Kalkulus I

of 32/32
qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwe rtyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwert yuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyu iopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuio pasdfghjklzxcvbnmqwertyuiop asdfghjklzxcvbnmqwertyuiopa sdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdf KALKULUS I By. Andrian Runtius Lalang 1301033072 MATEMATIKA ANGKATAN 2013
  • date post

    15-Aug-2015
  • Category

    Education

  • view

    48
  • download

    12

Embed Size (px)

Transcript of Kalkulus I

  1. 1. qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmqwertyuiopasdfghjklzxc vbnmqwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmqwertyuiopasdfghjklzxc vbnmqwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmrtyuiopasdfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnmqwert yuiopasdfghjklzxcvbnmqwertyuiopas KALKULUS I By. Andrian Runtius Lalang 1301033072 MATEMATIKA ANGKATAN 2013
  2. 2. Andry Thymoty_Kalkulus I 2 BAB I Pendahuluan Sistem Bilangan Riil Bilangan Bulat dan Rasional Diantara sistem bilangan, yang paling sederhana adalah bilangan-bilangan asli (1,2,3,4,5,...). Jika digandengkan negatifnya dengan nol, maka kita peroleh bilangan- bilangan bulat (...,-3,-2,-1,0,1,2,3,...). bilangan-bilangan yang dapat dituliskan dalam bentuk , dimana m dan n adalah bilangan-bilangan bulat dengan n 0, disebut bilangan-bilangan rasional. Bilangan-bilangan Riil Sekumpulan bilangan (rasional dan tak rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol kita namakan bilangan-bilangan riil. Terdapat lambang-lambang baku untuk mengenal kelas bilangan yang telah dibahas: a. N akan menyatakan himpunan bilangan asli (bilangan bulat positif) b. Z (dari bahasa Jerman, Zahlen) akan menyatakan himpunan bilangan bulat c. Q (hasil bagi bilangan bulat) menyatakan himpunan bilangan rasional d. R menyatakan himpunan bilangan riil Empat Operasi Hitungan Dengan dua bilangan riil x dan y, kita dapat menambahkan atau mengalikan keduanya untuk memperoleh dua bilangan riil baru x + y dan x.y. penambahan dan perkalian mempunyai sifat-sifat yang telah kita kenal sebagai sifat-sifat medan: 1. Hukum Komulatif : x + y = y + x dan xy = yx 2. Hukum Asosiatif : x + (y +z) = (x + y) + z dan x(yz) = (xy)z 3. Hukum Distribusi : x(y + z) = xy + xz 4. Elemen Identitas Terdapat dua bilangan riil yang berlainan (0 dan 1) yang memenuhi x + 0 = x dan x.1= x 5. Balikan (Invers) Setiap bilangan x mempunyai balikan aditif, -x yang memenuhi x + (-x) = 0. Juga setiap bilangan x kecuali nol mempunyai kebalikan x-1 yang memenuhi x.x-1 = 1 Pembagian dan pengurangan didefinisikan dengan: x y = x + (-y) dan = x.y-1
  3. 3. Andry Thymoty_Kalkulus I 3 Sifat-sifat Urutan 1. Trikotomi. Jika x dan y adalah bilangan-bilangan, maka pasti satu diantara yang berikut berlaku: x < y atau x = y atau x > y 2. Ketransitifan. x < y dan y < z x < z 3. Penambahan. x < y x + z < y + z 4. Perkalian. Bilangan z positif, x < y xz < yz, dan z negatif x < y xz > yz 5. Relasi urutan. x y y x, positif atau nol Desimal dan Kerapatan Desimal Berulang dan Tak Berulang Pernyataan desimal suatu bilangan rasional dapat mempunyai akhir seperti dalam 3 8 = 0,375 atau akan berulang dalam daur yang tetap selamanya seperti dalam 13 11 = 1,181818 Kerapatan Diantara dua bilangan riil sebarang yang berlainan x dan y, terdapat suatu bilangan riil lain. Khususnya bilangan z = ( + ) 2 adalah bilangan pertengahan antara x dan y. Ketaksamaan Selain persamaan yang kita temui dalam matematika terdapat juga ketaksamaan yang menggunakan tanda yaitu , , dan . Ketaksamaan ganda a < x < b memberikan selang terbuka sedangkan ketaksamaan a x b memberikan selang tertutup. Tabel di bawah ini menunjukan besar kemungkinan dan cara penulisan Penulisan Himpunan Penulisan Selang Grafik Contoh {x: a < x < b} Terbuka (a,b) ( ) a b (-2, 3) {x: a x b} Tertutup [a.b] [ ] a b [-1, 2] {x: a x < b} Setengah Terbuka [a,b) [ ) a b [ 1 2 , 3) {x: a < x b} Setengah Terbuka (a,b] ( ] a b ( 1 2 , 3] {x: x b} (-,b] ] b (-, - 1 2 ) {x: x < b} (-,b) ) b (-, -1)
  4. 4. Andry Thymoty_Kalkulus I 4 {x: x a } [a, -) [ a [-1, ) {x: x > a} (a, -) ( a (2, ) R (-,) Nilai Mutlak, Akar Kuadrat, & Kuadrat Nilai mutlak suatu bilangan riil dinyatakan dengan x didefinisikan sebagai x = { a x < -a atau x > a AKAR KUADRAT Secara umum dapat ditulis 2 = x Ingat bahwa penyelesaian persamaan kuadrat ax2 + bx + c = 0 diberikan oleh: 1,2 = 2 4 2 Terdapat dua penyelesaian riil jika b2 4ac > 0, a. Penyelesaian jika b2 4ac = 0 b. Penyelesaian tak riil jika b2 4ac < 0 Dengan rumus kuadrat, dapat diselesaikan ketaksamaan-ketaksamaan kuadrat yang tidak mudah difaktorkan.
  5. 5. Andry Thymoty_Kalkulus I 5 KUADRAT : Kita perhatikan bahwa ||2 = 2 berasal dari sifat | || | = || Jika kita bekerja dengan bilangan-bilangan tak negatif, maka a < b a2 + b2 . Salah satu dari bentuk varian ini adalah | | < || x2 + y2 Sistem Koordinat Siku-empat Rumus Jarak : ( , ) = (2 1)2 + (2 1)2 Persamaan Lingkaran : (x - h)2 + (y k)2 = r2 Garis Lurus Kemiringan Garis : = 21 21 Garis yang melalui titik (x1, y1) dengan kemiringan m mempunyai persamaan y y1 = m(x x1) Bentuk Kemiringan Berpotongan : y = mx + b Garis-garis Sejajar : jika dua garis mempunyai kemiringan sama, maka keduanya sejajar. Grafik Persamaan Untuk menggambar suatu persamaan, kita ikuti prosedur sederhana tiga langkah: 1. Dapatkan koordinat-koordinat beberapa titik yang memenuhi persamaan 2. Rajah titik-titik tersebut di bidang 3. Hubungkan titik-titik tersebut dengan sebuah kurva mulus
  6. 6. Andry Thymoty_Kalkulus I 6 BAB II Fungsi dan Limit A. Fungsi Misalkan A dan B dua buah himpunan. Fungsi dari A ke B adalah aturan memasangkan (memadankan) setiap elemen di A dengan satu elemen di B. Bila elemen- elemen dari A lebih banyak dari elemen-elemen B, dapatkah kita membuat fungsi dari A ke B ? Sebuah fungsi disebut fungsi real bila B R. Pembahasan selanjutnya akan dibatasi untuk A, B R. Notasi fungsi: y = f (x) dengan: x elemen A, f (x) aturan pemadanannya, dan y adalah elemen B yang merupakan pasangan dari x. Fungsi Genap dan Fungsi Ganjil. Seringkali kita memperkirakan kesimetrian grafik suatu fungsi dengan memeriksa rumus fungsi tersebut. Jika f(-x) = f(x), maka grafik simetri terhadap sumbu y. Fungsi demikian disebut fungsi genap barangkali karena fungsi yang merinci f(x) sebagai jumlah dari pangkat-pangkat genap x adalah genap. Jika f(-x) = -f(x) simetri terhadap titik asal. Kita sebut fungsi demikian adalah fungsi ganjil. Fungsi yang memberikan f(x) sebagai jumlah dari pangkat-pangkat ganjil x adalah ganjil. Operasi Pada Fungsi a. (f + g) (x) = f(x) + g(x) b. (f g) (x) = f(x) g(x) c. (f . g) (x) = f(x) . g(x) d. ( ) = () ()
  7. 7. Andry Thymoty_Kalkulus I 7 Fungsi Trigonometri Perhatikan gambar lingkaran berjari-jari satu di sebelah kiri. Posisi titik P=(x, y). Sudut t-positif dihitung berdasarkan arah yang berlawanan jarum jam dengan satuan radian. 10 = 1 180 rad. Denisi: f (t) = sin t = y dan g(t) = cos t = x. Df = Dg = . . . Rf = Rg = . . . Sudut t + 2 dan t menentukan posisi titik P yang sama, sehingga sin(t + 2) = sin t dan cos(t + 2) = cos t. Dikatakan fungsi tersebut periodik dengan periode 2. Empat Fungsi Trigonometri Lainnya. Kita dapat lewat cukup dengan sinus dan kosinus saja, tetapi penting juga untuk memperkenalkan empat fungsi trigonometri tambahan. f(x) = tan = sin cos f(x) = cot = cos sin f(x) = sec = 1 cos f(x) = csc = 1 sin Ringkasan Kesamaan-Kesamaan Penting. Kita tidak akan menghabiskan halaman untuk memeriksa kebenaran semua kesamaan trigonometri. Kita cukup menegaskan kebenarannya dan menekankan bahwa kebanyakan dari kesamaan ini akan diperlukan di suatu tempat dalam makalah ini Kesamaan Trigonometri Kesamaan ganjil-genap Kesamaan fungsi ko sin () = sin . sin 2 = cos cos (-x) = cos x cos 2 = sin tan (-x) = -tan x tan 2 = cot
  8. 8. Andry Thymoty_Kalkulus I 8 Kesamaan Pythagoras sin2 x + cos2 x = 1 1 + tan2 x = csc2 x 1 + cot2 x = csc2 x Kesamaan Penambahan sin(x + y) = sin x cos y + cso x sin y cos(x + y) = cos x cos y sin x sin y tan(x + y) = tan + tan 1tan tan Kesamaan Sudut Ganda sin 2x = 2 sin x cos x cos 2x = cos2 x sin2 x = 2 cos2 x 1 = 1 2 sin2 x Kesamaan Setengah Sudut sin2 x = 1cos2 2 cos2 x = 1+cos2 2 Kesamaan Jumlah sin x + sin y = 2 sin + 2 cos 2 cos x + cos y = 2 cos + 2 cos 2 Kesamaan Hasil Kali sin x sin y = - 1 2 [cos( + ) cos( )] cos x cos y = 1 2 [cos( + ) + cos( )] sin x cos y = 1 2 [cos( + ) + sin( )]
  9. 9. Andry Thymoty_Kalkulus I 9 B. LIMIT Konsep Limit Misalkan I = (a, b) suatu interval buka di R dan c I . Fungsi f (x) dikatakan terdenisi di I kecuali mungkin di c, artinya f (x) terdenisi disemua titik pada I{c} dan di c boleh terdenisi boleh juga tidak. Definisi Limit (Pengertian persis tentang limit). Mengatakan bahwa lim ( ) = berarti bahwa untuk tiap > 0 yang diberikan (betapapun kecilnya), terdapat > 0 yang berpadanan sedemikian sehinggaf(x) - L < asalkan bahwa 0 < x - c < , yakni 0 < x - c < f(x) - L <
  10. 10. Andry Thymoty_Kalkulus I 10 Gambar di bawah ini kiranya dapat membantu dalam menyerap definisi di atas Teorema Limit Teorema A (Teorema Limit Utama). Andaikan n bilangan bulat positif, k konstanta dan f dan g adalah fungsi-fungsi yang mempunyai limit di c. Maka: , asalkan lim ( ) 0 Teorema B (Teorema Penggantian). Jika f suatu fungsi polinom atau fungsi rasional, maka lim ( ) = () Asalkan dalam kasus fungsi rasional nilai penyebutnya tidak nol di c.
  11. 11. Andry Thymoty_Kalkulus I 11 Limit takhingga: Bagian ini mengamati perilaku fungsi f (x) bila x tanpa batas. Ilustrasi: Perhatikan f (x) = 1 1+ 2 Bila x membesar terus tanpa batas, ditulis x , nilai f (x) cenderung menuju 0. Fenomena ini mendasari konsep limit di takhingga Misalkan f terdenisi pada [c, ). Lim = L artinya untuk setiap > 0, x dapat dicari bilangan M sehingga x > M |f (x) L| < Misalkan f terdenisi pada (, c). lim = L artinya untuk setiap > 0, x dapat dicari bilangan M sehingga x < M |f (x) L| <
  12. 12. Andry Thymoty_Kalkulus I 12 BAB III TURUNAN Dua Masalah Dengan Satu Tema Masalah pertama kita sangat tua: ia sudah dimasalahkan sejak ilmuwan besar Yunani Archimedes (287 M 212 M). Yang dimaksud adalah masalah garis singgung. Masalah kita yang kedua lebih baru. Masalah ini muncul dari percobaan oleh Kepler (1571 1630), Galileo (1564 1642), Newton (1642 1727) dan lainnya untuk melukiskan kecepatan sebuah benda bergerak. Hal ini adalah masalah kecepatan sesaat. Dua masalah itu, satu geeometri dan lainnya mekanis, kelihatannya tidak ada hubungannya. Dalam hal ini, kelihatannya memperdayakan. Kedua masalah itu merupakan kembaran yang identik. garis singgung di P garis singgung di P Gambar 1 Gambar 2 Garis singgung. Gagasan garis singgung dari Euclides sebagai salah satu garis yang memotong suatu kurva pada satu titik, benar untuk lingkaran-lingkaran (Gambar 1) tetapi sama sekali tidak memuaskan untuk kebanyakan kurva-kurva lain (Gambar 2). Untuk mendenisikan pengertian garis singgung secara formal, perhatikanlah gambar di samping kiri. Garis talibusur m1 menghubungkan titik P dan Q1 pada kurva. Selanjutnya titik Q1 kita gerakkan mendekat titik P. Saat sampai di posisi Q2, talibusurnya berubah menjadi garis m2. Proses ini diteruskan sampai titik Q1 berimpit dengan titik P, dan garis talibusurnya menjadi garis singgung m.
  13. 13. Andry Thymoty_Kalkulus I 13 Agar fenomena ini dapat dirumuskan secara matematis, perhatikan kembali gambar disebelah kiri. Kemiringan garis talibusur yang melalui P dan Q adalah: = ( +)() Kemiringan garis singgung di titik P = (c,f(c)) didefinisikan sebagai: m = lim 0 = ( +)() Kecepatan Sesaat. Jika kita mengendarai sebuah mobil dari satu kota ke kota lain yang berjarak 80 km dalam waktu 2 jam, maka kecepatan rata-rata kita adalah 40 km tiap jam. Artinya, kecepatan rata-rata adalah jarak antara posisi pertama ke posisi kedua dibagi dengan waktu tempuh. TURUNAN Kita telah melihat bahwa kemiringan garis singgung dan kecepatan sesaat adalah manifestasi dari pemikiran dasar yang sama. Laju pertumbuhan organisme (biologi), keuntungan marjinal (ekonomi), kepadatan kawat (fisika), dan laju pemisahan (kimia) adalah versi-versi lain dari konsep yang sama. Pengertian matematis yang baik menyarankan agar kita menelaah konsep ini terlepas dari kosa kata yang khusus dan terapan yang beraneka ragam ini. Kita memilih nama netral turunan (derivatif). Ini merupakan kata kunci dalam kalkulus selain kata fungsi dan limit. Turunan fungsi f adalah fungsi lain f (dibaca f aksen) yang nilainya pada sebarang bilangan c adalah: f(c) =lim 0 ( +)() Asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan bahwa f terdiferensialkan (diturunkan) di c. Pencarian turunan disebut pendiferensialan; bagain kalkulus ysng berhubungan dengan turunan disebut kalkulus diferensial. Bentuk-Bentuk Yang Setara Untuk Turunan. Tidak ada yang keramat tentang pemakaian huruf h dalam mendefinisikan f(c). Misalkan perhatikan bahwa
  14. 14. Andry Thymoty_Kalkulus I 14 ( ) = lim 0 ( + ) ( ) = lim 0 ( + ) () = lim 0 ( + ) () Keterdiferensial Menunjukan Kekontinuan. Jika sebuah kurva mempunyai sebuah garis singgung di sebuah titik, maka kurva itu tidak dapat melompat atau sangat berayun dari titik tersebut. Perumusan yang persis dari kenyataan ini merupakan sebuah teorema penting. Teorema A Jika f(c) ada, maka f kontinu di c Bukti. Kita perlu menunjukan bahwa lim ( ) = (). Sekarang ( ) = ( ) + ( ) ( ) .( ), Karenanya lim ( ) = lim [ ( ) + ( ) ( ) . ( )] = lim ( ) + lim ( ) ( ) . lim ( ) = f(c) + f(c) . 0 = f(c) Argumentasi yang baru disajikan memperlihatkan bahwa di sebarang titik dimana fungsi mempunyai sebuah sudut yang tajam, maka fungsi tersebut kontinu tetapi tidak terdiferensialkan. Gambar di bawah menunjukan sejumlah kemungkinan. Keterangan : a tidak kontinu, oleh karena itu tak terdiferensialkan b dan c kontinu tetapi tak terdiferensialkan d kontinu dan terdiferensialkan
  15. 15. Andry Thymoty_Kalkulus I 15 Aturan Pencarian Turunan Proses pencarian turunan suatu fungsi langsung dari definisi turunan, yakni dengan menyusun hasilbagi selisih ( + ) () dan menghitung limitnya, memakan waktu dan membosankan. Kita akan mengembangkan alat yang memungkinkan kita untuk memperpendek proses yang berkepanjangan ini yang nyatanya akan memungkinkan kita untuk mencari turunan dari fungsi-fungsi yang tampak rumit dengan segera. Ingat kembali bahwa turunan suatu fungsi f adalah fungsi lain f. Misalnya, jika f(x) = x2 adalah rumus untuk f, maka f(x) = 2x adalah rumus untuk f. Pengambilan turunan dari f (pendiferensial f) adalah pengoperasian pada f untuk menghasilkan f. Sering kali kita memakai huruf D untuk menunjukkan operasi ini. Jadi kita menuliskan Df = f, Df(x) = f(x) atau D(x2 ) = 2x. Semua teorema di bawah dinyatakan dalam cara penulisan fungsional dan dalam cara penulisan operator D. Konstanta dan Aturan Pangkat. Grafik fungsi konstanta f(x) = k merupakan sebuah garis mendatar, sehingga mempunyai kemiringan nol dimana-mana. Ini adalah suatu cara untuk memahami teorema pertama kita. Teorema A Aturan Fungsi Konstanta. Jika f(x) = k dengan k suatu konstanta maka untuk sebarang x, f(x) = 0 yakni D(x) = 0 Teorema B Aturan Fungsi Identitas. Jika f(x) = x, maka f(x) = 1 yakni D(x) = 1 Bukti, ( ) = lim 0 ( + ) () = lim 0 + = lim 0 = 1 Sebelum menyatakan teorema berikutnya, kita ingatkan kembali sesuatu dari aljabar bagaimana memangkatkan suatu binominal. (a + b)2 = a2 + 2ab + b2 (a + b)3 = a3 + 3a2 b + 3ab2 + b3 (a + b)n = an + nan-1 b + (1) 2 2 2 + + 1 +
  16. 16. Andry Thymoty_Kalkulus I 16 Teorema C Aturan Pangkat. Jika f(x) = xn , dengan n bilangan bulat positif, maka f(x) = nxn 1 , yakni D(xn ) = nxn - 1 Bukti, ( ) = lim 0 ( + ) ( ) = lim 0 ( + ) = lim 0 + 1+ ( 1) 2 22+ + 1+ = lim 0 [ 1+ (1) 2 22++ 1+ ] Di dalam kurung siku, semua suku kecuali yang pertama mempunyai h sebagai faktor sehingga masing-masing suku ini mempunyai limit nol bila h mendekati nol. Jadi, ( ) = 1 Teorema D Aturan Kelipatan Konstanta. Jika k suatu konstanta dan f suatu fungsi yang terdiferensialkan, maka kf(x) = k. f(x) yakni [ . ( )] = . () Dengan kata-kata, ini mengatakan bahwa suatu konstanta k dapat disebrangkan melewati operator D. Bukti, Andaikan ( ) = . (). Maka ( ) = lim 0 ( +) ( ) = lim 0 .( +) .( ) = lim 0 . ( +) ( ) = . lim 0 ( +) ( ) =k . f(x) Teorema E Aturan Jumlah. Jika f dan g fungsi-fungsi yang terdefinisikan, maka (f + g)(x)=f(x) + g(x) yakni [ ( ) + ()] = ( ) + () Dengan kata-kata, ini mengatakan bahwa turunan dari suatu jumlah adalah jumlah dari turunan-turunan. Bukti. Andaikan f(x) = f(x) + g(x). Maka
  17. 17. Andry Thymoty_Kalkulus I 17 ( ) = lim 0 [ ( +)+ (+)] [ ( )+ ()] = lim 0 [ ( +) ( ) + ( +) ( ) ] = lim 0 ( +) () + lim 0 ( +) () = f(x) + g(x) Teorema F Aturan Selisih. Jika f dan g fungsi-fungsi yang terdefinisikan, maka (f - g)(x) = f(x) g(x) yakni [ ( ) ()] = ( ) () Bukti D[f(x) g(x)] = D[f(x) + (-1)g(x)] = Df(x) + D[(-1)g(x)] (Teorema E) =Df(x) + (-1)Dg(x) (Teorema D) = Df(x) Dg(x) Teorema G Aturan Hasilkali. Jika f dan g fungsi-fungsi yang terdefinisikan, maka (f . g)(x) =f(x)g(x) + g(x)f(x) yakni [ ( ) ( )] = ( ) ( ) + ( ) ( ) Ini harus dihafalkan dalam kata-kata seperti berikut: turunan hasilkali dua fungsi adalah turunan kedua yang pertama kali ditambah dengan turunan pertama yang kedua dikalikan Bukti. Andaikan f(x) = f(x)g(x). Maka ( ) = lim 0 ( + ) () = lim 0 ( +) ( +) ( ) () = lim 0 ( +) ( +) ( +) ( )+ ( ) ( +) ( ) ()
  18. 18. Andry Thymoty_Kalkulus I 18 =lim 0 [( + ) ( +) ( ) + ( + ) ( +) () ] = lim 0 ( + ). lim 0 ( +) () + ( ). lim 0 ( +) () = f(x)g(x) + g(x)f(x) Teorema H Aturan Hasilbagi. Andaikan Jika f dan g fungsi-fungsi yang dapat didiferensialkan dengan g(x)0. Maka ( ) ( ) = ( ) ( ) ( ) () 2() Yaitu, () () = ( ) ( ) ( ) () 2() Kami tekankan agar ini dapat dihafal dengan kata-kata sebagai berikut: turunan hasilbagi adalah sama dengan penyebut kali turunan pembilang dikurangi pembilang kali turunan penyebut, seluruhnya dibagi dengan kuadrat penyebutnya. Bukti. Andaikan f(x) = f(x)/g(x). Maka ( ) = lim 0 ( + ) ( ) = lim 0 ( +) ( +) ( ) ( ) = lim 0 ( ) ( +) ( ) ( +) . 1 ( ) ( +) =lim 0 [ ( ) ( +)( ) ( )+( ) ( )( ) (+) . 1 ( ) (+) ] =lim 0 {[( ) ( +)() () ( +)() ] 1 ( ) (+) } = [()() ()()] 1 ( ) ()
  19. 19. Andry Thymoty_Kalkulus I 19 Aturan Rantai. Untuk menentukan turunan fungsi komposisi. Misalkan f = f (u) dan u = u(x), bagaimanakah menghitung Aturan rantai bersusun f = f (u) dan u = u(x) maka = = [ ] [] Turunan Tingkat Tinggi. Operasi pendiferensial mengambil sebuah fungsi dan menghasilkan sebuah fungsi baru f. Jika f sekarang kita diferensialkan, kita masih menghasikan fungsi lain yang dinyatakan oleh f (dibaca f dua aksen) dan disebut turunan kedua dari f. Pada gilirannya ia boleh diturunkan lagi, dengan demikian menghadilkan f, yang disebut turunan ketiga dan seterusnya. Pendiferensial Implisit Dengan sedikit usaha, kebanyakan mahasiswa akan mampu melihat bahawa grafik dari y3 + 7y = x 3 tampak seperti apa yang diperlihatkan. Pastilah titik (2,1) terletek pada grafik dan tampaknya terdapat sebuah garis singgung yang terumuskan dengan baik pada titik tersebut. Bagaimana kita mencari kemiringan garis singgung ini? Mudah, anda dapat menjawab: hitnung saja dy/dx pada titik itu. Tetapi itulah kesukarannya, kita tidak tahu bagaimana mencari dy/dx dalam situasi ini. Elemen baru dalam masalah ini adalah bahwa kita menghadapi sebuah persamaan yang secara gamblang (emplisit) tidak terselesaikan untuk y. Apakah mungkin untuk mencari dy/dx dalam keadaan seperti ini. Ya, diferensialkan kedua ruas persamaan y3 + 7y = x3 terhadap x dan samakan hasil-hasilnya. Dalam melakukan ini kita anggap bahwa persamaan yang diberikab memang menentukan y sebagai suatu fungsi x. Jadi setelah memakai Aturan Rantai pada suku pertama kita peroleh 32. + 7 = 32 Yang belakangan dapat diselesaikan untuk dy/dx sebagai berikut. (32 + 7) = 32
  20. 20. Andry Thymoty_Kalkulus I 20 = 32 32 + 7 Perhatikan bahwa ungkapan kita untuk dy/dx mencakup x dan y, suatu kenyataan yang sering manyusahkan. Tetapi jika kita hanya ingin mencari kemiringan pada sebuah titik dimana koordinatnya diketahui, tidak ada kesukaran. Di (2,1) = 3(2)2 3(1)2 + 7 = 12 10 = 6 5 Kemiringannya adalah 6 5 Metode yang baru saja digambarkan untuk mencari dy/dx tanpa terlebih dahuu menyelesaikan persamaan yang diberikan y secara gamblang dalam bentuk x disebut pendiferensialan implisit. Tetapi apakah metode tersebut masuk akal, apakah ia memberikan jawaban yang benar?
  21. 21. Andry Thymoty_Kalkulus I 21 BAB IV PENGGUNAAN TURUNAN Maksimum dan Minimum Dalam kehidupan sering kali kita dihadapkan pada masalah penentuan cara terbaik untuk melakukan sesuatu. Kadang-kadang ini ternyata merupakan masalah pemaksimumkan atau peminimumkan suatu fungsi pada himpunan tertentu. Jika demikian metode kalkulus menyediakan alat ampuh untuk pemecahan masalah tersebut. Teorema A Teorema Kewujudan Maks-Min. Jika f kontinu pada selang tertutup [a,b], maka f mencapai nilai maksimum dan nilai minimum. (perhatikan kata-kata kunci: f harus kontinu dan himpunan s harus berupa selang tertutup) Teorema B Teorema Titik Kritis. Andaikan f didefinisikan pada selang I yang memuat titik c. Jika f(c) adalah titik ekstrim, maka c haruslah titik kritis yakni c berupa salah satu: titik ujung dari I titik stasioner dari f(f(c) = 0) titik singular dari f(f(c) tidak ada) Bukti. Pandang kasus pertama dimana f(c) adalah nilai maksimum f pada I dan andaikan bahwa c bukan titik ujung ataupun titik singular. Akan cukup untuk memperlihatkan bahwa c adalah titik stasioner. Sekarang, karena f(c) adalah nilai maksimum, f(x) f(c) untuk semua x dalam I; yaitu ( ) ( ) 0 Jadi jika x < c, sehingga x c < 0, maka ( ) () 0 .......... (1) Sedangkan jika x > c maka ( ) () 0 .......... (2) Tetapi f(c) ada, karena c bukan titik singular. Akibatnya bilamana kita biarkan x c- dalam (1) dan x c+ , kita peroleh masing-masing, f(c) 0 dan f(c) 0. Kita simpulkan bahwa f(c) = 0, seperti yang diinginkan.
  22. 22. Andry Thymoty_Kalkulus I 22 Kemotongan dan Kecekungan Definisi Andaikan f terdefinisi pada selang I (terbuka, tertutup, atau tak sekalipun). Kita katakan bahwa: f adalah naik pada I jika untuk setiap pasangan bilangan x1 dan x2 dalam I. 1 < 2 => ( 1) < ( 2) f adalah turun pada I jika untuk setiap pasangan bilangan x1 dan x2 dalam I. 1 < 2 => ( 1) > ( 2) F monoton murni pada I jika ia naik pada I atau turun pada I. Teorema A Teorema Kemotonan. Andaikan f kontinu pada selang I dan dapat didiferensialkan pada setiap titik dalam dari I. Jika f(x) > 0 untuk semua titik dalam x dari I, maka f naik pada I. Jika f(x) < 0 untuk semua titik dalam x dari I, maka f turun pada I. Teorema B Teorema Kecekungan. Andaikan f terdiferensialkan dua kali pada selang terbuka (a, b). Jika f(x) > 0 untuk semua x dalam (a, b), maka f cekung ke atas pada (a, b). Jika f(x) < 0 untuk semua x dalam (a, b), maka f cekung ke bawah pada (a, b).
  23. 23. Andry Thymoty_Kalkulus I 23 Maksimum dan Minimum Lokal Definisi Andaikan s daerah asalf memuat titik c. Kita katakan bahwa: f(c) nilai maksimum lokal f jika terdapat selang (a, b) yang memuat c sedemikian sehingga f(c) adalah nilai maksimum f pada (a, b) S f(c) nilai minimum lokal f jika terdapat selang (a, b) yang memuat c sedemikian sehingga f(c) adalah nilai minimum f pada (a, b) S f(c) nilai ekstrim lokal f jika ia berupa nilai maksimum lokal atau minimum lokal. Teorema A Uji Turunan Pertama untuk Ekstrim Lokal. Andaikan f kontinu pada selang terbuka (a, b) yang memuat titik kritis c. Jika f(x) > 0 untuk setiap x dalam (a, c) dan f(x) < 0 untuk setiap x dalam (c, b) maka f(c) adalah nilai maksimum lokal f. Jika f(x) < 0 untuk setiap x dalam (a, c) dan f(x) > 0 untuk setiap x dalam (c, b) maka f(c) adalah nilai minimum lokal f. Jika f(x) bertanda sama pada kedua pihak c, maka f(c) bukan nilai ekstrim lokal f Teorema B Uji Turunan Kedua untuk Ekstrim Lokal. Andaikan f dan f ada pada setiap titik dalam selang terbuka (a, b) yang memuat c dan andaikan f(c) = 0 Jika f(c) < 0, f(c) adalah nilai maksimum lokal f Jika f(c) > 0, f(c) adalah nilai minimum lokal f
  24. 24. Andry Thymoty_Kalkulus I 24 DAFTAR PUSTAKA Edwin J. Purcel; Dale Verbeg; Steven E Rigdon/Kalkulus jilid 1 Djohan Warsoma dan Wono Setya Budhi.2007.Diktat Kalkulus I, Departemen Matematika, Fakultas MIPA Institut Teknologi Bandung Ginting Kristina Br, 2013. Materi Kuliah Matematika, Jurusan Farmasi Poltekes Kemenkes Kupang Aleksius Madu.2013.Bahan Ajar Kalkulus I, Program Studi Pendidikan Matematika Jurusan MIPA Universitas Nusa Cendana Kupang