkan teknologi pembangkitan untuk

lebih mengintensifkan penggunaan teknologi gasifikasi batubara ke dalam sistem pembangkitan.

Upaya ini akhirnya menghasilkan sistem pembangkitan yang disebut dengan Integrated

Coal Gasification Combined Cycle (IGCC).

Karena tulisan ini hanya membahas perkembangan teknologi pembangkitan listrik, maka penjelasan

tentang bagaimana proses gasifikasi batubara berlangsung tidak akan diterangkan disini.

IGCC

Page 11: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

Garis besar diagram alir pembangkit listrik sistem IGCC ditampilkan pada gambar 12 di bawah ini.

Gambar 12. Tipikal IGCC

(Sumber: Clean Coal Technologies in Japan, 2005)

Seperti terlihat pada gambar, pada sistem ini terdapat alat gasifikasi (gasifier) yang digunakan untuk

menghasilkan gas, umumnya bertipe entrained flow. Yang tersedia di pasaran saat ini untuk tipe

tersebut misalnya Chevron Texaco (lisensinya sekarang dimiliki GE Energy), E-Gas (lisensinya dulu

dimiliki Dow, kemudian Destec, dan terakhir Conoco Phillips ), dan Shell. Prinsip kerja ketiga alat

tersebut adalah sama, yaitu batubara dan oksigen berkadar tinggi dimasukkan kedalamnya kemudian

dilakukan reaksi berupa oksidasi sebagian (partial oxidation) untuk menghasilkan gas sintetis

(syngas), yang 85% lebih komposisinya terdiri dari H2 dan CO. Karena reaksi berlangsung pada suhu

tinggi, abu pada batubara akan melebur dan membentuk slag dalam kondisi meleleh (glassy slag).

Adapun panas yang ditimbulkan oleh proses gasifikasi dapat digunakan untuk menghasilkan uap

bertekanan tinggi, yang selanjutnya dialirkan ke turbin uap.

Oksigen yang digunakan untuk proses gasifikasi dihasilkan dari fasilitas Air Separation Unit (ASU).

Unit ini berfungsi untuk memisahkan oksigen dari udara melalui mekanisme cryogenic separation,

menghasilkan oksigen berkadar sekitar 95%. Selain oksigen, pada ASU juga dihasilkan nitrogen yang

digunakan sebagai media inert untuk feeding batubara ke gasifier, selain dapat pula digunakan untuk

menurunkan suhu pada combustor sehingga emisi NOx dapat terkontrol.

Pada gas sintetis, selain H2 dan CO juga dihasilkan unsur lain yang tidak ramah lingkungan seperti

HCN, H2S, NH3, COS, uap air raksa, dan char. Oleh karena itu, gas harus diproses terlebih dulu untuk

menghilangkan bagian tersebut sebelum dikirim ke turbin gas. Gas buang dari turbin gas kemudian

mengalir ke Heat Recovery Steam Generator (HRSG) yang berfungsi mengubah panas dari gas

tersebut menjadi uap air, yang selanjutnya dialirkan menuju turbin uap. Dengan mekanisme seperti

ini, efisiensi netto pembangkitan yang dihasilkan juga jauh melebihi pembangkitan pada sistem biasa

(PCC) yang saat ini mendominasi. Selain efisiensi pembangkitan, kelebihan lain IGCC adalah sangat

rendahnya kadar emisi polutan yang dihasilkan, fleksibilitas bahan bakar yang dapat digunakan,

penggunaan air yang 30-40% lebih rendah dibanding PLTU konvensional (PCC), tingkat

Page 12: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

penangkapan CO2 yang signifikan, slagyang dapat dimanfaatkan untuk material pekerjaan konstruksi,

dan lain – lain.

Sebagai contoh adalah Nuon IGCC yang terletak di Buggenum, Belanda, berkapasitas 250MW.

Pembangkit ini menghasilkan efisiensi netto sebesar 43% (Low Heating Value), dengan performansi

baku mutu lingkungan yang sangat bagus. Emisi NOx yang dihasilkan sangat rendah yaitu kurang

dari 10 ppm, kemudian efisiensi pembuangan sulfur di atas 99%, tingkat emisi flyash, senyawa klorida

dan logam berat mudah menguap yang bisa dibilang nol, serta air limbah yang bisa diresirkulasi

kembali sehingga tidak ada buangan air limbah ke lingkungan.

Di samping kelebihan tersebut, terdapat pula kelemahan pada sistem IGCC yang dikembangkan saat

ini, misalnya, besarnya kapasitas pembangkitan yang ditentukan berdasarkan banyaknya unit dan

model turbin gas yang akan digunakan. Contohnya untuk turbin gas GE Frame 7FA yang

berkapasitas 275MW. Apabila IGCC akan dioperasikan dengan kapasitas pembangkitan 275MW,

berarti cukup 1 unit yang dipasang. Bila 2 unit yang akan digunakan, berarti kapasitas pembangkitan

menjadi 550MW, dan bila 3 unit maka akan menjadi 825MW. Kemudian bila kapasitas pembangkitan

yang diinginkan adalah di bawah 200MW, maka model yang dipakai bukan lagi GE Frame 7FA, tapi

GE 7FA yang berkapasitas 197MW. Demikian pula bila menghendaki kapasitas pembangkitan yang

lebih kecil lagi, maka GE 6FA yang berkapasitas 85MW dapat digunakan.

Dengan kombinasi antara model dan banyaknya unit turbin gas yang akan digunakan ini, selain akan

membatasi kapasitas pembangkitan pada IGCC, sebenarnya juga akan mempersempit rentang

operasi. Misalnya ketika akan menurunkan beban pada saat operasi puncak, hal itu mesti dilakukan

dengan menurunkan beban pada turbin gas. Penurunan beban turbin gas ini otomatis akan

menurunkan efisiensi pembangkitan dan akibat yang kurang baik pada emisi polutan yang dihasilkan.

Kelemahan lain yang perlu dicermati dari sistem IGCC saat ini adalah ongkos pembangkitan per kW

dan operation &maintenance (O & M) yang lebih mahal, serta availability factor (AF) yang lebih

rendah dibanding PCC.

Sejarah IGCC dimulai pada tahun 1970 ketika perusahaan STEAG dari Jerman Barat

mengembangan IGCC berkapasitas 170MW. Jauh setelahnya, proyek demonstration plant IGCC

bernama Cool Water diluncurkan di AS pada tahun 1984, yang mengoperasikan IGCC berkapasitas

120MW sampai dengan tahun 1989. Sampai tulisan ini dibuat, sebenarnya belum ada unit IGCC yang

murni komersial. Penyebab utamanya adalah investasi pembangunannya yang besar, serta teknologi

IGCC yang belum terbukti. Teknologi IGCC disini maksudnya adalah rangkaian proses dari

keseluruhan bangunan (building block) yang membentuk sistem IGCC utuh. Hal ini perlu ditekankan

karena teknologi dari masing – masing unit pada IGCC misalnya gasifier, HRSG, turbin gas, turbin

uap, dan yang lainnya merupakan teknologi yang sudah terbukti. Selama perkembangan yang

berlangsung sekitar 20 tahun lebih sejak proyek Cool Water, unit IGCC yang beroperasi secara

Page 13: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

komersial saat ini baik di AS maupun di Eropa pada awalnya berstatus demonstration plant. Contoh

beberapa plant IGCC tersebut adalah

1. Tampa Electric Polk 250MW IGCC Power Station, terletak di Florida, AS. IGCC ini beroperasi sejak

September 1996 dibawah proyek Tampa, menggunakan gasifier dari Chevron Texaco (sekarang

GE Energy). Bahan bakar yang digunakan adalah batubara dan petroleum coke (petcoke).

Masalah yang dihadapi adalah lebih rendahnya tingkat konversi karbon dibandingkan dengan

nilai yang direncanakan. Pernah pula terjadi fauling padagas cooler.

2. Wabash River 260MW IGCC Power Station, terletak di Indiana, AS. Beroperasi sejak September

1995 dibawah proyek Wabash River, pembangkit ini menggunakan teknologi gasifikasi dari

Global Energy (saat ini bagian dari Conoco Phillips). Sejak berakhirnya proyek dari Departemen

Energi AS (DOE) pada tahun 2001, bahan bakar yang digunakan adalah petcoke 100%.

3. Nuon 250MW IGCC Power Station, terletak di Buggenum, Belanda. IGCC ini bermula dari proyek

Demkolec yang dimulai pada bulan Januari 1994. Teknologi yang digunakan adalah dari Shell,

yang bahan bakarnya adalah batubara dicampur dengan biomassa (sludge dan sampah kayu)

untuk lebih mengurangi emisi CO2. Masalah yang pernah terjadi adalah kebocoran pipa gas

cooler dan timbulnya fauling pada gas cooler ketika campuran sludge sekitar 4-5%.

Gambar 13. Nuon IGCC, Buggenum

(Sumber: Thomas Chhoa, Shell Gas & Power, 2005)

4. Elcogas 300MW IGCC Power Station, terletak di Puertollano, Spanyol.  Pembangkit IGCC ini

beroperasi sejak Juni 1996 dibawah proyek Puertollano, menggunakan teknologi gasifikasi dari

Prenflow (saat ini bagian dari Shell). Bahan bakarnya berupa campuran petcoke dan batubara

berkadar abu 40% dengan perbandingan 50:50. Di bawah program dari Uni Eropa, plant ini

direncanakan sebagai tempat untuk proyek pengambilan CO2 (CO2 recovery) dan produksi H2.

Page 14: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

Dengan mempertimbangkan berbagai faktor diantaranya efisiensi pembangkitan yang tinggi, faktor

ramah lingkungan, dan teknologi gasifikasi yang sudah terbukti, upaya untuk lebih mengurangi

kelemahan IGCC sudah mulai dilakukan.

Selain dari segi biaya, dilakukan pula upaya untuk lebih meningkatkan efisiensi pembangkitan, yaitu

dengan menambahkan sel bahan bakar (fuel cell) ke dalam sistem IGCC. Dengan demikian, akan

terdapat 3 jenis kombinasi pembangkitan pada sistem yang baru ini yaitu turbin gas, turbin uap,

dan fuel cell. Metode pembangkitan ini disebut dengan Integrated Coal Gasification Fuel Cell

Combined Cycle (IGFC), yang diagram alirnya ditampilkan pada gambar 16 di bawah ini.

Gambar 14. Tipikal IGFC

(Sumber: Clean Coal Technologies in Japan, 2005)

Pada sel bahan bakar, pembangkitan listrik dilakukan secara langsung melalui reaksi elektrokimia

antara hidrogen dan oksigen sehingga tingkat kerugian energinya sedikit dan efisiensi

pembangkitannya tinggi. Hidrogen tersebut dapat berasal dari gas alam, gas bio, atau gas hasil

gasifikasi batubara. Berdasarkan material yang digunakan untuk elektrolitnya, sel bahan bakar terbagi

4 yaitu Phosphoric-Acid Fuel Cell (PAFC), Molten Carbonate Fuel Cell(MCFC), Solid-Oxide Fuel

Cell (SOFC), dan Proton-Exchange Membrane Fuel Cell (PEFC). Di bawah ini ditampilkan

karakteristik dari keempat jenis sel bahan bakar tersebut.

Tabel 1. Karakteristik Sel Bahan Bakar

(Sumber: Clean Coal Technologies in Japan, 2005)

Page 15: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

Dari tabel di atas terlihat bahwa sel bahan bakar yang sesuai untuk kombinasi pembangkitan dengan

turbin gas adalah SOFC, karena reaksinya menghasilkan suhu yang sangat tinggi.

Dibandingkan dengan PCC, pembangkitan dengan metode IGFC ini secara teoretis mampu

mengurangi emisi CO2 sebesar 30%. Kelebihan lainnya adalah tingginya efisiensi pembangkitan yang

dapat dicapai yaitu minimal 55%. Disamping kelebihan tersebut, terdapat beberapa hal yang perlu

diperhatikan sebelum IGFC benar – benar dapat diaplikasikan secara komersial. Yang pertama

adalah urgensi pematangan teknologi IGCC, karena IGFC pada dasarnya adalah pengembangan dari

IGCC. Kemudian, perlunya pengembangan sel bahan bakar yang berefisiensi tinggi tapi murah, untuk

mendukung biaya pembangkitan yang kompetitif ke depannya.

Penutup

Perkembangan teknologi pembakaran pada PLTU batubara telah disajikan di atas. Secara umum

dapat dikatakan bahwa suatu teknologi yang berkembang tidak terlepas dari hal pokok yang disebut

3E, yaitu Engineering (sisi teknis), Economy (sisi ekonomis), dan Environment (sisi lingkungan). Pada

tahap awal, faktor Economy mungkin menjadi pertimbangan utama untuk pembangunan fasilitas

pembangkitan, diikuti Engineering, dan terakhir Environment. Namun seiring dengan upaya

pengurangan polusi atau pencemaran lingkungan yang menyebabkan makin ketatnya baku mutu

lingkungan, terlihat bahwa urutan 3E tersebut mulai berubah. Faktor Environment secara perlahan

menempati urutan pertama dalam pertimbangan pengembangan teknologi, kemudianEngineering,

dan terakhir justru Economy.

Mengambil contoh IGCC, adalah wajar bila tahap awal perkembangannya pasti memerlukan biaya

yang besar. Namun seiring dengan menguatnya isu lingkungan dan matangnya teknologi tersebut,

biaya itu akan menurun dan pada waktu tertentu akan kompetitif terhadap teknologi yang sudah ada.

Sebaliknya, teknologi pembangkitan yang ada, misalnya PCC yang saat ini mendominasi, lambat laun

akan semakin mahal untuk mengakomodasi standar mutu lingkungan yang semakin ketat, dan pada

akhirnya justru malah akan membebani dari segi ekonomi. Di bawah ini ditampilkan perbandingan

biaya pembangkitan antara IGCC dan PCC di AS selama kurun 20 tahun terakhir, dan prediksinya di

masa depan.

Gambar 15. Perbandingan Biaya Pembangkitan per kW IGCC dan PCC di AS

Page 16: Klasifikasi Kualitas Batubara Secara Umum Terbagi 2

(Sumber: JCOAL Journal, vol.3, Jan. 2006)

Dari grafik di atas terlihat bahwa selama 20 tahun terakhir, biaya pembangkitan untuk PCC meningkat

sekitar 50%. Peningkatan tersebut diakibatkan oleh penambahan peralatan untuk mengurangi beban

lingkungan, misalnya fasilitas desulfurisasi (FGD). Sebaliknya, biaya pembangkitan per kW pada

IGCC justru semakin menurun, dan diharapkan pada tahun 2010, nilainya akan sama dengan pada

PCC, yaitu sekitar $1200.

Referensi

1. Amick, Phil, Coal Gasification Flexibility for Fuels & Products, ConocoPhillips, 2005

2. Baardson, John A., Coal to Liquids: Shell Coal Gasification with Fischer-Tropsch Synthesis,

Baardson Energy LLC, 2003.

3. Chhoa, Thomas, Shell Gasification Business in Action, Shell Gas & Power, 2005.

4. JCOAL, Coal Science Handbook, Japan Coal Energy Center, 2005.

5. JCOAL, JCOAL Journal Vol. 2, Nov. 2005, Japan Coal Energy Center, 2005.

6. JCOAL, JCOAL Journal Vol. 3, Jan. 2006, Japan Coal Energy Center, 2006.

7. JCOAL, JCOAL Journal Vol. 4, Mar. 2006, Japan Coal Energy Center, 2006.

8. Material Presentasi, Idemitsu Kosan Co., Ltd, 2003.

9. Sekitan no Kiso Chishiki, Sekitan Shigen Kaihatsu Kabushiki Kaisha.

10. Shigen Enerugi- Chou Shigen Nenryou Bu, Ko-ru No-to 2001 Nen Ban, Shigen Sangyou

Shinbunsha, 2001.

11. Sema, Tohru, Karyoku Hatsuden Souron, Denki Gakkai, 2002.

12. WCI, The Coal Resource, World Coal Institute, 2004.