ITS Undergraduate 10225 Paper

24
1 DESAIN JEMBATAN CABLE STAYED MALANGSARI – BANYUWANGI DENGAN TWO VERTICAL PLANES SYSTEM Nama Mahasiswa : Hendri NRP 3107 100 518 Jurusan : Teknik Sipil FTSP-ITS Dosen Pembimbing : Dr. Ir. Hidayat Soegihardjo, MS Abstrak Jembatan cable stayed adalah salah satu dari beberapa tipe jembatan bentang panjang. Jembatan jenis ini memiliki karakteristik yang menguntungkan dibandingkan dengan tipe jembatan bentang panjang yang lain baik dari segi teknis, ekonomis, maupun estetika. Tugas akhir ini membahas Desain Jembatan Cable-Stayed Malangsari- Banyuwangi dengan Two Vertical Planes System yang menghubungkan antara jalan lintas selatan ruas Kendeng Lembu dengan ruas Jember melintasi kali Malangsari, Glenmore, kabupaten Banyuwangi, propinsi Jawa Timur. Jembatan ini memiliki bentang total sepanjang 231 m terbagi dalam dua bentang tepi masing-masing 48 m dan satu bentang tengah sepanjang 135 m, dengan lebar lantai kendaraan 11.2 m (2/2UD), konfigurasi kabel arah melintang dengan two vertical planes system dan memanjang berupa radial system. Material yang menyusun lantai kendaraan berupa pelat komposit dan profil baja WF serta struktur pylon berupa beton bertulang. Sedangkan untuk kabel dan angkernya digunakan VSL 7-wire strand. Perencanaan ini dibantu dengan menggunakan program komputer MIDAS/Civil v7.0.1 untuk menganalisa perilaku struktur utama secara keseluruhan serta SAP2000 v11 dan HILTI Profis untuk menganalisa struktur sekunder. Program MIDAS dapat menganalisa tahapan metode pelaksanaan sekaligus dalam satu kali eksekusi program. Dimana hasil analisa pada saat servis/analisa statis dibandingkan dengan hasil analisa pada saat pelaksanaan konstruksi/staging analysis. Hasil dari perencanaan ini adalah didapatkan dimensi struktur lantai kendaraan, kabel dan angker, pylon, serta pondasi, dengan menggunakan acuan peraturan RSNI T-02-2005, RSNI T-03-2005, Pd T-04-2004-B, Pd T-12-2005-B, BMS ’92, dan SNI 03-2847-2002. Selain itu stabilitas jembatan terhadap angin juga dikontrol menggunakan analisa dinamis yang meliputi analisa stabilitas aerodinamis yaitu vortex-shedding (yang berkaitan langsung dengan efek psikologis), flutter dan gempa dinamis. Latar Belakang Jembatan Malangsari terletak di jalur jalan lintas selatan Jawa Timur antara Kendeng Lembu dan batas Jember STA 20+900 (dari Glenmore), wilayah kecamatan Kalibaru kabupaten Banyuwangi (Gambar 1.1). Kondisi berbukit-bukit, bantaran sungai memiliki lereng yang cukup curam dengan sungai yang berada di bawah ± 20 m, panjang dari sisi satu ke lainnya ± 100 m. Sisi kiri (dilihat searah aliran sungai) merupakan lereng yang hampir tegak, sedangkan di sisi kanan kemiringan lereng 45°- 60°. Lokasi ini berada di wilayah lahan perkebunan milik PTPN XII Kebun Malangsari kabupaten Banyuwangi. Jembatan melintasi sungai Kali Malangsari, ± 20 km dari ruas jalan Jember dan ± 80 km dari ibukota kabupaten Banyuwangi. Berdasarkan pengamatan secara visual pada lokasi jembatan tidak terjadi erosi yang membahayakan. Dilihat searah aliran sungai, tanah asli berupa : Sebelah kiri : lempung, pasir halus, kelanauan Sebelah kanan : lempung, pasir halus, kelanauan Berdasarkan kondisi tersebut diatas, maka kedudukan konstruksi Jembatan Malangsari cukup dibangun diatas puncak tebing yang tetap mempertahankan unsur kekuatan dan unsur estetika. Sehingga timbul ide untuk merancang Jembatan Malangsari berupa konstruksi cable stayed dengan two vertical planes system, dengan spesifikasi sebagai berikut : Stuktur Pylon dari konstruksi beton bertulang berjumlah dua, masing- masing berada di daratan puncak lereng ( dari sisi ruas jalan Kendeng Lembu dan sisi ruas jalan Jember), karena : - Aliran sungai cukup kecil, sehingga tidak terganggu oleh bangunan jembatan - Jurang cukup dalam ± 20 m - Kemiringan lereng curam ± 45°- 60° Bentang jembatan ± 231 m : bentang/span tengah 135 m (jarak antar struktur pylon) dan bentang/span tepi masing-masing 48 m (jarak ke Abutment) dan lebar jembatan 11,2 m. Gelagar memanjang (box girder dan ribs), melintang dari baja serta lantai kendaraan dari elemen komposit antara pelat baja gelombang compodeck dengan beton bertulang. Lebar jalan diatas jembatan 7 m (2/2UD). Perumusan Masalah Berdasarkan permasalahan utama diatas, maka perlu perincian masalah secara mendetail supaya dapat diketahui skala prioritas dan urutan kerjanya, yang meliputi : 1. Bagaimana preliminary design dari konfigurasi susunan kabel, gelagar (box girder, ribs, melintang dan kantilever), kabel, dan struktur pylon.

Transcript of ITS Undergraduate 10225 Paper

  • 1DESAIN JEMBATAN CABLE STAYED MALANGSARI BANYUWANGI DENGAN TWO VERTICAL PLANES SYSTEM

    Nama Mahasiswa : HendriNRP 3107 100 518Jurusan : Teknik Sipil FTSP-ITSDosen Pembimbing : Dr. Ir. Hidayat Soegihardjo, MS

    AbstrakJembatan cable stayed adalah salah satu dari beberapa tipe jembatan bentang

    panjang. Jembatan jenis ini memiliki karakteristik yang menguntungkandibandingkan dengan tipe jembatan bentang panjang yang lain baik dari segi teknis,ekonomis, maupun estetika.

    Tugas akhir ini membahas Desain Jembatan Cable-Stayed Malangsari-Banyuwangi dengan Two Vertical Planes System yang menghubungkan antara jalanlintas selatan ruas Kendeng Lembu dengan ruas Jember melintasi kali Malangsari,Glenmore, kabupaten Banyuwangi, propinsi Jawa Timur. Jembatan ini memilikibentang total sepanjang 231 m terbagi dalam dua bentang tepi masing-masing 48 mdan satu bentang tengah sepanjang 135 m, dengan lebar lantai kendaraan 11.2 m(2/2UD), konfigurasi kabel arah melintang dengan two vertical planes system danmemanjang berupa radial system. Material yang menyusun lantai kendaraan berupapelat komposit dan profil baja WF serta struktur pylon berupa beton bertulang.Sedangkan untuk kabel dan angkernya digunakan VSL 7-wire strand.

    Perencanaan ini dibantu dengan menggunakan program komputerMIDAS/Civil v7.0.1 untuk menganalisa perilaku struktur utama secara keseluruhanserta SAP2000 v11 dan HILTI Profis untuk menganalisa struktur sekunder. ProgramMIDAS dapat menganalisa tahapan metode pelaksanaan sekaligus dalam satu kalieksekusi program. Dimana hasil analisa pada saat servis/analisa statis dibandingkandengan hasil analisa pada saat pelaksanaan konstruksi/staging analysis.

    Hasil dari perencanaan ini adalah didapatkan dimensi struktur lantaikendaraan, kabel dan angker, pylon, serta pondasi, dengan menggunakan acuanperaturan RSNI T-02-2005, RSNI T-03-2005, Pd T-04-2004-B, Pd T-12-2005-B, BMS92, dan SNI 03-2847-2002. Selain itu stabilitas jembatan terhadap angin jugadikontrol menggunakan analisa dinamis yang meliputi analisa stabilitas aerodinamisyaitu vortex-shedding (yang berkaitan langsung dengan efek psikologis), flutter dangempa dinamis.

    Latar BelakangJembatan Malangsari terletak di jalur jalan lintas selatan Jawa Timur antara

    Kendeng Lembu dan batas Jember STA 20+900 (dari Glenmore), wilayah kecamatanKalibaru kabupaten Banyuwangi (Gambar 1.1). Kondisi berbukit-bukit, bantaransungai memiliki lereng yang cukup curam dengan sungai yang berada di bawah 20m, panjang dari sisi satu ke lainnya 100 m. Sisi kiri (dilihat searah aliran sungai)merupakan lereng yang hampir tegak, sedangkan di sisi kanan kemiringan lereng 45-60. Lokasi ini berada di wilayah lahan perkebunan milik PTPN XII KebunMalangsari kabupaten Banyuwangi. Jembatan melintasi sungai Kali Malangsari, 20km dari ruas jalan Jember dan 80 km dari ibukota kabupaten Banyuwangi.Berdasarkan pengamatan secara visual pada lokasi jembatan tidak terjadi erosi yangmembahayakan. Dilihat searah aliran sungai, tanah asli berupa :

    Sebelah kiri : lempung, pasir halus, kelanauan Sebelah kanan : lempung, pasir halus, kelanauanBerdasarkan kondisi tersebut diatas, maka kedudukan konstruksi Jembatan

    Malangsari cukup dibangun diatas puncak tebing yang tetap mempertahankan unsurkekuatan dan unsur estetika. Sehingga timbul ide untuk merancang JembatanMalangsari berupa konstruksi cable stayed dengan two vertical planes system, denganspesifikasi sebagai berikut :

    Stuktur Pylon dari konstruksi beton bertulang berjumlah dua, masing-masing berada di daratan puncak lereng ( dari sisi ruas jalan KendengLembu dan sisi ruas jalan Jember), karena :- Aliran sungai cukup kecil, sehingga tidak terganggu oleh bangunan

    jembatan- Jurang cukup dalam 20 m- Kemiringan lereng curam 45- 60

    Bentang jembatan 231 m : bentang/span tengah 135 m (jarak antarstruktur pylon) dan bentang/span tepi masing-masing 48 m (jarak keAbutment) dan lebar jembatan 11,2 m.

    Gelagar memanjang (box girder dan ribs), melintang dari baja serta lantaikendaraan dari elemen komposit antara pelat baja gelombang compodeckdengan beton bertulang.

    Lebar jalan diatas jembatan 7 m (2/2UD).

    Perumusan MasalahBerdasarkan permasalahan utama diatas, maka perlu perincian masalah secara

    mendetail supaya dapat diketahui skala prioritas dan urutan kerjanya, yang meliputi :1. Bagaimana preliminary design dari konfigurasi susunan kabel, gelagar

    (box girder, ribs, melintang dan kantilever), kabel, dan struktur pylon.

  • 22. Bagaimana mendesain struktur sekunder, diantaranya pelat lantaikendaraan (komposit) dan railing jembatan dengan program HILTIProfis Anchor.

    3. Bagaimana mendesain gelagar melintang dan kantilever, mulai dariasumsi pembebanan, analisa struktur, kontrol lendutan, kapasitaspenampang serta sambungan.

    4. Bagaimana mendesain gelagar ribs, mulai dari asumsi pembebanan,analisa struktur, kontrol lendutan, kapasitas penampang akibat kompositserta sambungan.

    5. Bagaimana memodelkan dan menganalisa statis struktur utama gelagarbox, kabel dan pylon menggunakan program bantu MIDAS/Civil.

    6. Bagaimana mengontrol kapasitas penampang dan sambungan segmentalgelagar box, melakukan iterasi kebutuhan penampang kabel dankebutuhan tulangan pada pylon serta mendesain angker kabel.

    7. Bagaimana menentukan metode pelaksanaan, kemudian dilakukan Staginganalysis menggunakan program bantu MIDAS/Civil.

    8. Bagaimana mengontrol pengaruh pelaksanaan terhadap kapasitas gelagarbox, penampang kabel dan penulangan pada pylon. Apakah sudah kuatatau memerlukan re-desain.

    9. Bagaimana mendesain abutmen, perletakan dan blok angker.10. Bagaimana mengontrol kestabilan jembatan terhadap analisa dinamis,

    seperti stabilitas aerodinamis (frekuensi alami, efek vortex-shedding danefek flutter).

    11. Bagaimana menganalisa gempa dinamis menggunakan program bantuMIDAS/Civil.

    12. Bagaimana mengontrol pengaruh analisa gempa dinamis terhadapkapasitas penulangan pada pylon. Apakah sudah kuat atau memerlukan re-desain.

    13. Bagaimana hasil akhir yang berupa gambar kerja.

    Maksud dan Tujuan PenyusunanMaksud dan tujuan penyusunan proyek akhir ini ialah untuk merancang

    Jembatan Malangsari yang berupa konstruksi cable stayed dengan two vertical planessystem agar syarat kekuatan maupun estetika terpenuhi, dengan rincian sebagaiberikut :

    1. Melakukan preliminary design dari konfigurasi susunan kabel, gelagar(box girder, ribs, melintang dan kantilever), kabel, dan struktur pylon.

    2. Mendesain struktur sekunder, diantaranya pelat lantai kendaraan(komposit) dan railing jembatan dengan program HILTI Profis Anchor.

    3. Mendesain gelagar melintang dan kantilever, mulai dari asumsipembebanan, analisa struktur, kontrol lendutan, kapasitas penampang sertasambungan.

    4. Mendesain gelagar ribs, mulai dari asumsi pembebanan, analisa struktur,kontrol lendutan, kapasitas penampang akibat komposit serta sambungan.

    5. Memodelkan dan menganalisa statis struktur utama gelagar box, kabel danpylon menggunakan program bantu MIDAS/Civil.

    6. Mengontrol kapasitas penampang dan sambungan segmental gelagar box,melakukan iterasi kebutuhan penampang kabel dan kebutuhan tulanganpada pylon serta mendesain angker kabel.

    7. Menentukan metode pelaksanaan, kemudian dilakukan Staging analysismenggunakan program bantu MIDAS/Civil.

    8. Mengontrol pengaruh pelaksanaan terhadap kapasitas gelagar box,penampang kabel dan penulangan pada pylon. Apakah sudah kuat ataumemerlukan re-desain.

    9. Mendesain abutmen, perletakan dan blok angker.10. Mengontrol kestabilan jembatan terhadap analisa dinamis, seperti

    stabilitas aerodinamis (frekuensi alami, efek vortex-shedding dan efekflutter).

    11. Menganalisa gempa dinamis menggunakan program bantu MIDAS/Civil.12. Mengontrol pengaruh analisa gempa dinamis terhadap kapasitas

    penulangan pada pylon. Apakah sudah kuat atau memerlukan re-desain.13. Merealisasikan hasil akhir yang berupa gambar kerja.

    Batasan MasalahPada penyusunan Tugas Akhir ini, karena keterbatasan kemampuan dan waktu

    pengerjaan, jadi untuk menentukan tipe jembatan penulis tidak meninjau sampaianalisa dampak lingkungan, menghitung pondasi baik untuk pondasi pylon maupunpondasi abutmen, kestabilan lereng, analisa anggaran biaya dan metode pelaksanaansecara keseluruhan.

  • 3MULAI

    PRELIMINARY DESAIN : Konfigurasi susunan kabel, Dimensi

    gel.melintang+kantilever, Dimensi gel.memanjang(ribs+box), Dimensi kabel+angker dan Dimensi pylon

    ANALISA STATIS STR.UTAMA (AS)

    STUDI LITERATURSTUDI DATA AWAL

    DESAIN STRUKTUR SEKUNDER :Pelat lantai kendaraan dan Railing jembatan

    GELAGAR RIBS GEL MELINTANG KANTILEVER

    DESAINKAPASITAS BOX

    ITERASIKEBUTUHAN

    KABEL

    PENULANGANSTR.PYLON

    SELESAI

    AS SA

    STAGING ANALYSIS (SA)

    KONTROL KAPASITASBOX, KABEL dan

    STR.PYLON

    DESAIN ANGKERKABEL di GELAGAR

    & PYLON

    ABUTMEN PERLETAKAN BLOKANGKER

    ANALISA DINAMIS

    FREKUENSI ALAMI

    EFEK VORTEXSHEDDING

    EFEKFLUTTER

    GEMPADINAMIS

    KONTROLKAPASITASSTR.PYLON

    Metode yang akan digunakan dalam rangka penyelesaian tugas akhirmengenai Desain Jembatan Cable-stayed Malangsari Banyuwangi denganTwo Vertical Planes System nantinya adalah seperti diagram alir berikut:

    B

    Not OK

    STABILITASDINAMIS

    JEMBATAN

    A

    OK

    Not OK

  • 41. Studi literatur dan peraturan yang berkaitan, antara lain:a. Text book Cable Stayed Bridges karangan Rene Walther tahun 1999.b. Text book Cable Supported Bridges karangan Niels J. Gimsing tahun

    1983.c. Text book Cable Stayed Bridges: Theory and Design karangan

    Troitsky tahun 1977.d. Peraturan RSNI T-02-2005: Standar Pembebanan untuk Jembatan.e. Peraturan RSNI T-03-2005: Perencanaan Struktur Baja untuk

    Jembatan.f. Peraturan Pd T-04-2004-B: Perencanaan Beban Gempa untuk

    Jembatan.g. Peraturan Pd T-12-2005-B: Sistem Lantai Kendaraan dengan CSP.h. Manual program MIDAS/Civil, SAP 2000 dan HILTI Profis Anchor.i. Dan literatur lain yang mungkin berkaitan.

    2. Studi data awal jembatan, antara lain:a. Nama dan lokasi : Jembatan Malangsari - Banyuwangi, Sungai Kali

    Malangsarib. Bentang : 231 meterc. Lebar : 11.2 meter (2/2UD)d. Tinggi bebas : Minimal 8 metere. Material utama : Gelagar baja box, kabel baja 7-wire strand dan

    struktur pylon beton bertulangf. Data-data sekunder.

    3. PRELIMINARY DESAIN3.1 Konfigurasi susunan kabel

    Konfigurasi kabel arah melintang berupa Two Vertical Planes System,sedangkan arah memanjang jembatan berupa Fan System. Plan design sebagai berikut:

    Panjang bentang :CLllL '2 1

    Dimana : L (panjang jembatan), 'l (panjang bentang dalam),l (panjang bentang Middle), 1l (panjang bentang samping)

    Closure (CL) = 15 mPanjang jembatan (L) = 231 m

    '4.01 ll

    ml

    l

    lll

    120'8.1

    15231'

    15'8.123115')'4.0(2231

    1l 0.4(120) = 48 m

    13515120'

    lCLll

    Jarak kabel pada gelagar (a) : gelagar baja (15 m 25 m) dan gelagar beton(5 m 10 m).

    =

    42/CLl

    =

    4

    2/15135 m = 15 m ..15ma25m..ok!

    dimana : : jarak angker kabel pada gelagar,n : jumlah kabel

    Tinggi Pylon (h) L/6 - L/8 (Troitsky 1977 hal 33) 231/6 h 231/8 38.5 m h 28.875 mAtau : (h) 0.465x n x a (Troitsky 1977 hal 181)

    h 0.465 x 4 x 15= 27.9 m dipakai h = 40 m

    Kelandaian arah memanjang sebesar 1 %.Pada konfigurasi demikian maka tinggi bebas tertinggi bawah jembatan adalah27 m dan terendah adalah 8 m.

  • 5

  • 6bf

    tf

    d twh

    Gambar 3.1 Konfigurasi susunan kabel

    3.2 Dimensi gelagar melintang dan kantilever Gelagar melintang berupa profil baja WF :L = 6.8 + jarak titik berat gelagar memanjang box

    = 6.8 + 2 (0.5)= 7.80 m

    Tinggi balok (d) 98.7

    9L = 0.87 m

    Dipilih WF 900.300.18.34 :d = 912 mm bf = 302 mm r = 28 mm

    tf = 34 mm tw = 18 mm w = 286 kg/m

    Kantilever berupa baja WF :L = 1.2 + jarak titik berat gelagar memanjang box

    = 1.2 + 0.5 = 1.7 m

    Tinggi balok (d) 67.1

    6L = 0.28 m

    Dipilih WF 300.150.5,5.8d = 298 mm bf = 149 mm r = 13 mmtf = 8 mm tw = 5.5 mm w = 32 kg/mMutu baja WF : BJ-41 fy = 250 Mpa

    fu = 410 MpaBaut tipe tumpu (normal) : f1 = 410 MPa ; f2 = 310 MPa; r2 = 1.9Mutu Las : FE90 fu = 90 ksiJarak antar balok melintang sebesar 7.5 m

    3.3 Dimensi gelagar memanjang Box girder

    Menurut Podolny (1976) dalam bukunnya Contruction & Design of Cable-Stayed Bridges, bahwa perbandingan tinggi gelagar dengan bentang jembatanbervariasi antara 1/40 s/d 1/100.

    Tinggi box girder (h) : LhL100

    1401

    mxhmx 135100

    1135401

    3.375 m h 1.35 m dipakai h = 1.50 mb = 1.00 m

    Mutu baja box girder : BJ-50 fy = 290 Mpa fu = 500 Mpa

  • 7 Ribs (rusuk-rusuk)Tinggi ribs (d)

    125.7

    12L = 0.625 m

    Dipilih WF 700.300.13.24d = 700 mm bf = 300 mm r = 28 mmtf = 24 mm tw = 13 mm w = 185 kg/mMutu baja WF : BJ-41 fy = 250 Mpa

    fu = 410 Mpa

    3.4 Dimensi awal kabel dan angkerAda dua jenis kabel pararel VSL 7-wire strand yang biasa digunakan untuk

    konstruksi jembatan kabel yaitu:Tabel 3.1 Jenis kabel dan angker

    Standard ASTM A 416-74 grade270 Euronorme 138-79

    (mm) 15.2 15.7As (mm2) 140 150fu (fijin = 0.7 fu) (MPa) 1860 (1488) 1770 (1416)Ukuran angker 7, 12, 19, 31, 37, 61, dan 91 strand

    Dimensi awal kabel didekati dengan persamaan berikut (Gimsing, 1983):

    afPWAsc

    u .2/2sin)8.0(cos)(

    Dimana:Asc = Luas penampang kabelW = Beban mati dan hidup merataP = Beban terpusat = Jarak antar angker kabel pada gelagar = Sudut kabel terhadap horisontal = Berat jenis kabel

    = 77.01 kN/m3

    fu = Tegangan putus kabel = 1860 Mpaa = Jarak mendatar dari pylon ke angker kabel pada gelagar

    Perhitungan penampang dan jumlah strand kabel untuk preliminary dasainsebagai berikut:

    - Kabel s1:a1 = 15 m ; 1 = 67 ; W+P = 2293.67 kN

    0Asc = 1577.012/)672sin()1488000(67cos)67.2293(

    xx = 1678 mm2

    Kabel tipe 1 ( = 15.2 mm; As = 140 mm2)

    Jumlah kabel (n) = 99.1114016780

    AsAsc

    12 strand

    Asc = n.As = 12 x 140 = 1680 mm2Tabel 3.2 Perhitungan penampang dan jumlah strand kabel

    ai W+P Asc0 n AscNo. ( o ) (m) (kN) (mm2) kabel (mm2)s4 38 48 4253.67 4667 37 5180s3 39 45 2293.67 2461 19 2660s2 49 30 2293.67 2049 19 2660s1 67 15 2293.67 1678 12 1680m1 67 15 2293.67 1678 12 1680m2 49 30 2293.67 2049 19 2660m3 39 45 2293.67 2461 19 2660m4 32 60 2293.67 2929 31 4340

    Dalam pelaksanaan, kabel akan mengalami lendutan akibat berat sendiri. Tetapidalam analisa dapat digunakan kabel yang lurus dengan koreksi pada nilai moduluselastisitasnya, sebagai berikut (Munaf dan Ryanto, 2004):

    ElEEeq

    3

    2

    .12).(1

    Dimana :Eeq = Modulus elastisitas ekivalenE = Modulus elastisitas kabel

    = 200000 MPa = Berat jenis kabel

  • 8= 77.01 kN/m3 = 77.01 x 10-6 N/mm3 = Tegangan tarik dalam kabel

    = 0.8 fu = 1488 MPal = Jarak titik gantung kabel

    =222 cba

    Perhitungan modulus elastisitas ekivalen masing-masing kabel diberikancontoh kabel s1, kemudian untuk kabel yang lain ditabelkan sebagai berikut:

    - Kabel s1:a1 = 15 m ; b = 2 m, c1 = 31m

    222 31215 l = 34.50 m

    200000148812

    )345001001.77(1200000

    3

    26

    xx

    xxEeq

    = 200000 Mpa

    Tabel 4.3 Perhitungan modulus elastisitas ekivalenai ci l Eeq

    No.(m) (m) (m) E

    l3

    2

    .12).(1

    (MPa)s4 48 37 60.64 1.0000 200000s3 45 35 57.04 1.0000 200000s2 30 33 44.64 1.0000 200000s1 15 31 34.50 1.0000 200000m1 15 31 34.50 1.0000 200000m2 30 33 44.64 1.0000 200000m3 45 35 57.04 1.0000 200000m4 60 37 70.52 1.0000 200000Dari Tabel 4.3 dapat diamati bahwa koreksi modulus elastisitas yang terjadi

    sangat kecil (kurang dari 0.5%) sehingga dapat diabaikan. Hal ini berarti lendutankabel yang terjadi akibat berat sendiri sangatlah kecil sehingga dapat dianggapsebagai kabel lurus.

    3.5 Struktur pylonPreliminary pylon berdasarkan besarnya gaya aksial tekan dan momen lentur

    (akibat lentur diasumsikan 50% dari pengaruh aksial) dari gaya aksial pada kabeluntuk satu sisi kolom vertikal pylon tersebut.

    1. Material : Beton bertulang2. fc : 50 MPa3. fy : 400 Mpa4. Bentuk pylon menggunakan tipe two vertical:

    Tabel 4.4 Perhitungan gaya aksial pada pylona TNo.

    kabel ( ) ( kN )Ts1 23 2293.67Ts2 41 2293.67Ts3 51 2293.67Ts4 51 4253.67Tm1 23 2293.67Tm2 41 2293.67Tm3 51 2293.67Tm4 58 2293.67

    T = 20309.36Gaya aksial total (T) = 20309.36 kNb = lebar penampang ; h = tinggi penampang = 2 b

    23 67.6769781030

    36.20309'

    mmxfc

    TAperlu = 6769.79 cm2*Asumsi akibat pengaruh momen lentur 50%, maka :

  • 90,17

    0,05

    C om podeck

    Profil ribs

    40

    160

    50

    d3=200

    Shear connectorD 19 com podeck

    PO T O N G A N I-I

    d4 = 50 m md3 = 200 m m

    A spalD 19 - 100

    C om podeckt = 1 m m

    b1 = 2.6 mS = b1 - bf = 2.4 m

    cover = 40m m

    160m m50m m

    D 19 - 200

    10 - 200

    Atot = (1+50%) 6769.79 = 10154.69 cm2 Luas penampang (A) = b x 2 b = 2 b2

    b =2

    69.101542A = 71.26 cm 150 cm

    h = 2 x 150 = 300 cm

    4. DESAIN STRUKTUR SEKUNDER4.1 Pelat lantai kendaraan (komposit)

    Pelat lantai kendaraan berupa beton komposit antara beton bertulang denganpelat compodeck.

    beton = 25 kN/m3aspal = 22 kN/m3comp = 77 kN/m3fc = 25 MPafy = 400 Mpafyc = 550 MpaCover = 40 mm

    Tabel 4.1 Rekapitulasi pembebanan lantai kendaraanJenis Beban Nilai LF TotalBeban mati (DL)

    Beban pelat beton 6.25 kN/m 1.3 8.125 kN/mBeban compodeck 0.096 kN/m 1.1 0.106 kN/m

    Beban superimpose (SDL)Beban aspal 2.2 kN/m 2.0 4.4 kN/m

    Beban pelaksanaan (PLL)Beban pelaksanaan 2 kN/m 1.25 2.5 kN/m

    Beban hidup (LL)Beban truk 112.5 kN 1.8DLA=30% 263.25 kN

    Untuk mendapatkan pengaruh yang paling menentukan, beban dikonfigurasidalam keadaan ultimit (RSNI T-02-2005: Tabel 40) seperti berikut:

    Tabel 4.2 Konfigurasi pembebanan lantai kendaraanModel Kombinasi Gambar

    1 DL+SDL+PLL+LL

    2 DL+SDL+PLL+LL

    = DL = Beban sendiri = SDL = Beban aspal = LL = Beban truk + beban pelaksanaan

    Dari hasil analisa diperoleh desain lantai kendaraan seperti gambar berikut :

    Gambar 4.1 Lantai kendaraan komposit

    4.2 Railing jembatanRailing jembatan dari profil baja bulat, sedangkan koneksi ke landasan diberi

    base plate yang diangker ke beton trotoar. Analisa profil railing dengan program SAP2000, untuk angker dengan menggunakan program Profis Anchor.

    beton = 25 kN/m3fc = 25 MPafy = 400 Mpa

    Railing direncanakan menerima beban w = 0.75 kN/m yang bekerja sepanjang Lpada pipa sandaran paling atas (RSNI T-02-2005 ps.12.5). Kemudian beban wdidistribusikan ke join-join, sebesar :

    Pw = w x b = 0.75 x 0.475 = 0.356 kNDari Analisa SAP2000 didapatkan, bahwa profil kuat, yaitu rasio antara beban

    terfaktor dengan kapasitas nominal kurang atau sama dengan 1.00.Tabel 4.2 Hasil analisa profil railing

    Diameter Ps Pn Rasio kapasitasFrame( " ) ( kN ) ( kN ) 1.00

  • 10

    bf = 300

    d = 700

    tf = 24

    tw = 13

    Vertikal tepi 3 -0.413 -0.489 0.845Horisontal 3 -0.332 -1.253 0.265Vertikal dalam 1 -0.023 -0.091 0.253Diagonal 1 -0.281 -1.007 0.279

    Setiap tiang railing menerima momen :Mu = w x 0.5L x H

    = 0.75 x 0.5(4.75) x 1.3= 2.316 kN-m

    Geser :Vu = w x 0.5L

    = 0.75 x 0.5(4.75)= 1.781 kN

    Beban aksial di joint reaction per-1 tiang (frame vertikal tepi):Pu = 0.413 kN (tekan)

    Direncanakan :- Beton kerb : fc = 25 Mpa- Dimensi base plate 250, t = 14 mm (fy = 400 Mpa)Hasil analisa angker dengan HILTI profis, didapatkan tipe HIT-RE 500+HAS-M8(spesifikasi terlampir).

    5. GELAGAR RIBSData perencanaan sebagai berikut :Gelagar diasumsikan sebagai simple beam.Beton bertulang : fc = 25 Mpa ; fy = 400 MpaPelat compodeck : fyc = 550 MpaProfil baja : BJ-41 fy = 250 Mpa ; fu = 410 MpaWF 700.300.13.24 : W = 185 kg/m 1.85 kN/mStud/shear connector : fur = 400 Mpabeton = 25 kN/m3aspal = 22 kN/m3baja = 77 kN/m3Cover = 40 mmt.compodeck = 1 mm

    Tabel 5.1 Rekapitulasi pembebanan gelagar ribsJenis Beban Nilai LF TotalBeban mati (DL)

    Beban sendiri 2.035 kN/m 1.1 2.239 kN/mBeban pelat beton 15 kN/m 1.3 19.5 kN/mBeban pelat compodeck 0.23 kN/m 1.1 0.25 kN/m

    Beban superimpose (SDL)

    Beban aspal 5.28 kN/m 2.0 10.56 kN/mBeban pelaksanaan (PLL)

    Beban pelaksanaan 2 kN/m 1.25 2.5 kN/mBeban hidup (LL)

    Beban UDL 13.75 kN/m 1.8 24.75 kN/mBeban KEL 152.88 kN 1.8 275.18 kN

    Untuk mendapatkan pengaruh yang paling kritis, beban dikombinasikanberdasarkan kondisi ultimit (RSNI T-02-2005: Tabel 40) sebagai berikut:

    Tabel 5.2 Kombinasi pembebanan gelagar ribsKombinasi Jenis Beban

    Komb 1 DL + SDL + LL(UDL+KEL)Komb 2 DL + SDL + PLL

    Dari hasil analisa dengan program SAP2000 dapat dilihat bahwa kombinasi 1akibat beban UDL-KEL lebih menentukan baik pada pengaruh momen. maupungeser.Mu (+) = 882.62 kNmVu = 333.14 kN

    Analisa kapasitas penampang kompositMn = 2689 kNm > Mu = 882.62 kNm (ok)

    Analisa penampang komposit terhadap geserVn = 1228.5 kN > Vu = 333.14 kN (ok)

    Kontrol lendutanYijin = 1/800 x 7.5 = 0.0093 m

    Tabel 5.3 Lendutan gelagar ribsFrame Displacement (Ymax) (m)Girder UDL+KEL

    Ymax Yijin

    Ribs 0.0088 ok

    Dengan demikian gelagar ribs WF 700.300.13.24 memenuhi syarat, hasilnya sebagaiberikut :

    Gambar 5.1 Hasil desain penampang gelagar ribs

  • 11

    S2

    Profil ribs

    40

    160

    50

    d3=200

    Shear connector (S1)D 19 com podeck 10

    120

    120

    100

    33

    D 22

    2050

    S2

    (S1)(S2)

    Profil ribs

    40

    160

    50

    d3=200

    Shear connector (S1)D 19 com podeck 10

    120

    120

    33

    D 22

    20

    tfd

    2100 L = 2600 2100

    6800

    a a a = 1300 b f

    tw

    W F 700.300.13.24Stiffner

    5.1 Shear connector (stud)Direncanakan stud :D = 22 mmAsc = x x 222 = 379.94 mm2Fu = 400 Mpa

    Jadi jumlah stud sepanjang bentang adalah 2 x 22, sebanyak 44 stud.

    Gambar 5.2 Detail pemasangan shear connector

    6. GELAGAR MELINTANGTabel 6.1 Rekapitulasi pembebanan gelagar melintang

    Jenis Beban Nilai LF TotalBeban mati (DL)

    Beban Wgelagar 3.146 kN/m 1.1 3.46 kN/mBeban Pribs 15.26 kN 1.1 16.79 kNBeban Pbeton 121.88 kN 1.3 158.44 kNBeban Pcomp 1.87 kN 1.1 2.057 kN

    Beban superimpose (SDL)Beban Paspal 39.6 kN 2.0 79.2 kNBeban kerb 27 kN/m 1.3 35.1 kN/m

    Beban railing 0.826 kN 2.0 1.652 kNBeban PJU 3.18 kN 2.0 6.36 kN

    Beban pelaksanaan (PLL)Beban pelaksanaan 2 kN/m 1.25 2.50 kN/m

    Beban hidup (LL)

    Beban UDL 42.975 kN/m 1.8 77.355 kN/mBeban KEL 63.7 kN/m 1.8 114.66 kN/m

    Beban pejalan kaki 1500 kN/m 1.8 2700 kN/mUntuk mendapatkan pengaruh yang paling kritis, beban dikombinasikan

    berdasarkan kondisi ultimit (RSNI T-02-2005: Tabel 40) sebagai berikut:Tabel 6.2 Kombinasi pembebanan gelagar melintang

    Kombinasi Jenis BebanKomb 1 DL+SDL+LL(UDL+KEL)Komb 2 DL+SDL+LL(UDL+KEL +pejalan kaki)Komb 3 DL+SDL+PLL

    Dari kondisi diatas dapat dilihat bahwa kombinasi 1 akibat pengaruh UDL-KEL lebih menentukan pada pengaruh geser maupun momen.

    Analisa kapasitas penampang untuk mengetahui kuat lentur, geser danlendutan.

    Direncanakan : WF 900.300.18.34d = 912 mm ; tf = 34 mm ; r = 28 mmbf = 302 mm ; tw = 18 mm ; A = 36400 mm2Ix = 498000 x 104 mm4 ; Iy = 15700 x104 mm4Mutu BJ-41 : fy = 250 MpaEs = 2 x 105 MpaDari tabel profil (lampiran):Zx =12221 x 103 mm3 Analisa kapasitas penampang akibat interaksi geser dan lentur

    Jika momen lentur dianggap dipikul oleh seluruh penampang, maka gelagar harusdirencanakan untuk memikul kombinasi lentur dan geser (RSNI T-03-2005 ps.7.9.3),yaitu :

    375.1625.0 Vn

    VuMn

    Mu

    375.116.2216

    84.792625.02749

    77.1660

  • 12

    bf = 302

    d = 912

    tf = 34

    tw = 18

    r = 28

    375.1828.0 ...(ok) Kontrol lendutan

    Yijin = 1/800 x 7.3 = 0.0091 mHasil analisa lendutan dari SAP 2000 sebagai berikut :

    Tabel 6.3 Lendutan gelagar melintang

    Frame Displacement (Ymax) (m)Girder UDL+KEL T

    Ymax Yijin

    Tengah 0.0089 0.0084 okDengan demikian gelagar melintang WF 900.300.18.34 memenuhi syarat, hasilnyasebagai berikut :

    Gambar 6.1 Hasil desain penampang gelagar melintang

    7. ANALISA STATIS STRUKTUR UTAMAStruktur utama terdiri dari gelagar memanjang box, kabel dan strutur pylon.Masing-masing gaya kabel output dari iterasi yang dilakukan program

    MIDAS/Civil ditabelkan sebagai berikut:Tabel 7.1 Gaya tarik awal (stressing) masing-masing kabel

    Kabel Stressing (kN) Kabel Stressing (kN)s4 4397 m4 4693s3 2218 m3 1820s2 2387 m2 2075s1 3160 m1 2958

    Tabel 7.2 Rekapitulasi pembebananJenis Beban Nilai LF TotalBeban mati (DL)

    Berat sendiri box (W) 20.78 kN/m 1.1 22.86 kN/mP.gelagar ribs 15.26 kN 1.1 16.79 kNP.gelagar melintang 10.69 kN 1.1 11.76 kNP.kantilever 0.42 kN 1.1 0.46 kN

    P.pelat beton bertulang 262.5 kN 1.3 341.25 kNP.pelat compodeck 4.44 kN 1.1 4.88 kN

    W 14.1 kN/mPDL 375.14 kN

    Beban superimpose (SDL)P.aspal 57.75 kN 2.0 115.5 kNP.kerb 36.45 kN 2.0 72.9 kNP.railing 0.826 kN 2.0 1.65 kNP.PJU 3.18 kN 2.0 6.36 kN

    PSDL 196.41 kNBeban hidup (LL)

    Beban UDL 20.06 kN/m 1.8 36.11 kN/mBeban KEL 222.95 kN 1.8 401.31 kN

    Beban angin (WL)Tw1 1.01 kN/m 1.2 1.21 kN/mTw2 1.94 kN/m 1.2 2.33 kN/m

    Tw 5.31 kN/mUntuk mendapatkan pengaruh yang paling menentukan, beban dikonfigurasi

    seperti berikut (Munaf dan Ryanto, 2004):Tabel 8.5 Konfigurasi pembebanan

    Kasus Beban Gambar

    1 DL + SDL + LLtepi

    2 DL + SDL + LLtengah

    3 DL + SDL + LLpenuh

    4 DL + SDL + Anginpenuh

    5 DL + SDL + Anginekstrim

    = DL = Beban sendiri = SDL = Beban aspal

    = LL = Beban UDL = Beban angin

    = Beban KEL

  • 13

    Hasil analisa statis strutur utama dengan bantuan program MIDAS/Civil,sebagai berikut :

    (a)

    (b)

    (c)Gambar 7.1 Deformasi struktur pada (a)Kasus 1 (b)Kasus 2 (c)Kasus 3

    (c)

    (d)Gambar 7.2 Deformasi struktur pada (c)Kasus 4 (d)Kasus 5

    8. DESAIN KAPASITAS GELAGAR MEMANJANG BOXAnalisa ini dimaksudkan untuk mengetahui kemampuan gelagar box terhadap

    gaya yang bekerja dari berbagai kasus. Desain gelagar dibagi menjadi dua tipe yaitupada midspan closure yang menerima gaya aksial tarik tinggi, dan gelagar bagiandalam kabel yang menerima gaya aksial tekan tinggi.

    Tabel 8.1 Resume gaya dalam gelagar midspan closureMomen (kN-m) Geser (kN) Aksial (kN)

    Kasus 1 -3548 1065 -777Kasus 2 12395 -1447 8069Kasus 3 10985 -1447 4802Kasus 4 3420*sb. lemah: 227

    -1040 5100

    Kasus 5 3420*sb. lemah: -35

    -1038 2573

    Tabel 8.2 Resume gaya dalam gelagar bagian dalamMomen (kN-m) Geser (kN) Aksial (kN)

    Kasus 1 15646 -1875 -28384Kasus 2 -14894 1874 -27587Kasus 3 10238 2196 -30502Kasus 4 6333*sb. lemah: -2414

    1647 -25675

    Kasus 5 6333*sb. lemah: -734

    -1646 -25076

    Kontrol akibat aksial Pn = 50679.6 kN > [Pumax = 30502 kN :Tabel 8.2](ok)

    Kontrol akibat kombinasi lentur + aksialGelagar midspan closure (Lentur + aksial tarik) :

    20.016.050679.6

    8069.

    Pnt

    Pu

    maka :

  • 14

    00.1...2

    Mnyb

    MuyMnxb

    MuxPnt

    Pu

    00.1353809.0

    227469809.0

    123956.506792

    8069

    xxx

    0.38 1.00 (ok)

    Gelagar bagian dalam (Lentur + aksial tekan) :

    20.05.0)x100x290/1.030.85(2400028384

    .

    3-

    Pnc

    Pu

    maka :

    00.1..9

    8.

    Mnyb

    MuyMnxb

    MuxPnc

    Pu

    00.1353809.0

    2414469809.0

    15646985.0

    xx0.90 1.00 (ok)

    9. ITERASI KEBUTUHAN KABELAsc* P* Asc P

    9.1 Perhitungan penampang kabel berdasarkan gaya kabel P*Dari gaya kabel P* yang diperoleh, dapat langsung dihitung luas penampang

    yang diperlukan (Asc). Contoh perhitungan diberikan untuk kabel s4 dan untuk kabelyang lain ditabelkan sebagai berikut:

    Kabel s4:P = 6840 kNAAsc = F/fijin

    = 6840/1.488= 4596 mm2

    9.2 Perhitungan penampang kabel berdasarkan gaya kabel P*Dari gaya kabel P* yang diperoleh, dapat langsung dihitung luas penampang

    yang diperlukan (Asc). Contoh perhitungan diberikan untuk kabel s4 dan untuk kabelyang lain ditabelkan sebagai berikut:

    Kabel s4:P = 6840 kNAAsc = F/fijin

    = 6840/1.488 = 4596 mm2

    9.3 Kroscek penampang kabel berdasarkan gaya kabel PContoh perhitungan diberikan untuk kabel s4 dan untuk kabel yang lain

    ditabelkan sebagai berikut:Kabel s4:Ascaktual = 5180 mm2Pn = fijin x Ascaktual

    = 1.488 x 5180= 7708 kN

    P = 6684 kNPn > P (ok)Dari hasil beberapa iterasi tersebut, maka diperoleh kebutuhan kabel seperti

    gambar berikut:

    Gambar 9.1 Parameter struktur kabel VSL 7-wire strand

    10. PENULANGAN STRUKTUR PYLONTulangan pokok dihitung dengan program bantu PCACOL, hasilnya sebagai

    berikut: Kolom pylon 1.50 x 3.00 m 292 D32 ( = 5.32%) Balok atas 0.60 x 2.00 m 24 D32 ( = 1.64%) Balok bawah 1.00 x 1.50 m 46 D32 ( = 2.51%)

    11. STAGING ANALYSISMetode pelaksanaan/staging analysis konstruksi jembatan cable stayed ini

    dibuat kantilever bebas dan dipengaruhi langsung oleh beban form traveller. Gelagardan LK (gelagar melintang, kantiever, ribs dan pelat compodeck) sebelum dipasangdirangkai terlebih dahulu untuk mengurangi pengerjaan saat pelaksanaan. Tahapannyasebagai berikut:

    1. Pelaksanaan pemasangan gelagar G1(gelagar memanjang box) dan LK1menggunakan crane kemudian ditempatkan di atas perancah lalu dilakukanpen-jacking-an pada angker s1 dan m1.

  • 15

    2. Tahap berikutnya dilakukan pemasangan pada Gs2 dan LKs2, lalu dijackingpada angker s2.

    3. Pemasangan Gm2 dan LKm2, lalu dijacking pada angker m2. Dilanjutkandengan pengecoran pelat beton LK1.

    4. Pemasangan Gs3, LKs3, Gm3 dan LKm3, lalu jacking dilakukan bergantiandengan melakukan pada angker m3 terlebih dahulu.

    5. Kemudian Jacking dilakukan pada angker s3. Diteruskan dengan pengecoranpelat beton LKs2 dan LKm2.

    6. Pemasangan Gs4, LKs4, Gm4 dan LKm4 tetap menggunakan form traveler.7. Jacking pada pylon diawali pada s4 dan diangker di blok angker pada

    abutment. Kemudian dilakukan jacking pada s4.8. Berikutnya dilakukan penyambungan closer yaitu Gclosure dan LKclossure. Lalu

    pengecoran pelat beton mulai dari LKs3, LKm3, LKs4 sampai LKm4. Setelahitu salah satu form traveler dibongkar, dan dilanjutkan dengan pengecoranpelat beton closer lalu form traveler dibongkar.

    9. Selanjutnya dilakukan pekerjaan infrasturktur pelengkap bangunan.Metode analisis struktur dibuat dengan metode demolishing procedure melalui

    backward solution. Dimulai dari keadaan final jembatan dilanjutkan dengan melepasbagian per bagian hingga sampai pada keadaan awal pada metode pelaksanaan.Semua tahapan tersebut di-input-kan kedalam program MIDAS/Civil sehinggadidapat hasil gaya per tahapan analisa.11.1Kontrol gelagar memanjang box

    Gaya aksial maksimal gelagar bagian dalam saat pelaksanaan lebih besardibandingkan pada saat servis, sehingga gelagar perlu dikroscek kapasitasnya. Gayamaksimum yang bekerja pada gelagar bagian dalam saat pelaksanaan yangmenimbulkan momen maksimum adalah:

    Tabel 11.1 Gaya dalam pada tahap 17, gelagar Gm1Momen (kNm)Gelagar Tahap

    Sb. kuat Sb. lemahGeser(kN)

    Aksial(kN)

    Gm1 17 19474 -1722 -2206 -35071

    Kontrol akibat kombinasi lentur + aksialGelagar bagian dalam (Lentur + aksial tekan) :

    20.06.0)x100x290/1.030.85(2400035071

    .

    3-

    Pnc

    Pu

    maka :

    00.1..9

    8.

    Mnyb

    MuyMnxb

    MuxPnc

    Pu

    00.1353809.0

    1722469809.0

    19474986.0

    xx0.988 1.00 (ok)

    11.2 Kontrol penampang kabelTabel 11.2 Gaya kabel saat pelaksanaan

    Gaya kabel (kN)KabelServis Pelaksanaan Selisih

    Ket.

    Gs4 6684 4596 2088 31% Tahap 1Gs3 2567 1905 663 26% Tahap 1Gs2 2787 2036 751 27% Tahap 1Gs1 3956 2918 1038 26% Tahap 19Gm1 3980 3070 910 23% Tahap 19Gm2 2738 1990 748 27% Tahap 1Gm3 2482 1825 657 26% Tahap 1Gm4 5713 4757 956 17% Tahap 1

    Dari tabel diatas dapat diamati bahwa hampir semua kabel mendapat gayakabel maksimum pada tahap 1 yaitu saat kondisi final sebelum beban hidup diberikan.Hanya pada kabel di dekat pylon (s1 dan m1) tidak demikian. Kabel-kabel inimendapat gaya kabel maksimum saat tahap 19. Hal ini karena pada saat itu kabel-kabel ini memikul beban gelagar dan form traveller sendirian. Gaya kabel saatpelaksanaan semuanya lebih kecil dari gaya kabel saat servis, maka kebutuhanpenampang kabel terpenuhi.

    side middleGambar 11.1 Deformasi struktur Tahap 19

  • 16

    11.3Kontrol struktur pylonTabel 11.3 Momen sumbu x pylon saat pelaksanaan

    Momen sb. x (kNm)ElemenServis Pelaksanaan Selisih

    Ket

    BA1 166 79 87 52% Tahap 1BA2 265 197 68 26% Tahap 9BA3 178 121 56 32% Tahap 19BB -2802 -2644 159 6% Tahap 1KKi 17554 28396 -10842 -62% Tahap 8KKa 20026 32092 -12066 -60% Tahap 8

    Dari tabel di atas, dapat dilihat bahwa untuk elemen balok (BA dan BB),momen x saat pelaksanaan masih lebih kecil dibandingkan dengan momen x saatservis. Sedangkan untuk elemen kolom, momen x saat pelaksanaan ternyata lebihbesar sekitar 62% (KKi) dan 60% (KKa) dibandingkan dengan saat servis. Kolom-kolom ini harus dikroscek terhadap tulangan yang telah ada dan apabila tidakmemenuhi, harus direncanakan ulang.

    Gaya maksimum yang bekerja pada pylon bagian kolom saat pelaksanaan yangmenimbulkan momen maksimum adalah:

    Tabel 11.4 Gaya dalam pada tahap 8, pylon KkaMomen (kNm)Elemen Tahap

    Sb. x Sb. yGeser(kN)

    Aksial(kN)

    KKa 8 32092 2032 -1456 -14804Momen yang terjadi dikalikan faktor pembesaran momen karena kelangsingan

    pylon seperti pada analisa penampang pylon sebagai berikut ini dengan Pu adalahgaya aksial pada tahap 8.

    1. Rangka tanpa pengaku lateral (unbraced frame)Momen desain Mc = uxxM = 2.3932092 = 76699.88 kNm

    2. Rangka dengan pengaku lateral (braced frame)Momen desain Mc = uyyM = 2.42032 = 4876.8 kNmDengan tulangan yang telah ada, diagram interaksi yang dihasilkan adalah

    sebagai berikut:

    Gambar 11.2 Diagram interaksi pylon saat pelaksanaanDari diagram interaksi tersebut nomor 1 mewakili gaya dalam pada tahap 8

    menunjukkan bahwa kapasitas penampang pylon memenuhi syarat dengan tulanganterpasang 293D32 ( = 5.32%).

    Tabel 11.5 Momen sumbu y pylon saat pelaksanaanMomen sb. y (kNm)Elemen

    Servis Pelaksanaan SelisihKet

    BA1 1329 646 683 51% Tahap 1BA2 2039 1567 472 23% Tahap 9BA3 1358 1184 174 13% Tahap 19BB 4039 4580 -540 -13% Tahap 1KKi -2650 -2248 403 15% Tahap 8KKa 2467 2032 434 18% Tahap 8

    Dari tabel di atas, ternyata balok BB mempunyai momen y saat pelaksanaanyang lebih besar daripada saat servis sehingga perlu dikroscek apakah dengan jumlahtulangan yang ada masih memenuhi.

    Gaya maksimum yang bekerja pada balok BB saat pelaksanaan yangmenimbulkan momen y maksimum adalah:

    Tabel 11.6 Gaya dalam pada tahap 1, balok BBMomen (kNm)Elemen Tahap

    Sb. x Sb. yGeser(kN)

    Aksial(kN)

    BB 1 -2644 4580 1863 8549

  • 17

    Dengan tulangan yang telah ada, diagram interaksi yang dihasilkan adalahsebagai berikut:

    Gambar 11.3 Diagram interaksi balok BB saat pelaksanaanDengan demikian hasil interaksi akibat pengaruh pelaksanaan, kapasitas

    penampang mencukupi dengan tulangan terpasang 46D32 ( = 2.51%).

    Tabel 11.7 Gaya geser pylon saat pelaksanaan

    Geser (kN)ElemenServis Pelaksanaan Selisih

    Ket

    BA1 609 537 72 12% Tahap 1BA2 679 538 141 21% Tahap 9BA3 -5109 -4249 860 17% Tahap 19BB 1916 1863 53 3% Tahap 1KKi -1793 -1454 339 19% Tahap 8KKa -1740 -1456 285 16% Tahap 8

    Dari tabel di atas dapat dilihat bahwa geser saat pelaksanaan masih lebih kecildari geser yang terjadi saat servis sehingga tidak perlu direncanakan ulang.

    Tabel 10.11 Gaya aksial pylon saat pelaksanaan

    Aksial (kN)ElemenServis Pelaksanaan Selisih

    Ket

    BA1 -1757 -1664 93 5% Tahap 1BA2 -1629 -1689 -60 -4% Tahap 9BA3 -1758 -1693 65 4% Tahap 19

    BB 9878 8549 1329 13% Tahap 1KKi -18282 -14935 3347 18% Tahap 8KKa -18001 -14804 3196 18% Tahap 8

    Dari tabel di atas, dapat diamati bahwa sebagian besar gaya aksial yang terjadisaat pelaksanaan masih lebih kecil dari gaya aksial saat servis, kecuali untuk balokBA2. Tetapi hal ini tidak perlu dikroscek karena besarnya tidak melebihi gayaaksial balok BA1 dan BA3. Dimana BA1, BA2 dan BA3 mempunyai penampangyang sama.

    12. ANALISA DINAMISAnalisa dinamis ini meliputi analisa stabilitas aerodinamis yaitu vortex-

    shedding (yang berkaitan langsung dengan efek psikologis), flutter dan gempa. Tetapiuntuk proyek yang sebenarnya, analisa dinamis ini harus dilakukan denganterowongan angin menggunakan model.12.1 Stabilitas Aerodinamisa. Frekuensi alami

    Frekuensi alami yang dihitung yaitu frekuensi lentur (fB) dan frekuensitorsi (fT).

    fB = 0.32 HzfT = 0.35 Hz

    b. Efek vortex-sheddingVortex-shedding adalah osilasi gaya akibat pusaran angin atau turbulensi. Pada

    kecepatan angin tertentu yang disebut kecepatan kritis, akan terjadi vortex-shedding.Untuk mendapatkan kecepatan kritis yang akan menyebabkan vortex-shedding,digunakan persamaan angka Strouhal (S).

    S =V

    hf B Dimana:S = Angka StrouhalfB = Frekuensi alami lenturh = Tinggi lantai kendaraanV = Kecepatan angin yang dihitung berdasarkan angka StrouhalKecepatan angin V dicari dengan menggunakan persamaan angka Strouhal.

    Angka Strouhal (S) sendiri ditentukan 0.15 yaitu rata-rata dari jangkauan nilai antara0.10 dan 0.20. Tinggi lantai kendaraan (h) adalah 1.75 m.

    V =S

    hf B

  • 18

    =

    15.075.132.0

    = 3.73 m/detSelanjutnya dicek dengan menggunakan persamaan angka Reynold, sebagai

    berikut:

    Re = BV

    Dimana:Re = Angka ReynoldV = Kecepatan angin yang dihitung berdasarkan angka StrouhalB = Lebar lantai kendaraan = Viskositas kinematis udaraNilai angka Reynold harus berkisar antara 105 sampai 107. Viskositas

    kinematis udara diberikan 0.15 cm2/det (Walther, 1999). Lebar lantai kendaraan 11.2m.

    Re = BV

    = 41015.02.1173.3

    = 2.79 x 106 (105 < Re < 107)

    Akibat terpaan angin, akan terjadi uplift atau gaya angkat yang besarnya:

    Fo = hCV 2

    2

    Dimana:Fo = Gaya angkat = Berat volume udaraV = Kecepatan angin yang dihitung berdasarkan angka StrouhalC = Koefisien gaya angkat lantai kendaraanh = Tinggi lantai kendaraanBerat volume udara diketahui 1.3 kg/m3. Dan koefisien C diambil melalui

    grafik berikut:

    Gambar 12.1 Koefisien C dari tiga penampangGrafik diatas adalah hasil percobaan dari tiga bentuk penampang lantai

    kendaraan jembatan-jembatan yang sudah berdiri. Penampang yang ditandai sudahcukup merepresentasikan bentuk penampang lantai kendaraan yang dipakai. Dengan diambil 0, didapat C sebesar 0.4. Tetapi pada kenyataannya, angin tidak selalumenabrak jembatan dalam arah horisontal sempurna. Terkadang terdapat sudut yang berkisar antara 3 sampai 9 (rata-rata 6) (Walther, 1999), sehingga didapat Cyang paling menentukan yaitu 0.38. Tanda positif menunjukkan bahwa gaya angkatbekerja ke atas.

    Fo = hCV 2

    2

    = 75.1)38.0(273.33.1

    2

    = 6.01 N/m

  • 19

    Gaya ini akan menimbulkan osilasi gelagar yang amplitudonya dapat dihitungsebagai berikut:

    v = maxvm

    Fo

    Dimana:v = Amplitudo osilasi = Penurunan logaritmik (koefisien peredaman)Fo = Gaya angkatvmax= Deformasi statis maksimum struktur karena berat sendiri dalam arah

    yang ditinjaum = Berat sendiri lantai kendaraan per meter lariPenurunan logaritmik (koefisien peredaman) ditentukan berkisar 0.05

    (Walther, 1999). Fleksibilitas lantai kendaraan didefinisikan sebagai rasio antarabeban dan deformasi yang dihasilkan. Berat sendiri lantai kendaraan yaitu terdiri dariberat pelat, gelagar melintang, dan gelagar memanjang adalah 67.97 kN/m.

    v = maxvm

    Fo

    =3

    3 100.31097.6701.6

    05.0

    = 16.66 mm

    Amplitudo getaran sebesar 16.66 mm dengan frekuensi sebesar 0.32 Hz masukdalam daerah (A) yang dapat diterima. Hal ini dapat dilihat dari grafik berikut(Walther, 1999): Gambar 12.2 Klasifikasi efek psikologis berdasarkan amplitudo getaran

    Bila perlu, perhitungan dapat dilanjutkan dengan mencari nilai percepatangetaran yang dihasilkan dengan persamaan sebagai berikut:

    v = 42 x f 2 x v= 42 x 0.322 x (16.66 x 10-3)= 0.083 m/s2

    Percepatan sebesar 0.083 m/s2 dengan frekuensi sebesar 0.32 Hz masuk dalamdaerah (A) yang dapat diterima. Hal ini dapat dilihat dari grafik berikut (Walther,1999):

  • 20

    Gambar 12.3 Klasifikasi efek psikologis berdasarkan percepatan getaran (Walther,1999)

    Untuk meminimalisasi vortex-shedding ini, beberapa langkah dapat diambil(Walther, 1999).

    Memberikan lantai kendaraan penampang yang lancip di tepinya untukmembelah angin. Dengan begitu, tidak terjadi turbulensi. Akan tetapisystem lantai kendaraan jembatan ini dengan twin box girder.

    Memasang deflector atau pengarah angin di sudut-sudut penampangsehingga udara mengalir dengan lancar dan tidak terjadi turbulensi.

    c. Efek flutterFenomena flutter terjadi jika muncul ayunan lentur dan ayunan torsi

    akibat terpaan angin, dan keduanya memiliki perbedaan fase sebesar /2. Padakecepatan angin tertentu yang disebut kecepatan kritis, akan menghasilkanefek ini. Gabungan antara ayunan lentur dan ayunan torsi ini semakin lamaakan semakin besar walaupun kecepatan kritis tetap dan akan menyebabkanruntuhnya struktur (Walther, 1999).

    Gambar 12.5 Efek flutter dengan perbedaan fase /2Untuk mendapatkan kecepatan kritis teoritis, digunakan metode

    Klppel, yang didasarkan pada teori Theodorsen yang meneliti efek flutterpada sayap pesawat. Metode ini menggunakan grafik berikut (Walther, 1999):

    Gambar 12.6 Kecepatan kritis teoritis untuk flutter

  • 21

    Grafik diatas digunakan untuk nilai = 100. Persamaan adalah: = 2b

    m

    Dimana:m = Berat sendiri lantai kendaraan per meter lari = Berat volume udarab = Setengah lebar lantai kendaraanBerat sendiri lantai kendaraan yaitu terdiri dari berat pelat

    (beton+compodeck), gelagar melintang, dan gelagar memanjang (ribs+box)adalah 67.97 kN/m atau 6797 kg/m. Berat volume udara diketahui sebesar1.3 kg/m3. Lebar lantai kendaraan adalah 11.2 m sehingga setengahnya adalah5.6 m.

    = 2bm

    = 26.53.1

    6797 = 53.09

    Nilai = 53.09 mendekati angka 100, sehingga grafik dapat dipakai.Selain , diperlukan juga beberapa parameter lain diantaranya , r/b, dan .

    adalah rasio antara fT dan fB. Telah didapatkan bahwa fT = 0.35 Hzdan fB = 0.32 Hz, sehingga = 1.09. Nilai r/b sendiri dapat dihitung: 3.57/5.6= 0.64. adalah penurunan logaritmik (koefisien peredaman) dan ditentukanberkisar 0.05.

    Dengan melihat grafik di atas, dapat diketahui nilai kecepatan kritisteoritisnya.

    bfV

    B

    ltheoriticacrit

    2.

    = 6

    Sehingga:Vcrit. theoritical = 6 (2 x x fB x b)

    = 6 (2 x x 0.32 x 5.6)= 68 m/det

    Besar kecepatan kritis teoritis ini harus dikoreksi menjadi kecepatankritis aktual menggunakan grafik berikut (Walther, 1999):

    Gambar 12.7 Koefisien koreksi = Vcrit actual/Vcrit theoriticalPenampang lantai kendaraan yang dipakai mendekati penampang yang

    ditandai, jadi boleh digunakan. Dengan nilai = 1.09, didapatkan nilai koreksi = 0.9.

    Pada kenyataannya, angin tidak selalu menabrak jembatan dalam arahhorisontal sempurna. Terkadang terdapat sudut yang berkisar antara 3sampai 9 (rata-rata 6). Maka dari itu, diperlukan lagi koreksi. Untuk lantaikendaraan dengan penampang aerodinamis, koreksi ini sebesar 0.5 (Walther,1999).

    ( = 6) = 0.5 x ( = 0)= 0.5 x 0.9= 0.45

    Sehingga:Vcrit actual = x Vcrit theoritical

    = 0.48 x 68

  • 22

    = 30.6 m/s= 110.16 km/jam

    Hal ini berarti, bila angin di lapangan bertiup dengan kecepatan 110.6km/jam, maka akan mulai terjadi efek flutter. Jadi kecepatan angin dilapangan tidak boleh melebihi kecepatan ini. Sedangkan untuk perencanaan,telah digunakan kecepatan angin 30 m/s = 108 km/jam, sehinggamemenuhi.

    12.2 Gempa dinamisBeban gempa dianalisa dinamis dengan response spectrum analysis

    menggunakan bantuan program MIDAS/Civil menurut Pd T-04-2004B. Strukturberada pada daerah yang memiliki zona gempa 4.a. Pengaruh gempa pada kolom pylon

    Arah beban gempa masing-masing memberikan pengaruh pembebanan yangcukup besar pada pylon sebagai berikut :

    Tabel 12.1 Perbandingan MyMomen sb. Y global (kNm)Arah

    Gempa Elemen Servis Gempa SelisihKki -2650 10336 7685 290%Sb. X Kka 2467 10926 8459 343%Kki -2650 3689 1038 39%Sb. Y Kka 2467 5294 2827 115%

    Tabel 12.2 Perbandingan MxMomen sb. X global (kNm)Arah

    Gempa Elemen Servis Gempa SelisihKki 17554 15556 -1998 -11%Sb. X Kka 20026 -15556 -4471 -22%Kki 17554 -26124 8570 49%Sb. Y Kka 20026 -24328 44355 221%

    Tabel 12.3 Gaya dalam pylon akibat gempaMomen (kNm) Geser (kN) AksialElemen ArahGempa Sb. X Sb. Y Sb. X Sb. Y (kN)

    Kka Sb. X -15556 10926 -939 405 -16418

    Sb. Y -24328 5294 -14 -309 -7176Karena momen akibat gempa pada arah memanjang maupun melintang menimbulkanreaksi momen yang lebih besar dari saat kondisi servis maka perlu dilakukan kontrolpenampang kapasitasnya.Pembesaran momen akibat gempa arah sumbu x

    1. Rangka tanpa pengaku lateral (unbraced frame)Momen desain Mc = uxxM = 2.8215556 = 43868 kNm

    2. Rangka dengan pengaku lateral (braced frame)Momen desain Mc = uyyM = 1.45294 = 7412 kNmDengan tulangan yang telah ada, diagram interaksi yang dihasilkan adalah

    sebagai berikut:

    (a)

    (b)Gambar 12.8 Diagram interaksi pylon akibat gempa (a)gempa arah sb.x (b)gempa

    arah sb.yDengan demikian hasil interaksi, kapasitas penampang mencukupi dengan tulanganterpasang 292D32 ( = 5.32%)

  • 23

    b. Pengaruh gempa terhadap BATabel 12.4 Perbandingan Mx dan My BAMomen x Momen y Geser AksialNo. Kasus

    (kNm) (kNm) (kN) (kN)1 Kasus 1 -229 553 215 -14952 Kasus 2 -264 2039 -220 -17373 Kasus 3 -265 1428 -219 -17584 Kasus 4 -226 1124 271 -14595 Kasus 5 -226 1128 265 -14596 Gempa x -390 5000 -215 -19677 Gempa y -2946 4985 1816 -1705

    Gambar 12.9 Diagram interaksi akibat gempa yHasil analisa yang ditunjukkan oleh diagram interaksi diatas manyatakan, bahwa padapada kasus Gempa arah y kapasitas tidak cukup, sehingga perlu dilakukan re-desaindengan menambahkan tulangan, ditunjukkan sebagai berikut :

    Gambar 12.10 Diagram interaksi hasil re-desain BA akibat gempa y

    Dengan demikian hasil re-desain kebutuhan tulangan bertambah, dari 24D32 ( =1.64%) menjadi 44D32 ( = 3%).

    c. Pengaruh gempa terhadap BBTabel 12.5 Perbandingan Mx dan My BBMomen x Momen y Geser AksialNo. Kasus

    (kNm) (kNm) (kN) (kN)1 Kasus 1 -2600 -2347 -747 86542 Kasus 2 -2625 4039 -747 95023 Kasus 3 -2621 1499 -749 98784 Kasus 4 -2802 181 766 81695 Kasus 5 -2798 196 766 81696 Gempa x -3306 3560 -745 -108497 Gempa y -13641 162 2879 -10460

    Dengan tulangan yang telah ada, diagram interaksi yang dihasilkan adalahsebagai berikut:

    Gambar 12.11 Diagram interaksi BB akibat gempa yHasil analisa yang ditunjukkan oleh diagram interaksi diatas manyatakan, bahwa padakasus Gempa arah y kapasitas tidak cukup, sehingga perlu dilakukan re-desain denganmenambahkan tulangan, ditunjukkan sebagai berikut :

  • 24

    Gambar 12.12 Diagram interaksi hasil re-desain BB akibat Gempa yDengan demikian hasil re-desain kebutuhan tulangan bertambah, dari 46D32( = 2.51%) menjadi 70D32 ( = 3.82%).

    SaranLaporan Akhir ini pasti masih terdapat kekurangan-kekurangan. Sehingga ke

    depannya supaya didapatkan hasil yang lebih baik, beberapa usaha yang perludilakukan antara lain:

    1. Banyaknya macam konfigurasi beban hidup kalau perlu ditambah untukantisipasi keadaan yang memungkinkan terjadi di masa depan.

    2. Pada saat penentuan dimensi kabel, perlu juga dipertimbangkan segiekonomis. Apabila digunakan tipe kabel yang memiliki diameter lebihbesar dengan tegangan putus sedikit lebih kecil didapatkan ukuran angkeryang lebih kecil, tipe kabel ini bisa digunakan khusus untuk bagiantersebut. Hal ini dilakukan untuk menghindari penggunaan ukuran angkeryang berlebihan sehingga lebih murah.

    3. Dari kelima konfigurasi beban hidup yang ada, gaya maksimum diberikanbergantian oleh kasus 1, kasus 2, dan kasus 3. Tetapi untuk kasus 4 dankasus 5, dimana angin bertiup, sama sekali tidak menentukan walaupunkecepatan angin yang diberikan cukup besar yaitu 30 m/s atau 108km/jam. Jadi beban hidup memberi pengaruh yang dominan pada struktur.

    4. Ketelitian dalam menghitung berat form traveller perlu diperhatikan,karena beratnya menentukan perilaku struktur saat pelaksanaankonstruksi.

    5. Khusus untuk meninjau gaya aksial gelagar midspan closure, berat sendiriyang diberikan tidak untuk seluruh lantai kendaraan, tetapi hanya padabagian midspan closure itu saja. Hal ini karena seluruh berat sendiri lantaikendaraan telah diterima sebagai gaya aksial tekan saat pelaksanaan.Sehingga bila beban seluruh lantai kendaraan diberikan, beban ini akandisalurkan ke gelagar midspan closure sebagai gaya aksial tarik yangbesar, yang sebenarnya tidak terjadi.

    6. Untuk proyek yang sebenarnya, analisa dinamis yang ditinjau tidak cukuphanya dengan perhitungan manual saja, tetapi harus menggunakan modelpenuh menggunakan terowongan angin (wind tunnel test) agar diketahuilebih akurat mengenai perilaku aerodinamis struktur.

    DAFTAR PUSTAKA

    Bridge Management System. Peraturan Perencanaan Teknik Jembatan. BMS1992. Departemen PU Dirjen Bina Marga.

    Gimsing, N.J. 1983. Cable Supported Bridges: Concept and Design. John Wiley &Sons, Inc.

    MIDAS/Civil Manual. Final and Construction Stage Analysis for a Cable StayedBridge. MIDASoft Inc.

    HILTI Profis Anchor Manual. Detailed Design Method Hilti. HILTISoft Inc.Munaf, D.R., dan Ryanto, M. 2004. Kajian Pemodelan Struktur Jembatan Cable

    Stayed. Proseding Seminar Nasional Jembatan Berpenahan Kabel.Jurusan Teknik Sipil Politeknik Negeri Malang.

    Nawy, E.G. 1998. Beton Bertulang: Suatu Pendekatan Dasar. Refika Aditama,Bandung.

    OConnor, C. 1971. Design of Bridge Superstructure. Wiley-Interscience.Standard Nasional Indonesia. Standard Pembebanan untuk Jembatan. RSNI T-02-

    2005. Departemen PU Dirjen Bina Marga.Standard Nasional Indonesia. Perencanaan Struktur Baja untuk Jembatan. RSNI

    T-03-2005. Departemen PU Dirjen Bina Marga.Standard Nasional Indonesia. Perencanaan Beban Gempa untuk Jembatan. Pd T-

    04-2004-B. Departemen PU Dirjen Bina Marga.Standard Nasional Indonesia. Sistem Lantai Kendaraan dengan Corrugate Steel

    Plate (CSP). Pd T-12-2005-B. Departemen PU Dirjen Bina Marga.Standar Nasional Indonesia. Tata Cara Perhitungan Struktur Beton Untuk

    Bangunan Gedung. SNI 03 2847 2002.Suangga, M. 2007. Konsep Desain Jembatan Cable Stayed Suramadu. Modul

    Kuliah Tamu Jembatan Suramadu. Jurusan Teknik Sipil FTSP-ITS,Surabaya.

    Troitsky, M.S. 1977. Cable Stayed Bridges: Theory and Design. Crosby LockwoodStaples, London.

    Walther, R. 1999. Cable Stayed Bridges. Thomas Telford, London.