Kimia Anorganik i

138
KIMIA ANORGANIK I Dosen: Dr. Zeinyta Azra Haroen,MM Ciri-ciri Umum Kimia Logam Transisi Hal ini menjelaskan apa yang dimaksud dengan logam transisi berdasarkan syarat-syarat struktur elektronik, dan kemudian diteruskan dengan melihat ciri-ciri umum kimia logam transisi. Termasuk didalamnya perubahan tingkat oksidasi (bilangan oksidasi ), pembentukan ion kompleks, ion berwarna, dan aktivitas katalitik. Struktur elektronik logam transisi Apakah logam transisi itu? Istilah logam transisi (atau unsur) dan unsur blok d kadang-kadang dapat digunakan secara bersamaan jika keduanya memberikan arti yang sama. Keduanya tidak sama – terdapat perbedaan yang tidak kentara diantara dua istilah tersebut. Kita akan membahas unsur-unsur blok d terlebih dahulu: unsur-unsur blok d Kamu akan mengingat bahwa ketika kamu membuat tabel periodik dan ketika meletakkan elektron, sesuatu yang ganjil terjadi setelah argon. Pada argon, tingkat 3s dan 3p terisi penuh, tetapi setelah itu daripada mengisi tingkat 3d berikutnya, malahan mengisi tingkat 4s terlebih dahulu menghasilkan 1

Transcript of Kimia Anorganik i

Page 1: Kimia Anorganik i

KIMIA ANORGANIK I

Dosen: Dr. Zeinyta Azra Haroen,MM

Ciri-ciri Umum Kimia Logam TransisiHal ini menjelaskan apa yang dimaksud dengan logam transisi berdasarkan syarat-syarat struktur elektronik, dan kemudian diteruskan dengan melihat ciri-ciri umum kimia logam transisi. Termasuk didalamnya perubahan tingkat oksidasi (bilangan oksidasi), pembentukan ion kompleks, ion berwarna, dan aktivitas katalitik.

Struktur elektronik logam transisi

Apakah logam transisi itu?

Istilah logam transisi (atau unsur) dan unsur blok d kadang-kadang dapat digunakan secara bersamaan jika keduanya memberikan arti yang sama. Keduanya tidak sama – terdapat perbedaan yang tidak kentara diantara dua istilah tersebut.

Kita akan membahas unsur-unsur blok d terlebih dahulu:

unsur-unsur blok d

Kamu akan mengingat bahwa ketika kamu membuat tabel periodik dan ketika meletakkan elektron, sesuatu yang ganjil terjadi setelah argon.

Pada argon, tingkat 3s dan 3p terisi penuh, tetapi setelah itu daripada mengisi tingkat 3d berikutnya, malahan mengisi tingkat 4s terlebih dahulu menghasilkan kalium dan kemudian kalsium.

Setelah itu baru tingkat orbital 3d yang akan diisi.

Unsur-unsur dalam tabel periodik yang bersesuaian dengan pengisian tingkat d disebut dengan unsur-unsur blok d. Baris pertama ditunjukkan melalui tabel periodik singkat di bawah ini.

1

Page 2: Kimia Anorganik i

Struktur elektronik unsur-unsur blok d adalah sebagai berikut:

Sc [Ar] 3d14s2

Ti [Ar] 3d24s2

V [Ar] 3d34s2

Cr [Ar] 3d54s1

Mn [Ar] 3d54s2

Fe [Ar] 3d64s2

Co [Ar] 3d74s2

Ni [Ar] 3d84s2

Cu [Ar] 3d104s1

Zn [Ar] 3d104s2

Kamu dapat memperhatikan bahwa pola pengisiannya sama sekali tidak teratur! Pola ini dilanggar pada kromium dan tembaga.

Logam-logam transisi

Tidak semua unsur-unsur blok d termasuk sebagai logam transisi! Ada ketidakcocokan pada berbagai UK-based syllabus, tetapi pada umumnya menggunakan definisi:

Logam transisi adalah sesuatu yang dapat membentyk saty atau lebih ion stabil yang memiliki orbidal d yang tidak terisi (incompletely filled d orbitals.)

2

Page 3: Kimia Anorganik i

Berdasarkan pengertian ini, skandium dan seng tidak termasuk logam transisi – sekalipun termasuk anggota blok d.

Skandium memiliki struktur elektronik [Ar] 3d14s2. Ketika skandium membentuk ion, skandium selalu kehilangan 3 elektron terluar dan pada akhirnya sesuai dengan struktur argon. Ion Sc3+ tidak memiliki elektron d dan karena itu tidak sesuai dengan definisi tersebut diatas.

Seng memiliki struktur elektronik [Ar] 3d104s2. Ketika seng membentuk ion, seng selalu kehilangan dua elektron 4s menghasilkan ion 2+ dengan struktur elektronik [Ar] 3d10. Ion seng memiliki tingkat d yang terisi penuh dan juga tidak sesuai dengan definisi tersebut diatas.

Hal yang berbeda, tembaga, dengan struktur elektronik [Ar] 3d104s1, membentuk dua ion. Pada ion Cu+ struktur elektroniknya adalah [Ar] 3d10. Akan tetapi, pada umumnya membentuk ion Cu2+ yang memiliki struktur [Ar] 3d9.

Tembaga termasuk logam transisi karena ion Cu2+ memiliki tingkat orbital d yang tidak terisi penuh.

Ion-ion logam transisi

Kamu dapat memahami fakta bahwa ketika tabel periodik disusun, orbital 4s lebih dahulu diisi sebelum orbital-orbital 3 d. Hal ini karena pada atom kosong, orbital 4s memiliki energi yang lebih rendah dibandingkan orbital-orbital 3d.

Akan tetapi, sekali elektron menempati orbitalnya, terjadi perubahan tingkat energi – dan ini terjadi pada semua unsur-unsur transisi, orbital 4s berkedudukan paling luar, tingkat energi orbital paling tinggi.

Urutan yang terbalik dari orbital-orbital 3d dan 4s hanya dapat digunakan untuk menempatkan atom pada tempat pertama. Dalam mematuhi aturan, kamu memperlakukan elektron- elektron 4s sebagai elektron-elektron paling luar.

Ingat ini:

Ketika unsur-unsur blok d membentuk ion, elektron-elektron 4s menghilang terlebih dahulu.

Penulisan struktur elektronik untuk Co2+:

Co [Ar] 3d74s2

Co2+ [Ar] 3d7

3

Page 4: Kimia Anorganik i

Ion 2+ terbentuk melalui kehilangan dua elektron 4s.

Penulisan struktur elektronik untuk V3+:

V [Ar] 3d34s2

V3+ [Ar] 3d2

Elektron-elektron 4s menghilang terlebih dahulu kemudian diikuti oleh satu elektron 3d.

Perubahan tingkat oksidasi (bilangan)

Salah satu ciri kunci dari kimia logam transisi adalah bermacam-macamnya tingkat oksidasi (bilangan oksidasi) yang dapat ditunjukkan oleh logam.

Sesuatu angapan yang salah, untuk memberikan kesan bahwa hanya logam transisi saja yang memiliki perubahan tingkat oksidasi. Sebagai contoh, unsur-unsur seperti belerang dan klor memiliki bermacam-macam tingkat oksidasi pada persenyawaannya – dan sudah sangat jelas bahwa belerang dan klor tidak termasuk logam transisi.

Akan tetapi, perubahan ini tidak sebanyak pada logam selain unsur-unsur transisi. Logam yang dikenal yang berasal dari grup utama tabel periodik, hanya timbal dan timah saja yang menunjukkan perubahan tingkat oksidasi sampai tingkat tertentu.

Contoh perubahan tingkat oksidasi dalam logam-logam transisi

Besi

Besi pada umumnya memiliki dua tingkat oksidasi (+2 dan +3) dalam bentuk, sebagai contoh, Fe2+ dan Fe3+. Besi juga dapat memiliki bilangan oksidasi +6 pada ion ferat(VI), FeO4

2-..

Mangan

Mangan memiliki tingkat oksidasi yang bermacam-macam pada persenyawaannya. Sebagai contoh:

+2 in Mn2+

+3 in Mn2O3

4

Page 5: Kimia Anorganik i

+4 in MnO2

+6 in MnO42-

+7 in MnO4-

Contoh-contoh yang lain

Kamu dapat menemukan contoh-contoh di atas dan contoh- contoh yang lain dengan lebih mendalam jika kamu mengeksplor sifat kimia dari masing-masing logam pada menu logam transisi. Menu tersebut merupakan sambungan dari menu ini yang terletak pada bagian bawah halaman ini.

Keterangan tentang perubahan tingkat oksidasi pada logam transisi

Perhatikan bentuk ion sederhana seperti Fe2+ dan Fe3+

Ketika logam membentuk senyawa ionik, rumus senyawa yang dihasilkan tergantung pada proses energetika. Secara keseluruhan, senyawa yang terbentuk merupakan suatu senyawa yang paling banyak melepaskan energi. Lebih banyak energi yang dilepaskan, senyawa lebih stabil.

Terdapat beberapa pengertian mengenai istilah energi, tetapi kuncinya adalah:

Jumlah energi yang diperlukan untuk mengionisasi logam (penjumlahan berbagai energi ionisasi).

Jumlah energi yang dilepaskan ketika terjadi pembentukan senyawa. Jumlah energi ini merupakan salah satu dari entalpi kisi jika kamu berfikir tentang padatan, atau entalpi hidrasi ion jika kamu berfikir tentang larutan.

Ion yang bermuatan lebih tinggi, kamu memiliki lebih banyak elektron untuk dihilangkan dan lebih banyak energi ionisasi yang kamu perlukan.

Tetapi pada kasus ini, ion bermuatan lebih tinggi, lebih besar energi yang dilepaskan oleh salah satu diantara entalpi kisi atau entalpi hidrasi ion logam.

Berfikir tentang logam non-transisi yang khas (kalsium)

Kalsium klorida adalah CaCl2. Mengapa begitu?

Jika kamu berusaha untuk membuat CaCl, (mengandung sebuah ion Ca+), proses keseluruhan adalah sedikit eksoterm.

Malahan dengan membuat ion Ca2+, kamu memiliki banyak energi untuk mensuplai energi ionisasi, tetapi kamu kehilangan lebih banyak energi kisi. Hal ini disebabkan karena antaraksi yang terjadi antara ion klorida dengan ion Ca2+

5

Page 6: Kimia Anorganik i

lebih banyak dibandingkan jika kamu hanya memiliki satu ion +1 saja. Keseluruan proses sangat eksoterm.

Karena pembentukan CaCl2 lebih banyak melepaskan energi dibanding pembentukan CaCl, menyebabkan CaCl2 lebih stabil – dan cenderung terbentuk.

Bagaimana dengan CaCl3? Saat ini kamu harus menghilangkan elektron lain dari kalsium.

Dua yang pertama berasal dari tingkat 4s. Satu yang ketiga datang dari 3p. Keadaan ini menyebabkan elektron-elektron lebih dekat ke inti dan karena itu lebih sulit untuk dihilangkan. Terjadi lompatan yang besar pada energi ionisasi antara elektron kedua dan ketiga yang dihilangkan.

Meskipun hal ini akan memberikan keuntungan pada segi entalpi kisi, tetapi entalpi tersebut tidak cukup untuk menggantikan kelebihan energi ionisasi, dan secara keseluruhan proses ini sangat endoterm.

Sesuatu hal yang tidak cukup tepat secara energetika untuk membuat CaCl3!

Berfikir tentang logam transisi khas (besi)

Berikut ini perubahan struktur elektronik besi untuk membuat ion 2+ atau 3+.

Fe [Ar] 3d64s2

Fe2+ [Ar] 3d6

Fe3+ [Ar] 3d5

Orbital 4s dan orbital-orbital 3d memiliki energi yang sangat mirip. Tidak terdapat lonjakan jumlah energi yang sangat besar yang kamu perlukan untuk menghilangkan elektron ketiga dibandingkan dengan yang elektron pertama dan kedua.

Gambaran untuk ketiga energi ionisasi pertama (dalam kJ mol-1) untuk besi dibandingkan dengan kalsium adalah:

metal 1st IE 2nd IE 3rd IE

Ca 590 1150 4940

Fe 762 1560 2960

6

Page 7: Kimia Anorganik i

Terdapat kenaikan energi ionisasi yang disebabkan elektron yang lebih banyak yang terdapat pada atom karena kamu memiliki bilangan proton yang sama pada beberapa elektron. Akan tetapi, terdapat sedikit kenaikan ketika kamu memiliki elektron ketiga dari besi dibanding dari kalsium.

Pada kasus besi, kelebihan energi ionisasi dapat digantikan lebih banyak atau lebih sedikit oleh kelebihan entalpi kisi atau entalpi hidrasi yang tersusun ketika terjadi pembentukan senyawa 3+.

Keuntungan dari ini semua adalah perubahan entalpi keseluruhan tidak terlalu berbeda ketika kamu membuat, katakanlah, FeCl2 atau FeCl3. Hal ini berarti bahwa tidak terlalu sulit untuk mengubah kedua senyawa.

Pembentukan ion-ion kompleks

Apakah ion kompleks itu?Ion kompleks memiliki ion logam pada pusatnya dengan jumlah tertentu molekul-molekul atau ion-ion yang mengelilinginya. Ion-ion yang mengelilinginya itu dapat berdempet dengan ion pusat melalui ikatan koordinasi (dative covalent). (Pada beberapa kasus, ikatan yang terbentuk sebenarnya lebih rumit dibandingkan dengan ikatan koordinasi).

Molekul-molekul atau ion-ion yang mengelilingi logam pusat disebut dengan ligan-ligan.

Yang termasuk pada ligan sederhana adalah air, amonia dan ion klorida.

Dimana semua ligan-ligan tersebut memiliki pasangan elektron tak berikatan yang aktif pada tingkat energi paling luar. Pasangan elektron tak berikatan ini digunakan untuk membentuk ikatan koordinasi dengan ion logam.

Beberapa contoh ion kompleks yang dibentuk oleh logam transisi

[Fe(H2O)6]2+

[Co(NH3)6]2+

[Cr(OH)6]3-

7

Page 8: Kimia Anorganik i

[CuCl4]2-

Logam-logam yang lain juga dapat membentuk ion-ion kompleks – ini tidak berarti hanya logam transisi saja. Akan tetapi, logam-logam transisi dapat membentuk ion-ion kompleks yang beragam

Pembentukan senyawa-senyawa berwarna

Beberapa contoh yang lazim

Diagram menunjukkan kisaran warna untuk beberapa ion kompleks logam yang lazim.

Kamu dapat menemukan ion-ion kompleks logam tersebut diatas dan ion-ion kompleks logam yang lain jika kamu membuka halaman yang berhubungan dari menu logam transisi (link pada bagian bawah halaman).

Kemungkinan yang lain, kamu dapat mengekplorasi menu ion-ion kompleks (mengikuti link pada kotak bantuan pada bagian atas layar).

Asal mula munculnya warna pada ion-ion logam transisi

Ketika sinar putih melewati larutan yang berisi salah satu dari ion tersebut, atau sinar putih tersebut direfleksikan oleh larutan tersebut, beberapa warna dari sinar dapat di absorpsi (diserap) oleh larutan tersebut. Warna yang dapat dilihat oleh mata kamu adalah warna yang tertinggal (tidak di absorpsi).

Pelekatan ligan pada ion logam merupakan efek dari energi orbital-orbital d. Sinar

8

Page 9: Kimia Anorganik i

yang diserap sebagai akibat dari perpindahan elektron diantara orbital d yang satu dengan yang lain. Penjelasan yang lebih jelas dapat dilihat pada halaman yang lain.

Aktivitas katalitik

Logam transisi dan persenyawaannya merupakan katalis yang baik. Beberapa kasus yang nyata dapat dilihat dibawah ini, tetapi kamu akan menemukan penjelasan katalisis secara mendalam pada bagian lain situs (ikuti link setelah contoh).

Logam transisi dan senyawa-senyawanya dapat berfungsi sebagai katalis karena memiliki kemampuan mengubah tingkat oksidasi atau, pada kasus logam, dapat meng-adsorp substansi yang lain pada permukaan logam dan mengaktivasi substansi tersebut selama proses berlangsung. Semua bagian ini dibahas pada bagian katalisis.

Logam transisi sebagai katalis

Besi pada Proses Haber

Prose Haber menggabungkan hidrogen dan nitrogen untuk membuat amonia dengan menggunakan katalis besi.

Nikel pada hidrogenasi ikatan C=C

Reaksi ini terdapat pada bagian inti pembuatan margarin dari minyak tumbuhan.

Akan tetapi, contoh sederhana terjadi pada reaksi antara etana dengan hidrogen melalui keberadaan katalis nikel.

Senyawa-senyawa logam transisi sebagai katalis

Vanadium(V) oksida pada Proses Contact

Bagian inti Proses Contact adalah reaksi konversi belerang dioksida menjadi belerang trioksida. Gas belerang dioksida dilewatkan bersamaan dengan udara (sebagai sumber oksigen) diatas padatan katalis vanadium(V) oksida.

Ion-ion besi pada reaksi antara ion-ion persulfat dan ion-ion iodida

9

Page 10: Kimia Anorganik i

Ion persulfat (ion peroksodisulfat), S2O82-, merupakan agen pengoksidasi yang

sangat kuat. Ion iodida sangat mudah dioksidasi menjadi iodin. Dan reaksi antara keduanya berlangsung sangat lambat pada larutan dengan pelarut air.

Reaksi di katalisis oleh keberadaan salah satu diantara ion besi(II) atau ion besi(III).

BesiBesi dan ion-nya sebagai katalis

Besi sebagai katalis pada Proses Haber

Proses Haber menggabungkan nitrogen dan hidrogen ke dalam amonia. Nitrogen berasal dari udara dan hidrogen sebagian besar diperoleh dari gas alam (metan). Besi digunakan sebagai katalis.

Ion besi sebagai katalis pada reaksi antara ion persulfat dan ion iodida

Reaksi antara ion persulfat (ion peroxodisulfat), S2O82-, dan ion iodida dalam

larutan dapat dikatalisis dengan ion besi(II) maupun ion besi(III).

Persamaan keseluruhan untuk reaksinya adalah:

Untuk penjelasannya, kita akan mengunakan katalis besi(II). Reaksi terjadi dalam dua tahap.

Jika kamu menggunakan ion besi(III), reaksi kedua yang terjadi diatas akan menjadi reaksi yang pertama.

Besi merupakan sebuah contoh yang baik dalam hal penggunaan senyawa logam transisi sebagai katalis karena kemampuan senyawa logam transisi tersebut untuk mengubah tingkat oksidasi.

Reaksi ion besi dalam larutan

10

Page 11: Kimia Anorganik i

Ion-ion yang paling sederhana dalam larutan adalah:

Ion heksaaquobesi(II) – [Fe(H2O)6]2+. Ion heksaaquobesi(III) – [Fe(H2O)6]3+.

Kedua-duanya bersifat asam, tetapi ion besi(III) lebih kuat sifat asamnya.

Reaksi ion besi dengan ion hidroksida

Ion hidroksida (dari, katakanlah, larutan natrium hidroksda) dapat menghilangkan ion hidrogen dari ligan air dan kemudian melekat pada ion besi.

Setelah ion hidrogen dihilangkan, kamu memperoleh kompleks tidak muatan – kompleks netral. Kompleks netral ini tidak larut dalam air dan terbentuk endapan.

Pada kasus besi(II):

Pada kasus besi(III):

Pada tabung reaksi, perubahan warna yang terjadi adalah:

Pada kasus besi(II):

Besi sangat mudah di oksidasi pada kondisi yang bersifat basa. Oksigen di udara mengoksidasi endapan besi(II) hidroksida menjadi besi(III) hidroksida terutama pada bagian atas tabung reaksi. Warna endapan yang menjadi gelap berasal dari efek yang sama.

Pada kasus besi(III):

11

Page 12: Kimia Anorganik i

Reaksi ion besi dengan larutan amonia

Amonia dapat berperan sebagai basa atau ligan. Pada kasus ini, amonia berperan sebagai basa – menghilangkan ion hidrogen dari kompleks aquo.

Pada kasus besi(II):

Kejadian yang sama terjadi ketika kamu menambahkan larutan natrium hidroksida. Endapan kembali berubah warna yang menunjukkan kompleks besi(II) hidroksida teroksidasi oleh udara menjadi besi(III) hidroksida.

Pada kasus besi(III):

12

Page 13: Kimia Anorganik i

Reaksi yang sama ketika kamu menambahkan larutan natrium hidroksida.

Reaksi-reaksi ion besi dengan ion karbonat

Berikut ini merupakan perbedaan yang penting antara sifat ion besi(II) dan ion besi(III).

Ion besi(II) dan ion karbonat

Kamu dapat memperoleh dengan mudah endapan besi(II) karbonat sesuai dengan yang kamu pikirkan.

Ion besi(III) dan ion karbonat

Ion heksaaquobesi(III) cukup asam untuk bereaksi dengan ion karbonat yang bersifat basa lemah.

Jika kamu menambahkan larutan natrium karbonat ke larutan yang mengandung ion heksaaquobesi(III), dengan pasti kamu akan memperoleh endapan seperti jika kamu menambahkan larutan natrium hidroksida atau larutan amonia.

Saat ini, ion karbonat yang menghilangkan ion hidrogen dari ion heksaaquo dan menghasilkan kompleks netral.

13

Page 14: Kimia Anorganik i

Berdasarkan pada perbandingan ion karbonat dengan ion heksaaquo, kamu akan memperoleh ion hidrogen karbonat maupun gas karbon dioksida dari reaksi antara ion hidrogen dengan ion karbonat. Persamaan reaksi menunjukkan pembentukan karbon dioksida.

Selain karbon dioksida, tidak terdapat sesuatu yang baru pada reaksi ini:

Pengujian untuk ion besi(III) dengan ion tiosianat

Pengujian ini merupakan tes yang sangat sensitif untuk ion besi(III) dalam larutan.

Jika kamu menambahkan ion tiosianat, SCN-, (dari, katakanlah, larutan natrium atau kalium atau amonium tiosianat) ke dalam larutan yang mengandung ion besi(II), kamu akan memperoleh larutan berwarna merah darah kuat yang mengandung ion [Fe(SCN)(H2O)5]2+.

Penentuan konsentrasi ion besi(II) dalam larutan dengan cara titrasi

Kamu dapat menentukan konsentrasi ion besi(II) dalam larutan melalui cara titrasi dengan menggunakan larutan kalium manganat(VII) atau larutan kalium dikromat(VI). Reaksi berlangsung dengan adanya asam sulfat encer.

Pada kasus yang lain, kamu dapat mempipet larutan yang mengandung ion besi(II) yang sudah diketahui volumenya ke dalam labu, dan kemudian menambahkan asam sulfat encer secukupnya. Apa yang akan terjadi kemudian tergantung pada penggunaan larutan kalium manganat(VII) atau larutan kalium

14

Page 15: Kimia Anorganik i

dikromat(VI).

Menggunakan larutan kalium manganat(VII)

Larutan kalium manganat(VII) diteteskan melalui buret. Pada awalnya, larutan tersebut menjadi tidak berwarna yang menunjukkan larutan tersebut bereaksi. Pada titik akhir titrasi warna merah muda permanen dalam larutan menunjukkan ion manganat(VII) sedikit berlebih.

Ion manganat(VII) mengoksidasi ion besi(II) menjadi ion besi(III). Dua persamaan setengah-reaksinya adalah:

Penggabungan keduanya memberikan persamaaan ion untuk reaksi:

Persamaan yang lengkap menunjukkan bahwa 1 mol ion manganat(VII) bereaksi dengan 5 mol ion besi(II). Melalui informasi tersebut, perhitungan titrasi sama seperti yang lainnya.

Menggunakan larutan kalium dikromat(VI)

Larutan kalium dikromat(VI) berubah menjadi hijau menunjukkan larutan tersebut bereaksi dengan ion besi(II), dan kamu tidak akan bisa mendeteksi perubahan warna ketika kamu meneteskan larutan jingga berlebih ke dalam larutan berwarna hijau kuat.

Dengan larutan kalium dikromat(VI) kamu harus menggunakan inndikator tertentu, dikenal dengan indikator redoks. Perubahan warna menunjukkan keberadaan agen pengoksidasi.

Berikut adalah beberapa indikator – seperti difenilamin sulfonat. Indikator ini memberikan warna ungu-biru yang menandakan adanya kelebihan larutan kalium dikromat(VI).

Dua persamaan setengah-reaksinya adalah:

Penggabungan keduanya memberikan:

15

Page 16: Kimia Anorganik i

Kamu dapat melihat bahwa perbandingan reaksi antara 1 mol ion dikromat(VI) dengan 6 mol ion besi(II).

Sekali lagi kamu tidak dapat memungkiri, perhitungan titirasi sekali lagi dilakukan seperti yang lainnya.

KromIon yang paling sederhana dalam bentuk krom dalam larutan adalah ion heksaaquokrom(III) – [Cr(H2O)6]3+.Keasaman ion heksaaquo

Biasanya dengan ion 3+, ion heksaaquokrom(III) agak asam ? dengan pH pada larutan tertentu antara 2 -3.

Ion bereaksi dengan molekul air dalam larutan. Ion hidrogen terlepas dari salah satu ligan molekul air:

Ion kompleks berperan sebagai asam dengan memberikan ion hidrogen kepada molekul air dalam larutan. Air, sudah tentu, berperan sebagai basa yang menerima ion hidrogen.

Karena keberadaan air ada berasal dari dua sumber yang berbeda cukup membingungkan (dari ligan dan larutan), maka lebih mudah menyederhanakannya seperti berikut ini:

Akan tetapi, jika kamu menuliskannya seperti ini, harus diingat bahwa ion hidrogen tidak terletak pada ion kompleks. Ion hidrogen tertarik oleh molekul air dalam larutan. Sewaktu-waktu kamu dapat menulis "H+

(aq)" yang dimaksud sebenarnya adalah ion hidroksonium, H3O+.

Reaksi pertukaran ligan yang melibatkan ion klorida dan ion sulfat

Warna ion heksaaquokrom(III) sulit â€untuk dilukiskan†karena berwarna ungu-� �biru-abu. Akan tetapi, ketika diproduksi melalui reaksi dalam tabung reaksi, ion ini berwarna hijau.

Kita selalu menggambarkan ion hijau sebagai Cr3+(aq) – secara tidak langsung ion

heksaaquokrom(III). Hal ini sebenarnya adalah suatu penyederhanaan.

Apa yang terjadi jika salah satu atau lebih ligan molekul air dapat digantikan oleh ion negatif yang dalam larutan ? khususnya sulfat atau klorida.

16

Page 17: Kimia Anorganik i

Penggantian air oleh ion sulfat

Kamu dapat melakukan hal ini secara sederhana dengan memanaskan larutan krom(III) sulfat.

Satu molekul air digantikan oleh ion sulfat. Perhatikan perubahan muatan pada ion. Dua muatan positif dibatalkan oleh keberadaan dua muatan negatif pada ion sulfat.

Penggantian air oleh ion klorida

Pada saat adanya ion klorida (sebagai contoh dengan krom(III) klorida), warna yang biasanya dapat dilihat adalah hijau. Hal ini terjadi ketika dua molekul air digantikan oleh ion klorida untuk menghasilkan ion tetraaquodiklorokrom(III) – [Cr(H2O)4Cl2]+.

Sekali lagi, perhatikan bahwa penggantian molekul air oleh ion klorida mengubah muatan pada ion.

Reaksi ion heksaaquokrom(III) dengan ion hidroksida

Ion hidroksida (dari, katakanlah, larutan natrium hidroksida, NaOH) dapat menghilangkan ion hidrogen dari ligan air kemudian didempetkan pada ion krom.

Sekali waktu ion hidrogen dapat dihilangkan dari tiga molekul air, kamu akan memperoleh kompleks yang tidak bermuatan – komplek netral. Kompleks netral ini tidak larut dalam air dan endapan terbentuk.

Tetapi proses tidak berhenti sampai disini. Ion hidrogen yang lebih benyak akan dihilangkan untuk menghasilkan ion seperti [Cr(H2O)2(OH)4]- dan [Cr(OH)6]3-.

Sebagai contoh:

17

Page 18: Kimia Anorganik i

Endapan larut kembali karena ion tersebut larut dalam air.

Pada tabung reaksi, perubahan warna yang terjadi adalah:

Reaksi ion heksaaquokrom(III) dengan larutan amonia

Amonia dapat berperan sebagai basa maupun sebagai ligan. Dengan jumlah amonia yang sedikit, ion hidrogen tertarik oleh ion heksaaquo seperti pada kasus ion hidroksida untuk menghasilkan kompleks netral yang sama.

Endapan tersebut larut secara luas jika kamu menambahkan amonia berlebih (terutama jika amonianya pekat). Amonia menggantikan air sebagai ligan untuk menghasilkan ion heksaaminkrom(III).

Perubahan warna yang terjadi adalah:

Reaksi ion heksaaquokrom(III) dengan ion karbonat

Jika kamu menambahkan larutan natrium karbonat pada larutan ion heksaaquokrom(III), kamu akan memperoleh endapan yang sama jika kamu menambahkan larutan natrium hidroksida atau larutan amonia.

18

Page 19: Kimia Anorganik i

Pada saat seperti ini, ion karbonat ion yang menghilangkan ion hidrogen dari ion heksaaquo dan menghasilkan kompleks netral.

Berdasarkan pada proporsi ion karbonat dan ion heksaaqua, kamu akan memperoleh salah satu diantara ion hidrogenkarbonat atau gas karbon dioksida dari reaksi antara ion hidrogen dan ion karbonat. Persamaan hasil bagi menunjukkan lebih memungkinkan terjadinya pembentukan karbon dioksida:

Selain karbon dioksida, tidak terjadi sesuatu yang baru pada reaksi ini:

Oksidasi krom(III) menjadi krom(VI)

Sebagai akibat dari penambahan larutan natrium hidroksida pada ion heksaaquokrom(III) menghasilkan larutan ion heksahidroksokromat(III) yang berwarna hijau.

Larutan ion heksahidroksokromat(III) yang berwarna hijau kemudian di oksidasi dengan memanaskan larutan tersebut dengan larutan hidrogen peroksida. Setelah itu kamu akan memperoleh larutan berwarna kuning terang yang mengandung ion kromat(VI).

19

Page 20: Kimia Anorganik i

Persamaan untuk tahap oksidasi adalah:

Beberapa sifat kimia krom(VI)

Kesetimbangan kromat(VI)-dikromat(VI)

Kamu mungkin lebih terbiasa dengan ion dikromat(VI) yang berwarna jingga, Cr2O7

2-, dibandingkan dengan ion kromat(VI) yang berwarna kuning, CrO42-.

Perubahan antara keduanya adalah sesuatu hal yang mudah:

Jika kamu menambahkan asam sulfat encer pada larutan yang berwarna kuning maka larutan tersebut akan berubah menjadi berwarna jingga. Jika kamu menambahkan natrium hidroksida ke dalam larutan jingga maka larutan tersebut berubah menjadi kuning.

Reaksi kesetimbangan pada pusat interkonversi adalah:

Jika kamu menambahkan ion hidrogen berlebih, kesetimbangan bergeser ke kanan. Hal ini sesuai dengan prinsip Le Chatelier.

20

Page 21: Kimia Anorganik i

Jika kamu menambahkan ion hidroksida, maka ion hidroksida akan bereaksi dengan ion hidrogen. Kesetimbangan cenderung ke arah kiri untuk menggantikannya.

Pembuatan kristal dikromat(VI)

Kristal kalium dikromat dapat dibuat dengan mengkombinasikan reaksi yang akan kita lihat pada halaman ini.

Berawal dari sumber ion kromium(III) seperti larutan kromium klorida:

Kamu tambahakan larutan kalium hidroksida untuk menghasilkan endapan hijau-biru dan kemudian larutan hijau tua yang mengandung ion [Cr(OH)6]3- Hal ini akan dijelaskan dengan lebih mendalam pada halaman berikutnya. Harap diperhatikan bahwa kamu harus menggunakan kalium hidroksida. Jka kamu menggunakan natrium hidroksida, maka akan berakhir dengan pembentukan natrium dikromat(VI).

Sekarang kamu oksidasi larutan ini dengan cara memanaskannya dengan menggunakan larutan hidrogen peroksida. Larutan berubah menjadi kuning menunjukkan pembentukan kalium kromat(VI). Reaksi ini juga dijelaskan secara lebih mendalam pada halaman berikutnya.

Semua yang berada pada bagian sebelah kiri mengubah larutan kalium kromat(VI berwarna kuning menjadi larutan kalium dikromat(VI) yang berwarna jingga. Kamu dapat mengingatnya bahwa hal ini terjadi dengan penambahan asam. Hal ini untuk mengingatkan bagian yang telah disebut di atas jika kamu melupakannya.

Sayangnya terdapat sebuah masalah. Kalium dikromat akan bereaksi dengan kelebihan hidrogen peroksida kemudian selanjutnya memberikan prakarsa pada

21

Page 22: Kimia Anorganik i

pembentukan larutan biru tua yang tidak stabil dan sejak itu terbentuk ion kromium(III) lagi! Untuk memecahkan masalah ini, kamu terlebih dahulu harus menghilangkan kelebihan hidrogen peroksida.

Hal ini dapat dilakukan dengan mendidihkan larutan. Hidrogen peroksida terdekomposisi pada pemanasan dengan menghasilkan air dan oksigen. Larutan dididihkan sampai tidak terbentuk lagi gelembung gas oksigen yang dihasilkan. Larutan dipanaskan lebih lanjut untuk memekatkannya, dan kemudian asam etanoat pekat ditambahkan untuk mengasamkannya. Kristal kalium dikromat yang berwarna jingga terbentuk melalui proses pendinginan.

Reduksi ion dikromat(VI) dengan seng dan asam

Ion dikromat(VI) (sebagai contoh, pada larutan kalium dikromat(VI)) dapat di reduksi menjadi ion krom(III) dan kemudian menjadi ion krom(II) dengan menggunakan seng dan salah satu diantara asam sulfat encer atau asam klorida.

Hidrogen dihasilkan dari reaksi antara seng dengan asam. Hidrogen harus dibiarkan keluar, tetapi kamu perlu untuk tetap menjaga agar udara tidak terlibat dalam reaksi. Oksigen di udara me-re-oksidasi krom(II) menjadi krom(III) dengan cepat.

Suatu hal yang mudah untuk meletakkan sedikit kapas mentah pada bagian atas labu (atau tabung reaksi) selama kamu mengunakannya. Hal ini dilakukan untuk menyediakan jalan keluar bagi hidrogen, tetapi menghentikan udara yang mengalir berlawanan dengan aliran hidrogen.

Alasan untuk membubuhkan tanda kutip pada ion krom(III) adalah untuk penyederhanaan. Khuluk yang pasti yang dimiliki oleh ion kompleks akan tergantung pada asam yang kamu gunakan pada proses reduksi. Hal ini sudah didiskusikan pada bagian awal halaman ini.

Persamaan untuk dua tahap reaksi adalah:

Untuk reduksi dari +6 menjadi +3:

22

Page 23: Kimia Anorganik i

Untuk reduksi dari +3 menjadi +2:

Penggunaan kalium dikromat(VI) sebagai agen pengoksidasi pada kimia organik

Larutan Kalium dikromat(VI) yang diasamkan dengan asam sulfat encer biasa digunakan sebagai agen pengoksidasi pada kimia organik. Hal ini beralasan karena larutan kalium dikromat(VI) yang diasamkan dengan asam sulfat encer merupakan agen pengoksidasi yang kuat disamping memiliki kekuatan yang mampu menjadikan senyawa organik menjadi terpotong-potong! (larutan kalium manganat(VII) juga memberikan kecenderungan yang sama).

Larutan Kalium dikromat(VI) yang diasamkan dengan asam sulfat encer digunakan untuk:

Mengoksidasi alkohol sekunder menjadi keton; Mengoksidasi alkohol primer menjadi aldehid; Mengoksidasi alkohol primer menjadi asam karboksilat;

Sebagai contoh, dengan etanol (alkohol promer), kamu dapat memperoleh salah satu antara etanal (aldehid) atau asam etanoat (asam karboksilat) tergantung pada kondisinya.

Jika kelebihan alkohol, dan kamu mendetilasi aldehid yang terbentuk, kamu akan memperoleh etanal sebagai produk utama.

Jika kelebihan agen pengoksidasi, dan kamu tidak membiarkan bagi produk untuk keluar, sebagai contoh, dengan pemanasan campuran dibawah refluk (pemanasan labu dengan menempatkan kondensor secara vertikal pada leher labu) – kamu akan memperoleh asam etanoat.

Dalam kimia organik, persamaan tersebut sering kali disederhanakan untuk proses pemekatan yang terjadi pada molekul organik. Sebagai contoh, dua yang terakhir dapat ditulis:

Oksigen ditulis dengan kurung kuadrat hanya memberikan arti â€oksigen berasal �dari agen pengoksidasi†�

23

Page 24: Kimia Anorganik i

Penggunaan reaksi yang sama untuk membuat kristal krom alum

Kamu dapat menemukan krom alum dalam berbagai nama yang berbeda

Krom alum Kalium krom(III) sulfat Krom(III) kalium sulfat Krom(III) kalium sulfat-12-air Krom(III) kalium sulfat dodekahidratchrome alum

…dan berbagai variasi yang lain!

Kamu juga akan menemukan berbagai variasi rumus kimia krom alum. Sebagai contoh:

CrK(SO4)2,12H2O Cr2(SO4)3,K2SO4,24H2O K2SO4,Cr2(SO4)3,24H2O

Rumus yang pertama hanya salah satu bentuk penulisan dan dapat disusun kembali. Secara pribadi, saya lebih suka yang kedua karena sangat mudah untuk dimengerti tentang apa yang terjadi.

Krom alum dikenal dengan double salt (garam ganda). Jika kamu mencampurkan larutan kalium sulfat dan krom(III) sulfat yang memiliki konsentrasi molar yang sama, larutan akan dikira hanya seperti sebuah campuran. Pencampuran ini memberikan reaksi ion krom(III), ion kalium, dan ion sulfat.

Akan tetapi, jika kamu mengkristalkannya, untuk memperoleh campuran kristal kalium sulfat dan krom(III) sulfat, larutan akan mengkristal sebagai kristal yang berwarna ungu tua. Itulah â€krom alumâ€.� �

Kristal krom alum dapat dibuat dengan mereduksi larutan kalium dikromat(VI) yang telah diasamkan dengan menggunakan etanol, dan kemudian kristalisasi larutan yang dihasilkan.

Dengan asumsi kamu dapat mengunakan kelebihan etanol, produk organik utama yang akan diperoleh adalah etanal – dan kita perhatikan persamaan di bawah ini:

Persamaan ionik jelas tidak mengandung ion spektator, kalium dan sulfat. Lihat kembali melalui persamaan lengkap:

24

Page 25: Kimia Anorganik i

Jika kamu memperhatikan baris paling atas pada sisi kanan persamaan, kamu akan melihat bahwa krom(III) sulfat dan kalium sulfat diproduksi secara pasti pada proporsi bagian kanan untuk memperolah double salt.

Apa yang kamu lakukan, kemudian, adalah:

Kamu awali dengan larutan kalium dikromat(VI) yang telah ditambahkan sedikit asam sulfat pekat. Larutan kemudian didinginkan dengan meletakkannya dalam es.

Kelebihan etanol ditambahkan secara perlahan sambil diaduk dengan kenaikan suhu yang tidak terlalu tinggi.

Ketika semua etanol telah ditambahkan, larutan dibiarkan sepanjang malam, lebih baik dalam lemari pendingin, untuk kristalisasi. Kristal dipisahkan dari larutan sisa, dicuci dengan sedikit air murni dan kemudian dikeringkan dengan kertas saring.

Penggunaaan kalium dikromat(VI) sebagai agen pengoksidasi dalam titrasi

Kalium dikromat(VI) seringkali digunakan untuk menentukan konsentrasi ion besi(II) dalam larutan. Hal ini dilakukan sebagai alternatif penggunaan larutan kalium permanganat(VII).

Pada prakteknya

Berikut ini keuntungan dan kerugian dalam penggunaan kalium dikromat(VI).

Keuntungan:

Kalium dikromat(VI) dapat digunakan sebagai standar primer. Hal ini berarti bahwa kalium dikromat(VI) dapat dijadikan sebagai larutan stabil yang konsentrasinya diketahui dengan tepat. Hal ini tidak terjadi pada kalium permanganat(VII).

Kalium dikromat(VI) dapat digunakan untuk mendeteksi keberadaan ion klorida (selama ion klorida tidak berada pada konsentrasi yang sangat tinggi).

Kalium manganat(VII) mengoksidasi ion klorida menjadi klorin; kalium dikromat(VI) tidak benar-benar cukup kuat sebagai agen pengoksidasi. Hal ini berarti bahwa kamu tidak akan mendapatkan reaksi yang tidak diinginkan dengan larutan kalium dikromat(VI).

Kerugian:

Kerugian yang paling utama adalah pada perubahan warna. Titrasi kalium manganat(VII) menunjukkan dirinya sendiri. Ketika kamu menyertakan larutan kalium manganat(VII) pada reaksi, larutan menjadi tidak berwarna.

25

Page 26: Kimia Anorganik i

Jika kamu menambahkannya terlalu banyak, larutan menjadi merah muda – dan kamu tahu bahwa kamu telah melewati titik akhir. Sayangnya larutan kalium dikromat(VI) berubah menjadi hijau pada saat kamu memasukkannya ke dalam reaksi, dan disana tidak ada jalan yang memungkinkan bagi kamu untuk mendeteksi perubahan warna ketika kamu menuangkan larutan jingga berlebih pada larutan berwarna hijau yang kuat.

Dengan larutan kalium dikromat(VI) kamu dapat menggunakan indikator terpisah, dikenal dengan redox indicator. Warna berubah melalui kehadiran agen pengoksidasi.Berikut beberapa contoh indikator – seperti difenil sulfonat. Indikator memberikan warna ungu-biru dengan adanya larutan kalium dikromat(VI) yang berlebih. Akan tetapi, warna menjadi lebih sulit diinterpretasikan dengan munculnya warna hijau yang kuat. Titik akhir titrasi kalium dikromat(VI) tidak mudah untuk dilihat seperti titik akhir kalium manganat(VII).

Perhitungan

Setengah reaksi untuk ion dikromat(VI) adalah:

…dan untuk ion besi(II) adalah:

Penggabungan keduanya memberikan:

Kamu dapat melihat bahwa proporsi reaksi adalah 1 mol ion dikromat(VI) berbanding 6 mol ion besi(II).

Sekali lagi kamu tidak dapat memungkiri bahwa, perhitungan titrasi sama seperti halnya yang lain.

Tes untuk ion kromat(VI) dalam larutan

Secara khusus, kamu dapat perhatikan pada larutan yang mengandung natrium, kalium atau amonium kromat(VI). Sebagian besar kromat sangat larut; beberapa diantaranya dapat kita golongkan tidak larut.Warna larutan kuning terang menunjukkan bahwa larutan tersebut bermanfaat untuk tes ion kromat.

Tes dengan penambahan asam

26

Page 27: Kimia Anorganik i

Jika kamu menambahkan beberapa larutan asam sulfat encer pada larutan yang mengandung ion kromat(VI), perubahan warna berubah menjadi jingga ion dikromat(VI).

Kamu tidak dapat dapat menggunakan tes ini sebagai tes untuk ion kromat(VI), walau bagaimanapun. Ini mungkin terjadi bahwa kamu memiliki larutan yang mengandung indikator asam-basa yang memiliki perubahan warna yang sama!

Tes dengan penambahan larutan klorida (atau nitrat)

Ion kromat(VI) dapat memberikan endapan kuning barium kromat(VI).

Tes dengan penambahan larutan klorida (atau nitrat)

Ion kromat(VI) dapat memberikan endapan kuning barium kromat(VI).

27

Page 28: Kimia Anorganik i

Sifat-sifat Oksida-oksida Unsur Periode 3Kata Kunci: elektrolisis, fosfor, ikatan kovalen, klor, oksida, oksigen, periode 3, silikon, struktur molekul, sulfur, titik didih, titik leleh, van der waals

Halaman ini menjelaskan hubungan antara sifat fisik dari oksida unsur-unsur periode 3 (natrium hingga klor) dan strukturnya. Argon diabaikan karena argon tidak membentuk oksida.

Ikhtisar kecenderungan

Oksida

Oksida-oksida dari unsur-unsur periode 3:

Na2O MgO Al2O3 SiO2 P4O10 SO3 Cl2O7

P4O6 SO2 Cl2O

Oksida-oksida pada barisan pertama dikenal sebagai oksida-oksida tertinggi dari tiap unsur. Oksida-oksida ini adalah saat di mana unsur-unsur periode 3 berada pada keadaan oksidasi tertinggi. Pada oksida-oksida ini, semua elektron terluarnya terlibat dalam pembentukkan ikatan mulai dari natrium yang hanya memiliki satu elektron terluar hingga klor dengan 7 elektron terluar.

Struktur

Kecenderungan pada struktur adalah dari oksida logam mengandung struktur ionik raksasa pada bagian kiri periode, oksida kovalen raksasa (silikon dioskida) pada bagian tengah dan oksida molekuler di bagian kanan periode.

Titik leleh dan titik didih

Struktur raksasa (oksida logam dan silikon dioksida) memiliki titik leleh dan titik didih yang tinggi karena dibutuhkan energi yang besar untuk memutuskan ikatan yang kuat (ionik atau kovalen) yang bekerja pada tiga dimensi.

Oksida-oksida fosfor, sulfur dan klor terdiri dari molekul-molekul individual, beberapa diantaranya kecil dan sederhana, dan yang lainya berupa polimer.

Gaya tarik menarik antar molekul-molekul ini berupa dispersi / penyebaran gaya van der Waals dan interaksi dipol-dipol. Ukuran yang bermacam-macam ini tergantung pada ukuran, bentuk dan polaritas dari masing-masing molekul, tapi

28

Page 29: Kimia Anorganik i

akan selalu lebih lemah dari pada yang dibutuhkan untuk memutuskan ikatan ionik atau kovalen pada struktur raksasa.

Oksida-oksida ini cenderung menjadi gas, cairan atau padatan dengan titik leleh rendah.

Daya hantar arus listrik

Tidak ada diantara oksida-oksida ini yang memiliki elektron bebas atau yang dapat bergerak. Ini berarti bahwa tidak ada satupun dari oksida-oksida ini yang dapat menghantarkan arus listrik dalam keadaan padatnya.

Oksida-oksida ini dapat mengalami elektrolisis jika dicairkan. Oksida-oksida ini dapat menghantarkan arus listrik karena adanya pergerakan ion-ion menuju elektroda dan pelepasan muatan ion-ion saat mencapai elektroda.

Oksida-oksida logam

Struktur

Oksida-oksida natrium, magnesium dan alumunium terdiri dari struktur raksasa yang mengandung ion-ion logam dan ion-ion oksida. Magnesium oksida memiliki struktur seperti NaCl. Dua yang lainnya memiliki struktur yang lebih rumit yang berada di luar cakupan silabus pada tingkat ini.

Titik leleh dan titik didih

Terdapat gaya tarik menarik yang kuat antara ion-ion pada masing-masing oksida dan gaya tarik menarik ini membutuhkan energi yang besar untuk diputuskan. Oleh karena itulah oksida-oksida ini memiliki titik leleh dan titik didih yang tinggi.

Daya hantar arus listrik

Tidak ada satupun dari oksida-oksida logam periode 3 dapat menghantarkan arus listrik pada keadaan padatnya, tapi elektrolisis mungkin dilakukan jika dicairkan. Cairannya dapat menghantarkan arus listrik karena adanya pergerakan dan perubahan muatan ion-ion yang ada.

Contoh pentingnya adalah elektrolisis alumunium oksida dalam pembuatan alumunium. Apakah kita dapat mengelektrolisis cairan natrium oksida itu tergantung pada cairan / lelehannya apakah menyublim atau terurai pada keadaan biasa atau tidak. Jika menyublim, maka tak akan didapatkan cairan untuk dielektrolisis.

Magnesium dan alumunium oksida memiliki titik leleh yang sangat tinggi sehingga sulit untuk dielektrolisis dalam laboratorium sederhana.

29

Page 30: Kimia Anorganik i

Silikon dioksida (silikon (IV) oksida)

Struktur

Elektronegatifitas / keelektronegatifan dari unsur-unsur meningkat sepanjang periode dari kiri ke kanan, dan pada silikon, beda elektronegatifitas antara silikon dan oksigen tidak cukup besar untuk membentuk ikatan ionik. Silikon dioksida memiliki struktur kovalen raksasa..

Terdapat tiga bentuk silikon dioksida yang berbeda. Yang paling mudah diingat dan digambarkan adalah struktur yang mirip intan.

Kristal silikon memiliki struktur yang sama dengan intan. Untuk mengubahnya menjadi silikon dioksida, perlu dilakukan perubahan struktur silikon dengan menyisipkan beberapa atom oksigen.

Perhatikan bahwa masing-masing atom silikon dengan atom silikon tetangganya dijembatani oleh atom oksigen. Jangan lupakan bahwa ini hanya bagian kecil dari struktur raksasa dalam tiga dimensi.

Titik leleh dan titik didih

Silikon dioksida memiliki titik leleh yang tinggi, bermacam-macam tergantung pada strukturnya (ingat bahwa hanya satu dari tiga struktur yang mungkin), tapi angkanya sekitar 1700 °C. Ikatan kovalen silikon-oksigen yang sangat kuat harus diputuskan terlebih dahulu sebelum meleleh. Silikon dioksida mendidih pada suhu 2230°C.

Karena kita membicarakan tentang perbedaan bentuk ikatan, tidak berarti bila membandingkan nilai ini dengan oksida logam yang lain. Lebih baik menyatakan bahwa karena oksida logam dan silikon dioksida memiliki struktur raksasa, maka titik leleh dan titik didihnya tinggi.

30

Page 31: Kimia Anorganik i

Daya hantar arus listrik

Silikon dioksida tidak memiliki elektron-elektron atau ion-ion yang dapat bergerak sehingga tidak dapat menghantarkan arus listrik, baik dalam bentuk padatan maupun cairannya.

Oksida molekuler

Fosfor, sulfur dan klor semuanya membentuk oksida yang terdiri dari molekul-molekulnya. Beberapa dari molekul-molekul ini sederhana dan lainnya merupakan polimer. Kita hanya akan membahas molekul sederhana.

Titik leleh dan titik didih dari oksida-oksida ini akan lebih rendah dari oksida logam dan silikon dioksida. Gaya intermolekuler mengikat satu molekul dengan molekul yang lain melalui dispersi gaya van der Waals atau interaksi dipol-dipol. Kekuatannya bermacam-macam tergantung pada ukuran molekulnya.

Tak satupun dari oksida-oksida ini yang menghantarkan arus listrik baik sebagai padatan maupun cairannya. Tak satupun yang mengandung ion-ion atau elektron-elektron bebas.

Oksida-oksida fosfor

Fosfor memiliki dua oksida yang umum, fosfor (III) oksida, P4O6, dan fosfor (V) oksida, P4O10.

Fosfor (III) oksida

Fosfor (III) oksida adalah padatan putih, meleleh pada 24 °C dan mendidih pada 173 °C.

Struktur dari molekul ini paling baik disusun dari molekul-molekul P4 yang tetrahedral.

31

Page 32: Kimia Anorganik i

Tarik bagian ini sehingga kita akan lihat ikatannya….

… dan kemudian gantikan ikatannya dengan ikatan baru yang menghubungkan atom-atom fosfor dengan atom-atom oksigen. Ini akan membentuk V seperti pada air, tapi tidak akan disalahkan bila menggambarnya dengan garis lurus antara atom-atom fosfor, seperti contoh

Fosfor hanya menggunakan tiga elektron terluar (3 elektron p yang tidak berpasangan) membentuk tiga ikatan dengan oksigen.

Fosfor (V) oksida

Fosfor (V) oksida juga berupa padatan putih yang dapat menyublim (berubah dari padat ke gas) pada suhu 300°C. Dalam kasus ini, fosfor menggunakan semua elektron terluar untuk berikatan.

Padatan fosfor (V) oksida berada dalam beberapa bentuk berbeda, beberapa diantaranya berbentuk polimer. Kita akan membahas bentuk molekuler sederhana dan ini juga berada dalam keadaan gas.

Ini mudah digambarkan dengan menggambar P4O6 terlebih dahulu. Empat atom oksigen yang lain diikatkan pada empat atom fosfor melalui ikatan rangkap.

32

Page 33: Kimia Anorganik i

Oksida-oksida sulfur

Sulfur membentuk dua oksida yang umum, sulfur dioksida (sulfur (IV) oksida), SO2, dan sulfur trioksida (sulfur (VI) oksida), SO3.

Sulfur dioksida

Sulfur dioksida adalah gas yang tak berwarna pada suhu ruangan yang mudah dikenal dengan bau yang khas / mencekik. Ini terdiri dari molekul sederhana SO2 .

Sulfur menggunakan empat elektron terluarnya untuk membentuk ikatan rangkap dengan oksigen, menyisakan dua elektron yang berpasangan pada sulfur. Bentuk bengkok dari SO2 adalah akibat dari adanya pasangan elektron bebas ini.

Sulfur trioksida

Sulfur trioksida murni merupakan padatan putih dengan titik leleh dan titik didih yang rendah. Sulfur trioksida bereaksi cepat dengan uap air di udara membentuk asam sulfat. Ini berarti bahwa jika kita membuatnya di laboratorium, maka akan tampak sebagai padatan dengan asap di udara (membentuk kabut asam sulfat).

Sulfur trioksida dalam keadaan gas, terdiri dari molekul sederhana SO3 di mana semua elektron terluar dari sulfur terlibat dalam pembentukkan ikatan.

33

Page 34: Kimia Anorganik i

Terdapat bermacam-macam bentuk sulfut trioksida. Yang paling sederhana adalah trimer, S3O9, di mana 3 molekul SO3 bergabung membentuk cincin.

Terdapat bentuk polimer lainnya di mana molekul SO3 bergabung membentuk rantai panjang. Sebagai contoh:

Kenyataanya molekul-molekul sederhana bergabung dengan cara ini membentuknya struktur yang lebih besar membentuk padatan SO3

Klor oksida

Klor membentuk beberapa oksida. Disini kita hanya membahas dua diantaranya yaitu klor (I) oksida, Cl2O dan klor (VII) oksida, Cl2O7.

Klor (I) oksida

Klor (I) oksida adalah gas berwarna merah kekuningan pada suhu ruangan. Ini terdiri dari molekul ionik sederhana.

Tidak ada yang mengejutkan tentang molekul ini dan sifat fisiknya hanya memperkirakan dari ukuran molekulnya.

Klor (VII) oksida

Dalam klor (VII) oksida, klor menggunakan 7 elektron terluarnya untuk membentuk ikatan dengan oksigen. Ini menghasilkan molekul yang lebih besar sehingga dapat diperkirakan bahwa titik leleh dan titik didihnya lebih tinggi dari pada klor (I) oksida.

Klor (VII) oksida adalah cairan seperti minyak yang tak berwarna pada suhu

34

Page 35: Kimia Anorganik i

ruangan.

Pada diagram, digambarkan rumus struktur yang standar. Pada kenyataannya, bentuknya adalah tetrahedral di sekitar kedua Cl dan berbentuk V di sekitar oksigen pusat.

Reaksi-reaksi Kimia Unsur-unsur Periode 3Kata Kunci: aluminium, alumunium, argon, fosfor, klor, klorida, magnesium, natrium, oksigen, silikon, sulfur

Hal ini menggambarkan reaksi dari unsur-unsur periode 3 dari natrium hingga argon dengan air, oksigen dan klor.

Reaksi dengan Air

Natrium

Natrium mengalami reaksi yang sangat eksoterm dengan air dingin menghasilkan hidrogen dan larutan NaOH yang tak berwarna.

Magnesium

Magnesium mengalami reaksi yang sangat lambat dengan air dingin, tetapi terbakar dalam uap air. Lempeng magnesium yang sangat bersih dimasukkan ke dalam air dingin akhirnya akan tertutup oleh gelembung gas hidrogen yang akan mengapungkan lempeng magnesium ke permukaan. Magnesium hidroksida akan terbentuk sebagai lapisan pada lempengan magnesium dan ini cenderung akan menghentikan reaksi.

Magnesium terbakar dalam uap air dengan nyala putih yang khas membentuk magnesium oksida dan hidrogen.

35

Page 36: Kimia Anorganik i

Aluminium

Serbuk alumunium dipanaskan dalam uap air menghasilkan hidrogen dan alumunium oksida. Reaksinya berlangsung relatif lambat karena adanya lapisan alumunium oksida pada logamnya, membentuk oksida yang lebih banyak selama reaksi.

Silicon

Terdapat beberapa perbedaan dalam beberapa buku atau web mengenai bagaimana reaksi silikon dengan air atau uap air. Sebenarnya hal ini tergantung pada silikon yang digunakan.

Umumnya silikon abu-abu yang berkilat dengan keadaan agak seperti logam hampir tidak reaktif.

Banyak sumber menyatakan bahwa bentuk silikon ini bereaksi dengan uap air pada suhu tinggi menghasilkan silikon dioksida dan hidrogen.

Tapi juga mungkin untuk membuatnya menjadi bentuk silikon yang lebih reaktif yang akan bereaksi dengan air dingin menghasilkan produk yang sama.

Fosfor dan sulfur

Fosfor dan sulfur tidak bereaksi dengan air.

Klor

Klor dapat larut dalam air untuk beberapa tingkat membentuk larutan berwarna bijau. Terjadi reaksi reversibel (dapat balik) menghasilkan asam klorida dan asam hipoklorit.

Aluminium

Alumunium akan terbakar dalam oksigen jika bentuknya serbuk, sebaliknya lapisan oksidanya yang kuat pada alumunium cenderung menghambat reaksi.Jika kita taburkan serbuk alumunium ke dalam nyala bunsen, maka akan kita dapatkan percikan. Alumunium oksida yang berwana putih akan terbentuk.

36

Page 37: Kimia Anorganik i

Silikon

Silikon akan terbakar dalam oksigen jika dipanaskan cukup kuat. Dihasilkan silikon dioksida.

Fosfor

Fosfor putih secara spontan menangkap api di udara, terbakar dengan nyala putih dan menghasilkan asap putih campuran fosfor (III) oksida dan fosfor (V) oksida.

Proporsinya bergantung pada jumlah oksigen yang tersedia. Dengan oksigen berlebih, produk yang dihasilkan hampir semuanya berupa fosfor (V) oksida.

Untuk fosfor (III) oksida:

Untuk fosfor (V) oksida:

Sulfur

Sulfur terbakar di udara atau oksigen dengan pemanasan perlahan dengan nyala biru pucat. Ini menghasilkan gas sulfur dioksida yang tak berwarna.

Klor dan Argon

Walaupun memiliki beberapa oksida, klor tidak langsung bereaksi dengan oksigen. Argon juga tidak bereaksi dengan oksigen.

Reaksi dengan Klor

Natrium

Natrium terbakar dalam klor dengan nyala jingga menyala. Padatan NaCl akan terbentuk.

Magnesium

Magnesium terbakar dengan nyala putih yang kuat menghasilkan magnesium klorida.

37

Page 38: Kimia Anorganik i

Aluminium

Alumunium seringkali bereaksi dengan klor dengan melewatkan klor kering di atas alumunium foil yang dipanaskan sepanjang tabung. Alumunium terbakar dalam aliran klor menghasilkan alumunium klorida yang kuning sangat pucat. Alumunium klorida ini dapat menyublim (berubah dari padatan ke gas dan kembali lagi) dan terkumpul di bagian bawah tabung saat didinginkan.

Silikon

Jika klor dilewatkan di atas serbuk silikon yang dipanaskan di dalam tabung, akan bereaksi menghasilkan silikon tetraklorida. Silikon tetraklorida adalah cairan yang tak berwarna yang berasap dan dapat terkondensasi.

Fosfor

Fosfor putih terbakar di dalam klor menghasilkan campuran dua klorida. Fosfor (III) klorida dan fosfor (V) klorida (fosfor triklorida dan fosfor pentaklorida).

Fosfor (III) klorida adalah cairan tak berwarna yang berasap.

Fosfor (V) klorida adalah padatan putih (hampir kuning).

Sulfur

Jika aliran klor dilewatkan di atas sulfur yang dipanaskan, akan bereaksi menghasilkan cairan berwarna jingga dengan bau tak sedap, disulfur diklorida, S2Cl2.

Klor dan Argon

Tidak bermanfaat bila kita membicarakan klor bereaksi dengan klor lagi dan argon tidak bereaksi dengan klor.

38

Page 39: Kimia Anorganik i

Sifat-sifat Atomik dan Sifat-sifat Fisik Unsur-unsur Periode 3Kata Kunci: alumunium, argon, energi ionisasi, fosfor, jari atom, keelektronegatifan, klor, natrium, orbital, periode 3, silikon, sulfur, titik didih, titik leleh, van der waals

Hal ini menggambarkan dan menjelaskan kecenderungan sifat-sifat atomik dan sifat-sifat fisik unsur-unsur periode 3 mulai dari natrium hingga argon. Hal yang dibahas meliputi energi ionisasi, jari-jari atom, elektronegativitas, daya hantar arus listrik, titik leleh dan titik didih.

Sifat-sifat Atomik

Struktur/konfigurasi elektronik

Pada periode 3 dalam tabel periodik, orbital 3s dan 3p terisi oleh elektron. Hanya sekedar mengingatkan, berikut versi singkat konfigurasi elektron untuk delapan unsur periode 3 adalah:

Na [Ne] 3s1

Mg [Ne] 3s2

Al [Ne] 3s2 3px1

Si [Ne] 3s2 3px1 3py

1

P [Ne] 3s2 3px1 3py

1 3pz1

S [Ne] 3s2 3px2 3py

1 3pz1

Cl [Ne] 3s2 3px2 3py

2 3pz1

Ar [Ne] 3s2 3px2 3py

2 3pz2

Dalam tiap kasus, [Ne] menunjukkan struktur elektronik yang lengkap dari atom neon.

Energi ionisasi pertama

Energi ionisasi pertama adalah energi yang dibutuhkan untuk melepaskan satu elektron yang terikat paling lemah dari satu mol atom dalam keadaan gas menjadi satu mol ion dalam keadaan gas dengan muatan +1.

39

Page 40: Kimia Anorganik i

Dibutuhkan energi untuk tiap perubahan 1 mol X.

Pola perubahan energi ionisasi pertama unsur-unsur sepanjang periode 3.

Perhatikan bahwa secara umum kecenderungannya meningkat kecuali antara magnesium dan alumunium serta antara fosfor dan sulfur yang menurun.

Penjelasan pola

Energi ionisasi pertama dipengaruhi oleh:

Muatan dalam inti; Jarak elektron terluar dari inti; Banyaknya pemerisaian oleh elektron yang lebih dalam; Apakah elektron dalam orbital berpasangan atau tidak.

Kecenderungan meningkat

Dalam semua unsur-unsur periode 3, elektron terluar berada pada kulit orbital ke-3. Semuanya memiliki jarak yang sama dari inti / nukleus dan diperisai oleh elektron yang sama yaitu elektron pada kulit pertama dan kedua.

Perbedaan yang paling utama adalah meningkatnya jumlah proton dalam inti mulai dari natrium hingga argon. Hal inilah yang menyebabkan tarikan inti terhadap elektron terluarnya makin besar sehingga meningkatkan energi ionisasi.

Pada kenyataannya meningkatnya muatan di dalam inti juga akan menarik elektron terluar menjadi lebih dekat ke inti. Peningkatan energi ionisasi makin besar sepanjang periode dari kiri ke kanan.

Penurunan pada alumunium

Anda dapat memperkirakan bahwa ukuran alumunium lebih besar dari pada magnesium karena jumlah proton yang lebih banyak. Mengimbangi fakta bahwa elektron terluar dari alumunium berada pada orbital 3p bukannya 3s.

40

Page 41: Kimia Anorganik i

Elektron pada orbital 3p sedikit lebih jauh dari inti dari pada elektron pada orbital 3s, dan sebagian mendapatkan pemerisaian dari elektron 3s sebagai elektron yang lebih dalam. Kedua faktor inilah yang mengimbangi jumlah proton yang lebih banyak.

Penurunan pada sulfur

Pada fosfor ke sulfur, sesuatu yang lebih harus mengimbangi pengaruh proton yang lebih banyak.

Pemerisaian yang sama pada fosfor dan sulfur (dari elektron yang lebih dalam, pada beberapa tingkat dari elektron 3s), dan elektron yang akan dilepaskan berasal dari orbital yang sama.

Perbedaannya adalah bahwa pada sulfur, elektron yang akan dilepaskan berasal dari salah satu elektron yang berpasangan pada orbital 3px

2. Tolakan antara 2 elektron yang berada dalam orbital yang sama menunjukkan bahwa elektron lebih mudah dikeluarkan dari pada elektron yang tidak berpasangan.

Jari-jari atom

Kecenderungan

Diagram di bawah ini menunjukkan bagaimana perubahan jari-jari atom pada unsur-unsur periode 3.

Gambaran yang digunakan untuk membuat diagram ini adalah berdasarkan pada:

Jari-jari metalik / ionik untuk Na, Mg dan Al; Jari-jari kovalen untuk Si, P, S dan Cl; Jari-jari van der Waals untuk Ar, karena Ar tidak dapat membentuk ikatan

yang kuat.

Wajar jika kita membandingkan jari-jari metalik dengan jari-jari kovalen karena keduanya menunjukkan ikatan yang sangat rapat. Akan tetapi tidak wajar bila kita membandingkan jari-jari metalik dan jari-jari kovalen dengan jari-jari van der Waals.

Kecenderungan secara umum menunjukkan atom makin kecil sepanjang periode TERKECUALI pada argon. Anda tidak dapat membandingkan hal yang tidak sejenis. Sebaiknya kita mengabaikan argon pada diskusi selanjutnya.

41

Page 42: Kimia Anorganik i

Penjelasan kecenderungan

Jari-jari metalik dan kovalen menunjukkan jarak dari inti ke pasangan elektron ikatan. Jika tidak yakin dengan hal itu, kembali dan ikuti link sebelumnya.

Dari natrium hingga klor, elektron ikatan semuanya berada di kulit ke-3, akan diperisai oleh elektron pada kulit pertama dan kedua. Peningkatan jumlah proton dalam inti sepanjang perioda akan meningkatkan tarikan elektron ikatan menjadi lebih dekat ke inti. Jumlah pemerisaian sama untuk semua unsur

Elektronegativitas / keelektronegatifan

Keelektronegatifan adalah ukuran kecenderungan atom untuk menarik pasangan elektron ikatan.

Skala Pauling adalah yang paling umum digunakan. Fluor (unsur yang paling elektronegatif) diberi skala 4.0 dan nilai ini makin menurun hingga cesium dan francium dengan keelektronegatifan terendah yaitu 0.7.

Kecenderungan

Kecenderungan sepanjang periode diperlihatkan grafik di bawah ini:

Ingat bahwa argon tidak dimasukkan. Keelektronegatifan adalah kecenderungan atom untuk menarik pasangan elektron ikatan. Karena argon tidak membentuk ikatan kovalen sehingga secara nyata tidak memiliki keelektronegatifan.

Penjelasan kecenderungan

Kecenderungan dijelaskan dengan cara yang sama seperti kecenderungan pada jari-jari atom. Sepanjang periode, elektron ikatan selalu berada pada kulit yang sama yaitu kulit ke-3, dan selalu diperisai oleh elektron dalam yang sama.

Semuanya berbeda dalam hal jumlah proton yang terus meningkat dan tarikan pasangan elektron ikatan makin mendekati inti.

42

Page 43: Kimia Anorganik i

Sifat-sifat Fisik

Bagian ini akan membahas daya hantar listrik serta titik leleh dan titik didih unsur-unsur periode 3. Untuk memahami hal ini, hal yang harus Anda pahami adalah struktur dari masing-masing unsur.

Struktur-struktur unsur

Struktur unsur-unsur berubah sepanjang periode 3. Tiga pertama merupakan metalik, silikon adalah kovalen raksasa dan sisanya berupa molekul sederhana.

Tiga struktur metalik

Natrium, magnesium dan alumunium semuanya memiliki struktur metalik.

Dalam natrium hanya ada satu elektron yang terlibat dalam ikatan metalik- satu elektron 3s. Dalam magnesium, kedua elektron terluarnya terlibat, sedangkan pada alumunium ketiga elektron terluarnya terlibat.Sodium, magnesium and aluminium all have metallic structures.

Perbedaan lain yang harus diperhatikan adalah cara penyusunan atom-atomnya dalam kristal logam. Natrium mengalami koordinasi-8 di mana masing-masing atom natrium bersentuhan dengan 8 atom natrium yang lain.

Magnesium dan alumunium mengalami koordinasi-12 (meskipun dengan cara yang berbeda). Ini adalah cara yang lebih efisien dalam menyusun atom-atom. Baik untuk mengurangi pemborosan tempat / space dalam struktur logam dan ikatan logam yang lebih kuat.

Struktur kovalen raksasa

Silikon memiliki struktur kovalen raksasa seperti intan. Bagian terkecil dari struktur dapat dilihat seperti di bawah ini:

Strukturnya terikat dengan ikatan kovalen yang kuat dalam tiga dimensi.

43

Page 44: Kimia Anorganik i

Empat struktur molekuler sederhana

Struktur fosfor dan sulfur bermacam-macam tergantung pada jenis fosfor yang sedang dibicarakan. Untuk fosfor kita anggap sebagai fosfor putih. Dan untuk sulfur kita anggap salah satu dari bentuk kristal monoklin dan rombis.

Atom-atom dalam masing-masing molekul terikat melalui ikatan kovalen (tentu saja kecuali argon).

Dalam keadaan cair atau padat, molekul-molekulnya terikat satu sama lain dengan gaya van der Waals.

Daya hantar arus listrik

Natrium, magnesium dan alumunium semuanya merupakan penghantar / konduktor arus listrik yang baik;

Silikon merupakan semikonduktor; Sisanya bukan merupakan konduktor.

Tiga logam pertama, sudah pasti merupakan penghantar listrik karena adanya delokalisasi elektron (“laut elektronâ€) yang bebas bergerak / berpindah �sepanjang padatan atau cairan logam.

Pada kasus silikon, penjelasan bagaimana silikon dapat menjadi semikonduktor berada di luar cakupan tingkat ini. Dengan hanya mengetahui strukturnya seperti intan, kita tidak dapat memperkirakan silikon dapat menghantarkan arus listrik, tapi silikon memang dapat menghantarkan arus listrik.

Sisanya tidak menghantarkan arus listrik karena merupakan senyawa dengan molekul sederhana. Tidak ada elektron yang dapat bebas bergerak.

Titik leleh dan titik didih

Grafik di bawah menunjukkan bagaimana titik leleh dan titik didih unsur-unsur periode 3 berubah sepanjang periode. Gambar diplot dalam Kelvin bukannya °C untuk menghindari nilai yang negatif.

44

Page 45: Kimia Anorganik i

Lebih baik bila kita menghubungkan perubahan ini dengan terminologi macam-macam struktur yang telah dibahas.

Struktur metalik

Titik didih dan titik leleh meningkat sepanjang tiga logam pertama karena meningkatnya kekuatan ikatan metalik.

Jumlah elektron pada masing-masing atom menyumbang untuk meningkatkan delokalisasi “lautan elektronâ€. Atom-atom juga menjadi lebih kecil dan �memiliki jumlah proton yang lebih banyak dari natrium hinggga magnesium dan alumunium.

Tarikan dan titik leleh serta titik didih meningkat karena:

Inti atom memiliki muatan positif yang semakin besar; Lautan elektron makin bermuatan negatif; Lautan elektron makin dekat ke inti dan tertarik makin kuat.

Silikon

Silikon memiliki titik leleh dan titik didih yang lebih tinggi karena memiliki struktur kovalen raksasa. Kita harus memutuskan ikatan kovalen yang kuat itu sebelum akhirnya meleleh atau mendidih.

Karena yang kita bicarakan adalah tentang jenis ikatan yang berbeda, lebih baik jangan membendingkan langsung titik leleh dan titik didih silikon dengan titik leleh dan titik didih alumunium.

Empat unsur molekuler

Fosfor, sulfur, klor dan argon adalah senyawa molekuler sederhana yang hanya dipengaruhi gaya van der Waals di antara molekul-molekulnya. Titik leleh dan titik didihnya akan makin rendah dari pada empat unsur pertama dalam periode 3 yang memiliki struktur raksasa.

Ukuran titik leleh dan titik didih dipengaruhi oleh ukuran molekul.

45

Page 46: Kimia Anorganik i

Ingat struktur molekul:

Fosfor

Fosfor mengandung molekul P4. Untuk molekul fosfor, anda tidak dapat memecahkan ikatan kovalennya, hanya gaya van der Waals antar molekulnya yang lemah.

Sulfur

Sulfur terdiri dari atom S8 yang berbentuk cincin. Molekulnya lebih besar dari pada molekul fosfor dan gaya van der Waals yang lebih kuat, hal ini penting untuk menjelaskan titik leleh dan titik didih yang lebih tinggi.

Klor

Klor, Cl2, adalah molekul yang lebih kecil dengan gaya van der Waals yang lebih lemah dan klor memiliki titik leleh dan titik didih yang lebih rendah dari pada sulfur dan fosfor.

Argon

Molekul argon hanya terdiri dari satu atom argon, Ar. Jangkauan gaya van der Waals antar atom-atomnya sangat terbatas begitu pula titik leleh dan titik didih argon lebih rendah lagi.

46

Page 47: Kimia Anorganik i

Bilangan Oksidasi (BILOKS)Kata Kunci: bilangan oksidasi, biloks

Pengertian Bilangan Oksidasi

Dengan bilangan oksidasi akan mempermudah dalam pengerjaan reduksi atau oksidasi dalam suatu reaksi redoks.

Kita akan membuat contoh dari Vanadium. Vanadium membentuk beberapa ion, V2+ dan V3+. Bagaimana ini bisa terjadi? Ion V2+ akan terbentuk dengan mengoksidasi logam, dengan memindahkan 2 elektron:

Vanadium kini disebut mempunyai biloks +2.

Pemindahan satu elektron lagi membentuk ion V3+:

Vanadium kini mempunyai biloks +3.

Pemindahan elektron sekali lagi membentuk bentuk ion tidak biasa, VO2+.

Biloks vanadium kini adalah +4. Perhatikan bahwa biloks tidak didapat hanya dengan menghitung muatan ion (tapi pada kasus pertama dan kedua tadi memang benar).

Bilangan oksidasi positif dihitung dari total elektron yang harus dipindahkan-mulai dari bentuk unsur bebasnya.

Vanadium biloks +5 juga bisa saja dibentuk dengan memindahkan elektron kelima dan membentuk ion baru.

Setiap kali vanadium dioksidasi dengan memindahkan satu elektronnya, biloks vanadium bertambah 1.

Sebaliknya, jika elektron ditambahkan pada ion, biloksnya akan turun. Bahkan dapat didapat lagi bentuk awal atau bentuk bebas vanadium yang memiliki biloks nol.

47

Page 48: Kimia Anorganik i

Bagaimana jika pada suatu unsur ditambahkan elektron? Ini tidak dapat dilakukan pada vanadium, tapi dapat pada unsur seperti sulfur.

Ion sulfur memiliki biloks -2.

Kesimpulan

Biloks menunjukkan total elektron yang dipindahkan dari unsur bebas (biloks positif) atau ditambahkan pada suatu unsur (biloks negatif) untuk mencapai keadaan atau bentuknya yang baru.

Oksidasi melibatkan kenaikan bilangan oksidasi

Reduksi melibatkan penurunan bilangan oksidasi

Dengan memahami pola sederhana ini akan mempermudah pemahaman tentang konsep bilangan oksidasi. Jika anda mengerti bagaimana bilangan oksidasi berubah selama reaksi, anda dapat segera tahu apakah zat dioksidasi atau direduksi tanpa harus mengerjakan setengah-reaksi dan transfer elektron.

Mengerjakan bilangan oksidasi

Biloks tidak didapat dengan menghitung jumlah elektron yang ditransfer. Karena itu membutuhkan langkah yang panjang. Sebaliknya cukup dengan langkah yang sederhana, dan perhitungan sederhana.

E Biloks dari unsur bebas adalah nol. Itu karena unsur bebas belum mengalami oksidasi atau reduksi. Ini berlaku untuk semua unsur, baik unsur dengan struktur sederhana seperti Cl2 atau S8, atau unsur dengan struktur besar seperti karbon atau silikon.

* Jumlah biloks dari semua atom atau ion dalam suatu senyawa netral adalah nol.

* Jumlah biloks dari semua atom dalam suatu senyawa ion sama dengan jumlah muatan ion tersebut.

* Unsur dalam senyawa yang lebih elektronegatif diberi biloks negatif. Yang kurang elektronegatif diberi biloks positif. Ingat, Fluorin adalah unsur paling elektronegatif, kemudian oksigen.

48

Page 49: Kimia Anorganik i

* Beberapa unsur hampir selalu mempunyai biloks sama dalam senyawanya:

unsurBilangan Oksidasi

Pengecualian

Logam golongan I

selalu +1

Group 2 metals selalu +2

Oksigen biasanya -2Kecuali dalam peroksida dan F2O (lihat dibawah)

Hidrogen biasanya +1Kecuali dalam hidrida logam, yaitu -1 (lihat dibawah)

Fluorin selalu -1

Klorin biasanya -1Kecuali dalam persenyawaan dengan O atau F (lihat dibawah)

Alasan pengecualian

Hidrogen dalam hidrida logam

Yang termasuk hidrida logam antara lain natrium hidrida, NaH. Dalam senyawa ini, hidrogen ada dalam bentuk ion hidrida, H-. Biloks dari ion seperti hidrida adalah sama dengan muatan ion, dalam contoh ini, -1.

Dengan penjelasan lain, biloks senyawa netral adalah nol, dan biloks logam golongan I dalam senyawa selalu +1, jadi biloks hidrogen haruslah -1 (+1-1=0).

Oksigen dalam peroksida

Yang termasuk peroksida antara lain, H2O2. Senyawa ini adalah senyawa netral, jadi jumlah biloks hidrogen dan oksigen harus nol.

Karena tiap hidrogen memiliki biloks +1, biloks tiap oksigen harus -1, untuk mengimbangi biloks hidrogen.

Oksigen dalam F2O

Permasalahan disini adalah oksigen bukanlah unsur paling elektronegatif. Fluorin yang paling elektronegatif dan memiliki biloks -1. Jadi biloks oksigen adalah +2.

Klorin dalam persenyawaan dengan fluorin atau oksigen

49

Page 50: Kimia Anorganik i

Klorin memiliki banyak biloks dalam persenyawaan ini. Tetapi harus diingat, klorin tidak memiliki biloks -1 dalam persenyawaan ini.

Contoh soal bilangan oksidasi

Apakah bilangan oksidasi dari kromium dalam Cr2+?

Untuk ion sederhana seperti ini, biloks adalah jumlah muatan ion, yaitu +2 (jangan lupa tanda +)

Apakah bilangan oksidasi dari kromium dalam CrCl3?

CrCl3 adalah senyawa netral, jadi jumlah biloksnya adalah nol. Klorin memiliki biloks -1. Misalkan biloks kromium adalah n:

n + 3 (-1) = 0

n = +3

Apakah bilangan oksidasi dari kromium dalam Cr(H2O)63+?

Senyawa ini merupakan senyawa ion, jumlah biloksnya sama dengan muatan ion. Ada keterbatasan dalam mengerjakan biloks dalam ion kompleks seperti ini dimana ion logam dikelilingi oleh molekul-molekul netral seperti air atau amonia.

Jumlah biloks dari molekul netral yang terikat pada logam harus nol. Berarti molekul-molekul tersebut dapat diabaikan dalam mengerjakan soal ini. Jadi bentuknya sama seperti ion kromium yang tak terikat molekul, Cr3+. Biloksnya adalah +3.

Apakah bilangan oksidasi dari kromium dalam ion dikromat, Cr2O72-?

Biloks oksigen adalah -2, dan jumlah biloks sama dengan jumlah muatan ion. Jangan lupa bahwa ada 2 atom kromium.

2n + 7(-2) = -2n = +6

Apakah bilangan oksidasi dari tembaga dalam CuSO4?

Dalam mengerjakan soal oksidasi tidak selalu dapat memakai cara sederhana seperti diatas. Permasalahan dalam soal ini adalah dalam senyawa terdapat dua unsur (tembaga dan sulfur) yang biloks keduanyadapat berubah.

Ada dua cara dalam memecahkan soal ini:

50

Page 51: Kimia Anorganik i

E Senyawa ini merupakan senyawa ionik, terbentuk dari ion tembaga dan ion sulfat, SO4

2-, untuk membentuk senyawa netral, ion tembaga harus dalam bentuk ion 2+. Jadi biloks tembaga adalah +2.

E Senyawa ini juga dapat ditulis tembaga(II)sulfat. Tanda (II) menunjukkan biloksnya adalah 2. Kita dapat mengetahui bahwa biloksnya adalah +2 dari logam tembaga membentuk ion positif, dan biloks adalah muatan ion.

Menggunakan bilangan oksidasi

Dalam penamaan senyawa

Anda pasti pernah tahu nama-nama ion seperti besi(II)sulfat dan besi(III)klorida. Tanda (II) dan (III) merupakan biloks dari besi dalam kedua senyawa tersebut: yaitu +2 dan +3. Ini menjelaskan bahwa senyawa mengandung ion Fe2+ dan Fe3+.

Besi(II)sulfat adalah FeSO4. Ada juga senyawa FeSO3 dengan nama klasik besi(II)sulfit. Nama modern menunjukkan biloks sulfur dalam kedua senyawa.Ion sulfat yaitu SO4

2-. Biloks sulfur adalah +6. Ion tersebut sering disebut ion sulfat(VI).

Ion sulfit yaitu SO32-. Biloks sulfur adalah +4. Ion ini sering disebut ion sulfat(IV).

Akhiran -at menunjukkan sulfur merupakan ion negatif.

Jadi lengkapnya FeSO4 disebut besi(II)sulfat(VI), dan FeSO3 disebut besi(II)sulfat(IV). Tetapi karena kerancuan pada nama-nama tersebut, nama klasik sulfat dan sulfit masih digunakan.

Menggunakan bilangan oksidasi untuk menentukan yang dioksidasi dan yang direduksi.

Ini merupakan aplikasi bilangan oksidasi yang paling umum. Seperti telah dijelaskan:

Oksidasi melibatkan kenaikan bilangan oksidasi

Reduksi melibatkan penurunan bilangan oksidasi

Pada contoh berikut ini, kita harus menentukan apakah reaksi adalah reaksi redoks, dan jika ya apa yang dioksidasi dan apa yang direduksi.

Contoh 1:

Reaksi antara magnesium dengan asam hidroklorida:

51

Page 52: Kimia Anorganik i

Apakah ada biloks yang berubah? Ya, ada dua unsur yang berupa senyawa pada satu sisi reaksi dan bentuk bebas pada sisi lainnya. Periksa semua biloks agar lebih yakin.

Biloks magnesium naik, jadi magnesium teroksidasi. Biloks hidrogen turun, jadi hidrogen tereduksi. Klorin memiliki biloks yang sama pada kedua sisi persamaan reaksi, jadi klorin tidak teroksidasi ataupun tereduksi.

Contoh 2:

Reaksi antara natrium hidroksidsa dengan asam hidroklorida:

Semua bilangan oksidasi diperiksa:

Ternyata tidak ada biloks yang berubah. Jadi, reaksi ini bukanlah reaksi redoks.

Contoh 3:

Reaksi antara klorin dan natrium hidroksida encer dingin:

Jelas terlihat, biloks klorin berubah karena berubah dari undur bebas menjadi dalam persenyawaan. Bilangan oksidasi diperiksa:

Klorin ternyata satu-satunya unsur yang mengalami perubahan biloks. Lalu, klorin mengalami reduksi atau oksidasi? Jawabannya adalah keduanya. Satu atom klorin mengalami reduksi karena biloksnya turun, atom klorin lainnya teroksidasi.

52

Page 53: Kimia Anorganik i

Peristiwa seperti ini disebut reaksi disproporsionasi. Reaksi disproporsionasi yaitu reaksi dimana satu unsur mengalami oksidasi maupun reduksi.

Menggunakan bilangan oksidasi untuk mengerjakan proporsi reaksi

Bilangan oksidasi dapat berguna dalam membuat proporsi reaksi dalam reaksi titrasi, dimana tidak terdapat informasi yang cukup untuk menyelesaikan persamaan reaksi yang lengkap.

Ingat, setiap perubahan 1 nilai biloks menunjukkan bahwa satu elektron telah ditransfer. Jika biloks suatu unsur dalam reaksi turun 2 nilai, berarti unsur tersebut memperoleh 2 elektron.

Unsur lain dalam reaksi pastilah kehilangan 2 elektron tadi. Setiap biloks yang turun, pasti diikuti dengan kenaikan yang setara biloks unsur lain.

Ion yang mengandung cerium dengan biloks +4 adalah zat pengoksidasi (rumus molekul rumit, tidak sekedar Ce4+). Zat tersebut dapat mengoksidasi ion yang mngandung molybdenum dari biloks +2 menjadi +6. Biloks cerium menjadi +3 ( Ce4+). Lalu, bagaimana proporsi reaksinya?

Biloks molybdenum naik sebanyak 4 nilai. Berarti biloks cerium harus turun sebanyak 4 nilai juga.

Tetapi biloks cerium dalam tiap ionnya hanya turun 1 nilai, dari +4 menjadi +3. Jadi jelas setidaknya harus ada 4 ion cerium yang terlibat dalam setiap reaksi dengan molybdenum ini.

Proporsi reaksinya adalah 4 ion yang mengandung cerium dengan 1 ion molybdenum.

Reaksi Redoks Dalam Suasana BasaKata Kunci: redoks basa

53

Page 54: Kimia Anorganik i

Menyelesaikan soal persamaan setegah-reaksi dalam suasana basa lebih rumit daripada yang telah dijelaskan pada bagian-bagian sebelumnya. Disini akan dijelaskan bagaimana mengerjakan persamaan setengah-reaksi redoks dalam suasana basa, dan bagaimana menggabungkannya untuk mendapat persamaan ion yang lengkap.

Ketika mengerjakan setengah-reaksi seperti diatas, kita hanya dapat menambahkan:* elektron* air* ion hidrogen (kecuali reaksi dalam suasana basa, dapat menambahkan ion hidroksida)

Ketika mengerjakan reaksi dalam suasana asam atau netral, urutan pengerjaannya biasanya:* Menyetarakan atom, selain oksigen dan hidrogen.* Menyetarakan oksigen dengan menambahkan molekul air.* Menyetarakan hidrogen dengan menambahkan ion hidrogen.* Menyetarakan muatan dengan menambahkan elektron.

Bagaimana perbedaan dengan reaksi dalam susana basa?

Permasalahan dalam pengerjaan ini adalah molekul air dan ion hidrogen yang ditambahkan untuk menyetarakan persamaan reaksi dalam suasana basa mengandung hidrogen dan oksigen.

Untuk menyetarakan oksigen, kita dapat menambahkan H2O atau OH- pada persamaan. Begitu juga ketika ingin menyetarakan hidrogen. Bagaimana kita tahu harus memulai dengan apa?

Dalam beberapa kasus, dapat jelas terlihat bagaimana mengerjakan soal menggunakan ion hidroksida. Tetapi jika tidak, kita dapat mengerjakan setengah-reaksi seperti pengerjaan reaksi dalam suasana asam yang telah dijelaskan sebelumnya, yaitu dengan menulis molekul air, ion hidrogen, dan elektron.

Ketika diperoleh setengah-reaksi yang setara, kita ubah persamaan tersebut dalam suasana basa. Untuk lebih jelas kita akan lihat contoh berikut.

Contoh

Persamaan reaksi dalam contoh ini mungkin belum anda kenal. Tetapi itu bukan masalah, yang penting adalah bagaimana mengerjakan persamaan reaksinya.

Oksidasi kobalt(II) menjadi kobalt(III) dengan hidrogen peroksida

Jika kita menambahkan larutan amonia berlebih ke dalam larutan mangandung ion kobalt(II), kita akan mendapat ion kompleks, ion heksaaminkobalt(II),

54

Page 55: Kimia Anorganik i

Co(NH3)62+. Ion ini dioksodasi dengan cepat oleh larutan hidrogen peroksida

menjadi ion heksaaminkobalt(III),Co(NH3)63+.

Larutan amonia, jelas, bersifat basa.

Setengah-reaksi untuk kobalt cukup mudah. Dimulai dengan menulis apa yang kita tahu dari soal.

Semua atom sudah setara, hanya muatan yang belum setara. Dengan menambah satu elektron pada sisi kanan akan menyetarakan muatan, yaitu 2+.

Setengah-reaksi hidrogen peroksida juga tidak terlalu sulit, kecuali kita belum tahu apa hasil reaksi dari hidrogen peroksida ini, jadi kita harus menebak. Persamaan akan setara jika kita buat 2 ion hidrogen pada sisi kanan.

Ini adalah contoh yang baik untuk kasus dimana kita dapat jelas melihat dimana harus menempatkan ion hidroksida.

Kemudian kita hanya perlu menambah 2 elektron pada sisi kiri untuk menyetarakan muatan.

Menggabungkan setengah-reaksi untuk mendapat persamaan reaksi

Yang telah kita dapat sejauh ini adalah:

Perkalian dan penjumlahan setengah reaksi:

Dan selesai, satu contoh yang mudah!

55

Page 56: Kimia Anorganik i

Oksidasi besi(II)hidroksida oleh udara

Jika kita menambah larutan natrium hidroksida ke dalam larutan senyawa besi(II), kita akan mendapat endapan hijau besi(II)hidroksida. Endapan ini cepat dioksidasi oleh oksigen dari udara manjadi endapan jingga-coklat besi(III)hidroksida.

Setengah-reaksi untuk besi(II)hidroksida sangat sederhana. Kita mulai dengan yang kita tahu dari soal.

Kita jelas perlu ion hidroksida lain pada sisi kiri. Ini bahkan lebih sederhana dan mudah dari contoh sebelumnya.

Untuk menyetarakan muatan, kita tambah satu elektron pada sisi kanan.

Setengah reaksi untuk oksigen tidak terlalu mudah. Kita tidak tahu apa hasil reaksi yang terbentuk.

Tidak pasti apakah kita perlu menyetarakan oksigen dengan molekul air atau ion hidroksida pada sisi kanan. Untuk soal ini, kita akan buat seolah-olah reaksi dalam suasana asam.

Pada kasus ini, kita hanya dapat menyetarakan oksigen dengan menambah molekul air pada sisi kanan.

Setarakan hidrogen dengan menambah ion hidrogen pada sisi kiri.

Lalu, setarakan muatan dengan menambah 4 elektron.

Sekarang kita dapat setengah reaksi yang setara. Permasalahannya kini, persamaan itu hanya jika dalam suasana asam. Reaksi yan gkita kerjakan adalah suasana basa, dengan ion hidroksida bukan ion hidrogen.

Jadi, kita harus menyingkirkan ion-ion hidrogen. Tambahkan ion hidroksida secukupnya padakedua sisi persamaan sehingga dapat menetralkan semua ion

56

Page 57: Kimia Anorganik i

hidrogen. Karena persamaan ini telah setara, kita harus menambah ion hidroksida dalam jumlah yang sama pada kedua sisi untuk mempertahankan kesetaraannya.

Ion hidrogen dan ion hidroksida pada sisi kiri akan menjadi 4 molekul air.

Akhirnya, ada molekul air pada kedua sisi persamaan. Kita dapat meniadakan molekul air pada salah satu sisi.

Jangan lupa untuk memeriksa kembali bahwa semua penyetaraan telah diselesaikan.

Menggabungkan setengah-reaksi untuk mendapat persamaan reaksi

Dari sini, pengerjaan selanjutnya sama dengan yang sebelumnya telah kita kerjakan berulang-ulang. Kita telah mendapat dua setengah-reaksi:

Persamaan untuk besi harus terjadi 4 kali untuk dapat menyediakan elektron yang cukup bagi oksigen.

Perhatikan bahwa ion hidroksida pada masing-masing sisi saling meniadakan.

Reduksi ion manganat(VII) menjadi ion manganat(VI) oleh ion hidroksida

Reaksi ini agak tidak jelas, tetapi tidak terlalu sulit untuk dikerjakan dan disetarakan. Ion hidrogen tidak biasanya berperan sebagai reduktor (zat pereduksi).

57

Page 58: Kimia Anorganik i

Larutan ungu gelap kalium mannganat(VII) direduksi perlahan menjadi larutan hijau gelap kalium manganat(VI) oleh larutan kalium hidroksida. Dari reaksi ini juga dihasilakan gelembugn oksigen.

Setengah-reaksi untuk perubahan ion manganat(VII) menjadi ion manganat(VI) cukup mudah (tentu saja jika kita tahu rumus molekulnya).

Lalu bagaimana dengan ion hidroksida utnuk menghasilkan gas oksigen. Akan sangat sulit untuk mengerjakan setengah-reaksi secara langsung, kita akan buat dengan urutan yang biasa.

Tuliskan apa yang kita tahu dari soal, setarakan oksigen pada reaksi.

Setarakan hidrogen dengan menambah ion hidrogen.

Kemudian setarakan muatan.

Singkirkan ion hidrogen dengan menambah ion hidroksida dengan jumlah yang cukup pada kedua sisi persamaan.

Selesaikan persamaan diatas.

Menggabungkan setengah-reaksi untuk mendapat persamaan reaksi

Sejauh ini, yang telah kita dapat adalah:

Reaksi mangan harus terjadi 4 kali untuk menghabiskan 4 elektron yang dihasilkan dari persamaaan setengah-reaksi hidroksida.

58

Page 59: Kimia Anorganik i

Persamaan kimia ini mungkin belum anda kenal, tetapi mengerjakannya tidak terlalu sulit!

Oksidasi kromium(III) menjadi kromium(VI)

Jika kita menambahkan larutan natium hidroksida berlebih ke dalam larutan yang mengandung ion kromium(III), kita akan mendapat larutan hijau gelap yang mengandung ion kompleks heksahidroksokromat(III), Cr(OH)6

3-.

Zat ini dapat dioksidasi menjadi ion kromat(VI), CrO42-, yang berwarna kuning

terang, dengan memanaskannya dengan larutan hidrogen peroksida.Kita tadi telah mengerjakan setengah-reaksi hidrogen peroksida yang berperan sebagai oksidator dalam suasana basa.

Jadi, sekarang kita hanya perlu mengerjakan setengah-reaksi ion kromium. Yang kita tahu dari soal adalah:

Pada soal ini pun tidak jelas dimana harus menempatkan ion hidroksida atau molekul air, jadi kita kerjakan seolah-olah dalam suasana asam. Dengan cara ini, kita mulai dengan menyetarakan oksigen dengan menambah molekul air.Untuk mendapat 6 oksigen pada tiap sisi, kita perlu dua air pada sisi kanan.

Lalu setarakan hidrogen dengan menambah ion hidrogen.

Dan setarakan muatan dengan menambah elektron.

Akhirnya, ubah dari suasana asam menjadi suasana basa dengan menambah ion hidrogen dengan jumlah yang cukup pada kedua sisi untuk mengubah ion hidrogen menjadi air.

59

Page 60: Kimia Anorganik i

Dan selesaikan persamaan.

Menggabungkan setengah-reaksi untuk mendapat persamaan reaksi

Kedua setengah reaksi yang kita dapat adalah:

Jika kita mengali satu persamaan dengan 3 dan yang lain dengan 2, akan menghasilkan total elektron yang ditransfer adalah 6.

Akhirnya, selesaikan ion hidrogen yang ada pada kedua sisi sehinga menghasilkan persamaan ion akhir.

Menulis Persamaan Ion Untuk Reaksi REDOKSBerikut akan dijelaskan bagaimana mengerjakan setengah-reaksi elektron untuk proses oksidasi dan reduksi, kemudian bagaimana menggabungkan setengah-

60

Page 61: Kimia Anorganik i

reaksi tersebut untuk mendapat persamaan ion untuk reaksi redoks secara utuh. Ini merupakan pelajaran yang penting dalam kimia anorganik.

Setengah-Reaksi Elektron

Apakah setengah-reaksi elektron?

Ketika magnesium mereduksi tembaga(II)oksida dalam suhu panas menjadi tembaga, persamaan ion untuk reaksi itu adalah:

Kita dapat membagi persamaan ion ini menjadi dua bagian, dengan melihat dari sisi magnesium dan dari sisi ion tembaga(II) secara terpisah. Dari sini terlihat jelas bahwa magnesium kehilangan dua elektron, dan ion tembaga(II) yang mendapat dua elektron tadi.

Kedua persamaan di atas disebut “setengah-reaksi elektron” atau “setengah-persamaan” atau “setengah-persamaan ionik” atau “setengah-reaksi”, banyak sebutan tetapi mempunyai arti hal yang sama.

Setiap reaksi redoks terdiri dari dua setengah-reaksi. Pada salah satu reaksi terjadi kehilangan elektron (proses oksidasi), dan di reaksi lainnya terjadi penerimaan elektron (proses reduksi).

Mengerjakan setengah-reaksi elektron dan menggunakannya untuk membuat persamaan ion

Pada contoh di atas, kita mendapat setengah-reaksi elektron dengan memulai dari persamaan ion kemudian mengeluarkan masing-masing setengah-reaksi dari persamaan tersebut. Itu merupakan proses yang tidak benar.

Pada kenyataannya, kita hampir selalu memulai dari setengah-reaksi elektron dan menggunakannya untuk membuat persamaan ion.

Contoh 1: Reaksi antara klorin dan ion besi(II)

Gas klorin mengoksidasi ion besi(II) menjadi ion besi(III). Pada proses ini, klorin direduksi menjadi ion klorida. Sebagai permulaan kita buat dahulu masing-masing setengah-reaksi.

61

Page 62: Kimia Anorganik i

Untuk klorin, seperti kita ketahui klorin (sebagai molekul) berubah menjadi ion klorida dengan reaksi sebagai berikut:

Pertama, kita harus menyamakan jumlah atom di kedua sisi:

Penting untuk diingat, jumlah atom harus selalu disamakan dahulu sebelum melakukan proses selanjutnya. Jika terlupa, maka proses selanjutnya akan menjadi kacau dan sia-sia.

Kemudian untuk menyempurnakan setengah-reaksi ini kita harus menambahkan sesuatu. Yang bisa ditambah untuk setengah-reaksi adalah:

* Elektron* Air* Ion hidrogen (H+) (kecuali jika reaksi terjadi dalam suasana basa, jika demikian yang bisa ditambahkan adalah ion hidroksida (OH-)

Dalam kasus contoh di atas, hal yang salah pada persamaan reaksi yang kita telah buat adalah muatannya tidak sama. Pada sisi kiri persamaan tidak ada muatan, sedang pada sisi kanannya ada muatan negatif 2 (untuk selanjutnya disingkat dengan simbol : 2-).

Hal itu dapat dengan mudah diperbaiki dengan menambah dua elektron pada sisi kiri persamaan reaksi. Akhirnya didapat bentuk akhir setengah-reaksi ini:

Proses yang sama juga berlaku untuk ion besi(II). Seperti telah diketatahui, ion besi(II) dioksidasi menjadi ion besi(III).

Jumlah atom dikedua sisi telah sama, tetapi muatannya berbeda. Pada sisi kanan, terdapat muatan 3+, dan pada sisi kiri hanya 2+.

Untuk menyamakan muatan kita harus mengurangi muatan positif yang ada pada sisi kanan, yaitu dengan menambah elektron pada sisi tersebut:

Mengabungkan setengah reaksi untuk mendapat persamaan ion untuk reaksi redoks

Sekarang kita telah mendapatkan persamaan dibawah ini:

62

Page 63: Kimia Anorganik i

Terlihat jelas bahwa reaksi dari besi harus terjadi dua kali untuk setiap molekul klorin. Setelah itu, kedua setengah-reaksi dapat digabungkan.

Tapi jangan berhenti disitu! Kita harus memeriksa kembali bahwa semua dalam keadaan sama atau setara, baik jumlah atom dan muatannya. Sangat mudah sekali terjadi kesalahan kecil (tapi bisa menjadi fatal!) terutama jika yang dikerjakan adalah persamaan yang lebih rumit.

Pada persamaan terakhir, terlihat bahwa tidak ada elektron yang diikutsertakan. Pada persamaan terakhir ini, di kedua sisi sebenarnya terdapat elektron dalam jumlah yang sama, jadi saling meniadakan, dapat dicoret, dan tidak perlu ditulis dalam persamaan akhir yang dihasilkan.

Contoh 2: Reaksi antara hidrogen peroksida dan ion manganat(VII)

Persamaan reaksi pada contoh 1 merupakan contoh yang sederhana dan cukup mudah. Tetapi teknik atau cara pengerjaannya berlaku juga untuk reaksi yang lebih rumit dan bahkan reaksi yang belum dikenal.

Ion manganat(VII), MnO4-, mengoksidasi hidrogen peroksida, H2O2, menjadi gas

oksigen. Reaksi seperti ini terjadi pada larutan kalium manganat(VII) dan larutan hidrogen peroksida dalam suasana asam dengan penambahan asam sulfat.Selama reaksi berlangsung, ion manganat(VII) direduksi menjadi ion mangan(II).

Kita akan mulai dari setengah-reaksi dari hidrogen peroksida.

Jumlah atom oksigen telah sama/ setara, tetapi bagaimana dengan hidrogen?

63

Page 64: Kimia Anorganik i

Yang bisa ditambahkan pada persamaan ini hanyalah air, ion hidrogen dan elektron. Jika kita menambahkan air untuk menyamakan jumlah hidrogen, jumlah atom oksigen akan berubah, ini sama sekali salah.

Yang harus dilakukan adalah menambahkan dua ion hidrogen pada sisi kanan reaksi:

Selanjutnya, kita perlu menyamakan muatannya. Kita perlu menambah dua elektron pada sisi kanan untuk menjadikan jumlah muatan di kedua sisi 0.

Sekarang untuk setengah-reaksi manganat(VII):

Ion manganat(VII) berubah menjadi ion mangan(II).

Jumlah ion mangan sudah setara, tetapi diperlukan 4 atom oksigen pada sisi kanan reaksi. Satu-satunya sumber oksigen yang boleh ditambahkan pada reaksi suasana asam ini adalah air.

Dari situ ternyata ada tambahan hidrogen, yang juga harus disetarakan. Untuk itu, kita perlu tambahan 8 ion hidrogen pada sisi kiri reaksi.

Setelah semua atom setara, selanjutnya kita harus menyetarakan muatannya. Pada tahapan reaksi diatas, total muatan disisi kiri adalah 7+ (1- dan 8+), tetapi pada sisi kanan hanya 2+. Jadi perlu ditambahkan 5 elektron pada sisi kiri untuk mengurangi muatan dari 7+ menjadi 2+.

Dapat disimpulkan, urutan pengerjaan setengah reaksi ini adalah:

Menyetarakan jumlah atom selain oksegen dan hidrogen. Menyetarakan jumlah oksigen dengan menambah molekul air (H2O). Menyetarakan jumlah hidrogen dengan menambah ion hidrogen (H+). Menyetarakan muatan dengan menambah elektron.

Menggabungkan setengah-reaksi untuk membuat persamaan reaksi

Kedua setengah-reaksi yang sudah kita dapat adalah:

64

Page 65: Kimia Anorganik i

Supaya dapat digabungkan, jumlah elektron dikedua setengah-reaksi sama banyak. Untuk itu setengah-reaksi harus dikali dengan faktor yang sesuai sehingga menghasilkan jumlah elektron yang setara. Untuk reaksi ini, masing-masing setengah reaksi dikalikan sehingga jumlah elektron menjadi 10 elektron.

Tapi kali ini tahapan reaksi belum selesai. Dalam hasil persamaan reaksi, terdapat ion hidrogen pada kedua sisi reaksi.

Persamaan ini dapat disederhanakan dengan mengurangi 10 ion hidrogen dari kedua sisi sehingga menghasilkan bentuk akhir dari persamaan ion ini. Tapi jangan lupa untuk tetap memeriksa kesetaraan jumlah atom dan muatan!

Sering terjadi molekul air dan ion hidrogen muncul di kedua sisi persamaan reaksi, jadi harus selalu diperiksa dan kemudian disederhanakan.

Contoh 3: Oksidasi etanol dengan kalium dikromat(VI) suasana asam

Tehnik yang telah dijelaskan tadi dapat juga digunakan pada reaksi yang melibatkan zat organik. Larutan kalium dikromat(VI) yang diasamkan dengan asam sulfat encer dapat digunakan untuk mengoksidasi etanol, CH3CH2OH, menjadi asam etanoat, CH3COOH.

Sebagai oksidator adalah ion dikromat(VI), Cr2O72-, yang kemudian tereduksi

menjadi ion kromium (III), Cr3+.

Pertama kita akan kerjakan setengah-reaksi etanol menjadi asam etanoat.

65

Page 66: Kimia Anorganik i

- Tahapan reaksi seperti contoh sebelumnya, dimulai dengan menulis reaksi utama yang terjadi, yang diketahui dari soal.

- Setarakan jumlah oksigen dengan menambah molekul air pada sisi kiri:

- Tambahkan ion hidrogen pada sisi kanan untuk menyetarakan jumlah hidrogen:

- Selanjutnya, setarakan muatan dengan menambah 4 elektron pada sisi kanan sehingga menghasilkan total muatan nol pada tiap sisi:

Setengah reaksi untuk dikromat(VI) agak rumit dan jika tidak teliti dapat menjebak:

- Buat persamaan reaksi utama:

- Setarakan jumlah kromium. Hal ini sering dilupakan, dan jika ini terjadi akan fatal, karena hasil reaksi selanjutnya akan salah. Jumlah muatan akan salah, faktor pengali yang digunakan juga akan salah. Sehingga keseluruhan persamaan reaksi akan salah.

- Kemudian setarakan oksigen dengan menambah molekul air:

- Setarakan jumlah hidrogen dengan menambah ion hidrogen:

- Selanjutnya setarakan muatannya. Tambah 6 elektron pada sisi kiri sehingga jumlah muatan menjadi 6+ pada tiap sisi.

Menggabungkan setengah-reaksi untuk mendapat persamaan reaksi

Sejauh ini setengah reaksi yang telah kita dapat adalah:

66

Page 67: Kimia Anorganik i

Untuk menyelesaikan persamaan ini kita harus mengubah jumlah elektron, dengan jumlah terkecil yang dapat habis dibagi 4 dan 6, yaitu 12. Jadi faktor pengali untuk persamaan ini adalah 3 dan 2.

Dapat dilihat ada molekul air dan ion hidrogen pada kedua sisi persamaan. Ini dapat disederhanakan menjadi bentuk akhir persamaan reaksi:

Pengertian Oksidasi dan Reduksi (Redoks)Pengertian oksidasi dan reduksi disini lebih melihat dari segi transfer oksigen, hidrogen dan elektron. Disini akan juga dijelaskan mengenai zat pengoksidasi (oksidator) dan zat pereduksi (reduktor).

Oksidasi dan reduksi dalam hal transfer oksigen

Dalam hal transfer oksigen, Oksidasi berarti mendapat oksigen, sedang Reduksi adalah kehilangan oksigen.

Sebagai contoh, reaksi dalam ekstraksi besi dari biji besi:

67

Page 68: Kimia Anorganik i

Karena reduksi dan oksidasi terjadi pada saat yang bersamaan, reaksi diatas disebut reaksi REDOKS.

Zat pengoksidasi dan zat pereduksi

Oksidator atau zat pengoksidasi adalah zat yang mengoksidasi zat lain. Pada contoh reaksi diatas, besi(III)oksida merupakan oksidator.

Reduktor atau zat pereduksi adalah zat yang mereduksi zat lain. Dari reaksi di atas, yang merupakan reduktor adalah karbon monooksida.

Jadi dapat disimpulkan:

oksidator adalah yang memberi oksigen kepada zat lain, reduktor adalah yang mengambil oksigen dari zat lain

Oksidasi dan reduksi dalam hal transfer hidrogen

Definisi oksidasi dan reduksi dalam hal transfer hidrogen ini sudah lama dan kini tidak banyak digunakan.

Oksidasi berarti kehilangan hidrogen, reduksi berarti mendapat hidrogen.

Perhatikan bahwa yang terjadi adalah kebalikan dari definisi pada transfer oksigen.Sebagai contoh, etanol dapat dioksidasi menjadi etanal:

Untuk memindahkan atau mengeluarkan hidrogen dari etanol diperlukan zat pengoksidasi (oksidator). Oksidator yang umum digunakan adalah larutan kalium dikromat(IV) yang diasamkan dengan asam sulfat encer.

Etanal juga dapat direduksi menjadi etanol kembali dengan menambahkan hidrogen. Reduktor yang bisa digunakan untuk reaksi reduksi ini adalah natrium tetrahidroborat, NaBH4. Secara sederhana, reaksi tersebut dapat digambarkan sebagai berikut:

Zat pengoksidasi (oksidator) dan zat pereduksi (reduktor)

68

Page 69: Kimia Anorganik i

Zat pengoksidasi (oksidator) memberi oksigen kepada zat lain, atau

memindahkan hidrogen dari zat lain. Zat pereduksi (reduktor) memindahkan oksigen dari zat lain, atau memberi

hidrogen kepada zat lain.

Oksidasi dan reduksi dalam hal transfer elektron

Oksidasi berarti kehilangan elektron, dan reduksi berarti mendapat elektron.

Definisi ini sangat penting untuk diingat. Ada cara yang mudah untuk membantu anda mengingat definisi ini. Dalam hal transfer elektron:

Contoh sederhana

Reaksi redoks dalam hal transfer elektron:

Tembaga(II)oksida dan magnesium oksida keduanya bersifat ion. Sedang dalam bentuk logamnya tidak bersifat ion. Jika reaksi ini ditulis ulang sebagai persamaan reaksi ion, ternyata ion oksida merupakan ion spektator (ion penonton).

Jika anda perhatikan persamaan reaksi di atas, magnesium mereduksi iom tembaga(II) dengan memberi elektron untuk menetralkan muatan tembaga(II).

Dapat dikatakan: magnesium adalah zat pereduksi (reduktor).Sebaliknya, ion tembaga(II) memindahkan elektron dari magnesium untuk menghasilkan ion magnesium. Jadi, ion tembaga(II) beraksi sebagai zat pengoksidasi (oksidator).

Memang agak membingungkan untuk mempelajari oksidasi dan reduksi dalam hal transfer elektron, sekaligus mempelajari definisi zat pengoksidasi dan pereduksi dalam hal transfer elektron.

69

Page 70: Kimia Anorganik i

Dapat disimpulkan sebagai berikut, apa peran pengoksidasi dalam transfer elektron:

Zat pengoksidasi mengoksidasi zat lain. Oksidasi berarti kehilangan elektron (OIL RIG). Itu berarti zat pengoksidasi mengambil elektron dari zat lain. Jadi suatu zat pengoksidasi harus mendapat elektron

Atau dapat disimpulkan sebagai berikut:

Suatu zat pengoksidasi mengoksidasi zat lain. Itu berarti zat pengoksidasi harus direduksi. Reduksi berarti mendapat elektron (OIL RIG). Jadi suatu zat pengoksidasi harus mendapat elektron.

Reaksi Unsur-unsur Golongan II dengan Udara atau OksigenKata Kunci: golongan II, oksigen, udara

Halaman ini akan menjelaskan reaksi unsur Golongan II, yaitu berilium, magnesium, kalsium, strontium, dan barium, dengan udara atau oksigen.

Fakta

Reaksi dengan oksigen

Pembentukan oksida sederhana

Dengan oksigen, logam-logam Golongan II ini terbakar membentuk logam oksida sederhana.

Berilium sulit untuk terbakar kecuali dalam bentuk serbuk. Berilium memiliki lapisan berilium oksida yang tipis tetapi kuat pada permukaannya, yang mencegah oksigen baru untuk bereaksi dengan berilium dibawah lapisan tersebut.

X pada persamaan diatas menunjukkan logam Golongan II.

Agak mustahil untuk menemukan tren dalam reaksi logam Golongan II dengan oksigen. Karena untuk itu kita harus mendapat logam yang sama-sama bebas dari lapisan oksida, dengan luas permukaan dan bentuk yang setara, memiliki aliran

70

Page 71: Kimia Anorganik i

oksigen yang setara, dan dipanaskan sampai sama-sama mulai bereaksi. Tetapi ini mustahil dilakukan!

Seperti apa logam-logam ini ketika dibakar sedikit rumit!

* Berilium: penulis belum dapat menemukan referensi (internet atau buku teks) mengenai warna api yang dihasilkan dari pembakaran berilium. Mungkin percikan perak seperti yang terjadi pada pembakaran magnesium atau alumunium.

* Magnesium: pembakarannya menghasilkan api berwarna putih kuat.

* Kalsium: agak sulit untuk mulai terbakar, tetapi kemudian terbakar cepat, menghasilkan api putih kemudian sedikit merah.

* Strotium: penulis belum pernah melihat pembakaran strontium, kemungkinan seperti kalsium, tetapi dengan warna merah yang lebih kuat.

* Barium: penulis hanya pernah melihat pembakaran barium melalui video, yang meyebutkan api yang dihasilkan adalah berwarna hijau pucat, tetapi yang terlihat api berwarna putih dengan sedikit hijau pucat.

Pembentukan peroksida

Strontium dan barium juga bereaksi dengan oksigen membentuk strontium atau barium peroksida.

Strontium membentuk strontium peroksida jika dipanaskan dengan oksigen di bawah tekanan tinggi, tetapi barium membentuk barium peroksida dengan pemanasan normal dengan oksigen. Pada reaksi ini akan dihasilkan campuran barium oksida dan barium peroksida.

Persamaan reaksi untuk strontium sama seperti persaman di atas.

Reaksi dengan udara

Reaksilogam-logam Golongan II dengan udara lebih rumit karena selain dengan oksigen, logam ini juga bereaksi dengan nitrogen menghasilkan nitrida. Pada tiap kasus, akan dihasilkan campuran logam oksida dan logam nitrida.

Persamaan umum untuk reaksi ini adalah:

Debu putih yang dihasilkan ketika membakar pita magnesium dengan udara adalah campuran magnesium okisida dan magnesium nitrida.

71

Page 72: Kimia Anorganik i

Reaksi unsur-unsur golongan II dengan airPada halaman ini akan dijelaskan reaksi unsur-unsur golongan II, yaitu berilium, magnesium, kalsium, strontium, dan barium dengan air (atau uap air).

Fakta-fakta

Berilium

Berilium tidak bereaksi dengan air atau uap air meskipun dalam suhu tinggi.

Magnesium

Magnesium bereaksi dengan uap air menghasilkan magnesium oksida dan hidrogen.

Magnesium murni memiliki kemampuan bereaksi yang kecil terhadap air dingin. Reaksi di atas lekas terhenti karena terbentuknya magnesium hidroksida yang tidak larut dalam air dan membentuk rintangan bagi magnesium untuk bereaksi lebih lanjut.

Sebagai catatan, jika logam bereaksi dengan uap air, terbentuk logam oksida. Jika bereaksi dengan air dingin, dihasilkan logam hidroksida.

Kalsium, strontium, dan barium

Unsur-unsur ini dapat bereaksi dengan air dingin dengan pengadukan kuat menghasilkan logam hidroksida dan hidrogen. Strontium dan barium memiliki reaktivitas mirip dengan litium di Golongan I.

Persamaan reaksi unsur-unsur ini adalah :

Logam hidroksida yang dihasilkan bersifat tidak larut air, tetapi kelarutannya meningkat ke bawah golongan. Kalsium hidroksida yang terbentuk sebagian besar berupa endapan putih (sebagian kecil larut). Untuk reaksi strontium akan dihasilkan endapan yang lebih sedikit, dan lebih sedikit lagi untuk reaksi barium, karena peningkatan kelarutan logam hidroksida tadi.

72

Page 73: Kimia Anorganik i

Rangkuman tren reaktivitas

Logam Golongan II semakin ke bawah reaktivitas dengan air semakin meningkat.

Penjelasan Mengenai Tren Reaktivitas

Perubahan entalpi dalam reaksi

Perubahan entalpi dalam suatu reaksi menunjukkan jumlah panas yang diserap atau yang dikeluarkan selama raksi berlangsung. Perubahan entalpi negatif jika panas dikeluarkan, dan positif jika panas diserap.

Sebagai contoh, perhitungan perubahan entalpi dalam reaksi antara berilium atau magnesium dan uap air :

Kedua reaksi di atas adalah sangat eksotermis, mengeluarkan panas dengan jumlah sama. Tetapi, hanya reaksi magnesium yang benar-benar terjadi. Sebab perbedaan reaktivitas kedua unsur ini ada dalam penjelasan lain.

Perhitungan perubahan entalpi untuk kalsium, strontium, atau barium dengan air dingin, akan juga menghasilkan panas dengan jumlah yang sama dalam tiap reaksi, yaitu sekitar -430 kJ mol-1.

Energi aktivasi dalam reaksi

Energi aktivasi adalah jumlah minimum energi yang diperlukan untuk menghasilkan sebuah reaksi. Tidak peduli eksotermiknya suatu reaksi, jika ada halangan energi aktivasi, reaksi akan berlangsung sangat lambat.

Ketika logam Golongan II bereaksi membentuk oksida atau hidroksida, terlebih dahulu terbentuk ion logam.Pembentukan ion ini melibatkan beberapa tahap reaksi yang memerlukan masukan energi, untuk energi aktivasi reaksi. Tahapan reaksi ini melibatkan :* Energi atomisasi dari logam. Ini adalah energi yang diperlukan untuk memecah ikatan atom dalam logam.* Energi ionisasi + yang pertama. Energi ini penting untuk mengubah atom logam menjadi ion dengan muatan 2+.

Setelah tahapan tersebut, ada beberapa langkah dalam reaksi yang mengeluarkan energi, menghasilkan keseluruhan reaksi eksotermik dan produk reaksi.

Grafik di bawah ini memperlihatkan efek dari tahap penyerapan energi pada reaksi unsur Golongan II.

73

Page 74: Kimia Anorganik i

Perhatikan bahwa energi ionisasi mendominasi tahapan ini, terutama energi ionisasi kedua. Energi ionisasi semakin menurun ke bawah Golongan, karena semakin ke bawah logam semakin mudah membentuk ion, sehingga reaksi lebih mudah terjadi.

Rangkuman dalam peningkatan reaktivitas ke bawah Golongan

Reaksi lebih mudah terjadi jika energi yang dibutuhkan untuk membentuk ion positif kecil. Ini terutama karena penurunan energi ionisasi ke bawah Golongan, menyebabkan rendahnya energi aktivasi, dan reaksi yang lebih cepat.

Sifat fisik dan sifat atom dari unsur-unsur golongan IIPada halaman ini akan dijelaskan beberapa tren pada sifat fisik dan sifat atom dari unsur-unsur golongan II – berilium, magnesium, kalsium, strontium, dan barium.

Tren dalam Jari-jari Atom

74

Page 75: Kimia Anorganik i

Seperti terlihat di atas, semakin ke bawah jari-jari atom meningkat. Perhatikan bahwa berilium memiliki bentuk atom terkecil dibanding atom lain di golongan ini.

Penjelasan peningkatan jari-jari atom

Jari-jari atom diatur oleh:E Jumlah lapisan elektron di luar nukleus (inti atom).E Gaya tarik dari nukleus terhadap elektron luar.

Bandingkan berilium dan magnesium:

Be 1s22s2

Mg 1s22s22p63s2

Untuk atom golongan II, dua elektron di kulit terluar mendapat gaya tarik total 2+ dari inti atom. Muatan positif dari nukleus dihilangkan atau dikurangi oleh muatan negatif dari elektron yagn terletak dikulit dalam.

Satu-satunya faktor yang mempengaruhi ukuran atom adalah jumlah kulit atom yang terisi elektron. Jelas sekali, semakin banyak kulit atom semakin banyak

75

Page 76: Kimia Anorganik i

ruang yang dibutuhkan atom, mengingat elektron saling tolak-menolak. Ini berarti semakin kebawah (nomor atom makin besar) ukuran atom harus semakin besar.

Tren dalam Energi Ionisasi Pertama

Energi ionisasi pertama adalah energi yang diperlukan untuk memindahkan elektron yang paling lemah ikatannya, dari 1 mol atom menjadi ion bermuatan. Dengan kata lain, yang diperlukan untuk 1 mol proses ini:

Perhatikan bahwa semakin kebawah energi ionisasi pertama semakin menurun.

Penjelasan penurunan dalam energi ionisasi pertama

Energi ionisasi diatur oleh:E muatan dalam inti atom,E jumlah elektron dalam kulit-kulit atom dalam,E jarak antara elektron terluar dengan inti atom.

Semakin ke bawah dalam golongan, peningkatan muatan inti atom diimbangi oleh peningkatan jumlah elektron dalam. Jadi, seperti telah dijelaskan sebelumnya, atom terluar tetap mendapat gaya tarik total 2+ dari inti atom.

Tetapi, semakin ke bawah jarak antara inti atom dengan elektron terluar meningkat, sehingga elektron semakin mudah dipindahkan, energi ionisasi yang diperlukan menurun.

Tren dalam Keelektronegatifan

Keelektronegatifan adalah ukuran kecenderungan atom untuk menarik pasangan elektron. Ukuran ini biasanya dibuat dalam skala Pauli, dimana unsur paling elektronegatif, yaitu fluorin, diberi angka 4,0.

76

Page 77: Kimia Anorganik i

Semua unsur dalam golongan II ini memiliki sifat keelektronegatifan yang kecil (ingat, unsur paling elektronegatif, fluorin, memiliki keelektronegatifan 4,0). Perhatikan bahwa semakin kebawah keelektronegatifan semakin menurun. Atom-atom menjadi kurang mampu menarik pasangan elektron.

Anda mungkin tidak setuju dengan tren penurunan keelektronegatifan ini, karena pada tabel di atas terlihat kalsium dan strontium sama-sama memiliki keelektronegatifan 1,0. Ini dapat dijelaskan bahwa keelektronegatifan dicatat sampi 1 desimal saja. Misal kalsium memiliki keelektronegatifan 1,04 dan strontium 0,95 (angka permisalan!), keduan atom itu akan tercatat mempunyai keelekronegatifan 1,0.

Penjelasan penurunan dalam keelektronegatifan

Bayangkan ikatan antara atom magnesium dan atom klorin. Dimulai dengan ikatan kovalen- dengan sepasang elektron koordinasi. Pasangan elektron akan tertarik ke arah klorin yang memiliki gaya tarik lebih besar dari inti atom klorin dibanding dari inti atom magnesium.

Pasangan elektron berada dekat dengan klorin sehingga terjadi transfer satu elektron kepada klorin, dan terbentuk ion.

77

Page 78: Kimia Anorganik i

Gaya tarik dari inti atom klorin yagn besar adalah sebab mengapa klorin memiliki keelektronegatifan yang lebih besar dari magnesium.

Selanjutnya bandingkan dengan ikatan antara berilium dan klorin. Gaya tarik total dari tiap atom sama dengan contoh pertama tadi. Tapi harus diingat, berilium memiliki ukuran atom yang lebih kecil dibanding magnesium. Ini berarti pasangan elektron akan berada lebih dekat dengan muatan total 2+ dari berilium, jadi lebih kuat terikat pada berilium.

Pada contoh ini, pasangan elektron tidak tertarik cukup dekat pada klorin untuk membentuk ikatan ion. Karena ukurannya yang kecil, berilium membentuk ikatan kovalen, bukan ikatan ion. Gaya tarik antara inti berilium dengan pasangan elektron terlalu besar untuk dapat membentuk ikatan ion.

Kesimpulan tren ke bawah Golongan II

Semakin besar ukuran atom, setiap pasangan elektron semakin menjauh dari inti atom logam, jadi elektron kurang kuat untuk tertarik ke inti atom. Dengan kata lain, semakin kebaah dalam golongan, unsur semakin kurang elektronegatif.

Semakin ke bawah dalam golongan, ikatan yang terbentuk antara unsur-unsur ini dengan unsur lain, seperti klorin, menjadi semakin ionik. Pasangan elektron semakin mudah tertarik dari unsur golongan II ke unsur klorin (atau unsur lain).

78

Page 79: Kimia Anorganik i

Tren dalam Titik Leleh

Terlihat pada tabel di atas bahwa (dengan perkecualian pada magnesium) semakin ke bawah titik didih semakin menurun.

Penjelasan tren dalam titik leleh

Penjelasan tentang kecenderungan tren pada titik leleh ini sangat sulit. Mungkin anda berpikir bahwa (kecuali magnesium) semakin rendah titik leleh semakin lemah ikatan logamnya, tetapi tidak, dan akan berbahaya untuk berpikir seperti itu. Ikatan logam tidak tidak dirusak oleh pelelehan. Tetapi dengan titik didih biasanya tolak ukur yang lebih baik dalam hal kekuatan ikatan yang terlibat.

Untuk titik leleh magnesium yang rendah, anda mungkin menemukan penjelasan adalah karena atom magnesium tersusun berbentuk kristal. Dan memang titik didih magnesium juga rendah. Tetapi pemikiran tentang susunan ini akan tidak relevan untuk unsur bentuk cairan. Untuk magnesium, pasti ada hal lain yang mempengaruhi lemahnya ikatan logam magnesium.

Untuk titik didih, tidak ada pola yang jelas dalam golongan II ini. Jadi, tidak ada pola yang jelas pula untuk kekuatan ikatan logam.

79

Page 80: Kimia Anorganik i

Ukuran lain yang munkin digunakan untuk kekuatan ikatan logam adalah energi ionisasi. Energi ionisasi adalah energi yang diperlukan untuk menghasilkan 1 mol atom dalam keadaan gas dari keadaan awalnya (yaitu keadaan dalam kondisi suhu dan tekanan ruang/ standar).

Lagi-lagi, tidak ada pola atau tren yang jelas dalam energi ionisasi ini. Dan memang belum ada penjelasan yang pasti mengenai ini.

80

Page 81: Kimia Anorganik i

Kecenderungan Sifat Non-Logam dan Logam Pada Unsur-Unsur Golongan 4

Halaman ini membahas kecenderungan sifat-sifat non-logam dan logam pada unsur-unsur golongan 4 – karbon (C), silikon (Si), germanium (Ge), timah (Sn), dan timbal (Pb). Disini menjelaskan bagaimana kecenderungan yang ada dapat ditunjukkan dari struktur dan sifat-sifat fisik unsur, namun tidak seluruhnya dapat menjelaskan kecenderungen tersebut.

Struktur dan sifat-sifat fisik

Struktur unsur

Kecenderungan dari non-logam ke logam jika anda turun dalam satu golongan jelas terlihat pada struktur unsur-unsur itu sendiri.

Karbon pada posisi paling atas mempunyai struktur kovalen raksasa dengan dua allotropi yang sangat dikenal – intan dan grafit.

Intan memiliki struktur tiga dimensi dari atom-aton karbon yang masing-masing tergabung secara kovalen dengan 4 atom lainnya. Gambar berikut menunjukkan bagian kecil dari strukturnya.

Struktur yang sama seperti ini ditemukan pada silikon, germanium, dan pada salah satu allotropi timah – "timah abu-abu" atau "alfa-timah".

Allotropi yang umum untuk timah ("timah putih" atau "beta-timah") merupakan logam dan atom-atomnya terikat oleh ikatan logam. Strukturnya berupa terjejal yang terdistorsi. Pada struktur terjejal, masing-masing atom dikelilingi oleh 12 atom tetangga terdekat.

Selanjutnya anda dapatkan timbal, atom-atomnya tersusun dalam struktur logam berkoordinasi 12.

81

Page 82: Kimia Anorganik i

Hal itu merupakan kecenderungan yang jelas dari ikatan kovalen yang umum ditemukan pada non-logam dan ikatan logam pada logam, dengan perubahan yang jelas, terdapat dua struktur yang sangat berbeda pada timah.

Sifat-sifat fisik unsur

Titik leleh dan titik didih

Jika anda melihat kecenderungan titik leleh dan titik didih pada golongan 4 dari atas ke bawah, sangat sulit membuat alasan yang masuk akal tentang pengaruh perubahan dari ikatan kovalen ke ikatan logam. Kecenderungan menggambarkan ikatan kovalen atau ikatan logam makin lemah dengan makin besarnya atom dan makin panjang ikatan.

Titik leleh timah yang lebih rendah dibandingkan dengan timbal dikarenakan timah membentuk struktur koordinasi 12 yang terdistorsi, bukan murni. Nilai titik leleh dan titik didih timah pada tabel merupakan nilai untuk logam timah putih.

Kerapuhan

Terdapat perbedaan yang jelas antara non-logam dan logam jika anda melihat kerapuhan unsurnya.

Karbon sebagai intan, tentu, sangat keras – menggambarkan kekuatan ikatan kovalen. Namun demikian, jika anda memukulnya dengan palu, intan akan pecah. Anda memerlukan energi yang cukup untuk memecah keberadaan ikatan karbon-karbon.

Silikon, germanium, dan timah abu-abu (semuanya memiliki struktur yang sama dengan intan) juga berupa padatan yang rapuh.

Timah putih dan timbal mempunyai struktur logam. Atom-atom dapat diputar satu sama lain tanpa menimbulkan kerusakan permanen pada ikatan logam – disebabkan oleh sifat-sifat logam yang umum seperti dapat ditempa dan dapat diubah bentuknya. Timbal merupakan logam yang lunak.

82

Page 83: Kimia Anorganik i

Konduktivitas listrik

Karbon sebagai intan tidak menghantarkan listrik. Pada intan elektron terikat erat dan tidak bebas bergerak.

Tidak seperti intan (yang tidak menghantarkan listrik), silikon, germanium, dan timah abu-abu merupakan semikonduktor.

Timah putih dan timbal merupakan logam yang dapat menghantarkan listrik. Hal itu merupakan kecenderungan sifat konduktivitas karbon sebagai intan yang berupa non-logam, dan timah putih dan timbal yang merupakan logam.

Hal itu merupakan kecenderungan sifat konduktivitas karbon sebagai intan yang berupa non-logam, dan timah putih dan timbal yang merupakan logam.

Mencoba menjelaskan kecenderungan yang terjadi

Karakteristik utama logam adalah membentuk ion positif. Yang perlu dilakukan adalah mengamati faktor yang dapat meningkatkan kemungkinan terbentuknya ion positif pada golongan 4 dari atas ke bawah.

Elektronegativitas

Elektronegativitas merupakan ukuran kecenderungan suatu atom untuk menarik elektron. Biasanya diukur dengan skala Pauling, dimana unsur yang paling elektronegatif (fluor) elektronegativitasnya 4.

Suatu atom yang elektronegativitasnya rendah, kurang kuat menarik elektron. Artinya bahwa atom ini akan cenderung kehilangan pasangan elektron bila berikatan dengan atom lain. Atom yang kita amati cenderung membawa muatan positif parsial atau membentuk ion positif.

Sifat logam biasanya dikaitkan dengan elektronegativitas yang rendah.

Jadi apa bagaimanakah elektronegativitas unsur golongan 4? Apakah terjadi penurunan jika anda bergerak ke bawah dalam satu golongan, yang menunjukkan kecenderungan sifat logam?

83

Page 84: Kimia Anorganik i

Baiklah! Elektronegativitas turun dari karbon ke silikon, tetapi setelah itu terjadi ketidakteraturan!

Karena itu sepertinya tidak ada kecenderungan hubungan antara non-logam hingga logam dengan elektronegativitas.

Energi ionisasi

Jika anda memikirkan pembentukan ion positif, cara tepat untuk memulai adalah bagaimana energi ionisasi berubah dari atas ke bawah pada golongan 4.

Energi ionisasi didefinisikan sebagai energi yang diperlukan untuk melepas satu elektron terluar, dinyatakan dalam kJ mol-1.

Energi ionisasi pertama:

Energi ionisasi kedua:

. . . dan seterusnya

Unsur golongan 4 tidak ada yang membentuk ion 1+, jadi mengamati energi ionisasi pertama saja tidak berguna. Beberapa unsur membentuk ion 2+ dan (untuk beberapa tingkat) 4+.

Tabel pertama menunjukkan energi ionisasi total yang diperlukan untuk membentuk ion 2+, bervariasi dari atas ke bawah dalam satu golongan. Nilainya dinyatakan dalam kJ mol-1.

84

Page 85: Kimia Anorganik i

Anda dapat melihat bahwa energi ionisasi cenderung turun dari atas ke bawah dalam satu golongan – meskipun ada sedikit peningkatan pada timbal. Kecenderungan ini karena:

Atom-atom menjadi lebih besar karena bertambahnya elektron. Elektron terluar makin jauh dengan inti atom, sehingga daya tarik inti kurang – dan elektron lebih mudah lepas.

Elektron terluar terlindungi dari pengaruh inti dengan bertambahnya elektron yang lebih dalam.

Dua pengaruh tersebut lebih besar dibanding pengaruh kenaikan muatan inti.

Jika anda melihat besarnya energi ionisasi yang diperlukan untuk membentuk ion 4+, polanya sama, tetapi tidak semuanya mirip. Sekali lagi, nilainya dinyatakan dalam kJ mol-1.

Apa yang dapat dilihat dengan jelas dari dua grafik di atas adalah bahwa anda memerlukan energi ionisasi dalam jumlah besar untuk membentuk ion 2+, dan lebih besar lagi untuk membentuk ion 4+.

85

Page 86: Kimia Anorganik i

Namun demikian, pada tiap contoh ada penurunan energi ionisasi jika anda bergerak dari atas ke bawah dalam satu golongan yang sepertinya menjadikan timah dan timbal dapat membentuk ion positif – namun demikian, tidak ada indikasi dari gambar ini bahwa mereka mungkin membentuk ion positif.

Energi ionisasi karbon pada puncak golongan terlalu besar dan tidak memungkinkan untuk membentuk ion positif yang sederhana.

Uji NyalaKata Kunci: ion logam, uji nyala

Hal ini menguraikan bagaimana melakuan sebuah uji nyala untuk berbagai ion logam, dan secara ringkas menjelaskan bagaimana warna nyala bisa terbentuk.

Uji nyala digunakan untuk mengidentifikasi keberadaan ion logam dalam jumlah yang relatif kecil pada sebuah senyawa. Tidak semua ion logam menghasilkan warna nyala.

Untuk senyawa-senyawa Golongan 1, uji nyala biasanya merupakan cara yang paling mudah untuk mengidentifikasi logam mana yang terdapat dalam senyawa. Untuk logam-logam lain, biasanya ada metode mudah lainnya yang lebih dapat dipercaya – meski demikian uji nyala bisa memberikan petunjuk bermanfaat seperti metode mana yang akan dipakai.

Melakukan uji nyala

Rincian prosedur

Bersihkan sebuah kawat platinum atau nichrome (sebuah alloy nikel-kromium) dengan mencelupkannya ke dalam asam hidroklorat pekat dan kemudian panaskan pada Bunsen. Ulangi prosedur ini sampai kawat tidak menimbulkan warna pada nyala api Bunsen.

Jika kawat telah bersih, basahi kembali dengan asam dan kemudian celupkan ke dalam sedikit bubuk padatan yang akan diuji sehingga ada beberapa bubuk padatan yang menempel pada kawat tersebut. Setelah itu pasang kembali kawat pada nyala Bunsen.

Jika warna nyala memudar, masukkan kembali kawat ke dalam asam dan pasang kembali pada nyala seolah-olah anda sedang membersihkannya. Dengan melakukan ini, anda akan sering melihat kilasan warna yang sangat singkat namun intensif.

86

Page 87: Kimia Anorganik i

Warna

Warna-warna yang ada pada tabel berikut hanya merupakan panduan. Hampir setiap orang yang melakukan uji nyala berbeda dalam mengamati dan menjelaskan warna yang terjadi. Sebagai contoh, beberapa orang menggunakan kata "merah" beberapa kali untuk menunjukkan beberapa warna yang bisa sangat berbeda satu sama lain. Disamping itu, ada juga yang menggunakan kata seperti "merah padam" atau "merah tua" atau "merah gelap", tapi tidak semua orang mengetahui perbedaan antara kata-kata yang dipakai untuk menunjukkan warna ini.

warna nyala

Li merah

Na orange cemerlang terus menerus

K lilac (pink)

Rb merah (lembayung kemerah-merahan)

Cs biru lembayung

Ca orange-merah

Sr merah

Ba hijau pucat

Cu biru-hijau (sering disertai percikan berwarna putih)

Pb putih keabu-abuan

Apa yang akan anda lakukan jika anda mengamati warna nyala merah untuk sebuah senyawa yang tidak diketahui dan anda tidak tahu variasi warna merah tersebut?

Ambil sampel senyawa lithium, strontium (dll) dan ulangi uji nyala, bandingkan warna yang dihasilkan oleh salah satu dari senyawa yang diketahui dengan senyawa yang tidak diketahui secara bergantian sampai anda mendapatkan pasangan yang cocok.

87

Page 88: Kimia Anorganik i

Asal-usul warna nyala

Warna nyala dihasilkan dari pergerakan elektron dalam ion-ion logam yang terdapat dalam senyawa.

Sebagai contoh, sebuah ion natrium dalam keadaan tidak tereksitasi memiliki struktur 1s22s22p6.

Jika dipanaskan, elektron-elektron akan mendapatkan energi dan bisa berpindah ke orbital kosong manapun pada level yang lebih tinggi – sebagai contoh, berpindah ke orbital 7s atau 6p atau 4d atau yang lainnya, tergantung pada berapa banyak energi yang diserap oleh elektron tertentu dari nyala.

Karena sekarang elektron-elektron berada pada level yang lebih tinggi dan lebih tidak stabil dari segi energi, maka elektron-elektron cenderung turun kembali ke level dimana sebelumnya mereka berada – tapi tidak musti sekaligus.

Sebuah elektron yang telah tereksitasi dari level 2p ke sebuah orbital pada level 7 misalnya, bisa turun kembali ke level 2p sekaligus. Perpindahan ini akan melepaskan sejumlah energi yang dapat dilihat sebagai cahaya dengan warna tertentu.

Akan tetapi, elektron tersebut bisa turun sampai dua tingkat (atau lebih) dari tingkat sebelumnya. Misalnya pada awalnya di level 5 kemudian turun sampai ke level 2.

Masing-masing perpindahan elektron ini melibatkan sejumlah energi tertentu yang dilepaskan sebagai energi cahaya, dan masing-masing memiliki warna tertentu.

Sebagai akibat dari semua perpindahan elektron ini, sebuah spektrum garis yang berwarna akan dihasilkan. Warna yang anda lihat adalah kombinasi dari semua warna individual.

Besarnya lompatan/perpindahan elektron dari segi energi, bervariasi dari satu ion logam ke ion logam lainnya. Ini berarti bahwa setiap logam yang berbeda akan memiliki pola garis-garis spektra yang berbeda, sehingga warna nyala yang berbeda pula.

88

Page 89: Kimia Anorganik i

Kecenderungan Keadaan Oksidasi Golongan 4Hal ini mengupas keadaan oksidasi (bilangan oksidasi) unsur-unsur golongan 4 – karbon (C), silikon (Si), germanium (Ge), timah (Sn), dan timbal (Pb). Ada peningkatan kecenderungan unsur-unsur untuk membentuk senyawa dengan keadaan oksidasi +2, terutama untuk timah dan timbal.

Beberapa contoh kecenderungan keadaan oksidasi

Kecenderungan secara keseluruhan

Keadaan oksidasi yang umum untuk golongan 4 adalah +4, ditemukan pada senyawa CCl4, SiCl4 dan SnO2.

Jika anda bergerak ke bawah dalam satu golongan, ada banyak contoh dengan keadaan oksidasi +2, seperti SnCl2, PbO, dan Pb2+.

Pada timah, keadaan +4 masih lebih stabil dibandingkan +2, tetapi pada timbal, keadaan +2 lebih stabil – dan mendominasi kimia timbal.

Contoh pada kimia karbon

Contoh yang umum untuk keadaan oksidasi +2 pada kimia karbon adalah karbon monoksida, CO. Karbon monoksida merupakan agen pereduksi yang kuat karena mudah teroksidasi menjadi karbon dioksida – dimana keadaan oksidasinya lebih stabil secara termodinamika yaitu +4.

Sebagai contoh, karbon monoksida mereduksi beberapa oksida logam panas menjadi logam – reaksi ini diterapkan, misalnya, pada ekstraksi besi dalam blast furnace.

Contoh pada kimia timah

Jika anda bergerak ke bawah dalam satu golongan sampai pada timah, keadaan oksidasi +2 secara umum meningkat, dan ada yang menarik pada senyawa timah(II) dan timah(IV). Timah(IV) merupakan keadaan oksidasi timah yang lebih stabil.

89

Page 90: Kimia Anorganik i

Itu artinya akan mudah mengubah senyawa timah(II) menjadi senyawa timah(IV). Hal ini ditunjukkan dengan baik pada ion Sn2+ dalam larutan yang merupakan agen pereduksi yang baik.

Sebagai contoh, larutan yang mengandung ion timah(II) (misalnya larutan timah(II) klorida) akan mereduksi larutan iod menjadi ion iodida. Pada proses tersebut, ion timah(II) dioksidasi menjadi ion timah(IV).

Ion timah(II) juga mereduksi ion besi(III) menjadi ion besi(II). Sebagai contoh larutan timah(II) klorida akan mereduksi larutan besi(III) klorida menjadi larutan besi(II) klorida. Pada proses ini, ion timah(II) dioksidasi menjadi ion timah(IV) yang lebih stabil.

Ion timah(II) juga, tentu saja, mudah dioksidasi oleh agen pengoksidasi yang sangat kuat seperti larutan kalium mangan(VII) (larutan kalium permanganat) dalam kondisi asam. Reaksi ini dapat digunakan dalam titrasi untuk menentukan konsentrasi ion timah(II) dalam suatu larutan.

Dan sebagai contoh terakhir . . .

Dalam kimia organik, timah dan asam klorida pekat digunakan untuk mereduksi nitrobenzena menjadi fenilamin (anilin). Reaksi ini melibatkan timah yang teroksidasi menjadi ion timah(II) dan kemudian menjadi ion timah(IV).

Contoh pada kimia timbal

Pada timbal, kondisinya dibalik. Keadaan oksidasi timbal(II) lebih stabil, dan senyawa timbal(IV) mempunyai kecenderungan yang kuat untuk bereaksi dan menghasilkan senyawa timbal(II).

Timbal(IV) klorida, sebagai contoh, terurai pada temperatur kamar menghasilkan timbal(II) klorida dan gas klor.

90

Page 91: Kimia Anorganik i

. . . dan timbal(IV) oksida terdekomposisi pada pemanasan menghasilkan timbal(II) oksida dan oksigen.

Timbal(IV) oksida juga bereaksi dengan asam klorida pekat, mengoksidasi beberapa ion klorida dari asam menjadi gas klor. Sekali lagi, timbal direduksi dari +4 menjadi +2 yang lebih stabil.

Mencoba menjelaskan kecenderungan keadaan oksidasi

Tidak ada yang mengejutkan tentang keadaan oksidasi yang normal pada golongan 4 yaitu +4.

Semua unsur pada golongan 4 memiliki struktur elektron terluar ns2npx1npy

1, dimana n bervariasi dari 2 (untuk karbon) sampai 6 (untuk timbal). Pada keadaan oksidasi +4 semua elektron terluar terlibat secara langsung dalam ikatan.

Pada bagian bawah golongan, ada kecenderungan peningkatan untuk tidak menggunakan pasangan s2 dalam pembentukan ikatan. Ini sering disebut dengan efek pasangan inert – dan hal ini dominan pada kimia timbal.

Tidak ada penjelasan apapun dari penamaan "efek pasangan inert" Anda perlu mengetahui dua penjelasan yang berbeda tergantung pada apa yang anda bicarakan, pembentukan ikatan ionik atau ikatan kovalen.

Efek pasangan inert pada pembentukan ikatan ionik

Jika unsur golongan 4 membentuk ion 2+, maka unsur tersebut akan kehilangan elektron pada orbital p, menyisakan pasangan s2 yang tidak terpakai. Misalnya, untuk membentuk ion timbal(II), timbal akan kehilangan dua elektron 6p, elektron 6s tidak mengalami perubahan – sebagai "pasangan inert".

91

Page 92: Kimia Anorganik i

Secara normal anda akan mengharapkan energi ionisasi turun dari atas ke bawah dalam satu golongan karena elektron lebih jauh dari inti. Hal itu tidak terjadi pada golongan 4.

Tabel pertama menunjukkan energi ionisasi total yang diperlukan untuk membentuk ion 2+ bervariasi dari atas ke bawah dalam satu golongan. Nilainya dinyatakan dalam kJ mol-1.

Perhatikanlah, antara timah dan timbal terdapat sedikit peningkatan.

Ini artinya sedikit lebih sulit untuk menghilangkan elektron p pada timbal daripada pada timah.

Jika anda melihat pola lepasnya 4 elektron, perbedaan antara timah dan timbal lebih menarik. Peningkatan energi ionisasi yang relatif besar antara timah dan timbal disebabkan karena pasangan 6s2 pada timbal secara signifikan lebih sulit untuk dihilangkan daripada pasangan 5s2 pada timah.

92

Page 93: Kimia Anorganik i

Sekali lagi, nilainya dalam kJ mol-1, dan dua tabel tersebut mempunyai skala yang hampir sama.

Hal tersebut dapat dijelaskan dengan teori relativitas. Pada unsur yang lebih berat seperti timbal, ada kecenderungan untuk menarik elektron lebih dekat ke inti daripada yang diperkirakan, dikenal sebagai kontraksi relativistik elektron. Karena elektron lebih dekat dengan inti, maka lebih sulit untuk dilepaskan. Pada unsur yang lebih berat pengaruh ini lebih besar.

Pengaruh ini lebih besar pada elektron s daripada elektron p.

Pada contoh timbal, adanya kontraksi relativistik menyebabkan elektron 6s lebih sulit dilepaskan secara energetika dari yang anda perkirakan. Energi yang dilepaskan ketika ion terbentuk (seperti entalpi kisi atau entalpi hidrasi) tidak cukup untuk mengimbangi tambahan energi akibat adanya kontraksi relativistik. Artinya secara energetika tidak disukai bagi timbal untuk membentuk ion 4+.

Efek pasangan inert pada pembentukan ikatan kovalen

Anda perlu memikirkan mengapa karbon secara normal membentuk empat ikatan kovalen bukan dua.

Dengan menggunakan notasi elektron dalam kotak, struktur elektron terluar karbon terlihat seperti ini:

Pada gambar hanya ada dua elektron tak berpasangan. Sebelum membentuk ikatan, secara normal karbon akan mendorong satu elektron dari orbital s untuk mengisi orbital p yang kosong.

Akhirnya terdapat 4 elektron tak berpasangan yang (setelah hidridisasi) dapat membentuk 4 ikatan kovalen.

93

Page 94: Kimia Anorganik i

Hal itu bermanfaat untuk menyediakan energi untuk mendorong elektron orbital s, karenanya karbon dapat membentuk ikatan kovalen dua kali lebih banyak. Masing-masing ikatan kovalen yang terbentuk melepaskan energi yang cukup untuk keperluan promosi.

Satu penjelasan yang mungkin, mengapa timbal tidak melakukan hal yang sama adalah karena terjadi penurunan energi ikatan dari atas ke bawah dalam satu golongan. Energi ikatan cenderung turun dengan makin besarnya ukuran atom dan makin jauhnya jarak pasangan ikatan dengan dua inti serta lebih terlindungi dari inti.

Sebagai contoh, energi yang dilepaskan ketika dua ikatan tambahan Pb-X (dengan X adalah H atau Cl atau apapun) terbentuk tidak mampu mengimbangi besarnya energi tambahan yang diperlukan untuk mendorong elektron 6s ke orbital 6p yang kosong.

Hal ini akan lebih sulit, tentu saja, jika beda energi antara orbital 6s dan 6p bertambah dengan adanya kontraksi relativistik dari orbital 6s.

Penetapan Kadar Logam Dengan Ekstraksi Menggunakan Metode Air-Acetylene FlameMetode ekstraksi ini digunakan untuk menetapkan kadar logam berkonsentrasi kecil. Logam-logam yang dapat ditetapkan yaitu Kadmium, Kromium, Kobalt, Tembaga, Besi, Timbal, Mangan, Nikel Perak dan Seng. Metode ini terdiri dari tahap pengkelatan dengan Ammonium Pyrrolidine Dithiocarbamate (APDC) dan pengektraksian dalam Methyl Isobuthyl Ketone (MIBK), lalu dilakukan pengukuran dengan menggunakan metode air-acetylene flame.  Dengan metode ini diharapkan kadar logam yang sedikit tersebut dapat diukur dengan tepat dan kesalahan pengukuran yang kecil, jika dibandingkan dengan metode secara langsung.

Alat-alat yang dibutuhkan

1.       Spektrofotometri Serapan Atom dan alat-alat pelengkapnya

2.       Burner Head. Konfirmasi dengan petunjuk penggunaan alat SSA mengenai Burner Head yang cocok untuk pengukuran metode ini

Peraksi dan Bahan yang dibutuhkan

1.       Udara bebas (sumber O2)

2.       Asetilen

94

Page 95: Kimia Anorganik i

3.       Logam murni bebas air

4.       Methyl Isobuthyl Ketone (MIBK), grade pereaksi. Untuk analisis sekelumit, digunakan MIBK murni dengan redistillation (destilasi kembali)  atau dengan sub-boiling distillation

5.       Larutan Ammonium Pyrrolidine Dithiocarbamate (APDC)

6.       Asam Nitrat pekat, HNO3 kemurnian tinggi

7.       Larutan Logam Standar

8.       Larutan Kalium Permanganat, KMnO4 5% (w/v)

9.       Natrium Sulfat, Na2SO4 anhidrat

10.   Larutan campuran Air-MIBK jenuh: Campurkan satu bagian MIBK murni dengan satu bagian air pada corong pisah. Kocok selama 30 detik dan pisahkan. Buang bagian yang terlarut pada air. Lalu simpan lapisan MIBK.

11.   Larutan Hydroxylamine Hydrochloride 10% (w/v)

Prosedur

1.       Operasional Instrument

Setelah posisi burner tepat, aspirasikan larutan air-MIBK jenuh dalam api dan kurangi secara bertahap laju fuel sampai warna api sama seperti sebelum pengaspirasian pelarut

2.       Standarisasi

Pilih tiga konsentrasi dari larutan logam standar dimana kira-kira kandungan logam dalam sampel berada pada kisaran konsentrasi standar yang telah ditentukan. Adjust 100 ml dari setiap standar dan 100 ml dari blanko logam-bebas air sampai pH 3 dengan penambahan HNO3 1N atau NaOH 1N. Untuk ekstraksi unsur tunggal, gunakan kisaran pH dibawah ini untuk memperoleh efisiensi ekstraksi yang optimum:

Unsur Kisaran pH untuk Ekstraksi OptimumAg

Cd

Co

Cr

2-5 (kompleks, labil)

1-6

2-10

3-9

95

Page 96: Kimia Anorganik i

Cu

Fe

Mn

Ni

Pb

Zn

0,1-8

2-5

2-4 (kompleks, labil)

2-4

0,1-6

2-6

Catatan: Untuk ekstraksi Ag dan Pb nilai pH optimumnya adalah 2,3 ± 0,2.  Mn cepat membentuk senyawa kompleks pada temperatur ruangan, yang mengakibatkan berkurangnya respon instrument. Pendinginan ekstraks sampai 0oC dapat mencegah pembentukan senyawa kompleks selama beberapa jam. Jika hal ini tidak mungkin dan Mn tidak dapat dianalisis segera setelah ekstraksi, gunakan prosedur analisis lainnya.

Transfer setiap larutan standar dan blanko 200 ml kepada setiap labu ukur, tambahkan 1ml larutan APDC , dan kocok untuk mencampurkan. Tambahkan 10 ml MIBK dan kocok dengan kuat selama 30 detik. Volume rasio maksimal untuk sampel dengan MIBK adalah 40. Setiap isi dipisahkan kedalam lapisan organic yang mengandung air, lalu tambahkan air dengan hati-hati (sesuaikan ke pH yang sama dimana ekstraksi dilaksanakan). Pada labu ukur, lapisan organik dibawa ke leher labu dan dapat dideteksi untuk diaspirasikan kedalam api.

Aspirasikan langsung ekstraksi organik kedalam api (nolkan instrument pada blanko air-MIBK jenuh) dan catat absorbansinya.

Siapkan kurva kalibrasi dengan memplot pada absorbansi dari ektraksi standar pada kertas grafik linear kepada masing-masing konsentrasinya sebelum ekstraksi.

3.       Analisis  sampel

Siapkan sampel dengan cara yang sama seperti penyiapan standar. Bilas atomizer dengan mengaspirasikan larutan air-MIBK jenuh. Tangani pengaspirasian ekstraks organik seperti diatas secara langsung ke dalam api dan catat absorbansinya.

Dengan mengikuti  prosedur ekstraksi  diatas  hanya hexavalent kromium saja yang diukur. Untuk menetapkan total kromium, oksidasikan trivalent kromium menjadi  hexavalent kromium dengan mendidihkan sampel dan ditambahkan larutan KMnO4 secukupnya setetes demi setetes untuk memberikan warna pink ketika larutan didihkan selama 10 menit. Hilangkan kelebihan KMnO4 dengan menambahkan 1 sampai 2 tetes larutan Hydroxylamine Hydrochloride kedalam larutan yang mendidih, biarkan selama 2 menit untuk berlangsungnya reaksi. Jika

96

Page 97: Kimia Anorganik i

warna pink tetap ada, tambahkan 1 sampai 2 tetes lagi larutan Hydroxylamine Hydrochloride dan tunngu selama 2 menit. Panaskan lagi selama 5 menit. Dinginkan, ekstrak dengan MIBK dan aspirasikan.

Selama ekstraksi, jika terbentuk emulsi pada larutan air-MIBK, tambahkan Na2SO4 anhidrat untuk memperoleh fase organik yang homogen. Pada kasus ini, juga tambahkan Na2SO4 untuk semua standar dan blanko.

Untuk mencegah masalah dengan tidak stabilnya komplekson ekstrak logam, tetapkan logam sesegera mungkin stelah ekstraksi.

Perhitungan

Hitung konsentrasi dari setiap ion logam pada mikrogram per liter dengan indikasi sesuai dengan kurva kalibrasi.

Sifat Asam-Basa dari Oksida-Oksida Periode 3Hal ini membahas reaksi-reaksi oksida unsur-unsur periode 3 (dari natrium hingga klor) dengan air, dan dengan asam atau basa yang sesuai. Argon tidak dibahas karena tidak membentuk oksida.

Ringkasan

Oksida-oksida

Oksida-oksida yang akan kita bahas adalah:

Na2O MgO Al2O3 SiO2 P4O10 SO3 Cl2O7

P4O6 SO2 Cl2O

Kecenderungan dalam reaksi asam-basa

Kecenderungan dalam reaksi asam-basa ditunjukkan dalam berbagai reaksi, ringkasan sederhananya adalah sebagai berikut:

Kecenderungannya adalah oksida-oksida basa kuat terdapat pada sisi kiri dan oksida-oksida asam kuat pada sisi kanan, terpisahkan oleh oksida

97

Page 98: Kimia Anorganik i

amfoter (aluminium oksida) di tengah. Oksida amfoter adalah oksida yang menunjukkan sifat-sifat asam sekaligus basa.

Dari kecenderungan sederhana ini, anda cukup melihat pada oksida tertinggi dari masing-masing unsur. Yaitu unsur-unsur pada baris pertama dari daftar di atas, dimana unsur tersebut berada pada keadaan oksidasi tertingginya yang dimungkinkan. Pola ini tidaklah sesederhana jika anda memasukkan oksida-oksida lain.

Semua reaksi ini diamati lebih rinci pada akhir halaman.

Sifat kimia dari masing-masing oksida

Natrium oksida

Natrium oksida merupakan oksida basa kuat yang sederhana. Bersifat basa karena mengandung ion oksida, O2-, yang merupakan basa yang sangat kuat dengan kecenderungan yang tinggi untuk bergabung dengan ion-ion hidrogen.

Reaksi dengan air

Natrium oksida bereaksi secara eksotermal dengan air dingin menghasilkan larutan natrium hidroksida. Tergantung pada konsentrasinya, larutan ini akan mempunyai pH di sekitar 14.

Reaksi dengan asam

Sebagai basa kuat, natrium oksida juga bereaksi dengan asam. Sebagai contoh, ia akan bereaksi dengan asam klorida encer untuk menghasilkan larutan natrium klorida.

Magnesium oksida

Magnesium oksida juga merupakan oksida basa sederhana, karena mengandung ion oksida juga. Namun demikian, sifat basanya tidak sekuat natrium oksida karena ion oksidanya tidak terlalu bebas.

Dalam contoh natrium oksida, padatan dipengaruhi bersama oleh daya tarik antara ion 1+ dan 2-. Dalam magnesium oksida, daya tarik yang ada adalah antara 2+ dan 2-. Ini memerlukan energi yang lebih untuk memecahnya.

98

Page 99: Kimia Anorganik i

Meskipun dipengaruhi oleh faktor-faktor lain (seperti pelepasan energi ketika ion positif menarik air pada bentuk larutannya), pengaruh dari hal ini adalah reaksi yang melibatkan magnesium oksida akan selalu kurang eksotermik daripada natrium oksida.

Reaksi dengan air

Jika anda mengocok beberapa serbuk putih magnesium oksida dengan air, tak ada sesuatu yang dapat diamati – tidak terlihat terjadinya reaksi. Namun demikian, jika anda menguji pH cairan tersebut, anda akan menemukan bahwa nilai pH-nya sekitar 9 – menunjukkan bahwa ia sedikit basa.

Harus ada sedikit reaksi dengan air untuk menghasilkan ion hidroksida dalam larutan. Beberapa magnesium hidroksida dibentuk pada reaksi itu, tetapi hampir tidak larut – dan juga tidak ada ion hidroksida pada larutan.

Reaksi dengan asam

Magnesium oksida berreaksi dengan asam seperti yang anda harapkan pada oksida logam sederhana. Sebagai contoh, ia bereaksi dengan asam klorida encer yang hangat untuk menghasilkan larutan magnesium klorida.

Aluminium oksida

Menjelaskan sifat-sifat aluminium oksida dapat menimbulkan kebingungan karena dapat berada pada beberapa bentuk yang berbeda. Salah satu bentuknya sangat tidak reaktif. Ini diketahui secara kimia sebagai alfa-Al2O3 dan dihasilkan pada temperatur tinggi.

Pada pembahasan ini kita memakai salah satu bentuk yang reaktif.

Aluminium oksida merupakan senyawa amfoter. Artinya dapat bereaksi baik sebagai basa maupun asam.

Reaksi dengan air

Aluminium oksida tidak dapat bereaksi secara sederhana dengan air seperti natrium oksida dan magnesium oksida, dan tidak larut dalam air. Walaupun masih mengandung ion oksida, tapi terlalu kuat berada dalam kisi padatan untuk bereaksi dengan air.

99

Page 100: Kimia Anorganik i

Reaksi dengan asam

Aluminium oksida mengandung ion oksida, sehingga dapat bereaksi dengan asam seperti pada natrium atau magnesium oksida. Artinya, sebagai contoh, aluminium oksida akan beraksi dengan asam klorida encer yang panas menghasilkan larutan aluminium klorida.

Dalam hal ini (dan sama dalam reaksi dengan asam yang lain), aluminium oksida menunjukkan sisi basa dari sifat amfoternya.

Reaksi dengan basa

Aluminium oksida juga dapat menunjukkan sifat asamnya, dapat dilihat dalam reaksi dengan basa seperti larutan natrium hidroksida.

Berbagai aluminat dapat terbentuk – senyawa dimana aluminium ditemukan dalam ion negatif. Hal ini mungkin karena aluminium memiliki kemampuan untuk membentuk ikatan kovalen dengan oksigen.

Pada contoh natrium, perbedaan elektronegativitas antara natrium dan oksigen terlalu besar untuk membentuk ikatan selain ikatan ionik. Tetapi elektronegativitas meningkat dalam satu periode – sehingga perbedaan elektronegativitas antara aluminium dan oksigen lebih kecil. Hal ini menyebabkan terbentuknya ikatan kovalen diantara keduanya.

Dengan larutan natrium hidroksida pekat yang panas aluminium oksida bereaksi menghasilkan larutan natrium tetrahidroksoaluminat yang tidak berwarna.

Silikon dioksida (silikon(IV) oksida)

Berikutnya anda mendapatkan silikon, terjadi kenaikan elektronegativitas sehingga perbedaan elektronegativitas antara silikon dan oksigen tidak cukup untuk membentuk ikatan ionik.

Silikon dioksida tidak mempunyai sifat basa – tidak mengandung ion oksida dan tidak bereaksi dengan asam. Sebaliknya, silikon dioksida merupakan asam yang sangat lemah, bereaksi dengan basa kuat.

Reaksi dengan air

Silikon dioksida tidak bereaksi dengan air, karena sulit memecah struktur kovalen yang besar.

100

Page 101: Kimia Anorganik i

Reaksi dengan basa

Silikon dioksida bereaksi dengan larutan natrium hidroksida yang panas dan pekat. Larutan natrium silikat yang tak berwarna akan terbentuk.

Anda mungkin terbiasa dengan satu reaksi yang terjadi pada ekstraksi besi dengan Blast Furnace – dimana kalsium oksida (dari batu kapur yang merupakan bahan mentah) bereaksi dengan silikon dioksida menghasilkan cairan slag, kalsium silikat. Ini merupakan sebuah contoh dari silikon dioksida asam yang bereaksi dengan basa.

Oksida-oksida fosfor

Kita akan membahas dua oksida fosfor, fosfor(III) oksida, P4O6, dan fosfor(V) oksida, P4O10.

Fosfor(III) oksida

Fosfor(III) oksida bereaksi dengan air dingin menghasilkan larutan asam lemah, H3PO3 – dikenal dengan asam fosfit, asam ortofosfit atau asam fosfonat. Reaksinya dengan air panas lebih rumit.

Asam murninya yang tak terionkan mempunyai struktur:

Hidrogen tidak dapat dilepaskan sebagai ion hingga anda menambahkan air ke dalam asam ini, bahkan kemudian tidak ada yang dilepaskan karena asam fosfit hanya asam lemah.

Asam fosfit mempunyai pKa 2.00 yang menjadikannya lebih kuat jika dibandingkan dengan asam organik pada umumnya seperti asam etanoat (pKa = 4.76).

101

Page 102: Kimia Anorganik i

Ini memungkinkan untuk mereaksikan fosfor(III) oksida secara langsung dengan basa, tetapi anda perlu mengetahui apa yang terjadi jika anda mereaksikan asam fosfit dengan basa.

Pada asam fosfit, dua atom hidrogen pada gugus -OH bersifat asam, tetapi yang lainnya bukan. Itu artinya anda akan mendapatkan dua kemungkinan reaksi, sebagai contoh, reaksi dengan larutan natrium hidroksida akan tergantung pada proporsi natrium hidroksida yang direaksikan.

Pada contoh pertama, hanya satu hidrogen yang bersifat asam yang bereaksi dengan ion hidroksida membentuk basa. Pada contoh kedua (menggunakan natrium hidroksida dua kali lebih banyak), kedua hidrogen bereaksi.

Fosfor(V) oksida

Fosfor(V) oksida bereaksi hebat dengan air menghasilkan larutan yang mengandung campuran asam, yang tergantung pada kondisinya. Kita biasanya hanya mempertimbangkan salah satunya, yaitu asam fosfor(V), H3PO4 – juga dikenal sebagai asam fosfat atau asam ortofosfat.

Asam ini dalam keadaan murni dan tak terionkan mempunyai struktur:

Asam(V) fosfor juga merupakan asam lemah dengan pKa 2.15. Hal itu membuatnya secara fraksional lebih lemah dari asam fosfit. Kedua larutan asam ini pada konsentrasi sekitar 1 mol dm-3 akan mempunyai pH sekitar 1.

Sekali lagi, anda tidak pernah mereaksikan oksida ini dengan basa, tetapi anda diharapkan mengetahui bagaimana asam fosfor(V) bereaksi dengan sesuatu seperti larutan natrium hidroksida.

Jika anda melihat kembali strukturnya, anda akan melihat ada 3 gugus -OH, dan masing-masing mempunyai atom hidrogen yang bersifat asam. Anda akan mendapatkan suatu reaksi dengan natrium hidroksida dalam tiga langkah, satu hidrogen akan bereaksi setelah hidrogen yang lain bereaksi dengan ion hidroksida.

102

Page 103: Kimia Anorganik i

Oksida-oksida sulfur

Kita akan membahas sulfur dioksida, SO2, dan sulfur trioksida, SO3.

Sulfur dioksida

Sulfur dioksida sedikit larut dalam air, bereaksi dengan air menghasilkan larutan asam sulfit (asam sulfur(IV)), H2SO3. Ini hanya ada dalam bentuk larutan, usaha untuk mengisolasinya hanya akan mendapatkan sulfur dioksida kembali.

Asam ini jika tak terionkan mempunyai struktur:

Asam sulfit juga merupakan asam lemah dengan pKa sekitar 1,8 – sangat sedikit lebih kuat dibandingkan dua jenis asam dari fosfor di atas. Adalah masuk akal jika larutan pekat asam sulfit juga mempunyai pH sekitar 1.

Sulfur dioksida juga akan bereaksi secara langsung dengan basa seperti larutan natrium hidroksida. Jika gas sulfur dioksida dimasukkan ke dalam larutan natrium hidroksida, pada awalnya terbentuk larutan natrium sulfit kemudian diikuti dengan terbentuknya natrium hidrogensulfit jika sulfur dioksidanya berlebih.

Reaksi lain yang penting dari sulfur dioksida adalah dengan basa kalsium oksida membentuk kalsium sulfit (kalsium sulfur(IV)). Ini merupakan inti dari salah satu metode penghilangan sulfur dioksida dari gas buang pada pembangkit energi.

103

Page 104: Kimia Anorganik i

Sulfur trioksida

Sulfur trioksida bereaksi hebat dengan air menghasilkan kabut dari embun asam sulfat pekat.

Asam sulfat murni yang tak terionkan memiliki struktur:

Asam sufat merupakan asam kuat, dan secara umum larutannya mempunyai pH sekitar 0.

Asam sulfat bereaksi dengan air menghasilkan ion hidroksonium (ion hidrogen dalam larutan) dan ion hidrogensulfat. Reaksi ini 100 % sempurna.

Hidrogen kedua lebih sulit untuk dihilangkan. Faktanya ion hidrogensulfat merupakan asam yang relatif lemah – kekuatan asamnya sama dengan asam-asam yang telah kita bahas pada halaman ini. Sekarang anda mendapatkan kesetimbangan:

Anda mungkin tidak memerlukan ini untuk pembahasan tingkat dasar, tetapi ini bermanfaat jika anda memahami alasan mengapa asam sulfat merupakan asam yang lebih kuat dari asam sulfit. Anda dapat menerapkan alasan yang sama untuk asam yang lain yang anda temukan pada halaman ini.

Ketika gugus -OH kehilangan satu ion hidrogen, muatan negatif yang ada pada oksigen tersebar (terdelokalisasi) ke seluruh ion melalui interaksi dengan oksigen-oksigen ikatan rangkap dua.

Hal ini mengarahkan pada anda bahwa delokalisasi yang lebih banyak akan anda dapatkan – dengan delokalisasi yang lebih banyak, ion yang lebih stabil akan terbentuk. Ion yang lebih stabil kurang disukai untuk bergabung kembali dengan ion hidrogen untuk kembali ke bentuk asam yang tak terionkan.

Asam sulfit hanya mempunyai satu oksigen ikatan rangkap dua, sedangkan asam sulfat mempunyai dua – itu menjadikan delokalisasinya lebih efektif, ion menjadi lebih stabil, dan menghasilkan asam yang lebih kuat.

104

Page 105: Kimia Anorganik i

Asam sulfat, tentu saja, dapat bereaksi sebagaimana reaksi-reaksi asam kuat yang telah anda kenal dari awal pelajaran kimia. Sebagai contoh, reaksi normal dengan larutan natrium hidroksida membentuk larutan natrium sulfat – dimana kedua hidrogen yang bersifat asam bereaksi dengan ion hidroksida.

Secara prinsip, anda dapat juga memperoleh larutan natrium hidrogensulfat dengan menggunakan natrium hidroksida setengahnya yang bereaksi hanya dengan satu dari dua hidrogen yang bersifat asam yang ada pada asam sulfat. Dalam praktek, saya pribadi tidak pernah melakukannya – untuk saat ini saya tidak dapat menjelaskannya!

Sulfur trioksida sendiri akan bereaksi secara langsung dengan basa membentuk sulfat. Sebagai contoh, reaksi dengan kalsium oksida membentuk kalsium sulfat. Ini seperti reaksi dengan sulfur dioksida yang telah dijelaskan di atas.

Oksida-oksida klor

Klor membentuk beberapa oksida, tetapi hanya dua yang disebutkan pada silabus untuk tingkat A di UK yaitu klor(VII) oksida, Cl2O7, dan klor(I) oksida, Cl2O. Klor(VII) oksida juga dikenal sebagai dikloro heptoksida, dan klor(I) oksida dikenal sebagai dikloro monoksida.

Klor(VII) oksida

Klor(VII) oksida merupakan oksida tertinggi dari klor – klor mempunyai tingkat oksidasi maksimum +7. Ini merupakan kelanjutan dari kecenderungan oksida tertinggi pada unsur periode 3 untuk membentuk asam yang lebih kuat.

Klor(VII) oksida bereaksi degan air menghasilkan asam yang sangat kuat, asam klor(VII) – dikenal juga sebagai asam perklorat. pH larutan secara umum sama dengan asam sulfat, yaitu sekitar 0.

Asam klor(VII) yang tak terionkan mempunyai struktur:

105

Page 106: Kimia Anorganik i

Ketika ion klor(VII) (ion perklorat) terbentuk oleh hilangnya ion hidrogen (ketika bereaksi dengan air, sebagai contoh), muatan dapat terdelokalisasi ke tiap atom oksigen dalam ion. Hal itu membuatnya sangat stabil, dan artinya bahwa asam klor(VII) sangat kuat.

Asam klor(VII) bereaksi dengan larutan natrium hidroksida membentuk larutan natrium klor(VII).

klor(VII) oksida sendiri juga bereaksi dengan larutan natrium hidroksida menghasilkan produk yang sama.

Klor(I) oksida

Klor(I) oksida kurang bersifat asam dibanding klor(VII) oksida. Klor(I) oksida bereaksi dengan air sampai batas tertentu menghasilkan asam klor(I), HOCl – dikenal juga sebagai asam hipoklorit.

Catatan: anda mungkin juga menemukan asam klor(I) ditulis sebagai HClO. Bentuk yang

kita gunakan disini lebih akurat karena menggambarkan bagaimana atom-atom

bergabung.

Struktur asam klor(I) sama seperti yang ditunjukkan oleh rumusnya, HOCl. Asam ini tidak memiliki oksigen dengan ikatan rangkap dua, dan tidak ada delokalisasi muatan jika ion negatif terbentuk oleh hilangnya hidrogen.

Itu artinya bahwa ion negatif yang terbentuk sangat tidak stabil, dan dengan segera menarik kembali hidrogennya untuk kembali membentuk asam. Asam klor(I) merupakan asam yang sangat lemah (pKa = 7.43).

Asam klor(I) bereaksi dengan natrium hidroksida menghasilkan natrium klor(I) (natrium hipoklorit).

Klor(I) oksida juga bereaksi secara langsung dengan natrium hidroksida menghasilkan produk yang sama.

106

Page 107: Kimia Anorganik i

107