Jembatan Wheatstone

52
HIMPUNAN MAHASISWA MESIN UNIVERSITAS SRIWIJAYA NAMA : ARIEF HERMIN CAESAR NIM : 03151381419113 Jembatan Wheatstone adalah alat ukur yang ditemukan oleh Samuel Hunter Christie pada 1833 dan meningkat dan dipopulerkan oleh Sir Charles Wheatstone pada tahun 1843. Ini digunakan untuk mengukur suatu yang tidak diketahui hambatan listrik dengan menyeimbangkan dua kaki dari rangkaian jembatan, satu kaki yang mencakup komponen diketahui. kerjanya mirip dengan aslinya potensiometer Hukum dasar rangkaian listrik yang berhubungan dengan jembatan wheatstone :g 1. Hukum Ohm Hukum Ohm menyatakan “Jika suatu arus listrik melalui suatu penghantar, maka kekuatan arus tersebut adalah sebanding-larus dengan tegangan listrik yang terdapat diantara kedua ujung penghantar tadi”.Hukum ini dicetuskan oleh Georg Simon Ohm, seorang fisikawan dari Jerman pada tahun 1825 dan dipublikasikan pada sebuah paper yang berjudul The Galvanic Circuit Investigated Mathematically pada tahun 1827.Secara matematis, hukum Ohm ini dituliskan dimana, I = arus listrik yang mengalir pada suatu penghantar (Ampere), V = tegangan listrik yang terdapat pada kedua ujung penghantar (Volt), R = hambatan listrik yang terdapat pada suatu penghantar (Ohm) 2. Hukum Kirchoff I Dipertengahan abad 19, Gustav Robert Kichoff (1824-1887) menemukan cara untuk menentukan arus listrik pada rangkaian bercabang yang kemudian dikenal dengan hukum Kirchoff. Hukum Kirchoff berbunyi “Jumlah kuat arus yang masuk dalam titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan.”. Jumlah I masuk = I keluar Hukum Kirchoff II Hukum Kirchoff II berbunyi, “Dalam rangkaian tertutup, jumlah aljabar GGL (E) dan jumlah penurunan potensial sama dengan nol.” Maksud dari jumlah penurunan potensial sama dengan nol adalah tidak adanya energi listrik yang hilang dalam rangkaian tersebut atau dalam arti semua energi bisa digunakan atau diserap. TujuanPercobaan, Setelah melakukan percobaan ini mahasiswa diharapkan mampu :Memahami prinsip kerja Jembatan Wheatstone,

Transcript of Jembatan Wheatstone

HIMPUNAN MAHASISWA MESINUNIVERSITAS SRIWIJAYA

NAMA : ARIEF HERMIN CAESARNIM : 03151381419113

Jembatan Wheatstoneadalahalat ukur yang ditemukan olehSamuel Hunter Christie pada 1833 dan meningkat dan dipopulerkan oleh SirCharles Wheatstone pada tahun 1843.Ini digunakan untuk mengukur suatu yang tidak diketahuihambatan listrik dengan menyeimbangkan dua kaki darirangkaian jembatan, satu kaki yang mencakup komponen diketahui.kerjanya mirip denganaslinyapotensiometer Hukum dasar rangkaian listrik yang berhubungan dengan jembatan wheatstone :g 1. Hukum Ohm

Hukum Ohmmenyatakan Jika suatu arus listrik melalui suatu penghantar, maka kekuatan arus tersebut adalah sebanding-larus dengan tegangan listrik yang terdapat diantara kedua ujung penghantar tadi.Hukum ini dicetuskan olehGeorg Simon Ohm, seorangfisikawan dariJerman pada tahun1825 dan dipublikasikan pada sebuah paper yang berjudulThe Galvanic Circuit Investigated Mathematicallypada tahun1827.Secara matematis, hukum Ohm ini dituliskan dimana, I =arus listrik yang mengalir pada suatu penghantar (Ampere), V =tegangan listrik yang terdapat pada kedua ujung penghantar (Volt), R =hambatan listrik yang terdapat pada suatu penghantar (Ohm) 2. Hukum Kirchoff I Dipertengahan abad 19, Gustav Robert Kichoff (1824-1887) menemukan cara untuk menentukan arus listrik pada rangkaian bercabang yang kemudian dikenal dengan hukum Kirchoff. Hukum Kirchoff berbunyi Jumlah kuat arus yang masuk dalam titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan.. Jumlah I masuk = I keluar

Hukum Kirchoff IIHukum Kirchoff II berbunyi, Dalam rangkaian tertutup, jumlah aljabar GGL (E) dan jumlah penurunan potensial sama dengan nol. Maksud dari jumlah penurunan potensial sama dengan nol adalah tidak adanya energi listrik yang hilang dalam rangkaian tersebut atau dalam arti semua energi bisa digunakan atau diserap. TujuanPercobaan, Setelah melakukan percobaan ini mahasiswa diharapkan mampu :Memahami prinsip kerja Jembatan Wheatstone, Menyusun sendiri rangkaian Jembatan Wheatstone, Menentukan besarnya hambatan yang belum diketahui dengan Jembatan Weatstone, Menghitung hambatan pengganti untuk rangkaian seri dan paralel. Dasar Teori hambatan listrik merupakan karakteristik suatu bahan pengantar listrik/ konduktor,yang dapat di gunakan untukmengatur besarnya arus listrik yang melewati suatu rangkaian. Hambatan sebuah konduktor di antara dua titik diukur dengan memasang sebuah beda potensial diantara titik-titik tersebut dan membandingkannya dengan arus listrik yang terukur. ( R=V/ I ). Cara pengukuran hambatan listrik dengan voltmeter dan ampermeter dapat menggunakan rangkain sperti gambar (1) dan gambar (2). Gambar 1. Pengukuran Hambatan cara pertama 1. Buktikan pengukuran gambar 1 menghasilkan harga R dalam persamaan (1)) Gambar 2. Pengukuran hambatan cara kedua 2. Buktikan pengukuran gambar 2 menghasilkan harga R dalam persamaan (2) ! Metode jembatan Wheatstone dapat di gunakan untuk mengukur hambatan listrik. Cara ini tidak memerlukan alat ukur voltmeter dan amperemater,cukup satu Galvanometer untuk melihat apakah ada arus listrik yang melalui suatu rangkaian. Prinsip dari rangkaian jembatan Wheatstone di perlihatkan pada gambar (3). Gambar 3. Rangkaian Jembatan Wheatstone Keterangan Gambar :S: Saklar penghubung, G:Galvanometer, E: Sumber tegangan arus, Rs:Hambatan geser, Ra dan Rb:Hambatan yang sudah di ketahui nilainya., Rx: Hambatan yang akan di tentukan nilainya. Saat saklar S di tutup,maka arus akan melewati rangkaian.Jika jarum Galvanometer menyimpang artinya ada arus yang melewatinya,yaitu antara titik C dan D ada beda potensial.Dengan mengatur besarnya Ra dan Rb juga hambatan geser Rs akan dapat di capai galvanometer G tak teraliri arus,artinya tak ada beda potensial antara titik C dan D. Dengan demikian akan berlaku persamaan : Untuk menyederhanakan rangkaian dan untuk menghubungkan besarnya R bergantung pada panjang penghantar, maka rangkaian jembatan Wheatstone dapat di ubah menggunakan kawat penghantar seperti gambar (4 ) di bawah ini: Gambar 4. Rangkaian Jembatan Wheatstone menggunakan kontak geser di atas kawat penghanta. Pada kawat penghantar AB di berikan suatu kontak geser yang berasl dari ujung Galvanometer. Gunanya untuk mengatur agar tercapai pengukuran panjang L1dan L2 yang akan menghasilkan arus di Galvanometer sama dengan NOL. Oleh karena itu pada kawat AB perlu di lengkapi skala ukuran panjang. Dengan menghubungkan persamaan (3) dengan persamaan (4) diperoleh hasil sebagai berikut: Peralatan yang diperlukan :a. Satu set Rangakaian Jembatan Wheatstone, yang terdiri dari :DC Power Supply, Galvanometer, Hambatan Pembanding ( Ra ), Hambatan yang akan diukur ( tertutup gelangnya ). Susun rangkaian seperti pada gambar (4). Setelah rangkaian yang anda susun di setujui assisten, hubungkan catu daya ke jaringan PLN.. Tempatkan kotak geser di tengah-tengah kawat hambatan. ON kan posisi saklar catu daya. Geser kotak gesernya sehingga arus yang melalui Galvanometer menjadi Nol. Catat harga L1 dan L2 (sertakan ketidakpastiannya). Ulangi langkah nomor 3-5 untuk harga Rx yang lain. Ulangi langkah nomor 1-5 untuk Rx yang di hubungkan seri (gunakan hambatan di atas ). Ulangi langkah nomor 1-5 untuk hambatan Rx yang di hubungkan paralel ( gunakan hambatan di atas). Rangkaian listrik adalah susunan komponen-komponen elektronika yang dirangkai dengan sumber tegangan menjadi satu kesatuan yang memiliki fungsi dan kegunaan tertentu. Arus listrik dalam suatu rangkaian listrik hanya dapat mengalir jika rangkaian listrik tersebut berada dalam keadaan terbuka. Berikut adalah ilustrasi rangkaian listrik Dari simulasi rangkaian listrik di atas, lampu akan menyala apabila rangkaian berada dalam kondisi tertutup (tersambung dengan saklar). Lampu menyala karena dalam rangkaian tersebut mengalir arus listrik sebesar I. Berdasarkan susunan komponen komponennya, rangkaian listrik dibedakan manjadi 3, yaitu rangkaian seri, rangkaian paralel, dan rangkaian campuran (seri-paralel). Sedangkan menurut kompleksitas rangkaian, rangkaian listrik dibedakan menjadi rangkaian listrik sederhana dan rangkaian listrik majemuk. Hambatan listrik digunakan untuk mengatur besarnya arus listrik dalam suatu rangkaian. Jika hambatan listrik dilalui arus listrik akan terjadi perubahan energi listrik menjadi energi kalor, dan hal ini merupakan prinsip kerja, misalkan kompor dan setrika listrik. Hambatan listrik dari suatu pengantar (konduktor) adalah perbandingan dari beda potensial antara ujung konduktor dengan arus listrik yang melaluinya. Oleh karena itu salah satu cara untuk mengukur besar hambatan listrik dari konduktor adalah mengukur beda potensial dari ujung-ujungnya dengan voltmeter dan juga mengukur arus listrik yang melaluinya dengan amperemeter. Untuk pengukuran hambatan listrik dengan voltmeter dan amperemeter dapat digunakan rangkaian- rangkaian seperti pada gambar 1a atau gambar 1b. Pada gambar 1a amperemeter A mengukur arus iR yang melalui hambatan R, tetapi voltmeter V menunjukkan pembacaan beda potensial Vac dan bukan beda potensial Vbc yaitu beda potensial yang sebenarnya dari ujung-ujung hambatan R. Cara pengukuran hambatan R dengan rangkaian gambar 1a hanya akan memberikan nilai R yang sebenarnya yaitu perbandingan dari Vac dan iR jika hambatan dalam dari amperemeter RA sama dengan nol. Jika, RA 0 yang diperoleh dari hasil bagi Vac dan iR harus dikoreksi. Pada rangkaian gambar 1b voltmeter V menunjukkan pembacaan beda potensial Vab dari ujung-ujung R, tetapi amperemeter A menunjukkan pembacaan arus i dimana i = iR + iV yaitu ir arus yang melalui R dan iV arus yang melalui voltmeter V. Nilai R yang sebenarnya adalah Vab dibagi dengan iR tetapi karena yang ditunjukkan oleh amperemeter ialah i, nilai R yang diperoleh dari pembacaan pada voltmeter V dan amperemeter A harus dikoreksi untuk memperoleh nilai R yang sebenarnya. metoda "Jembatan Wheatstone". Mengukur besarnya hambatan listrik yang belum diketahui dengan metoda "Jembatan Wheatstone" pada dasarnya ialah membandingkan besar hambatan yang belum diketahui dengan besar hambatan listrik yang sudah diketahui nilainya. Gambar 2 menunjukkan prinsip dari rangkaian listrik Jembatan Wheatstone. Keterangan :E : sumber tegangan listrik searah, S : penghubung arus. G : galvanometer, RG : hambatan geser (rheo stat), R1 dan R2 : hambatan listrik yang diketahui nilainya, Rb : bangku hambatan, X : hambatan yang akan ditentukan nilainya. Setelah S ditutup, dalam rangkaian akan ada arus listrik. Jika jarum dari galvanometer G mengalami penyimpangan berarti ada arus listrik yang melalui galvanometer G, berarti juga antara titik C dan titik D ada beda potensial. Dengan mengubah-ubah besarnya hambatanRb, R1 dan juga R2, dapat diusahakan sehingga galvanometer G tidak dilalui arus lagi, yang berarti potensial titik C dan titik D sama. Karena itu arus yang melalui R1 dan R2 sama, misalnya i1. Demikian juga arus yang melalui Rb dan X sama misalnya i2. Dengan menggunakan hukum Ohm, dapat diperoleh nilai dari X yang dinyatakan dengan R1, R2 dan Rb sebagai berikut : Untuk menyederhanakan rangkaian dan mempermudah pengukuran hambatan R1 dan hambatan R2 antara A dan B dapat digantikan dengan kawat lurus yang serba sama dan panjangnya L.Untuk menambah ketelitian pengukuran pada rangkaian dapat ditambahkan komutator K yang dapat digunakan untuk membalikkan arah arus dalam rangkaian. Pada kawat hambatan dapat digeser-geserkan kontak geser C untuk mengubah-ubah besarnya hambatan RAC dan RCB. Dengan mengeser-geserkan kontak geser C pada kawat hambatan AB atau dengan mengubah-ubah Rb, dapat dicapai keadaan hingga potensial titik C sama dengan potensial titik D, yang dalam hal ini ditunjukkan oleh tidak menyimpangnya jarum dari galvanometer G. Jika hal ini telah dicapai, maka X dapat dinyatakan dengan persamaan : Dengan mengukur panjang L1 (panjang kawat AC) dan L2 = L - L1 (panjan kawat CB) maka jika R telah diketahui besarnya hambatan X dapat dihitung dengan persamaan (2) Gambaran secara umum Modul Jembatan Wheatstone ini adalah menentukan nilai suatu hambatan dengan cara melakukan perbandingan dengan hambatan lain yang sudah diketahui nilainya. Selain memberikan pemahaman metoda Jembatan Wheatstone, diharapkan modul ini juga memberikan kepada penggunanya tentang rangkaian seri dan paralel pada suatu rangkaian listrik serta hal-hal yang berhubungan dengan rangkaian dan hambatan listrik.Teori dasar jembatan wheatstoneHambatan listrik suatu penghantar merupakan karakteristik dari suatu bahan penghantar tersebut yang mana adalah kemampuan dari penghantar itu untuk mengalirkan arus listrik, yang secara matematis dapat dituliskan: r=p. (L/A) Dimana, R : Hambatan listrik suatu penghantar (), : Resitivitas atau hambatan jenis (. m), L : Panjang penghantar (m), A : Luas penghantar ( m) Menurut hukum Ohm, hambatan listrik juga merupakan hasil perbandingan dari besarnya beda potensial pada ke-2 ujung penghantar terhadap besarnya arus listrik yang mengalir melalui hambatan tersebut.Secara matematis dapat dituliskan: R=V/IDimana:R : Hambatan (), V : Beda potensial (V), I : Arus Listrik (A) Cara menentukan besar suatu hambatan biasanya dapat dilakukan dengan cara: 1. Menggunakan teori hubungan antara resitivitas terhadap besar hambatan ( jika hambatan berupa suatu penghantar), yang mana harus diketahui luas dari lebar penghantar dan panjang penghantar serta harus diketahui juga hambatan jenis dari bahan penghantar. Namun bila besar hambatan merupakan suatu komponen listrik ( R ), dapat diketahui dengan cara mengukur besar arus yang mengalir dan besar beda potensial pada ke-2 ujung penghantar, lalu gunakan hukum Ohm yang mana didapat besar hambatan berbanding lurus dengan besar beda potensial dan berbanding terbalik terhadap besar arus listrik yang mengalir. Dapat juga dengan menggunakan metode jembatan Wheatstone, yaitu menggunakan rangkaian jembatan Wheatstone dan melakukan perbandingan antara besar hambatan yang telah diketahui dengan besar hambatan yang belum diketahui yang tentunya dalam keadaan jembatan disebut seimbang ( G=0 ). Rangkaian jembatan wheatstone adalah susunan dari 4 buah hambatan, yang mana 2 dari hambatan tersebut adalah hambatan variable dan hambatan yang belum diketahui besarnya yang disusun secara seri satu sama lain dan pada 2 titik diagonalnya dipasang sebuah galvanometer dan pada 2 titik diagonal lainnya diberikan sumber tegangan. Dengan mengatur sedemikian rupa besar hambatan variable sehingga arus yang mengalir pada Galvanometer = 0, dalam keadaan ini jembatan disebut seimbang, sehingga sesuai dengan hukum Ohm berlaku persamaan : Rangkaian jembatan wheatstone juga dapat disederhanakan dengan menggunakan kawat geser bila besarnya hambatan bergantung pada panjang penghantar. PengertianHukum Ohm Didalam logam pada keadaan suhu tetap, rapat arus I berbanding lurus dengan medan listrik. Hubungan antara tegangan, arus, dan hambatan disebut Hukum Ohm. Ditemukan oleh George Simon Ohm dan dipublikasikan pada sebuah paper pada tahun 1827. the galvanic Circuit Investigated Mathematically, prinsip ohm adalah besarnya arus listrik yang mengalir melalui sebuah penghantar metal pada rangkaian, Ohm menemukan sebuah persamaan yang simple, menjelaskan bagaimana hubungan antar tegangan, arus dan hambatan yang salaing berhubungan. Hukum Ohm : Tegangan dinyatakan dengan nilai volt, disimbolkan E dan V, Arus dinyatakan dengan Ampere, disimbolkan I, Hambatan dinyatakan dengan Ohm, disimbolkan R. Jika luas penampang A yang diperhatikan cukup kecil dan tegak lurus kearah J (misalnya panjang konduktor besar sekali dibanding dengan luas penampangnya), maka J dapat dianggap sama pada seluruh bagian penampang hingga I = J . A maka untuk beda potensial berlaku V = E . dl dan juga integrasi diambil sepanjang suatu garis gaya V = E . dl Terlihat bahwa faKtor yang berupa integrasi hanya tergantung dari konduktornya dan merupakan sifat khusus konduktornya dan biasa disebut sebagai tahanan (R) atau resistansinya. Dapat dituliskan V = I . R resistansinya. Dapat dituliskan V = I . R Pengertian Hukum Kirchoff Hukum kirchoff terbagi menjadi dua, yaitu: Hukum Kirchoff I Dipertengahan abad 19, Gustav Robert Kichoff (1824-1887) menemukan cara untuk menentukan arus listrik pada rangkaian bercabang yang kemudian dikenal dengan hukum Kirchoff. Hukum Kirchoff berbunyi Jumlah kuat arus yang masuk dalam titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan. Hukum Kirchoff II Hukum Kirchoff II berbunyi, Dalam rangkaian tertutup, jumlah aljabar GGL (E) dan jumlah penurunan potensial sama dengan nol Maksud dari jumlah penurunan potensial sama dengan nol adalah tidak adanya energi listrik yang hilang dalam rangkaian tersebut atau dalam arti semua energi bisa digunakan atau diserap. Pengertian Galvanometer, Galvanometer adalah alat yang digunakan untuk deteksi dan pengukuran arus. Kebanyakan alat itu kerjanya tergantung pada momen yang berlaku pada kumparan di dalam medan magnet. Bentuk mula-mula dari galvanometer adalah seperti alat yang dipakai Oersted yaitu jarum kompas yang diletakkan dibawah kawat yang dialiri arus yang akan diukur. Kawat dan jarum diantara keduanya mengarah utara-selatan apabila tidak ada arus di dalam kawat. Kepekaan galvanometer semacam ini bertambah apabila kawat itu dililitkan menjadi kumpar an dalam bidang vertical dengan jarum kompas ditengahnya. Dan instrument semacam ini dibuat oleh Lord Kelvin pada tahun 1890, yang tingkat kepekaanya jarang sekali dilampaui oleh alat-alat yang ada pada waktu ini. Prinsip dari metode jembatan wheatstone adalah Hubungan antara resitivitas dan hambatan, yang berarti setiap penghantar memiliki besar hambatan tertentu. Dan juga menentukan hambatan sebagai fungsi dari perubahan suhu, Hukum Ohm yang menjelaskan tentang hubungan antara hambatan, tegangan dan arus listrik. Yang mana besar arus yang mengalir pada galvanometer diakibatkan oleh adanya suatu hambatan, Hukum Kirchoff 1 dan 2, yang mana sesuai dari hukum ini menjelaskan jembatan dalam keadaan seimbang karena besar arus pada ke-2 ujung galvanometer sama besar sehingga saling meniadakan. kalo dalam aplikasi teknik sipil salah satunya adalah dalam percobaan mengukur regangan pada benda uji berupa beton atau baja. Dalam percobaan kita gunakan strain gauge, yaitu semacam pita yang terdiri dari rangkaian listrik untuk mengukur dilatasi benda uji berdasarkan perubahan hambatan penghantar di dalam strain gauge. Strain gauge ini direkatkan kuat pada benda uji sehingga deformasi pada benda uji akan sama dengan deformasi pada strain gauge. Seperti kita ketahui, jika suatu material ditarik atau ditekan, maka terjadi perubahan dimensi dari material tersebut sesuai dengan sifat2 elastisitas benda. Perubahan dimensi pada penghantar akan menyebabkan perubahan hambatan listrik, ingat persamaan R = L/A. Perubahan hambatan ini sedemikian kecilnya, sehingga untuk mendapatkan hasil eksaknya harus dimasukkan kedalam rangkaian jembatan Wheatstone. Rangkaian listrik beserta jembatan Wheatstonenya sudah ada di dalam strain gauge. menggunakan sensor regangan mekanik/ strain gages/ filamen regangan. filamen tersebut memiliki nilai elastisitas tertentu layak na pegas dan memiliki nilai R yang besar na akan berubah tergantung tekanan yg diberikan ( filamen tersebut akan berubah dimensi kemudian nilai R na berubah sesuai pers. R=ro. l/A) - filamen regangan ditempatkan pada rangkaian jembatan wheatstone yg sisa ketiga hambatan lain na R na diketahui (untuk mode paling sederhana) - jembatan wheatstone akan membaca pemberian tekanan/pembebanan sebagai perubahan tegangan - perubahan tegangan masuk amplifier - tegangan dr amplifier diolah oleh mikrokontroler untuk dipetakan antara tegangan Vs massa - data yg telah diolah kemudian ditampilkan pada display na! mis : In the end anda akan melihat 1 kresek beras ditempat diatas timbangan tsb akan menunjuk angka 0.75 kg! Benda yang melakukan gerak lurus berubah beraturan, mempunyai percepatan yang tetap, Ini berarti pada benda senantiasa bekerja gaya yang tetap baik arahnya maupun besarnya. Bila gayanya selalu berubah-ubah, percepatannyapun berubah-ubah pula. Gerak yang berulang dalam selang waktu yang sama disebut Gerak Periodik. Gerak periodik ini selalu dapat dinyatakan dalam fungsi sinus atau cosinus, oleh sebab itu gerak periodik disebut Gerak Harmonik. Jika gerak yang periodik ini bergerak bolak-balik melalui lintasan yang sama disebut Getaran atau Osilasi. Waktu yang dibutuhkan untuk menempuh satu lintasan bolak-balik disebut Periode, sedangkan banyaknya getaran tiap satuan waktu disebut Frekwensi. Hubungan antara periode (T) dan frekwensi (f) menurut pernyataan ini adalah : Satuan frekwensi dalam SI adalah putaran per detik atau Hertz (Hz). Posisi pada saat resultan gaya bekerja pada partikel yang bergetar sama dengan nol disebut posisi seimbang. Perhatikan sebuah benda massanya m digantungkan pada ujung pegas, pegas bertambah panjang. Dalam keadaan seimbang, gaya berat w sama dengan gaya pegas F, resultan gaya sama dengan nol, beban diam. Dari kesimbangannya beban diberi simpangan y, pada beban bekerja gaya F, gaya ini cenderung menggerakkan beban keatas. Gaya pegas merupakan gaya penggerak, padahal gaya pegas sebanding dengan simpangan pegas. F = - k y ; k tetapan pegas. Mudah dipahami bahwa makin kecil simpangan makin kecil pula gaya penggerak. Gerakan yang gaya penggeraknya sebanding dengan simpangan disebut Gerak Harmonis ( Selaras ). Tanda negatif ( - ) harus digunakan karena arah F dan Y selalu berlawanan. Menurut Hukum Newton II, pada gerak benda ini berlaku Persamaan ini disebut persamaan differensial gerak harmonik sederhana. Kali ini ada sedikit eksperimen yang bisa sahabat coba sendiri dirumah. Alat dan Bahan 2 buah bola lampu Seperti pada video, Kabel secukupnya, saklar, 2 buah Baterai ukuran AA 1.5 V Pertanyaan : Kenapa ketika 1 bola lampu di cabut, lampu yang lainnya ikut mati ? Hambatan listrik suatu penghantar merupakan karakteristik dari suatu bahan penghantar tersebut yang mana adalah kemampuan dari penghantar itu untuk mengalirkan arus listrik, yang secara matematis dapat dituliskan. Dimana:R : Hambatan listrik suatu penghantar (), : Resitivitas atau hambatan jenis (. m), L : Panjang penghantar (m), A : Luas penghantar ( m) Menurut hukum Ohm, hambatan listrik juga merupakan hasil perbandingan dari besarnya beda potensial pada ke-2 ujung penghantar terhadap besarnya arus listrik yang mengalir melalui hambatan tersebut. Secara matematis dapat dituliskan: R=V/I Dimana:, R : Hambatan (), V : Beda potensial (V), I : Arus Listrik (A) Cara menentukan besar suatu hambatan biasanya dapat dilakukan dengan cara: 1. Menggunakan teori hubungan antara resitivitas terhadap besar hambatan ( jika hambatan berupa suatu penghantar), yang mana harus diketahui luas dari lebar penghantar dan panjang penghantar serta harus diketahui juga hambatan jenis dari bahan penghantar. Namun bila besar hambatan merupakan suatu komponen listrik ( R ), dapat diketahui dengan cara mengukur besar arus yang mengalir dan besar beda potensial pada ke-2 ujung penghantar, lalu gunakan hukum Ohm yang mana didapat besar hambatan berbanding lurus dengan besar beda potensial dan berbanding terbalik terhadap besar arus listrik yang mengalir. Dapat juga dengan menggunakan metode jembatan Wheatstone, yaitu menggunakan rangkaian jembatan Wheatstone dan melakukan perbandingan antara besar hambatan yang telah diketahui dengan besar hambatan yang belum diketahui yang tentunya dalam keadaan jembatan disebut seimbang ( G=0 ). Rangkaian jembatan wheatstone adalah susunan dari 4 buah hambatan, yang mana 2 dari hambatan tersebut adalah hambatan variable dan hambatan yang belum diketahui besarnya yang disusun secara seri satu sama lain dan pada 2 titik diagonalnya dipasang sebuah galvanometer dan pada 2 titik diagonal lainnya diberikan sumber tegangan. Dengan mengatur sedemikian rupa besar hambatan variable sehingga arus yang mengalir pada Galvanometer = 0, dalam keadaan ini jembatan disebut seimbang, sehingga sesuai dengan hukum Ohm berlaku persamaan : Rangkaian jembatan wheatstone juga dapat disederhanakan dengan menggunakan kawat geser bila besarnya hambatan bergantung pada panjang penghantar. Pengertian Hukum Ohm, Didalam logam pada keadaan suhu tetap, rapat arus I berbanding lurus dengan medan listrik. Hubungan antara tegangan, arus, dan hambatan disebut Hukum Ohm. Ditemukan oleh George Simon Ohm dan dipublikasikan pada sebuah paper pada tahun 1827. the galvanic Circuit Investigated Mathematically, prinsip ohm adalah besarnya arus listrik yang mengalir melalui sebuah penghantar metal pada rangkaian, Ohm menemukan sebuah persamaan yang simple, menjelaskan bagaimana hubungan antar tegangan, arus dan hambatan yang salaing berhubungan. Hukum Ohm : Tegangan dinyatakan dengan nilai volt, disimbolkan E dan V, Arus dinyatakan dengan Ampere, disimbolkan I, Hambatan dinyatakan dengan Ohm, disimbolkan R. Jika luas penampang A yang diperhatikan cukup kecil dan tegak lurus kearah J (misalnya panjang konduktor besar sekali dibanding dengan luas penampangnya), maka J dapat dianggap sama pada seluruh bagian penampang hingga maka untuk beda potensial berlaku. dl dan juga integrasi diambil sepanjang suatu garis gaya . dl Terlihat bahwa faKtor yang berupa integrasi hanya tergantung dari konduktornya dan merupakan sifat khusus konduktornya dan biasa disebut sebagai tahanan (R) atau resistansinya. Dapat dituliskan V = I . R resistansinya. Dapat dituliskan V = I . R Pengertian Hukum Kirchoff, Hukum kirchoff terbagi menjadi dua, yaitu: Dipertengahan abad 19, Gustav Robert Kichoff (1824-1887) menemukan cara untuk menentukan arus listrik pada rangkaian bercabang yang kemudian dikenal dengan hukum Kirchoff. Hukum Kirchoff berbunyi Jumlah kuat arus yang masuk dalam titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan. Hukum Kirchoff II Hukum Kirchoff II berbunyi, Dalam rangkaian tertutup, jumlah aljabar GGL (E) dan jumlah penurunan potensial sama dengan nol Maksud dari jumlah penurunan potensial sama dengan nol adalah tidak adanya energi listrik yang hilang dalam rangkaian tersebut atau dalam arti semua energi bisa digunakan atau diserap. Pengertian Galvanometer, Galvanometer adalah alat yang digunakan untuk deteksi dan pengukuran arus. Kebanyakan alat itu kerjanya tergantung pada momen yang berlaku pada kumparan di dalam medan magnet. Bentuk mula-mula dari galvanometer adalah seperti alat yang dipakai Oersted yaitu jarum kompas yang diletakkan dibawah kawat yang dialiri arus yang akan diukur. Kawat dan jarum diantara keduanya mengarah utara-selatan apabila tidak ada arus di dalam kawat. Kepekaan galvanometer semacam ini bertambah apabila kawat itu dililitkan menjadi kumparan dalam bidang vertical dengan jarum kompas ditengahnya. Dan instrument semacam ini dibuat oleh Lord Kelvin pada tahun 1890, yang tingkat kepekaanya jarang sekali dilampaui oleh alat-alat yang ada pada waktu ini. Prinsip dari metode jembatan wheatstone adalah Hubungan antara resitivitas dan hambatan, yang berarti setiap penghantar memiliki besar hambatan tertentu. Dan juga menentukan hambatan sebagai fungsi dari perubahan suhu, Hukum Ohm yang menjelaskan tentang hubungan antara hambatan, tegangan dan arus listrik. Yang mana besar arus yang mengalir pada galvanometer diakibatkan oleh adanya suatu hambatan, Hukum Kirchoff 1 dan 2, yang mana sesuai dari hukum ini menjelaskan jembatan dalam keadaan seimbang karena besar arus pada ke-2 ujung galvanometer sama besar sehingga saling meniadakan.Hukum Ohm adalah suatu pernyataan bahwa besar arus listrik yang mengalir melalui sebuah penghantar selalu berbanding lurus dengan beda potensial yang diterapkan kepadanya.[1]

HYPERLINK "http://id.wikipedia.org/wiki/Hukum_Ohm" \l "cite_note-1" [2] Sebuah benda penghantar dikatakan mematuhi hukum Ohm apabila nilai resistansinya tidak bergantung terhadap besar dan polaritas beda potensial yang dikenakan kepadanya.[1] Walaupun pernyataan ini tidak selalu berlaku untuk semua jenis penghantar, namun istilah "hukum" tetap digunakan dengan alasan sejarah.[1] Secara matematis hukum Ohm diekspresikan dengan persamaan. dimana I adalah arus listrik yang mengalir pada suatu penghantar dalam satuan Ampere, V adalah tegangan listrik yang terdapat pada kedua ujung penghantar dalam satuan volt, dan R adalah nilai hambatan listrik (resistansi) yang terdapat pada suatu penghantar dalam satuan ohm. Hukum ini dicetuskan oleh Georg Simon Ohm, seorang fisikawan dari Jerman pada tahun 1825 dan dipublikasikan pada sebuah paper yang berjudul The Galvanic Circuit Investigated Mathematically pada tahun 1827. [5] Pengertian Arus, Kuat arus listrik yaitu banyaknya muatan positif yang berpindah pada satuan waktu. Tiga hal penting tentang arus listrik : Arah arus listrik mengikuti pergerakan muatan positif. Arus listrik mengalir dari potensial tinggi ke potensial rendah. Arah arus listrik berlawanan dengan elektron. Satuan waktu, dibagi dengan muatan listrik bisa mengalir melalui kabel atau penghantar listrik lainnya. Pada zaman dahulu, arus konvensional didefinisikan sebagai aliran muatan positif, sekalipun kita tahu bahwa arus listrik yang dihasilkan itu dari aliran elektron yang bermuatan negatif kearah yang sebaliknya. Arus listrik yaitu aturan partikel-partikel yang bermuatan listrik. Syarat-syarat arus listrik adalah adanya beda potensial antara dua kutub pada rangkaian tertutup Pengertian Power Supply Uninterrutible Power Supply disingkat dengan UPS adalah alat yang menyediakan atau mengalirkan listrik secara terus menerus dan tidak terputus pada computer. Alat ini tersambung pada outlet listrik dan dihubungkan dengan computer. Power adalah sumber daya, pembangkit daya, biasanya diartikan sebagai sumber listrik, kekuasaan pangkat daya dan kuasa. Power konektor adalah pin yang menyambungkan motherboard dengan power supply pada casing computer, Supply Change Management disingkat SCM. Solusi untuk menekan biaya inventori, mengefisienkan system operasional perusahaan. High Power Amplifier adalah alat penguat daya atau sinyal berkualitas tinggi. Pengertian Hukum Ohm Didalam logam pada keadaan suhu tetap, rapat arus I berbanding lurus dengan medan listrik. Hubungan antara tegangan, arus, dan hambatan disebut Hukum Ohm. Ditemukan oleh George Simon Ohm dan dipublikasikan pada sebuah paper pada tahun 1827. the galvanic Circuit Investigated Mathematically, prinsip ohm adalah besarnya arus listrik yang mengalir melalui sebuah penghantar metal pada rangkaian, Ohm menemukan sebuah persamaan yang simple, menjelaskan bagaimana hubungan antar tegangan, arus dan hambatan yang salaing berhubungan. Hukum Ohm : Tegangan dinyatakan dengan nilai volt, disimbolkan E dan V, Arus dinyatakan dengan Ampere, disimbolkan, Hambatan dinyatakan dengan Ohm, disimbolkan R. Jika luas penampang A yang diperhatikan cukup kecil dan tegak lurus kearah J (misalnya panjang konduktor besar sekali dibanding dengan luas penampangnya), maka J dapat dianggap sama pada seluruh bagian penampang hingga maka untuk beda potensial berlaku dan juga integrasi diambil sepanjang suatu garis gaya. Dl Terlihat bahwa faKtor yang berupa integrasi hanya tergantung dari konduktornya dan merupakan sifat khusus konduktornya dan biasa disebut sebagai tahanan (R) atau resistansinya. Dapat dituliskan V = I . R Pengertian Hukum Kirchoff Hukum kirchoff terbagi menjadi dua, yaitu: Hukum Kirchoff I Dipertengahan abad 19, Gustav Robert Kichoff (1824-1887) menemukan cara untuk menentukan arus listrik pada rangkaian bercabang yang kemudian dikenal dengan hukum Kirchoff. Hukum Kirchoff berbunyi Jumlah kuat arus yang masuk dalam titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan. Jumlah I masuk = I kelua Hukum Kirchoff II Hukum Kirchoff II berbunyi, Dalam rangkaian tertutup, jumlah aljabar GGL (E) dan jumlah penurunan potensial sama dengan nol Maksud dari jumlah penurunan potensial sama dengan nol adalah tidak adanya energi listrik yang hilang dalam rangkaian tersebut atau dalam arti semua energi bisa digunakan atau diserap. Pengertian Hambatan Jenis Resistor merupakan penghantar yang bentuknya mudah dicirikan, terutama oleh hambatannya yang disebut penghambat / resistor. Biasanya, dilambangkan dengan . Penghambat dapat dihubungkan antara satu dengan yang lain membentuk jaringan hambatan. Pengertian Galvanometer, Galvanometer adalah alat yang digunakan untuk deteksi dan pengukuran arus. Kebanyakan alat itu kerjanya tergantung pada momen yang berlaku pada kumparan di dalam medan magnet. Bentuk mula-mula dari galvanometer adalah seperti alat yang dipakai Oersted yaitu jarum kompas yang diletakkan dibawah kawat yang dialiri arus yang akan diukur. Kawat dan jarum diantara keduanya mengarah utara-selatan apabila tidak ada arus di dalam kawat. Kepekaan galvanometer semacam ini bertambah apabila kawat itu dililitkan menjadi kumparan dalam bidang vertical dengan jarum kompas ditengahnya. Dan instrument semacam ini dibuat oleh Lord Kelvin pada tahun 1890, yang tingkat kepekaanya jarang sekali dilampaui oleh alat-alat yang ada pada waktu ini. Pengertian Jembatan Wheatstone, Jembatan wheatstone merupakan suatu susunan rangkaian listrik untuk mengukur suatu tahanan yang tidak diketahui harganya (besarnya). Kegunaan dari jembatan wheatstone adalah untuk mengukur nilai suatu hambatan dengan cara arus yang mengalir pada galvanometer sama dengan nol (karena potensial ujung-ujungnya sama besar). Sehingga dapat dirumuskan dengan perkalian silang . Cara kerja dari jembatan wheatstone adalah sirkuit listrik empat tahanan dan sumber tegangan yang dihubungkan melalui dua titik diagonal dan pada kedua titik diagonal yang lain dimana galvanometer ditempatkan seperti yang diperlihatkan pada jembatan wheatstone. Tujuan dari percobaan ini adalah untuk menentukan besarnya suatu hambatan dengan menggunakan metode jembatan wheatstone dimana prinsip dari metode ini adalah berdasarkan hukum ohm dan menentukan harga tahanan sebagai fungsi dari perubahan suhu.1.Arus listrik adalah banyaknya muatan listrik yang mengalir tiap satuan waktu. Muatan listrik bisa mengalir melalui kabel atau penghantar listrik lainnya. Pada zaman dulu, Arus konvensional didefinisikan sebagai aliran muatan positif, sekalipun kita sekarang tahu bahwa arus listrik itu dihasilkan dari aliran elektron yang bermuatan negatif ke arah yang sebaliknya. Satuan SI untuk arus listrik adalah ampere (A). 2. Hambatan listrik adalah perbandingan antara tegangan listrik dari suatu komponen elektronik (misalnya resistor) dengan arus listrik yang melewatinya. Hambatan listrik dapat dirumuskan sebagai berikut: R = V/I Atau di mana V adalah tegangan dan I adalah arus.Satuan SI untuk Hambatan adalah Ohm (R).3.Tegangan listrik (kadang disebut sebagai Voltase) adalah perbedaan potensi listrik antara dua titik dalam rangkaian listrik, dinyatakan dalam satuan volt. Besaran ini mengukur energi potensial sebuah medan listrik untuk menyebabkan aliran listrik dalam sebuah konduktor listrik. Tergantung pada perbedaan potensi listrik satu tegangan listrik dapat dikatakan sebagai ekstra rendah, rendah, tinggi atau ekstra tinggi. Satuan SI untuk Tegangan adalah volt (V). 4. Hukum Ohm Pada dasarnya sebuah rangkaian listrik terjadi ketika sebuah penghantar mampu dialiri electron bebas secara terus menerus. Aliran yang terus-menerus ini yang disebut dengan arus, dan sering juga disebut dengan aliran, sama halnya dengan air yang mengalir pada sebuah pipa. Tenaga (the force) yang mendorong electron agar bisa mengalir dalam sebauh rangkaian dinamakan tegangan. Tegangan adalah sebenarnya nilai dari potensial energi antara dua titik. Ketika kita berbicara mengenai jumlah tegangan pada sebuah rangkaian, maka kita akan ditujukan pada berapa besar energi potensial yang ada untuk menggerakkan electron pada titik satu dengan titik yang lainnya. Tanpa kedua titik tersebut istilah dari tegangan tersebut tidak ada artinya. Elektron bebas cenderung bergerak melewati konduktor dengan beberapa derajat pergesekan, atau bergerak berlawanan. Gerak berlawanan ini yang biasanya disebut dengan hambatan. Besarnya arus didalam rangkaian adalah jumlah dari energi yang ada untuk mendorong electron, dan juga jumlah dari hambatan dalam sebuah rangkaian untuk menghambat lajunya arus. Sama halnya dengan tegangan hambatan ada jumlah relative antara dua titik. Dalam hal ini, banyaknya tegangan dan hambatan sering digunakan untuk menyatakan antara atau melewati titik pada suatu titik. Untuk menemukan arti dari ketetapan dari persamaan dalam rangkaian ini, kita perlu menentukan sebuah nilai layaknya kita menentukan nilai masa, isi, panjang dan bentuk lain dari persamaan fisika. Standard yang digunakan pada persamaan tersebut adalah arus listrik, tegangan ,dan hambatan. Symbol yang digunakan adalah standar alphabet yang digunakan pada persamaan aljabar. Standar ini digunakan pada disiplin ilmu fisika dan teknik, dan dikenali secara internasional. Setiap unit ukuran ini dinamakan berdasarkan nama penemu listrik. Amp dari orang perancis Andre M. Ampere, volt dari seorang Italia Alessandro Volta, dan ohm dari orang german Georg Simon ohm. Simbol matematika dari setiap satuan sebagai berikut R untuk resistance (Hambatan), V untuk voltage (tegangan), dan I untuk intensity (arus), standard symbol yang lain dari tegangan adalah E atau Electromotive force. Simbol V dan E dapat dipertukarkan untuk beberapa hal, walaupun beberapa tulisan menggunakan E untuk menandakan sebuah tegangan yang mengalir pada sebuah sumber ( seperti baterai dan generator) dan V bersifat lebih umum. Salah satu dasar dalam perhitungan elektro, yang sering dibahas mengenai satuan couloumb, dimana ini adalah besarnya energi yang setara dengan electron pada keadaan tidak stabil. Satu couloumb setara dengan 6.250.000.000.000.000.000. electron. Symbolnya ditandai dengan Q dengan satuan couloumb. Ini yang menyebabkan electron mengalir, satu ampere sama dengan 1 couloumb dari electron melewati satu titik pada satu detik. Pada kasus ini, besarnya energi listrik yang bergerak melewati conductor (penghantar). Sebelum kita mendefinisikan apa itu volt, kita harus mengetahui bagaimana mengukur sebuah satuan yang kita ketahui sebagai energi potensial. Satuan energi secara umum adalah joule dimana sama dengan besarnya work (usaha) yang ditimbulkan dari gaya sebesar 1 newton yang digunakan untuk bergerak sejauh 1 meter (dalam satu arah). Dalam british unit, ini sama halnya dengan kurang dari pound dari gaya yang dikeluarkan sejauh 1 foot. Masukkan ini dalam suatu persamaan, sama halnya dengan I joule energi yang digunakan untuk mengangkat berat pound setinggi 1 kaki dari tanah, atau menjatuhkan sesuatu dengan jarak 1 kaki menggunakan parallel pulling dengan pound. Maka kesimplannya, 1 volt sama dengan 1 joule energi potensial per 1 couloumb. Maka 9 volt baterai akan melepaskan energi sebesar 9 joule dalam setiap couloum dari electron yang bergerak pada sebuah rangkian. Satuan dan symbol dari satuan elektro ini menjadi sangat penting diketahui ketika kita mengeksplorasi hubungan antara mereka dalam sebuah rangkaian. Yang pertama dan mungkin yang sangat penting hubungan antara tegangan, arus dan hambatan ini disebut hokum ohm. Ditemukan oleh Georg Simon Ohm dan dipublikasikannya pada sebuah paper pada tahun 1827, The Galvanic Circuit Investigated Mathematically. Prinsip ohm ini adalah besarnya arus listrik yang mengalir melalui sebuah penghantar metal pada rangkaian, ohm menemukan sebuah persamaan yang simple, menjelaskan bagaimana hubungan antara tegangan, arus, dan hambatan yang saling berhubungan. Setelah kita mengenal istilah tegangan, arus, dan hambatan sekarang lebih berkembang menjadi sebuah rumus. Bagaimanakah hubungan antara kuat arus, tegangan listrik dan hambatan tersebut? Seorang ahli fisika dari Jerman, George Simon Ohm pada tahun 1826 berhasil menemukan hubungan antara arus, tegangan dan hambatan tersebut. Rumus dalam teori dasar listrik yang disebut hukum ohm berasal dari sebuah percobaan dalam satu rangkaian listrik yang beliau lakukan. Apakah yang dia temukan? Kuat arus listrik yang mengalir dalam suatu penghantar sebanding dengan beda potensial antara ujung-ujung penghantar pada suhu tetap. Sehingga dapat disimpulkan : Hasil bagi antara beda potensial (V) dan kuat arus (I) cenderung sama. Nilai hasil bagi (V) dan (I) tersebut adalah nilai penghambat atau resistan (R)Hambatan atau disebut juga tahanan atau resistansi adalah sesuatu yang sering dibicarakan dalam bidang fisika elektronika. Apa sebenarnya fungsi dari hambatan tersebut? Dari data pengamatan kalian menunjukkan ada hubungan yang menarik antara kuat arus dan hambatan. Jika nilai hambatan diperbesar maka kuat arus akan menurun untuk beda potensial yang tetap, sehingga bisa ditulis, Persaman di atas menunjukkan bahwa hambatan berbanding terbalik dengan kuat arus. Dari Tabel 9.1 ditunjukkan bahwa jika nilai hambatan konstan maka hubungan antara kuat arus dan beda potesial adalah berbanding lurus, dengan kata lain semakin besar beda potensial makin besar kuat arusnya, lihat Gambar 9.1. Secara matematika dapat ditulis, Penggabungan ke dua persamaan dapat ditulis, Persamaan di atas disebut hukum Ohm, dengan R adalah hambatan yang dinyatakan dalam satuan ohm ditulis dalam simbol (omega). Berdasarkan hukum Ohm, 1 ohm didefinisikan sebagai hambatan yang digunakan dalam suatu rangkaian yang dilewati kuat arus sebesar 1 ampere dengan beda potensial 1 volt. Oleh karena itu, kita dapat mendefinisikan pengertian hambatan yaitu perbandingan antara beda potensial dan kuat arus. Ampere Definisi satu ampere adalah satu coulomb muatan yang bergerak melalui sebuah titik dalam satu sekon. Arus listrik dapat terjadi apabila di dalam sebuah rangkaian terdapat beda potensial. Hubungan antara kuat arus listrik dan beda potensial listrik secara grafik dapat dilihat pada Gambar 9.1. Hubungan linier antara kuat arus dan beda potensial menunjukkan makin besar beda potensial makin besar kuat arusnya. Hubungan kesebandingan antara beda potensial dan kuat arus perlu adanya faktor pembanding yang disebut hambatan. Contoh soal 9.1: Pada sebuah percobaan hukum Ohm, diperoleh grafik seperti pada gambar di bawah ini. B. Hambatan, Konduktor, Semikonduktor, dan IsolatorHambatanAliran listrik di dalam sebuah penghantar ternyata tidak sama besarnya, hal ini ditunjukkan oleh nyala lampu pijar maupun angka yang ditunjukkan oleh amperemeter. Ketidaksamaan ini disebabkan oleh penghantar yang selalu memiliki hambatan. Hambatan dari suatu penghantar mempengaruhi besar kecilnya arus listrik yang melewatinya. Berdasarkan Kegiatan 9.3, besar hambatan suatu bahan atau penghantar nilainya berbeda-beda tergantung pada hambatan jenis, , panjang, ,dan luas penampang, A. Sebuah alat yang dapat digunakan secara langsung untuk mengukur besar kecilnya nilai hambatan sebuah penghantar disebut ohmmeter. Sedang multimeter adalah alat yang dapat digunakan untuk mengukur kuat arus, beda potensial, dan hambatan pada suatu penghantar atau rangkaian listrik. Apabila multimeter akan digunakan untuk mengukur besar hambatan atau digunakan sebagai ohmmeter, maka sakelar harus diputar sehingga menunjuk ke arah yang bertanda R. Penghantar yang hendak diukur hambatannya dipasang di antara ujung kabel penghubung alat itu. Jarum akan bergerak ke suatu kedudukan tertentu sehingga besar hambatan dapat dibaca pada skala yang bertandakan OHM atau . Hambatan suatu penghantar juga dapat diukur secara tidak langsung, yaitu dengan cara mengukur besar arus yang lewat pada penghantar dan mengukur beda potensial ujung-ujung penghantar itu. Oleh karena itu, kita menggunakan dua alat yang berfungsi sebagai amperemeter dan satu alat lagi yang berfungsi sebagai voltmeter. Cara menyusun alat tersebut adalah sebagaimana terdapat pada Gambar 9.2. Pada Gambar 9.2 adalah sebuah rangkaian untuk mengukur besar hambatan dari lampu pijar. Dengan menggunakan rangkaian pada Gambar 9.3, maka besar arus listrik yang mengalir melalui lampu pijar dan beda potensial antara ujung-ujung lampu pijar dapat diketahui sehingga besarnya hambatan dari lampu tersebut dapat dihitung. Satuan hambatan dapat diturunkan sesuai persamaan berikut, yaitu: Hambatan sering digambarkan seperti pada Gambar 9.3. Dari hasil Kegiatan 9.4, hubungan antara hambatan, jenis bahan, panjang, luas penampang dan suhu dari suatu penghantar dapat dirumuskan secara matematika, Persamaan 9.5, menunjukkan bahwa hambatan tergantung pada suhu dari penghantar, semakin besar suhu, semakin besar nilai hambatannya. Ro adalah hambatan awal atau hambatan mula-mula, R adalah hambatan akhir dikarenakan faktor suhu, T = T1 T2 adalah perubahan suhu dinyatakan dalam derajat Celsius (C) dengan T1 adalah suhu awal penghantar dan T2 adalah suhu akhir penghantar, dan adalah koefisien suhu penghantar dinyatakan dalam satuan per C . Koefisien suhu ( dibaca "alpha") untuk beberapa bahan memiliki harga yang berbeda tergantung dari jenis bahan masing-masing. Hampir semua konduktor (termasuk nikrom) memiliki nilai koefisien suhu positif. Oleh karena itu hambatan sebuah konduktor akan bertambah jika suhu bahan tersebut bertambah. Nilai koefisien suhu dari beberapa bahan konduktor dapat kalian lihat pada Tabel 9.4. Konduktivitas Sifat dari bahan konduktor adalah tidak adanya medan listrik di dalam konduktor. Pernyataan ini benar jika konduktor dalam keadaan keseimbangan statis. Tujuan dari pembicaraan ini adalah ingin menggambarkan apa yang terjadi jika muatan bergerak dalam konduktor. Muatan yang bergerak dalam sebuah konduktor, akan menghasilkan arus di bawah pengaruh medan listrik. Medan listrik ini muncul karena adanya pergerakan muatan sehingga situasinya non-elektrostatis. Keadaan ini sedikit berlawanan dengan situasi untuk keseimbangan elektrostatis di mana muatan dalam keadaan diam sehingga tidak ada medan listrik di dalam. Muatan listrik yang dapat berpindah dari suatu tempat ke tempat lain adalah muatan elektron. Elektron-elektron yang mudah berpindah disebut elektron bebas. Elektron-elektron bebas dalam logam merupakan gas elektron yang pada suhu sangat tinggi 70.000C bersifat sebagai gas sempurna. Elektron-elektron bebas ini bergerak bebas di dalam sebuah bahan konduktor. Sehingga pada saat tertentu elektron-elektron ini akan berbenturan dengan elektron bebas yang lain. Dengan jumlah elektron bebas yang besar maka bahan konduktor mudah mengalirkan muatan listrik. Bahan konduktor yang baik dan sempurna jika mempunyai nilai konduktivitas yang besar yaitu, Sebaliknya untuk hambatan atau hambatan jenisnya mempunyai nilai mendekati nol atau sangat kecil. Bagaimana untuk isolator? Untuk isolator konduktivitas, hambatan, hambatan jenis, dan sifat elektron adalah berharga sebaliknya dengan konduktor. Konduktor dan isolator adalah suatu bahan yang mempunyai sifat kebalikan misalnya III untuk bahan konduktor mempunyai konduktivitas sangat besar sedang isolator sangat kecil. Konduktor mempunyai hambatan atau hambatan jenisnya kecil sedang untuk isolator hambatan atau hambatan jenisnya besar. Bagaimana untuk material atau bahan semikonduktor? Semikonduktor adalah suatu bahan atau benda yang mempunyai sifat sebagai konduktor dan isolator. Dengan kata lain bahan semikonduktor mempunyai kemampuan mengalirkan muatan di bawah sifat konduktor dan di atas sifat isolator. Untuk mendapatkan sifat konduktor dari bahan semikonduktor biasanya dilakukan penambahan jenis atom lain dengan konsentrasi tertentu atau disebut pendopingan. Contoh bahan ini adalah germanium, Ge dan silikon, Si. Bahan semikonduktor dapat dijumpai dalam penggunaan bahan-bahan elektronika. Tabel 9.5 menunjukkan bahwa nilai konduktivitas untuk bahan isolator dan konduktor mempunyai rentang yang sangat besar. Misalkan, berapa rentang nilai antara karet dan perak? Contoh soal 9.2 1. Sebuah kawat tembaga memiliki luas penampang 2 mm2. Jika panjang penghantar 2000 dan hambatan jenisnya 0,02 meter. Berapa nilai hambatan kawatnya? 1. Rangkaian Listrik Rangkaian listrik ada dua macam yaitu rangkaian listrik terbuka dan rangkaian listrik tertutup. Rangkaian listrik terbuka adalah rangkaian listrik yang memiliki ujung-ujung rangkaian. Contoh rangkaian terbuka dapat kalian lihat pada Gambar 9.5. Sedangkan rangkaian listrik tertutup adalah rangkaian listrik yang tidak memiliki ujung-ujung rangkaian. Di dalam rangkaian listrik tertutup ini arus listrik dapat mengalir mengikuti jenis suatu rangkaian. Contoh rangkaian listrik tertutup secara sederhana dapat dilihat pada Gambar 9.6. Rangkaian listrik juga dibedakan menjadi dua macam lagi yaitu rangkaian tidak bercabang dan rangkaian bercabang. Rangkaian tidak bercabang disebut rangkaian seri. Sedangkan rangkaian bercabang disebut rangkaian paralel.

2. Rangkaian SeriMisal tiga buah hambatan yang masing-masing R1, R2, dan R3 dirangkai seri. Susunan seri ketiga hambatan itu kemudian dihubungkan dengan sumber tegangan, lihat pada Gambar 9.7! Dari Kegiatan 9.5, kalian telah mengetahui bahwa pada rangkaian seri besarnya arus listrik yang mengalir di setiap titik besarnya sama. Apabila kuat arus yang lewat hambatan R1 adalah I1, kuat arus yang lewat hambatan R2 adalah I2, dan kuat arus yang lewat hambatan R3 adalah I3. Sedangkan kuat arus yang keluar dari sumber I, maka berlaku: Jika beda potensial di titik A dan B adalah V1, beda potensial di titik B dan C adalah V2 dan beda potensial di titik C dan D adalah V3, maka berlaku, Kedua persamaan di atas menunjukkan suatu persamaan yang berlaku untuk susunan seri. Dengan mengetahui definisi dari arus listrik adalah muatan yang bergerak per satuan waktu, sehingga arus listrik sebanding dengan muatan listrik. Oleh karena itu dapat ditulis, Dengan memperhatikan persamaan tersebut, selama tidak ada penambahan atau pengurangan muatan dalam suatu rangkaian maka berlaku hukum kekekalan muatan listrik. Bagaimanakah bunyi hukum kekekalan muatan listrik?

3. Rangkaian ParalelMisal tiga buah hambatan yang masing-masing R1, R2, dan R3 dirangkai secara paralel. Susunan paralel ketiga hambatan itu kemudian dihubungkan dengan sumber tegangan, lihat Gambar 9.8! Pada rangkaian paralel terdapat dua titik, yaitu A dan titik B. Titik A dan titik B disebut titik percabangan. Kalian telah mengetahui dari hasil Kegiatan 9.5, bahwa jumlah kuat arus listrik yang masuk titik percabangan, titik A, sama besar dengan jumlah kuat arus listrik yang keluar dari titik percabangan, titik B. Oleh karena itu, a. Pada titik percabangan A Dengan I adalah jumlah kuat arus yang masuk ke percabangan. Berkaitan dengan muatan dan arus listrik, maka persamaan di atas dapat ditulis bahwa, b. Pada titik percabangan B Dengan Iadalah jumlah kuat arus yang keluar dari percabangan, dan Q adalah muatan yang keluar dari percabangan.

dapat disimpulkan bahwa dalam satuan waktu yang sama, jumlah kuat arus atau muatan yang masuk percabangan sama dengan jumlah kuat arus atau muatan yang keluar dari percabangan. Pernyataan ini disebut hukum I Kirchhoff. Selama tidak ada penambahan muatan atau arus dari luar maka besarnya muatan total dan arus total adalah tetap, disebut hukum kekekalan muatan listrik. Satu hal yang penting adalah, bahwa pada rangkaian paralel beda potensial tiap-tiap cabang besarnyasama. Misal tiga buah hambatan yang masing-masing R1, R2, dan R3 dirangkai seri, lihat Gambar 9.9! Ketiga hambatan tersebut dapat diganti dengan satu hambatan dan disebut hambatan pengganti. Karena rangkaian hambatan tersebut seri maka hambatan pengganti ini sering disebut hambatan seri, RS. Besar RS merupakan jumlah dari masingmasing hambatan.Dari persamaan di atas tampak bahwa hambatan pengganti untuk susunan seri merupakan jumlah dari masing-masing hambatan. Sedang besarnya nilai beda potensial antara ujung-ujung hambatan tidak sama, karena untuk seri yang mempunyai nilai konstan adalah arus dan muatan listrik yang melalui hambatan. Sehingga jika besar dari masing-masing hambatan berbeda, maka nilai beda potensialnya dari masing-masing hambatan juga berbeda. Misal tiga buah hambatan yang masingmasingnya R1, R2, dan R3 dirangkai paralel, lihat Gambar 9.10! Ketiga hambatan tersebut dapat diganti dengan satu hambatan yang disebut hambatan pengganti. Karena rangkaian hambatan tersebut paralel maka hambatan penggantinya disebut hambatan paralel (RP). Besar hambatan paralel (RP) dapat ditentukan menggunakan persamaan, Pada rangkaian paralel, beda potensial masingmasing cabang besarnya sama. Contoh soal 9.4: Perhatikan gambar di bawah ini Sumber tegangan adalah alat yang dapat menimbulkan beda potensial listrik. Sebuah sumber tegangan memiliki energi yang dapat digunakan untuk mengalirkan arus listrik disebut GGL, E. Sumbersumber tegangan pada umumnya memiliki hambatan yang disebut hambatan dalam r. Secara umum, sebuah rangkaian listrik selalu berlaku hukum Ohm dan hukum I Kirchhoff. Misal, sebuah rangkaian listrik sederhana yang terdiri atas sebuah hambatan luar, R, sumber tegangan, E, dan hambatan dalam r, lihat pada Gambar 9.11!Apabila hambatannya lebih dari satu, maka R ini merupakan hambatan pengganti dari beberapa hambatan tersebut. Kuat arus yang mengalir dalam rangkaian adalah sebagai berikut: Jika dalam suatu rangkaian terdiri atas beberapa baterai baik tersusun secara seri maupun paralel, maka Persamaan di atas dapat ditulis kembali, untuk seri, Dengan Es = nE, rs = nR, dan n adalah banyaknya baterai yang digunakan untuk rangkaian seri, sedang untuk rangkaian paralel: Karena EP= E dan rp=(r/n) maka persamaan di atas, dapat ditulis kembali, Dalam kehidupan sehari hari kadang kita tak menyadari tentang apa yang kita rasakan, tapi mungkin ini baru terasa oleh orang yang pernah ke "stroom" sama listrik, yang merasakan rasa "ngereunyeud" -nya, tapi dibalik semua itu, orang-orang terdahulu dari kita telah meneliti hal-hal ini, walau deskripsi tadi mungkin belum terlalu nyambung dengan materi yang akan kita bahasa hari ini, tapi langkah lebih baiknya kita menyadari apa yang ada di sekitar kita, setelah kita menyadari barulah kita fahami teori nya, atau sebaliknya, setelah kita memahami teori maka kita rasakan keberadaan nya dui alam ini. Oke dalam bahasan kali ini akan di berikan dua bahasan langsung yaitu tentang hukum yang di ungkapkan oleh Kirchoff dan oleh Ohm, keduanya sama membahas tentang arus, hanya bedanya ohm lebih pada arus yang mengalir pada konduktor yang memiliki beda potensial, sedangkan kirchoff menelaah kuat arus pada rangkaian, baik tertutup atau pada percabangan. yah terlalu banyak cuap cuap mungkin akan membuat bosan, langsung saja ya......, ini saya ambil dari berbagai sumber. Di pertengahan abad 19 Gustav Robert Kirchoff (1824 1887) menemukan cara untuk menentukan arus listrik pada rangkaian bercabang yang kemudian di kenal dengan Hukum Kirchoff. Hukum ini berbunyi Jumlah kuat arus yang masuk dalam titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan. Yang kemudian di kenal sebagai. Di pertengahan abad 19 Gustav Robert Kirchoff (1824 1887) menemukan cara untuk menentukan arus listrik pada rangkaian bercabang yang kemudian di kenal dengan Hukum Kirchoff. Hukum ini berbunyi Jumlah kuat arus yang masuk dalam titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan. Yang kemudian di kenal sebagai hukum Kirchoff I. Secara matematis dinyatakan :Bila digambarkan dalam bentuk rangkaian bercabang maka akan diperoleh sebagai berikut Hukum Kirchoff 2 dipakai untuk menentukan kuat arus yang mengalir pada rangkaian bercabang dalam keadaan tertutup (saklar dalam keadaan tertutup). Perhatikan gambar berikut! Hukum Kirchoff 2 berbunyi : Dalam rangkaian tertutup, Jumlah aljabbar GGL (E) dan jumlah penurunan potensial sama dengan nol. Maksud dari jumlah penurunan potensial sama dengan nol adalah tidak ada energi listrik yang hilang dalam rangkaian tersebut, atau dalam arti semua energi listrik bisa digunakan atau diserap. Dari gambar diatas kuat arus yang mengalir dapat ditentukan dengan menggunakan beberapa aturan sebagai berikut :Tentukan arah putaran arusnya untuk masing-masing loop, Arus yang searah dengan arah perumpamaan dianggap positif, Arus yang mengalir dari kutub negatif ke kutup positif di dalam elemen dianggap positif, Pada loop dari satu titik cabang ke titik cabang berikutnya kuat arusnya sama, Jika hasil perhitungan kuat arus positif maka arah perumpamaannya benar, bila negatif berarti arah arus berlawanan dengan arah pada perumpamaan. Arus listrik adalah banyaknya muatan listrik yang mengalir tiap satuan waktu. Muatan listrik bisa mengalir melalui kabel atau penghantar listrik lainnya. Pada zaman dulu, Arus konvensional didefinisikan sebagai aliran muatan positif, sekalipun kita sekarang tahu bahwa arus listrik itu dihasilkan dari aliran elektron yang bermuatan negatif ke arah yang sebaliknya. Satuan SI untuk arus listrik adalah ampere (A). Hambatan listrik adalah perbandingan antara tegangan listrik dari suatu komponen elektronik (misalnya resistor) dengan arus listrik yang melewatinya. Hambatan listrik dapat dirumuskan sebagai berikut: R = V/I atau di mana V adalah tegangan dan I adalah arus. Satuan SI untuk Hambatan adalah Ohm (R). Tegangan listrik (kadang disebut sebagai Voltase) adalah perbedaan potensi listrik antara dua titik dalam rangkaian listrik, dinyatakan dalam satuan volt. Besaran ini mengukur energi potensial sebuah medan listrik untuk menyebabkan aliran listrik dalam sebuah konduktor listrik. Tergantung pada perbedaan potensi listrik satu tegangan listrik dapat dikatakan sebagai ekstra rendah, rendah, tinggi atau ekstra tinggi. Pada dasarnya sebuah rangkaian listrik terjadi ketika sebuah penghantar mampu dialiri electron bebas secara terus menerus. Aliran yang terus-menerus ini yang disebut dengan arus, dan sering juga disebut dengan aliran, sama halnya dengan air yang mengalir pada sebuah pipa. Tenaga (the force) yang mendorong electron agar bisa mengalir dalam sebauh rangkaian dinamakan tegangan. Tegangan adalah sebenarnya nilai dari potensial energi antara dua titik. Ketika kita berbicara mengenai jumlah tegangan pada sebuah rangkaian, maka kita akan ditujukan pada berapa besar energi potensial yang ada untuk menggerakkan electron pada titik satu dengan titik yang lainnya. Tanpa kedua titik tersebut istilah dari tegangan tersebut tidak ada artinya. Elektron bebas cenderung bergerak melewati konduktor dengan beberapa derajat pergesekan, atau bergerak berlawanan. Gerak berlawanan ini yang biasanya disebut dengan hambatan. Besarnya arus didalam rangkaian adalah jumlah dari energi yang ada untuk mendorong electron, dan juga jumlah dari hambatan dalam sebuah rangkaian untuk menghambat lajunya arus. Sama halnya dengan tegangan hambatan ada jumlah relative antara dua titik. Dalam hal ini, banyaknya tegangan dan hambatan sering digunakan untuk menyatakan antara atau melewati titik pada suatu titik. Untuk menemukan arti dari ketetapan dari persamaan dalam rangkaian ini, kita perlu menentukan sebuah nilai layaknya kita menentukan nilai masa, isi, panjang dan bentuk lain dari persamaan fisika. Standard yang digunakan pada persamaan tersebut adalah arus listrik, tegangan ,dan hambatan. Symbol yang digunakan adalah standar alphabet yang digunakan pada persamaan aljabar. Standar ini digunakan pada disiplin ilmu fisika dan teknik, dan dikenali secara internasional. Setiap unit ukuran ini dinamakan berdasarkan nama penemu listrik. Amp dari orang perancis Andre M. Ampere, volt dari seorang Italia Alessandro Volta, dan ohm dari orang german Georg Simon ohm. Simbol matematika dari setiap satuan sebagai berikut R untuk resistance (Hambatan), V untuk voltage (tegangan), dan I untuk intensity (arus), standard symbol yang lain dari tegangan adalah E atau Electromotive force. Simbol V dan E dapat dipertukarkan untuk beberapa hal, walaupun beberapa tulisan menggunakan E untuk menandakan sebuah tegangan yang mengalir pada sebuah sumber ( seperti baterai dan generator) dan V bersifat lebih umum. Salah satu dasar dalam perhitungan elektro, yang sering dibahas mengenai satuan couloumb, dimana ini adalah besarnya energi yang setara dengan electron pada keadaan tidak stabil. Satu couloumb setara dengan 6.250.000.000.000.000.000. electron. Symbolnya ditandai dengan Q dengan satuan couloumb. Ini yang menyebabkan electron mengalir, satu ampere sama dengan 1 couloumb dari electron melewati satu titik pada satu detik. Pada kasus ini, besarnya energi listrik yang bergerak melewati conductor (penghantar). Sebelum kita mendefinisikan apa itu volt, kita harus mengetahui bagaimana mengukur sebuah satuan yang kita ketahui sebagai energi potensial. Satuan energi secara umum adalah joule dimana sama dengan besarnya work (usaha) yang ditimbulkan dari gaya sebesar 1 newton yang digunakan untuk bergerak sejauh 1 meter (dalam satu arah). Dalam british unit, ini sama halnya dengan kurang dari pound dari gaya yang dikeluarkan sejauh 1 foot. Masukkan ini dalam suatu persamaan, sama halnya dengan I joule energi yang digunakan untuk mengangkat berat pound setinggi 1 kaki dari tanah, atau menjatuhkan sesuatu dengan jarak 1 kaki menggunakan parallel pulling dengan pound. Maka kesimplannya, 1 volt sama dengan 1 joule energi potensial per 1 couloumb. Maka 9 volt baterai akan melepaskan energi sebesar 9 joule dalam setiap couloum dari electron yang bergerak pada sebuah rangkian. Satuan dan symbol dari satuan elektro ini menjadi sangat penting diketahui ketika kita mengeksplorasi hubungan antara mereka dalam sebuah rangkaian. Yang pertama dan mungkin yang sangat penting hubungan antara tegangan, arus dan hambatan ini disebut hokum ohm. Ditemukan oleh Georg Simon Ohm dan dipublikasikannya pada sebuah paper pada tahun 1827, The Galvanic Circuit Investigated Mathematically. Prinsip ohm ini adalah besarnya arus listrik yang mengalir melalui sebuah penghantar metal pada rangkaian, ohm menemukan sebuah persamaan yang simple, menjelaskan bagaimana hubungan antara tegangan, arus, dan hambatan yang saling berhubungan. Lampu pijar ini dapat menyala selama yang kamu inginkan karena arus listrik yang mengalir melewati filamen kawat tipis di dalamnya. Pada bola lampu energi listrik diubah menjadi energi cahaya dan panas. Energi pada atom-atom kawat menyebabkan terjadinya tumbukan antar atom sehingga suhu kawat meningkat dan membuatnya bersinar atau menghasilkan cahaya pada lampu pijar. Jenis listrik yang digunakan pada lampu ini disebut listrik dinamis, karena bergerak dari satu tempt ke tempat lain. Apakah listrik dinamis itu? Apa saja manfaatnya untuk manusia? Pemakaian energi listrik dewasa ini sudah sangat luas, bahkan manusia sangat sulit melepaskan diri dari kebutuhan dengan energi listrik. Semakin lama tidak ada satupun alat kebutuhan manusia yang tidak membutuhkan listrik. Karena semua ini manusia tiap hari selalu berfikir bagaimana menciptakan dan menggunakan energi listrik secara efektif dan efesien. ENERGILISTRIKMasih ingatkah kamu dengan pengertian energi?. Energi adalah kemampuan untuk melakukan usaha. Maka pengertian energi listrik adalah kemampuan untuk melakukan atau menghasilkan usaha listrik (kemampuan yang diperlukan untuk memindahkan muatan dari satu titik ke titik yang lain). Energi listrik dilambangkan dengan W. Sedangkan perumusan yang digunakan untuk menentukan besar energi listrik adalah Apabila persamaan tersebut dihubungkan dengan hukum Ohm ( V = I.R) maka diperoleh Satuan energi listrik lain yang sering digunakan adalah kalori, dimana 1 kalori sama dengan 0,24 Joule selain itu juga menggunakan satuan kWh (kilowatt jam) PEMANFAATAN ENERGI LISTRIKEnergi listrik dapat diubah-ubah menjadi berbagai bentuk energi yang lain. Energi listrik menjadi energi kalor, alat yang digunakan yaitu setrika listrik, ceret listrik, kompor listrik , dll Energi listrik menjadi energi cahaya, alat yang digunakan yaitu lampu pijar, lampu neon, dll Energi listrik menjadi energi gerak, alat yang digunakan yaitu kipas angin, penghisap debu, dll dan masih banyak lagi penggunaan energi listrik, Di SMP anda telah mempelajari konsep kuat arus dan tegangan listrik. Arus listrik hanya mengalir dalam suatu rangkaian yang tertutup. Di SMP anda juga telah mengetahui bahwa alat untuk mengukur arus mengalir melalui suatu komponen listri, misalnya resistor, adalah amperemeter. Tidak seperti pengukuran panjang dan waktu, setelah anda memilih amperemeter, anda harus merangkai dahulu amperemeter ke rangkaian listrik dengan benar. Di SMP anda juga sudah mengetahui bahwa alat untuk mengukur tegangan listrik adalah voltmeter. Anda juga telah mengetahui bahwa voltmeter harus dihubungkan paralel pada komponen listrik yang akan diukur tegangannya. Kapasitor adalah komponen listrik yang digunakan untuk menyimpan muatan listrik, dan secara sederhana terdiri dari dua konduktor yang dipisahkan oleh bahan penyekat (bahan dielektrik). Tiap-tiap koduktor disebut keping. Simbol yang digunakan untuk menampilkan sebuah kapastior dalam suatu rangkaian listrik adalah Dalam pemakaian normal, satu keping diberi muatan positif dan keping lainnya diberi muatan negatif yang besarnya sama. Antara kedua keping tercipta suatu medan listrik yang berarah dari keping positif menuju keping negatif. Dalam rangkaian listrik, kapasitor digunakan antara lain : (1). memilih frekuensi pada radio penerima, (2) filter dalam catudaya, )3). memadamkan bunga api pada sistem pengapian mobil, dan (4). menyimpan energi dalam rangkaian penyala elektronik. Sesuai penggunaannya, dalam praktek terdapat berbagai jenis kapasitor, antara lain : kapasitor kertas, kapasitor elektrolit, dan kapasitor variabel. Kemampuan kapasitor dalam menyimpan muatan listrik dinyatakan oleh besaran kapasitas atau kapasitansi (C), dan didefinisikan sebagai perbandingan anta muatan listrik q yang tersimpan dalam kapasitor dan beda potensial V antara kedua keping. Satuan kapasitas dalam SI adalah farad dan dari persamaan di atas diperoleh hubungan : Kapasitas kapasitor keping sejajar adalah : (1) sebanding dengan luas keping, (2) sebanding dengan permitivitas bahan penyekat , dan (3) berbanding terbalik dengan jarak pisah antarkeping d. Secara matematis kapasitas kapasitor keping sejajar dinyatakan dengan persamaan : dengan r adalah permitivitas relatif bahan penyekat, dan o adalah permitivitas vakum atau udara. Jika antara kedua keping hanya terdapat udara atau vakum (tidak terdapat bahan penyekat), maka kapasitas kapasitor dalam vakum atau udara ( diberi lambang Co) adalah Permitivitas relatif o adalah perbandingan antara kapasitas dalam bahan penyekat Cb dan kapasitas dalam vakum atau udara (Co). Jika pada suatu kapasitor keping sejajar beda potensial antar kepingnya diijinkan berubah, maka prinsip kita pegang : muatan adalah kekal. Jadi, muatan kapasitor sebelum disisipkan bahan penyekat (qo) sama dengan muatan kapasitor sesudah disisipkan bahan penyekat (qb). Misalkan keping yang satu dihubungkan dengan kutub positif batrai dan keping lainnya dihubungkan dengan kutub negatif baterai secara tetap, sehingga beda potensial antarkeping selalu sama dengan beda potensial antar kutub-kutub baterai. Jadi, beda potensial antar keping adalah tetap, sehingga muatan yang harus berubah. Dari persamaan di atas tampak bahwa muatan kapasitor setelah disisipkan bahan penyekat bertambah dibandingkan dengan muatan kapasitor dalam vakum atau udara (qo). Kapasitor menyimpan energi dalam bentuk medan listrik. Energi yang tersimpan dalam kapasitor (W) dinyatakan oleh :Susunan Seri Dalam susunan seri, muatan tiap kapasitor adalah sama, yaitu sama dengan muatan kapasitor penggantinya (q1=q2=q3=qek). Beda potensial tiap kapasitor dapat dihitung dengan persamaan Susunan Paralel,Dalam susunan paralel beda potensial tiap kapasitor adalah sama, yaitu sama dengan beda potensial kapasitor penggantinya (V1=V2=V3=Vek ). Muatan tiap kapasitor dihitung dengan persamaan :Dari persamaan di atas tampak, jika salah satu muatan atau beda potensial tidak sama, maka kapasitor tidak disusun seri maupun paralel.Kapasitor kapasitor yang disusun seri ataupun paralel dapat diganti dengan sebuah kapasitor tunggal, yang disebut dengan kapasitor pengganti, dengan kapasitas sebesar C ekivalen sedemikian sehingga muatan yang disimpan sama dengan muatan total yang disimpan oleh susunan kapasitor ketika beda potensial sama dengan beda potensial antar ujung-ujung susunan kapasitor.Hukum Joule

Bila sebatang logam dialiri arus listrik, maka tumbukan oleh pembawa muatan dalam logam mendapat energi sehingga menjadi panas dan atom-atom akan bergerak semakin kuat. Daya hilang yang diubah menjadi getaran atom dalam logam, dengan kata lain hilang sebagai kalor. Ketika hujan tiba dan mengguyur seluruh kota dengan derasnya. Saat kamu mendengar suara halilintar yang menghajar seluruh sudut kota. Sebenarnya halilintar yang kamu saksikan itu merupakan fenomena Fisika yaitu loncatan muatan listrik dari langit ke Bumi. Muatan listrik yang meloncat itu disebut dengan elektron (muatan negatif, dia itu bebas jalan-jalan). Loncatan elektron disebabkan karena adanya beda keadaan di langit dengan di Bumi (bahasa kerennya: adanya beda potensial listrik). Kok bisa? Listrik statis adalah listrik yang tidak mengalir dan perpindahan arusnya terbatas. Listrik dinamis adalah listrik yang mengalir. Sumber arus listrik yang dapat menghasilkan beda potensial yang dapat menyebabkan listrik dapat mengalir. Benda yang dapat menarik besi disebut MAGNET. Macam-macam bentuk magnet, antara lain : magnet batang magnet ladam magnet jarum Magnet dapat diperoleh dengan cara buatan. Jika baja di gosok dengan sebuah magnet, dan cara menggosoknya dalam arah yang tetap, maka baja itu akan menjadi magnet. Baja atau besi dapat pula dimagneti oleh arus listrik. Baja atau besi itu dimasukkan ke dalam kumparan kawat, kemudian ke dalam kumparan kawat dialiri arus listrik yang searah. Ujung-ujung sebuah magnet disebut Kutub Magnet. Garis yang menghubungkan kutub-kutub magnet disebut sumbu magnet dan garis tegak lurus sumbu magnet serta membagi dua sebuah magnet disebut garis sumbu. Sebuah magnet batang digantung pada titik beratnya. Sesudah keadaan setimbang tercapai, ternyata kutub-kutub batang magnet itu menghadap ke Utara dan Selatan. Kutub magnet yang menghadap ke utara di sebut kutub Utara. Kutub magnet yang menghadap ke Selatan disebut kutub Selatan. Hal serupa dapat kita jumpai pada magnet jarum yang dapat berputar pada sumbu tegak ( jarum deklinasi ). Kutub Utara jarum magnet deklinasi yang seimbang didekati kutub Utara magnet batang, ternyata kutub Utara magnet jarum bertolak. Bila yang didekatkan adalah kutub selatan magnet batang, kutub utara magnet jarum tertarik. Kesimpulan : Kutub-kutub yang sejenis tolak-menolak dan kutub-kutub yang tidak sejenis tarik-menarik Jika kita gantungkan beberapa paku pada ujung-ujung sebuah magnet batang ternyata jumlah paku yang dapat melekat di kedua kutub magnet sama banyak. Makin ke tengah, makin berkurang jumlah paku yang dapat melekat. Kesimpulan : Kekuatan kutub sebuah magnet sama besarnya semakin ke tengah kekuatannya makin berkurang.HUKUM COULOMB.Definisi : Besarnya gaya tolak-menolak atau gaya tarik menarik antara kutub-kutub magnet, sebanding dengan kuat kutubnya masing-masing dan berbanding terbalik dengan kwadrat jaraknya. Nilai permeabilitas benda-benda, ternyata tidak sama dengan permeabilitas hampa. Perbandingan antara permeabilitas suatu zat debgan permeabilitas hampa disebut permeabilitas relatif zat itu. Medan magnet adalah ruangan di sekitar kutub magnet, yang gaya tarik/tolaknya masih dirasakan oleh magnet lain. Kuat medan magnet di suatu titik di dalam medan magnet ialah besar gaya pada suatu satuan kuat kutub di titik itu di dalam medan magnet m adalah kuat kutub yang menimbulkan medan magnet dalam Ampere-meter. R jarak dari kutub magnet sampai titik yang bersangkutan dalam meter. dan H = kuat medan titik itu dalam Garis gaya adalah : Lintasan kutub Utara dalam medan magnet atau garis yang bentuknya demikian hingga kuat medan di tiap titik dinyatakan oleh garis singgungnya. Sejalan dengan faham ini, garis-garis gaya keluar dari kutub-kutub dan masuk ke dalam kutub Selatan. Untuk membuat pola garis-garis gaya dapat dengan jalan menaburkan serbuk besi disekitar sebuah magnet. Gambar pola garis-garis gaya. Rapat Garis-Garis Gaya ( FLUX DENSITY ) = B Definisi : Jumlah garis gaya tiap satuan luas yang tegak lurus kuat medan. Kuat medan magnet di suatu titik sebanding dengan rapat garis-garis gaya dan berbanding terbalik dengan permeabilitasnya. catatan : rapat garis-garis gaya menyatakan kebesaran induksi magnetik. Medan magnet yang rapat garis-garis gayanya sama disebut : medan magnet serba sama ( homogen ) Bila rapat garis-garis gaya dalam medan Diamagnetik Dan Para Magnetik, Sehubungan dengan sifat-sifat kemagnetan benda dibedakan atas Diamagnetik dan Para magnetik. Benda magnetik : bila ditempatkan dalam medan magnet yang tidak homogen, ujung-ujung benda itu mengalami gaya tolak sehingga benda akan mengambil posisi yang tegak lurus pada kuat medan. Benda-benda yang demikian mempunyai nilai permeabilitas relatif lebih kecil dari satu. Contoh : Bismuth, tembaga, emas, antimon, kaca flinta. Benda paramagnetik : bila ditempatkan dalam medan magnet yang tidak homogen, akan mengambil posisi sejajar dengan arah kuat medan. Benda-benda yang demikian mempunyai permeabilitas relatif lebih besar dari pada satu. Contoh : Aluminium, platina, oksigen, sulfat tembaga dan banyak lagi garam-garam logam adalah zat paramagnetik. Benda feromagnetik : Benda-benda yang mempunyai effek magnet yang sangat besar, sangat kuat ditarik oleh magnet dan mempunyai permeabilitas relatif sampai beberapa ribu. Contoh : Besi, baja, nikel, cobalt dan campuran logam tertentu ( almico ) Percobaan OERSTED Di atas jarum kompas yang seimbang dibentangkan seutas kawat, sehingga kawat itu sejajar dengan jarum kompas. jika kedalam kaewat dialiri arus listrik, ternyata jarum kompas berkisar dari keseimbangannya. Kesimpulan : Disekitar arus listrik ada medan magnet. Cara menentukan arah perkisaran jarum. a. Bila arus listrik yang berada anatara telapak tangan kanan dan jarum magnet mengalir dengan arah dari pergelangan tangan menuju ujung-ujung jari, kutub utara jarum berkisar ke arah ibu jari. b. Bila arus listrik arahnya dari pergelangan tangan kanan menuju ibu jari, arah melingkarnya jari tangan menyatakan perkisaran kutub Utara. Pola garis-garis gaya di sekitar arus lurus. Pada sebidang karton datar ditembuskan sepotong kawat tegak lurus, di atas karbon ditaburkan serbuk besi menempatkan diri berupa lingkaran-lingkaran yang titik pusatnya pada titik tembus kawat. Kesimpulan : Garis-garis gaya di sekitar arus lurus berupa lingkaran-lingkaran yang berpusatkan pada arus tersebut. Cara menentukan arah medan magnet Bila arah dari pergelangan tangan menuju ibu jari, arah melingkar jari tangan menyatakan arah medan magnet.HUKUM BIOT SAVART. Definisi : Besar induksi magnetik di satu titik di sekitar elemen arus, sebanding dengan panjang elemen arus, besar kuat arus, sinus sudut yang diapit arah arus dengan jaraknya sampai titik tersebut dan berbanding terbalik dengan kwadrat jaraknya. k adalah tetapan, di dalam sistem Internasional Vektor B tegak lurus pada l dan r, arahnya dapat ditentukan denagan tangan kanan. Jika l sangat kecil, dapat diganti dengan dl. Persamaan ini disebut hukum Ampere. Besar induksi magnetik di titik A yang jaraknya a dari kawat sebanding dengan kuat arus dalam kawat dan berbanding terbalik dengan jarak titik ke kawat. Titik A berjarak x dari pusat kawat melingkar besarnya induksi magnetik di A dirumuskan : Jika kawat itu terdiri atas N lilitan maka, Induksi magnetik di pusat lingkaran. Arah medan magnetik dapat ditentukan dengan aturan tangan kanan. Jika arah arus sesuai dengan arah melingkar jari tangan kanan arah ibu jari menyatakan arah medan magnet. Solenoide, Solenoide adalah gulungan kawat yang di gulung seperti spiral. Bila kedalam solenoide dialirkan arus listrik, di dalam selenoide terjadi medan magnet dapat ditentukan dengan tangan Besar induksi magnetik dalam solenoide. Jari-jari penampang solenoide a, banyaknya lilitan N dan panjang solenoide 1. Banyaknya lilitan pada dx adalah : atau n dx, n banyaknya lilitan tiap satuan panjang di titik P. Bila 1 sangat besar dibandingkan dengan a, dan p berada di tengah-tengah maka a1= 0 0 dan a2 = 180 0 Induksi magnetik di tengah-tengah solenoide : Bila p tepat di ujung-ujung solenoide a1= 0 0 dan a2 = 90 0 Toroida, Sebuah solenoide yanfg dilengkungkan sehingga sumbunya membentuk lingkaran di sebut Toroida. Bila keliling sumbu toroida 1 dan lilitannya berdekatan, maka induksi magnetik pada sumbu toroidGAYA LORENTZ

Pada percobaan oersted telah dibuktikan pengaruh arus listrik terhadap kutub magnet, bagaimana pengaruh kutub magnet terhadap arus listrik akan dibuktikan dari percobaan berikut : Seutas kawat PQ ditempatkan diantara kutub-kutub magnet ladam kedalam kawat dialirkan arus listrik ternyata kawat melengkung kekiri. Gejala ini menunjukkan bahwa medan magnet mengerjakan gaya pada arus listrik, disebut Gaya Lorentz. Vektor gaya Lorentz tegak lurus pada I dan B. Arah gaya Lorentz dapat ditentukan dengan tangan kanan. Bila arah melingkar jari-jari tangan kanan sesuai dengan putaran dari I ke B, maka arah ibu jari menyatakan arah gaya Lorents. Besar Gaya Lorentz. Hasil-hasil yang diperoleh dari percobaan menyatakan bahwa besar gaya Lorentz dapat dirumuskan sebagai : Satuan Kuat Arus, Kedalam kawat P dan Q yang sejajar dialirkan arus listrik. Bila arah arus dalam kedua kawat sama, kawat itu saling menarik. Penjelasannya sebagai berikut : Dilihat dari atas arus listrik P menuju kita digambarkan sebagai arus listrik dalam kawat P menimbulkan medan magnet. Medan magnet ini mengerjakan gaya Lorentz pada arus Q arahnya seperti dinyatakan anak panah F. Dengan cara yang sama dapat dijelaskan gaya Lorentz yang bekerja pada arus listrik dalam kawat P. Kesimpulan : Arus listrik yang sejajar dan searah tarik-menarik dan yang berlawanan arah tolak- menolak. Bila jarak kawat P dan Q adalah a, maka besar induksi magnetik arus P pada jarak a :. Gerak Partikel Bermuatan Dalam Medan Listrik. Pertambahan energi kinetik. Partikel A yang massanya m dan muatannya q berada dalam medan listrik serba sama, kuat medannya E arah vektor E kekanan. Pada partikel bekerja gaya sebasar F = qE, oleh sebab itu partikel memperoleh percepatan : Usaha yang dilakukan gaya medan listrik setelah partikel berpindah d adalah : Didalam medan listrik serba sama yang kuat medannya E, bergerak partikel bermuatan positif dengan kecepatan vx. Dalam hal ini partikel mengalami dua gerakan sekaligus, yakni gerak lurus beraturan sepanjang sumbu x dan gerak lurus berubah beraturan sepanjang sumbu y. Oleh sebab itu lintasannya berupa parabola. Setelah melintasi medan listrik, lintasannya menyimpang dari lintasannya semula. Kecepatan pada saat Besar gaya Lorentz pada partikel. Pada arus listrik yang berada dalam medan magnet bekerja gaya Lorentz. Arus listrik adalah gerakan partikel-partikel yang kecepatannya tertentu, oleh sebab itu rumus di atas dapat diubah menjadi : F adalah gaya Lorentz pada partikel yang muatannya q dan kecepatannya v, B besar induksi magnetik medan magnet, a sudut yang diapit vektor v dan B. Lintasan partikel bermuatan dalam medan magnet. Tanda x menyatakan titik tembus garis-garis gaya kemagnetan yang arah induksi magnetiknya ( B ) meninggalkan kita. Pada partikel yang kecepatannya v, bekerja gaya Lorentz. Vektor F selalu tegak lurus pada v, akibatnya partikel bergerak didalam medan magnet dengan lintasan bentuk : LINGKARAN. Gaya centripetalnya yang mengendalikan gerak ini adalah gaya Lorentz. Arah gaya Lorentz dapat ditentukan dengan kadah tangan kanan bila tangan kanan di buka : Ibu jari menunjukkan ( v ), keempat jari menunjukkan ( B ) dan arah telapak tangan menunjukkan. Medan adalah suatu besaran yang mempunyai harga pada tiap titik dalam ruang. Atau secara matematis, medan merupakan sesuatu yang merupakan fungsi kontinu dari posisi dalam ruang. Medan ada dua macam yaitu : - Medan Skalar, misalnya temperatur, potensial dan ketinggian - Medan vektor, misalnya medan listrik dan medan magnet Untuk membahas suatu medan listrik, digunakan pengertian kuat medan, yakni : Vektor gaya Coulomb yang bekerja pada suatu muatan yang kita lewatkan pada suatu titik dalam medan gaya ini, dan dinyatakan sebagai E(r). dalam bentuk matematis :Muatan sumber q berupa muatan titik terletak pada vektor posisi r, sedang titi p pada posisi r. Posisi relatif p terhadap muatan sumber adalah (r-r), vektor satuan arah SP adalah Jadi kuat medan listrik E di titik r oleh muatan q adalah X.2.2 Kuat Medan Listrik oleh Beberapa Muatan Titik Jika sumber muatan berupa beberapa muatan titik yang berbeda besar dan posisinya, maka kuat medan listrik resultan E (r )adalah penjumlahan masing-masing kuat medan, dimana secara matematis dinyatakan sebagai Bila ada N buah muatan titik sebagai sumber, dengan muatan sumber q1 yang masing-masing berada pada jarak ri, maka medan resultan pada vector posisi r adalah :Tinjaulah interaksi antara dua benda bermuatan yang dimensi geometrinya dapat diabaikan terhadap jarak antar keduanya. Maka dalam pendekatan yang cukup baik dapat dianggap bahwa kedua benda bermuatan tersebut sebagai titik muatan. Charles Augustin de Coulomb(1736-1806) pada tahun 1784 mencoba mengukur gaya tarik atau gaya tolak listrik antara dua buah muatan tersebut. Ternyata dari hasil percobaannya, diperoleh hasil sebagai berikut: * Pada jarak yang tetap, besarnya gaya berbanding lurus dengan hasil kali muatan dari masing masing muatan. * Besarnya gaya tersebut berbanding terbalik dengan kuadrat jarak antara kedua muatan. * Gaya antara dua titik muatan bekerja dalam arah sepanjang garis penghubung yang lurus. * Gaya tarik menarik bila kedua muatan tidak sejenis dan tolak menolak bila kedua muatan sejenis. Hasil penelitian tersebut dinyatakan sebagai hukum Coulomb, yang secara matematis: k adalah tetapan perbandingan yang besarnya tergantung pada sistem satuan yang digunakan. Pada sistem SI, gaya dalam Newton(N), jarak dalam meter (m), muatan dalam Coulomb ( C ), dan k mempunyai harga sebagai konstanta permitivitas ruang hampa besarnya = 8,854187818 x 10-12 C2/Nm2. Gaya listrik adalah besaran vektor, maka Hukum Coulomb bila dinyatakan dengan notasi vector menjadi :Dimana r12 adalah jarak antara q1 dan q2 atau sama panjang dengan vektor r12, sedangkan r12 adalah vektor satuan searah r12. Jadi gaya antara dua muatan titik yang masing-masing sebesar 1 Coulomb pada jarak 1 meter adalah 9 x 109 newton, kurang lebih sama dengan gaya gravitasi antara planet-planet.a. Gaya pada muatan q1 oleh muatan q2, Gaya pada muatan q1 oleh muatan q2, a. Gaya pada muatan q1 oleh muatan q2 b. Gaya pada muatan q2 oleh muatan q1 Dari hasil perhitungan bahwa gayanya akan sama besar namun berlawanan arah. Prinsip Superposisi Dalam keadaan Rill , titik-titik muatan selalu terdapat dalam jumlah yang besar. Maka timbullah pertanyaan : apakah interaksi antara dua titik muatan yang diatur oleh Hukum Coulomb dapat dipengaruhi oleh titik lain disekitarnya? Jawabannya adalah tidak, karena pada interaksi elektrostatik hanya meninjau interaksi antar dua buah muatan, jika lebih dari dua buah muatan maka diberlakukan prinsip superposisi (penjumlahan dari semua gaya interaksinya). Secara matematik, prinsip superposisi tersebut dapat dinyatakan dengan mudah sekali dalam notasi vektor. Jadi misalnya F12 menyatakan gaya antara q1 dan q2 tanpa adanya muatan lain disekitarnya, maka menurut Hukum Coulomb, Medium Voltage disconnector dalam instalasi listrik s bukan perangkat keselamatan! makalah pada konferensi CIRED dengan judul "Medium Voltage Disconnector s dan Keselamatan" ... dan pesan utama "MV disconnector s tidak listrik alat pengaman". Topik bisa dilihat sebagai kontroversial, tetapi benar-benar mengangkat keprihatinan nyata tentang bagaimana keselamatan listrik dapat diatasi. Pembantu yang sedikit terkejut dengan pesan, seperti kebingungan yang sangat umum. Hal ini mungkin terkait dengan fakta bahwa, untuk instalasi LV, pemutusan listrik yang diatur dalam spesifikasi sebagai fungsi pengaman, dengan persyaratan yang relevan dan kriteria penerimaan. Namun, tidak demikian halnya perangkat di atas 1kV, karena pentanahan dari rangkaian tersebut adalah selalu diperlukan sebelum pekerjaan dapat dilakukan pada konduktor (kecuali jika hidup prosedur kerja yang diterapkan). Ketika datang ke spesifikasi listrik, industri kita memiliki "kecenderungan kuno", kebiasaan buruk, yang adalah melupakan tentang analisis dasar aplikasi. Beberapa berbicara tentang "copy-paste" sindrom Seperti analisis dasar yang diperlukan untuk penilaian risiko yang efektif, dan kemudian definisi yang tepat tentang langkah-langkah perlindungan yang akan diterapkan. Menggunakan kata "keamanan" yang terkait dengan perangkat yang tidak ditentukan, atau digunakan, dengan pemahaman global aplikasi mengarah ke atas kepercayaan yang bisa berbahaya. Keselamatan adalah sistem keprihatinan, dan tidak dapat dibatasi untuk menggunakan apa yang disebut "alat pengaman". Beberapa diskusi mengangkat sekitar presentasi saya Karena kebanyakan situasi yang melibatkan sebuah operator juga menyiratkan untuk memiliki satu sisi ditanahkan, kesenjangan terbuka dalam kasus-kasus seperti belum selesai-stres, dibandingkan dengan isolasi lainnya dalam proses instalasi. Namun, situasi khusus telah disorot oleh salah satu peserta, tentang tes kabel operasi; dalam situasi seperti ini, yang disconnector sebenarnya digunakan dengan dua rangkaian hidup di sisi-sisinya, dan operator akan mungkin di sekitar kabel yang diuji ... Dalam kasus ini, klaim adalah bahwa disconnector menjadi "fungsi keamanan". Kenyataannya adalah bahwa situasi seperti itu tidak benar dipertimbangkan ketika menentukan disconnectors, karena dielectic bertahan di bawah situasi seperti itu tidak didefinisikan atau dinilai, dan modus kegagalan yang mungkin tidak diketahui. Operasi lapangan telah menunjukkan bahwa, selama operasi tersebut, tersedia saklar aman, bahwa risiko rendah - Keselamatan didefinisikan sebagai tingkat risiko yang dapat ditolerir - namun demikian, kebutuhan ini tidak benar dianalisis, dan persyaratan untuk dinyatakan tidak memiliki disconnector s link dengan situasi tes kabel ini. Menjaga spesifikasi listrik yang didasarkan pada asumsi-asumsi yang salah bisa menyebabkan situasi berbahaya, di mana spesifikasi listrik dapat dipenuhi, tetapi layanan yang diharapkan akan terganggu. Dan mencoba untuk mendefinisikan aturan-aturan keamanan pada perangkat, tanpa menghubungkan mereka dengan cara perangkat diinstal dan digunakan, tidak cukup untuk mencapai operasi yang aman. Jadi, ketika spesifikasi menggunakan kata-kata "alat pengaman", konsekuensi dari sebuah over-fokus, atau over-confidence, dapat menjadi kritis. Risiko listrik tidak ada. Lebih baik untuk memahami dengan benar, dalam rangka untuk mengurangi dan untuk mencegah sejauh mungkin konsekuensi yang mungkin terjadi. Kita harus melatih specifiers dan operator dari setiap instalasi listrik untuk lebih memahami fungsi, pertunjukan dan keterbatasan perangkat yang tersedia, dan juga pengetahuan yang lebih baik dari analisis keselamatan ide-ide. Pada kawat yang diberi medan listrik E, berarti pada pembawa muatan e bekerja gaya eE, maka sesuai hukum II Newton, seharusnya pembawa muatan bergerak dipercepat dengan percepatan rata-rata yang dialami muatan-muatan tersebut ditentukan oleh (eE/m) dimana m massa electron. Sebetulnya gaya ini bukanlah satu-satunya gaya yang bekerja pada pembawa muatan tetapi masih ada gaya lain, seperti gaya gesekan sebagai akibat tumbukan pembawa muatan dengan atom logam, tetapi tidak ditinjau. Misalkan jarak terjauh yang ditempuh electron sebelum bertumbukan dengan atom tetangganya Lo dan andaikan pula kecepatan rata-rata electron adalah vo, maka kecepatan rata-rata muatan tersebut adalah: Hubungan ini dikenal sebagai hukum Ohm dan tetapan pembanding disebut konduktivitas listrik. Suatu bahan dengan konduktivitas yang besar akan mengalirkan arus yang besar pula untuk suatu harga kuat medan listrik E. Bahan seperti ini disebut konduktor baik. Karena besarnya ditentukan oleh banyaknya electron bebas (N), maka bahan bersifat sebagai penghantar yang baik jika memiliki electron bebas yang banyak dan sebaliknya bahan bersifat sebagai isolator jika memiliki sedikit electron bebas Selanjuntnya tinjau suatu logam kawat yang berpenampang (A) serba sama dengan panjang (L) dialiri arus i.(Gambar 11.3). Misalkan beda potensial antara P dan Q adalah V, yaitu V (P) V(Q) = V, dan kuat medan listrik yang bekerja antara P dan Q dalam logam dianggap serba sama, yaitu E = V/I, sehingga hukum Ohm dapat ditulis dalam bentuk lain: Bahan dengan resistivitas antara logam dan isolator disebut semikonduktor. Dalam semikonduktor jumlah elektron bebas bergantung pada temperature, makin tinggi temperatur makin banyak elektron bebas. Pada temperatur mendekati 00 K ada elektron bebas sehingga bahan semikonduktor bersifat isolator. Bila logam dipanaskan maka hambatan R naik, karena gerakan atom dalam logam makin keras dan tumpukan yang dialami pembawa muatan makin banyak. Ini sejalan dengan kenyataan bahwa suatu bahan akan memuai jika dipanaskan sehingga hambatannya juga bertambah. Dikatakan logam mempunyai koefisien temperatur positif. Sebaliknya jika suatu bahan makin tinggi temperaturnya makin rendah harga hambatan listriknya, dikatakan bahan mempunyai koefisien temperature negatif. Artikel kali ini lebih saya tujukan kepada orang awam yang ingin mengenal dan mempelajari teknik listrik ataupun bagi mereka yang sudah berkecimpung di dalam teknik elektro untuk adalah mengalirnya elektron secara terus menerus dan berkesinambungan pada konduktor akibat perbedaan jumlah elektron pada beberapa lokasi yang jumlah elektronnya tidak sama. satuan arus listrik adalah Ampere. Arus listrik bergerak dari terminal positif (+) ke terminal negatif (-), sedangkan aliran listrik dalam kawat logam terdiri dari aliran elektron yang bergerak dari terminal negatif (-) ke terminal positif(+), arah arus listrik dianggap berlawanan dengan arah gerakan elektron Adalah arus yang tergantung pada banyak sedikitnya elektron bebas yang pindah melewati suatu penampang kawat dalam satuan waktu. Definisi : Ampere adalah satuan kuat arus listrik yang dapat memisahkan 1,118 milligram perak dari nitrat perak murni dalam satu detik. Rumus rumus untuk menghitung banyaknya muatan listrik, kuat arus dan waktu Kuat arus listrik biasa juga disebut dengan arus listrik muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan coulomb (C), muatan proton +1,6 x 10^-19C, sedangkan muatan elektron -1,6x 10^-19C. Muatan yang bertanda sama saling tolak menolak Difinisi:rapat arus ialah besarnya arus listrik tiap-tiap mm luas penampang kawat. Arus listrik mengalir dalam kawat penghantar secara merata menurut luas penampangnya. Arus listrik 12 A mengalir dalam kawat berpenampang 4mm, maka kerapatan arusnya 3A/mm (12A/4 mm), ketika penampang penghantar mengecil 1,5mm, maka kerapatan arusnya menjadi 8A/mm (12A/1,5 mm). Kerapatan arus berpengaruh pada kenaikan temperatur. Suhu penghantar dipertahankan sekitar 300C, dimana kemampuan hantar arus kabel sudah ditetapkan dalam tabel Kemampuan Hantar Arus (KHA) Tabel 1. Kemampuan Hantar Arus (KHA) Berdasarkan tabel KHA kabel pada tabel diatas, kabel berpenampang 4 mm, 2 inti kabel memiliki KHA 30A, memiliki kerapatan arus 8,5A/mm. Kerapatan arus berbanding terbalik dengan penampang penghantar, semakin besar penampang penghantar kerapat Penghantar dari bahan metal mudah mengalirkan arus listrik, tembaga dan aluminium memiliki