jbptunikompp-gdl-mdonieauli-18966-13-bab10pe-)

download jbptunikompp-gdl-mdonieauli-18966-13-bab10pe-)

of 25

Transcript of jbptunikompp-gdl-mdonieauli-18966-13-bab10pe-)

  • BAHAN PERKERASAN(Semester 5; 2 sks)Dosen: Dr. Ir. Sri Sunarjono (s/d mid semester) Ir. Agus Riyanto, MT.(paska mid semester)Koordinator kelas: IKA SETYOWATI 081327535362

  • Kontrak perkuliahan (1)

    Perkuliahan dilaksanakan 14 kali tatap muka plus 2 kali ujian (uts + uas)Satu kali tatap muka= kuliah 2 kali 50 menit dengan istirahat 10 menit diantaranya (bila diperlukan)Dosen melaksanakan perkuliahan sesuai silabus dan Rencana Mutu Pembelajaran (RMP) kurikulum JTS-UMS tahun 2008Mahasiswa wajib mengikuti perkuliahan minimal 10 kali (exclude 2x ujian)

  • Kontrak perkuliahan (2)

    Bila dosen terlambat 15 menit dan tidak ada pemberitahuan maka mahasiswa boleh meninggalkan kelas dan melakukan pengisian presensi kehadiranMahasiswa terlambat 30 menit dan tanpa ada pemberitahuan tidak boleh mengikuti perkuliahanNilai ujian = Nilai tes tulis + nilai tugas + nilai diskusi/ tanya jawab/ presentasiMahasiswa ketahuan menyontek atau memberi contekan langsung mendapat sangsi tidak lulusMahasiswa masuk kuliah penuh (14x)+ujian 2x+mengumpulkan semua tugas -- nilai min C

  • SILABUSBahan lapis keras, jenis konstruksi dan karakteristiknyaAspal sebagai bahan ikat: Pengertian, jenis dan komposisi, proses manufaktur, properties dan cara pemeriksaan, spesifikasi.Agregat sebagai bahan utama dan filler: pengertian, jenis, gradasi, sifat dan proses terjadinya, pemeriksaan, spesifikasi dan mix design agregat.Perencanaan campuran aspal agregat: prinsip dasar perencanaan pencampuran, metode pencampuran, metode Marshall, Marshal test, penentuan kadar aspal optimum, dan pelaksanaan pencampuran aspal agregat di lapangan.Nilai struktural campuran aspal dan agregat.Kerusakan jalan: jenis, identifikasi kerusakan dan metode survey, faktor penyebab kerusakan jalan, metode evaluasi kerusakan jalan (mis. PCI) dan metode perbaikan mengatasi kerusakan.

  • DAFTAR PUSTAKA (1)Asphalt Institute, 1983, Principles of Construction Hot mix Asphalt Pavement, MS- 22, Maryland, USA.Asphalt Institute, 1984, Asphalt Technology and Construction Practices (ES-1), The Asphalt Institute Building College Park, Maryland.Krebs, RD and Walker, RD, 1971, Highway Material, Mc Graw Hill.Roberts, Kandhal and Brown, 1991, Hot Mix Asphalt Material, Mixture Design and Construction, Napa Education Foundation Anham, Maryland.Whiteoak, D., 1990, The Shell Bitument Hand Book, Shell, International Petroleum Company Limited, London.Hosking, R., 1992, Road Aggregates and Skidding, HMSO, London.

  • DAFTAR PUSTAKA (2)Khairudin, M.A, 1993, Tinjauan Umum Hasil Aplikasi SMA dengan Bahan Tambah Serat Selulosa, PusLitBang Jalan Raya, Departemen Pekerjaan Umum, Jakarta.

    Oflaherty, C.A., 2002. Highways - The Location, Design, Construction & Maintenance of Pavements, 4th edition, Butterworth Heinemann, Oxford.

    Anon, 2000. Bituminous Pavements Materials, Design and Evaluation, Lecturer Notes, School of Civil Engineering, University of Nottingham.

  • Jenis Struktur PerkerasanJenis perkerasanJalan raya (Highway)Bandar udaraRel kereta api (Railway)

    Jenis struktur perkerasanFleksibel (Flexible pavement)Kaku (Rigid pavement)Komposit (Composite pavement)

  • Lapis perkerasanTANAH DASARPAVEMENT (PERKERASAN)Mengapa harus diberi lapis perkerasan?Mengapa perkerasan dibuat berlapis?Semakin keatas tegangan yang dipikul semakin besar maka butuh perkerasan yang semakin bermutu. Perkerasan bagian bawah dapat menggunakan bahan yang mutunya lebih rendah (harga lebih murah)Daya dukung tanah dasar rendah, maka butuh lapis perkerasan

  • Lapis perkerasan (1)GRANULAR (KERIKIL)SOIL (TANAH)SOIL (TANAH)GRANULAR (KERIKIL)Gravel road (Jalan kerikil)Sealed granular road (Jalan kerikil dilapisi aspal tipis)SOIL (TANAH)GRANULAR (KERIKIL)ASPHALT (AGG+ASPAL)Asphalt pavt (Jalan aspal)SOIL (TANAH)GRANULAR (KERIKIL)CONCRETE (BETON)Concrete pavt (Jalan beton)

  • Lapis perkerasan (2)GRANULAR (KERIKIL)SOIL (TANAH)SOIL (TANAH)GRANULAR (KERIKIL)Composite pavement (perkerasan komposit)Heavy duty concrete (Jalan beton utk lalin berat)SOIL (TANAH)GRANULAR (KERIKIL)ASPHALT (AGG+ASPAL)Block pavement (lalin berat)CEMENT TREATED (STAB SEMEN)CONCRETE (BETON)RailwayCONCRETE (BETON)CEMENT TREATED (STAB SEMEN)ASPHALT orCEMENT TREATED SOIL (TANAH)SUB-BALLAST (GRANULAR)BALLAST (GRANULAR)Rel

  • Cross-Section perkerasanSub-base course (Lapis pondasi bawah/ LPB)Subgrade (Tanah dasar)Basic pavement layers(Lapis perkerasan standar)Heavy duty pevement (Perkerasan utk kendaraan berat)Surfacing (Lapis Permukaan)Base course (Lapis pondasi atas/ LPA)

    Wearing course

    Base course Sub-base course

    Subgrade Capping (Landasan)

    Binder course

  • Fungsi lapis perkerasan

    Wearing course

    Base course Sub-base course

    Subgrade Capping (Landasan)

    Binder course

    Lapis fungsional (air hujan, suhu, kekesatan, suara) Lapis struktural (kekuatan)Kekuatan struktural naikHarga bahan semakin mahal, semakin tipis

  • Bahan ikat antara lapis perkerasan (Bonding)

    Wearing course(Asphalt)

    Base course(Unbound material/ granular)

    Binder course(Asphalt)

    Prime coat (Aspal + minyak tanah)Tack coat (Aspal emulsi atau Aspal+minyak tanah)

  • Road pavementSurfacingBinder courseBase courseSub-base courseSub-gradeSoil mechanicsAsphalt mechanicsConcrete

  • Failure mechanism CRACKINGRUTTINGCOMPRESSIONTENSIONTRAFFIC LOAD

  • Asphalt mechanicsAsphalt materials: STRAIN DEPENDENT

    Chart1

    Critical

    Failure

    Stiffness

    50%

    100%

    No. of standard axles

    Rut depth

    Fatigue cracking

    Nearside wheel track

    (b) Failure mechanism

    (a) Pavement Serciveability

    Chart1 (2)

    Critical

    Failure

    Stiffness

    50%

    100%

    No. of standard axles

    STRESSStiffness = --------------------- STRAIN

    Chart2

    F

    fb

    Filler particle

    Fracture surface

    Binder

    r

    F

    F

    Binder

    Fracture surface in bulk mortar

    Fracture surface around single particle

    Fracture surface

    Chart3

    Chart3

    L'

    x

    L

    cross section area = ab

    z

    x

    y

    = Q/abx = x / LE = /x = QL / xab

    Q

    Chart4

    (a) Indirect Tensile Test

    (c1) Two Point Bending Trapezoidal Test

    (c2) Four Point Bending Beam Test

    (b) Uniaxial Test

    Chart5

    6200

    4500

    2900

    1800

    900

    400

    20mm DBM

    Temperature (oC)

    Stiffness Modulus (MPa)

    Chart6

    6200

    4500

    2900

    1800

    900

    400

    20mm DBM

    Horisontal Stress (kPa)

    Stiffness Modulus (MPa)

    Sheet2

    Read, 1996

    TempSmHor stressSm

    562001002000

    1045001601800

    1529002301750

    2018003251650

    259001202300

    304001902100

    2652000

    3701800

    1402700

    2352500

    3202400

    4502300

    Chart7

    Moving wheel loads

    Skid resistant surface

    Main structural element(Durable)

    [Bound Material]

    [Granular material over soil]

    Pavement Foundation(Well drained)

    Adequate platform to place layer above

    High stiffness

    Crack resistant

    Deformation resistant

    Chart8

    Y

    X

    Compression

    Tension

    Compression

    Tension

    xmax

    ymax

    Applied Compressive stress

    hx (+)

    hy (+)

    vx (-)

    vy (-)

    Steel load platen

    Measured horizontal deformation (),h= 2

    Specimen

    Chart9

    PNEUMATIC UNIT

    COMPUTER UNIT

    INTERFACE UNIT

    TEST FRAME

    Solenoid valve

    Actuator

    Load cell

    Specimen

    Control & data acquisition

    To LVDTs

    Chart10

    0 5 17 Time (seconds)

    20

    10

    Half of the maximum expansion ratio

    Expansion Ratio (ER)

    Spraying time

    Half Life

    Maximum Expansion Ratio

    In this case:ERm = 20HL = 17 - 5 = 12 seconds

    Bitumen returns to an approximately original volume

    Mass of bitumen is weighed and converted to an original volume

    The height of foam is measured by dipstick and is converted to expansion ratio (ER). ER is the ratio of foam volume relative to the original volume

    1/2 Hmax

    Hmax

    Dipstick

    Sheet3

    tER modelER measured

    010.510.5

    29.48.5

    48.37.5

    67.47

    86.66

    105.95.8

    125.35.7

    144.75

    164.24.2

    183.74

    203.33.8

    222.93.7

    242.63.6

    262.33

    t, secvol, litrebit

    -500-5

    060.51

    153.50.515

    3520.535

    5510.555

    750.50.575

    HLts=1ts=2ts=5ts=10

    20.84

    3

    4

    5

    6

    70.95

    8

    9

    100.96

    200.99

    300.995

    400.998

    500.999

    601

    701

    801

    901

    1001

    Sheet3

    ERm = 10.5HL = 12 seconds

    R2 = 0.927

    (a)

    Decay model

    Measured

    Time (seconds)

    Expansion ratio (ER)

    0

    ERm = 6/0.5 = 12

    During spraying

    After spraying (decay)

    (b)

    Foam

    Bitumen

    Time (seconds)

    Volume (Litres)

  • Asphalt mechanicsSTIFFNESS ?

    STRESSStiffness = --------------------- STRAIN

    Chart11

    x

    L

    cross section area = ab

    z

    x

    y

    = Q/abx = x / LE = /x = QL / xab

    Q

    Chart1

    Critical

    Failure

    Stiffness

    50%

    100%

    No. of standard axles

    Rut depth

    Fatigue cracking

    Nearside wheel track

    (b) Failure mechanism

    (a) Pavement Serciveability

    Chart1 (2)

    Critical

    Failure

    Stiffness

    50%

    100%

    No. of standard axles

    STRESSStiffness = --------------------- STRAIN

    Chart2

    F

    fb

    Filler particle

    Fracture surface

    Binder

    r

    F

    F

    Binder

    Fracture surface in bulk mortar

    Fracture surface around single particle

    Fracture surface

    Chart3

    Chart3

    L'

    x

    L

    cross section area = ab

    z

    x

    y

    = Q/abx = x / LE = /x = QL / xab

    Q

    Chart4

    x

    L

    cross section area = ab

    z

    x

    y

    = Q/abx = x / LE = /x = QL / xab

    Q

    Chart5

    (a) Indirect Tensile Test

    (c1) Two Point Bending Trapezoidal Test

    (c2) Four Point Bending Beam Test

    (b) Uniaxial Test

    Chart6

    6200

    4500

    2900

    1800

    900

    400

    20mm DBM

    Temperature (oC)

    Stiffness Modulus (MPa)

    Sheet2

    6200

    4500

    2900

    1800

    900

    400

    20mm DBM

    Horisontal Stress (kPa)

    Stiffness Modulus (MPa)

    Chart7

    Read, 1996

    TempSmHor stressSm

    562001002000

    1045001601800

    1529002301750

    2018003251650

    259001202300

    304001902100

    2652000

    3701800

    1402700

    2352500

    3202400

    4502300

    Chart8

    Moving wheel loads

    Skid resistant surface

    Main structural element(Durable)

    [Bound Material]

    [Granular material over soil]

    Pavement Foundation(Well drained)

    Adequate platform to place layer above

    High stiffness

    Crack resistant

    Deformation resistant

    Chart9

    Y

    X

    Compression

    Tension

    Compression

    Tension

    xmax

    ymax

    Applied Compressive stress

    hx (+)

    hy (+)

    vx (-)

    vy (-)

    Steel load platen

    Measured horizontal deformation (),h= 2

    Specimen

    Chart10

    PNEUMATIC UNIT

    COMPUTER UNIT

    INTERFACE UNIT

    TEST FRAME

    Solenoid valve

    Actuator

    Load cell

    Specimen

    Control & data acquisition

    To LVDTs

    Sheet3

    0 5 17 Time (seconds)

    20

    10

    Half of the maximum expansion ratio

    Expansion Ratio (ER)

    Spraying time

    Half Life

    Maximum Expansion Ratio

    In this case:ERm = 20HL = 17 - 5 = 12 seconds

    Bitumen returns to an approximately original volume

    Mass of bitumen is weighed and converted to an original volume

    The height of foam is measured by dipstick and is converted to expansion ratio (ER). ER is the ratio of foam volume relative to the original volume

    1/2 Hmax

    Hmax

    Dipstick

    tER modelER measured

    010.510.5

    29.48.5

    48.37.5

    67.47

    86.66

    105.95.8

    125.35.7

    144.75

    164.24.2

    183.74

    203.33.8

    222.93.7

    242.63.6

    262.33

    t, secvol, litrebit

    -500-5

    060.51

    153.50.515

    3520.535

    5510.555

    750.50.575

    HLts=1ts=2ts=5ts=10

    20.84

    3

    4

    5

    6

    70.95

    8

    9

    100.96

    200.99

    300.995

    400.998

    500.999

    601

    701

    801

    901

    1001

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    ERm = 10.5HL = 12 seconds

    R2 = 0.927

    (a)

    Decay model

    Measured

    Time (seconds)

    Expansion ratio (ER)

    00

    00

    00

    00

    00

    00

    0

    ERm = 6/0.5 = 12

    During spraying

    After spraying (decay)

    (b)

    Foam

    Bitumen

    Time (seconds)

    Volume (Litres)

  • Asphalt mechanicsTEMPERATURE DEPENDENT

  • RESPONSE TO LOADSAsphalt mechanics

  • Asphalt mechanicsVISCO-ELASTIC MATERIALS

  • Soil mechanics= - uSTRENGTH vs WATERDRY CONDITIONWET CONDITION = tan

  • Soil mechanicsSoil and granular: STRESS DEPENDENT

    Chart4

    0

    0.05

    0.1

    0.2

    0.4

    1

    FAILURE

    STRESS

    PERMANENT DEFORMATION (%)

    Sheet1

    00

    100.05

    150.1

    200.2

    230.4

    271

    Sheet1

    FAILURE

    STRESS

    PERMANENT DEFORMATION (%)

    Sheet2

    Sheet3

  • Upper layer stiffness bottom layer stress LOW STIFFNESSHIGH STIFFNESSHIGH STRESSLOW STRESSPOOR STRESS DISTRIBUTIONBETTER STRESS DISTRIBUTION

  • THE IDEAL PAVEMENT

    Chart1

    Critical

    Failure

    Stiffness

    50%

    100%

    No. of standard axles

    Rut depth

    Fatigue cracking

    Nearside wheel track

    (b) Failure mechanism

    (a) Pavement Serciveability

    Chart2

    F

    fb

    Filler particle

    Fracture surface

    Binder

    r

    F

    F

    Binder

    Fracture surface in bulk mortar

    Fracture surface around single particle

    Fracture surface

    Chart3

    Chart3

    L'

    x

    L

    cross section area = ab

    z

    x

    y

    = Q/abx = x / LE = /x = QL / xab

    Q

    Chart4

    (a) Indirect Tensile Test

    (c1) Two Point Bending Trapezoidal Test

    (c2) Four Point Bending Beam Test

    (b) Uniaxial Test

    Chart5

    6200

    4500

    2900

    1800

    900

    400

    20mm DBM

    Temperature (oC)

    Stiffness Modulus (MPa)

    Chart6

    6200

    4500

    2900

    1800

    900

    400

    20mm DBM

    Horisontal Stress (kPa)

    Stiffness Modulus (MPa)

    Sheet2

    Read, 1996

    TempSmHor stressSm

    562001002000

    1045001601800

    1529002301750

    2018003251650

    259001202300

    304001902100

    2652000

    3701800

    1402700

    2352500

    3202400

    4502300

    Chart7

    Moving wheel loads

    Skid resistant surface

    Main structural element(Durable)

    [Bound Material]

    [Granular material over soil]

    Pavement Foundation(Well drained)

    Adequate platform to place layer above

    High stiffness

    Crack resistant

    Deformation resistant

    Chart8

    Y

    X

    Compression

    Tension

    Compression

    Tension

    xmax

    ymax

    Applied Compressive stress

    hx (+)

    hy (+)

    vx (-)

    vy (-)

    Steel load platen

    Measured horizontal deformation (),h= 2

    Specimen

    Chart9

    PNEUMATIC UNIT

    COMPUTER UNIT

    INTERFACE UNIT

    TEST FRAME

    Solenoid valve

    Actuator

    Load cell

    Specimen

    Control & data acquisition

    To LVDTs

    Chart10

    0 5 17 Time (seconds)

    20

    10

    Half of the maximum expansion ratio

    Expansion Ratio (ER)

    Spraying time

    Half Life

    Maximum Expansion Ratio

    In this case:ERm = 20HL = 17 - 5 = 12 seconds

    Bitumen returns to an approximately original volume

    Mass of bitumen is weighed and converted to an original volume

    The height of foam is measured by dipstick and is converted to expansion ratio (ER). ER is the ratio of foam volume relative to the original volume

    1/2 Hmax

    Hmax

    Dipstick

    Sheet3

    tER modelER measured

    010.510.5

    29.48.5

    48.37.5

    67.47

    86.66

    105.95.8

    125.35.7

    144.75

    164.24.2

    183.74

    203.33.8

    222.93.7

    242.63.6

    262.33

    t, secvol, litrebit

    -500-5

    060.51

    153.50.515

    3520.535

    5510.555

    750.50.575

    HLts=1ts=2ts=5ts=10

    20.84

    3

    4

    5

    6

    70.95

    8

    9

    100.96

    200.99

    300.995

    400.998

    500.999

    601

    701

    801

    901

    1001

    Sheet3

    ERm = 10.5HL = 12 seconds

    R2 = 0.927

    (a)

    Decay model

    Measured

    Time (seconds)

    Expansion ratio (ER)

    0

    ERm = 6/0.5 = 12

    During spraying

    After spraying (decay)

    (b)

    Foam

    Bitumen

    Time (seconds)

    Volume (Litres)

  • Komponen bahan perkerasanAgregatBahan ikat: aspal (perkerasan fleksibel) Portland cement (perkerasan kaku)Bahan tambah (additives) Kapur (lime) PC Lain-lain