IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

33

Transcript of IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

Page 1: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id
Page 2: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id
Page 3: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

[Type here] i

IDENTITAS DAN URAIAN UMUM

1. Judul Penelitian

: PEMBERIAN BAKTERI AKTINOMISETES

DAN Serratia marcescens Strain MBC1 SEBAGAI Plant

Growth-Promoting PADA PERTUMBUAN Lactuca

sativa SECARA HIDROPONIK MENGGUNAKAN

AIR PAYAU

2. Tim peneliti

No Nama Jabatan Bidang keahlian Alokasi waktu

(jam/minggu)

1 Achmad Arifiyanto, S.Si., M.Si. Ketua Mikrobiologi;

Aktinomisetes

15 jam/minggu

2 Hapin Afriyani, S.Si., M.Si. Anggota Kimia; Kimia

organik

15 jam/minggu

3. Objek Penelitian (jenis material yang akan diteliti dan segi penelitian):

Jenis material yang digunakan pada penelitian ini adalah bakteri aktinomisetes

dan Serratia sp. IAA diproduksi dan dikarakterisasi menggunakan

spektrofotometer. Pengaruh pertumbuhan IAA diamati menggunakan kultur

hidroponik media air payau pada tanaman selada.

4. Masa Pelaksanaan

Mulai : bulan: April tahun

2021 Berakhir : bulan: September

tahun 2021

5. Usulan Biaya : Rp35.000.000.-

6. Lokasi Penelitian

Laboratorium Mikrobiologi Jurusan Biologi, Laboratorium Kimia Organik

Jurusan Kimia FMIPA Unila, UPT Lab Terpadu dan Sentra Inovasi Teknologi

(LTSIT) Unila.

7. Instansi lain yang terlibat

8. Kontribusi mendasar pada suatu bidang ilmu

Produksi IAA oleh mikroorganisme merupakan bentuk hormon eksogen

bagi tanaman. Mikroba dapat membantu tanaman bertahan dari kondisi

lingkungan ekstrem termasuk kadar garam. Produksi IAA dan pengaruhnya

terhadap pertumbuhan tanaman selada pada air payau diharapkan dapat

dituangkan dalam bentuk tulisan dalam jurnal internasional bereputasi.

9. Jurnal ilmiah yang menjadi sasaran untuk setiap penerima hibah

a. Biocatalysis and Agricultural Biotechnology (Scopus Q2) by Elsevier Bv.

b. Journal of Microbiological Methods (Scopus Q3) by Elsevier Bv.

c. Biodiversitas, Journal of Biological Diversity (Scopus Q3) by Society

for Indonesian Biodiversity

d. Walailak Journal of Science and Technology (Scopus Q3) by The

College of Grad. Studies of Walailak University

Page 4: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

DAFTAR ISI

DAFTAR ISI .............................................................................................................................. 2

RINGKASAN ............................................................................................................................ 1

BAB 1. PENDAHULUAN ........................................................................................................ 2

1.1 Latar belakang dan Permasalahan............................................................................................ 2

1.2 Tujuan Khusus dan Urgensi Penelitian .................................................................................... 2

1.3 Spesifikasi khusus .................................................................................................................... 2

BAB II. TINJAUAN PUSTAKA .............................................................................................. 3

2.1 Rhizobakteria pemacu pertumbuhan tanaman ......................................................................... 3

2.2 Aktinomisetes .......................................................................................................................... 3

2.3 Serratia marcescens ................................................................................................................. 3

2.4 Kultur hidroponik selada ......................................................................................................... 4

BAB 3. METODE PENELITIAN ............................................................................................. 5

3.1 Kultur produksi ........................................................................................................................ 5

3.2 Penapisan dan produksi IAA ................................................................................................... 5

3.3 Ekstraksi dan pemurnian IAA.................................................................................................. 5

3.4 Evaluasi penambahan inokulum bakteri pada kultur selada secara hidroponik ...................... 6

BAB 4. HASIL DAN PEMBAHASAN .................................................................................... 7

4.1 Hasil ......................................................................................................................................... 7

4.2 Pembahasan ............................................................................................................................. 9

DAFTAR PUSTAKA .............................................................................................................. 11

Page 5: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

RINGKASAN

Latar belakang: Zat pengatur tumbuh tanaman berperan penting dalam mengontrol

proses biologi dalam jaringan tanaman. Proses pembentukan organ seperti tunas atau

akar merupakan interaksi antara zat pengatur tumbuh eksogen dari lingkungan dengan

zat pengatur tumbuh endogen yang diproduksi oleh jaringan tanaman. Secara alamiah

zat pengatur tumbuh eksogen seringkali dihasilkan oleh mikroba yang berasosiasi

dengan tanaman tersebut, salah satunya auksin. Indole-3- acetic acid (IAA)

merupakan salah satu turunan auksin. Tujuan: Penelitian ini berfokus pada produksi

IAA dan pengaruhnya terhadap pertumbuhan tanaman selada (Lactuca sativa).

Metode: Agensia hayati yang dipakai terdiri atas Streptomyces hygroscopicus GGF4-

i18, Streptomyces sp AB8, Micrococcus luteus, Serratia marcescens MBC1 dan

Streptomyces hygroscopicus subsp. Jinggangensis InaCC A497. IAA diproduksi

menggunakan prekursor 1.0% L-tryptophan. Pengaruh IAA dibuktikan dengan

menginokulasikan bakteri pada tanaman Lactuca sativa (selada) secara hidroponik.

Metode kultur hidroponik yang dipilih yaitu NFT (Nutrient Film Technique). IAA

dikarakterisasi menggunakan HPLC dan kromatografi lapis tipis. TKT: Penggunaan

bakteri non Streptomyces sp terbukti mampu membantu tanaman selada bertahan

terhadap cekaman kadara garam selain membantu menghasilkan hormon IAA pada

cekaman kadar garam menggunakan kultur hidroponik.

Kata kunci: Aktinomisetes, Serratia, IAA, selada, air payau.

Page 6: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

BAB 1. PENDAHULUAN

1.1 Latar belakang dan Permasalahan

Selada (Lactuca sativa L.) merupakan jenis sayuran yang digemari masyarakat

Indonesia. Ia juga kaya akan antioksidan, potassium, folat, dan karoten. Ia dapat

membantu pembentukan sel darah putih dan sel darah merah dalam susunan sumsum

tulang, mengurangi resiko kanker, tumor dan penyakit katarak, membantu kerja

pencernaan dan organ-organ di sekitar hati serta menghilangkan gangguan anemia 1.

Gejala fitopatogenik seperti stunting percabangan akar, epinasty daun, hingga

ketidakseimbangan hormon mempengaruhi hasil tanaman di bidang pertanian baik dari

segi kualitas maupun jumlah 2. Perawatan ekstensif diperlukan untuk mengatasi

permasalahan tersebut. Hidroponik pada selada merupakan salah satunya. Metode ini

menggunakan air yang dilarutkan nutrisi di dalamnya sebagai media tumbuh tanaman

untuk menggantikan tanah 3.

Bakteri yang berasosiasi dengan tumbuhan merupakan penghasil senyawa

bioaktif. Mereka menghasilkan fitohormon eksogen yang meningkatkan pertumbuhan dan

metabolisme dalam kondisi stres 4. Sejumlah stres tersebut di antaranya kekeringan,

salinitas, dan kontaminasi tanah oleh minyak bumi 5.

Indole-3- acetic acid (IAA) merupakan fitohormon auksin utama yang lumrah

dieksploitasi. Mikroba penghasil IAA di antaranya Serratia marcescens 6, Micrococcus

yunnanensis 7, Micrococcus luteus 8, dan Streptomyces sp., 9. Mikroba jenis ini dilaporkan

toleran terhadap air payau. Air payau dianggap menjanjikan karena perkembangan

populasi manusia dan perubahan iklim turut mengurangi suplai air tanah 10.

1.2 Tujuan Khusus dan Urgensi Penelitian

Berdasarkan uraian tersebut belum peneliti bermaksud membandingkan

kemampuan produksi IAA oleh aktinomisetes dan Serratia sp., dalam mengendalikan

cekaman salinitas pada selada yang dikultur secara hidroponik.

1.3 Spesifikasi khusus

Menerapkan penambahan mikroba penghasil IAA guna memacu pertumbuhan

selada pada media mengandung air payau secara hidroponik.

Page 7: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

BAB II. TINJAUAN PUSTAKA

2.1 Rhizobakteria pemacu pertumbuhan tanaman

Rizomikrobioma memainkan peran kunci dalam akuisisi dan asimilasi hara,

memperbaiki tekstur tanah, mensekresi, dan memodulasi molekul ekstraseluler seperti

hormon, metabolit sekunder, antibiotik, dan pelbagai senyawa sinyal, semuanya mengarah

pada peningkatan pertumbuhan tanaman. Mikroba dan senyawa yang mereka keluarkan

merupakan biostimulan yang berharga dan memainkan peran penting dalam mengatur

respons stres tanaman. Penelitian telah menunjukkan bahwa inokulasi tanaman dengan

rhizobakteria pemacu pertumbuhan tanaman (PGPR) dapat menjadi strategi yang efektif

untuk merangsang pertumbuhan tanaman 11. Pemberian rizomikrobioma penghasil IAA

dilaporkan berpengaruh terhadap jumlah akar lateral 12.

2.2 Aktinomisetes

Aktinomisetes merupakan satu dari sekian banyak rizomikrobioma Gram positif.

Mereka dikenal akan kemampuannya sebagai produsen senyawa bioaktif. Cekaman pH,

salinitas, dan logam berat tidak terlalu berpengaruh karena aktinomisetes banyak

digunakan justru untuk meremidiasi tanah kritis. Keberadaan spora memungkinkan

aktinomisetes bertahan dalam jumlah yang cukup meski lingkungan berada dalam kondisi

lingkungan yang kering 13. Beberapa bakteri anggota ordo aktinomisetales penghasil IAA

di antaranya Streptomyces nobilis WA-3, Streptomyces kunmingenesis WC-3, dan

Streptomyces enissocaesilis TA-3 14. Sementara itu, Micrococcus yunnanensis RWL-2,

dan Micrococcus luteus RWL-3 juga mampu menghasilkan IAA 15.

2.3 Serratia marcescens

Rizomikrobioma Gram negatif penghasil IAA salah satunya ialah Serratia sp.

Serratia adalah bakteri gram negatif famili Enterobacteriaceae. Mereka hidup di air,

tanah, permukaan daun, tubuh serangga, hewan dan manusia 16. Serratia marcescens

MBC1 mampu menghambat pertumbuhan Rigidoporus sp penyebab penyakit jamur akar

putih (JAP) pada tanaman karet 17. Serratia sp dilaporkan mampu menghasilkan IAA

hingga 123.2 mg/mL setelah 144 jam inkubasi 6.

Page 8: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

2.4 Kultur hidroponik selada

Setiap 100 g berat basah selada mengandung 1.2 g protein, 0.2 g lemak, 22.0 mg

Ca, 25.0 mg Fe, 162 mg vitamin A, 0.04 mg vitamin B, serta 8.0 mg vitamin C. Metode

hidroponik NFT (Nutrient Film Technique) sering digunakan untuk budidaya selada.

Teknik ini merupakan model budidaya hidroponik dengan meletakkan akar pada lapisan

air yang dangkal menggunakan talang. Air tersebut mengandung nutrisi sesuai kebutuhan

tanaman dan disirkulasikan secara terus-menerus 3. Penelitian mengenai skrining dan

potensi aktinomisetes telah dilakukan sejak tahun 2018 melanjutkan penelitian bidang

penulis dengan biaya mandiri. Road Map (Peta Jalan) dan luaran penelitian yang telah dan

akan dilakukan dapat dilihat pada Gambar 1.

2018-2020

-Eksplorasi

aktinomisetes

-Eksplorasi

bakteri

berpigmen

-Identifikasi strain

menggunakan 16S

rRNA

Output

-Aktivitas enzim

hidrolitik-

-Jenis bakteri

berpigmen terdaftar

Genebank

-Skripsi 3 mahasiswa

-Artikel terbit pada

jurnal Biocatalysis

and Agricultural

Biotechnology

(Scopus Q2)

2020-2022

-Identifikasi

metabolit

antimalaria

-Aplikasi IAA

-Dekolorisasi oleh isolat

aktinomisetes dan

kapang

Output

-Jenis dan struktur

senyawa antimalaria

-Artikel terbit pada jurnal

Biodiversitas Journal of

Biological Diversity

(Scopus Q3)/ hibah PDP

2019-2020

-Artikel diterima pada

jurnal Biocatalysis

and Agricultural

Biotechnology

(Scopus Q2)

2022-2024

-Prebiotik: XOS dan FOS

-Formulasi metabolit

antimalaria

Output

- Jenis dan

struktur

senyawa aktif

pada pigmen

-Tepung prebiotik

-Formula antimalaria

-HAKI Strain

aktinomisetes agen

bioremedias

Gambar 1. Peta jalan penelitian koleksi strain aktinomisetes

Page 9: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

BAB 3. METODE PENELITIAN

3.1 Kultur produksi

Streptomyces sp. strain AB8 diremajakan pada media yeast starch agar (YSA).

Serratia marcescens strain MBC1 diperbanyak menggunakan media tryptone soy agar

(TSA). Micrococcus luteus dan Streptomyces hygroscopicus strain GGF4-i18 ditanam

menggunakan media Sodium Agar (NA). Streptomyces hygroscopicus subsp. Jinggangensis

InaCC A497 ditumbuhkan di media ISP4 (International Streptomyces Project). Satu koloni

loop diambil dan diinokulasi ke dalam media cawan agar. Bakteri diinkubasi pada suhu 37o

C selama 3 hari, kecuali aktinomiset yang diinkubasi selama 7 hari.

3.2 Penapisan dan produksi IAA

Media fermentasi yang digunakan adalah media Gause. Komposisinya terdiri dari

pati larut, KNO3, NaCl, MgSO4.7H2O, K 2 HPO4, FeSO4. 7H2O, dan aquades 18. Satu loop

inokulum bakteri ditambahkan ke 100 mL medium Gause, dengan suplementasi L-triptofan

sebagai prekursor. Media Gause tanpa triptofan digunakan sebagai kontrol. Fermentasi

dilakukan dalam kondisi gelap dengan kecepatan 150 rpm pada suhu ruang 19. Pertumbuhan

bakteri diamati setiap hari selama 8 hari yang diukur menggunakan spektrofotometer pada

panjang gelombang 600 nm. Pengamatan dilakukan dua kali (pagi dan sore) dengan

pengukuran triplicate sampling. Metabolit dipisahkan dari kultur menggunakan sentrifugasi

dengan kecepatan 6000 rpm, selama 10 menit.

Sebanyak 1 ml supernatan dimasukkan ke dalam tabung reaksi dan ditambahkan 4

mL pereaksi Salkowski, serta diinkubasi selama 60 menit dalam kondisi gelap. Perubahan

warna diamati dan penyerapannya diukur pada panjang gelombang 530 nm 9. Hari pertama

fermentasi dihitung sebagai hari ke-0.

3.3 Ekstraksi dan pemurnian IAA

Sel bakteri diinokulasi menggunakan media kultur IAA. Kultur diinkubasi dalam medium No.

1 Gause yang dioptimalkan pada suhu 28° C dengan pengocokan pada 200 rpm selama 6 hari.

Kaldu fermentasi disaring menggunakan kertas saring Whatman No.1 dan filtrat kultur diatur

hingga pH 9 dengan NaOH 1 M untuk menjaga IAA terionisasi dan lebih polar. Filtrat

dipartisi menggunakan 100% etil asetat dan fase organik atas dipulihkan. PH diturunkan

menjadi 3 dengan asam asetat pekat untuk mempertahankan IAA dalam pelarut, dan sampel

Page 10: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

diuapkan sampai kering. Senyawa kering dilarutkan dalam 3 mL metanol analitik dan

digunakan untuk analisis KLT dan HPLC. Standar IAA dibuat pada konsentrasi 500 ppm.

Standar IAA dan sampel ekstraksi terlihat pada pelat G silika gel yang didukung aluminium

dan KLT dilakukan dengan fase gerak butanone: etil asetat: etanol: air (3: 5: 1: 1, v / v / v / v)

18. Pelat KLT dikeringkan dan bintik-bintik diamati di bawah sinar UV pada 256 nm.

3.4 Evaluasi penambahan inokulum bakteri pada kultur selada secara

hidroponik

Bakteri diinkubasi pada media Gause No.1 selama 6  hari (sekitar

5.6 × 106 CFU/mL). Inokulum disiapkan sebesar 10 % dari kapasitas tanki media nutrisi

hidroponik. Kultur hidroponik yang dipilih ialah jenis NFT. Alat instalasi hidroponik NFT

yang dibuat sebanyak 5 masing-masing alat digunakan untuk 2 perlakuan kombinasi, 5

kontrol postif, dan 1 kontrol negatif. Dalam 1 alat menggunakan talang sepanjang 2 m dengan

jarak tanam tanaman masingmasing 20 cm sehingga dalam 1 alat instalasi terdapat 10

tanaman. Media tanam yang digunakan yaitu rockwool berukuran 23.5 cm x 9 cm x 3.5 cm

dipotong menjadi 3 cm x 2 cm x 3 cm dan dilubangi. Kemudian benih selada (3-4 cm)

diletakkan pada media tanam. Diagram alir metode penelitian dapat dilihat pada gambar 2.

Page 11: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

BAB 4. HASIL DAN PEMBAHASAN

4.1 Hasil

Pada produksi IAA dengan perlakuan penambahan precursor L-triptofan 2mg/mL

diperoleh hasil sebagaimana pada Gambar 2. Laju produksi IAA mengalamai kenaikan pada

hari ke 2 dan hari ke 5. Genus Streptomyces sp lebih unggul daripada Serratia sp dan

Micrococcus sp. Hal ini linier jika dibandingkan dengan data pada Gambar ke 3 yakni

tentang kenaikan kepadatan sel. Di mana Streptomyces sp strain AB8 memiliki kepadatan

tertinggi.

Gambar 2. Produksi IAA oleh bakteri Streptomyces sp AB8, Streptomyces sp InaCC A497,

Streptomyces sp i18, Micrococcus luteus hari ke1 hingga ke 9

Gambar 3. Kepadatan sel bakteri Streptomyces sp AB8, Streptomyces sp InaCC A497, Streptomyces

0.07

0.25

0.15

0.20

0.35

0.07

0.19 0.18 0.190.21

0.110.09 0.09 0.10 0.11

0.07

0.14

0.19

0.280.31

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 3 5 7 9

Ab

sorb

ansi

Hari

AB3 INACC PINK I18 ML

0.08

0.23

0.30

0.58

0.150.08

0.21 0.18

0.31

0.170.11

0.26

0.13

0.24 0.26

0.06

0.22 0.23 0.25

0.090.10 0.11 0.10

0.18 0.16

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

1 3 5 7 9

Ab

sorb

asn

i

Hari

AB3 INACC PINK I18 ML

Page 12: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

sp i18, Micrococcus luteus pada pengamatan hari ke 1 hingga ke 9

Pertumbuhan tanaman selada secara hidroponik dengan pemberian cekaman air payau terbukti tidak

terhambat. Hal ini patut diduga akibat pengaruh pemberian bakteri dalam media hidroponik. Laju

pertumbuhan terbaik pada kategori daun selada terjadi pada perlakuan menggunakan Serratia sp strain

MBC1 (Gambar 4). Perlakuan control menyusul di peringkat ke dua.

Gambar 4. Pertumbuhan daun selada pada hari ke 16 -28 setelah sebar pada instalasi hidroponik

Kategori pengamatan jumlah helai daun juga menunjukkan pengaruh pemberian bakteri non

Streptomyces sp lebih baik, yakni pada perlakuan penambahan Bakteria Serratia sp dan Micrococcus

sp. (Gambar 5).

Gambar 5. Pertumbuhan jumlah helai daun selada pada hari ke 16 -28 setelah sebar pada instalasi

hidroponik

9.37 10.32 10.74 11.34

12.06 12.2513.22

8.84 9.44 10.63 10.38 10.48 10.95 11.42

9.28 9.52 10.27

8.73 7.40

6.20

1.28

8.86 10.24

11.08 10.90 9.67

6.76

4.735.30 5.72 6.307.35

8.7310.10

11.87

16 18 20 22 24 26 28

Len

gth

gro

wth

(m

m)

Hari

MBC ML i18 AB8 C

4.96

5.81 5.96

4.88 5.08 5.58

6.31

5.23 5.85 5.54

5.00 4.96 4.855.275.23

6.00 5.23

3.92

2.38 2.38

0.42

5.69 6.15

5.81 5.04

3.81

2.35

1.46

2.60 2.81 2.96 3.16

4.143.60 3.86

16 18 20 22 24 26 28

Len

gth

gro

wth

(m

m)

Hari

MBC ML i18 AB8 C

Page 13: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

Gambar 6. Pertumbuhan Panjang akar selada pada hari ke 16 -28 setelah sebar pada instalasi

hidroponik

Perlakuan control lebih unggul dalam hal pertumbuhan akar dibandingkan dengan perlakuan yang lain.

Hal ini berrarti perlakuan cekaman kadar garam pada air payau mempengaruhi pertumbuhan kara pada

tanaman selada.

4.2 Pembahasan

Pengaruh cekaman salinitas terhadap pertumbuhan, kenampakan, dan senyawa nutrisi,

terutama senyawa fenolik dan karotenoid, selada romaine (Lactuca sativa L.), tanaman toleran garam

rendah, telah dipelajari. Berat kering, tinggi, dan warna tanaman selada berubah secara nyata dengan

pengairan jangka panjang (15 hari) dengan konsentrasi NaCl yang lebih tinggi (yaitu >100 mM).

Namun, tidak ada perbedaan signifikan yang diamati dalam pertumbuhan dan penampilan antara

kontrol, semua perawatan jangka pendek (2 hari; 50, 100, 500, dan 1000 mM), dan irigasi jangka

panjang dengan konsentrasi garam rendah. Selain itu, pada selada romaine yang diberi irigasi jangka

panjang dengan 5 mM NaCl, kandungan karotenoid total meningkat tanpa perubahan warna, dan

kandungan karotenoid utama dalam selada romaine, lutein dan beta-karoten, masing-masing meningkat

37 dan 80%. Tidak ada perbedaan yang diamati pada kandungan lutein dan beta-karoten pada selada

yang diberi perlakuan jangka pendek. Kandungan fenolik selada romaine menurun dengan irigasi garam

jangka pendek, sedangkan tidak ada perbedaan yang signifikan antara perlakuan terkena irigasi jangka

panjang. Penelitian ini menunjukkan bahwa irigasi jangka panjang dengan konsentrasi garam yang

relatif rendah, daripada irigasi jangka pendek dengan konsentrasi garam yang tinggi, dapat

meningkatkan kandungan karotenoid dalam selada romaine tanpa menyebabkan tradeoff dalam hasil

4.81

5.76 5.82 5.31

6.28

7.72

8.56

4.84 5.54 5.40 5.18 5.40 5.30

6.32

5.43 5.75 5.76 4.95

4.18 4.18

0.58

5.93 6.23

5.38 4.62

4.17

2.85

2.00

5.43

6.476.95

7.347.71

8.308.87

-

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

16 18 20 22 24 26 28

Len

gth

gro

wth

(m

m)

Hari

MBC ML i18 AB8 C

Page 14: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

atau kualitas visual 20

Sementara itu pengaruh kadar garam pada akar dijelaskan oleh Arif et al 2019 21 menurutnya,

akar tanaman menunjukkan plastisitas morfologi dan memainkan peran penting dalam toleransi

terhadap berbagai tekanan edafik. Penelitian ini bertujuan untuk mengetahui respon morfogenik akibat

salinitas pada sifat akar dan rambut akar dua varietas rapeseed, BARI Sarisha-8 dan Binasarisha-5, pada

tahap reproduksi dan mengetahui pengaruhnya terhadap pertumbuhan reproduksinya. Percobaan

dilakukan pada budidaya hidroponik. Dua perlakuan, 0 mM NaCl sebagai kontrol dan 100 mM NaCl,

diberikan 55 hari setelah perkecambahan. Tanaman yang terpapar 100 mM NaCl selama tujuh hari

menunjukkan kerusakan yang lebih besar pada daun, bunga, dan siliquae dibandingkan dengan kontrol.

Panjang rambut akar pada akar lateral orde pertama dan ketiga, kerapatan rambut akar pada akar lateral

orde pertama, dan panjang akar lateral orde ketiga secara signifikan lebih besar sebesar 91%, 22%,

29%, dan 48% , masing-masing, dalam kondisi yang dirawat dibandingkan dengan kontrol. Peningkatan

luas permukaan akar diperkirakan sebesar 20% di bawah kondisi stres garam menunjukkan bahwa

respon spontan tanaman untuk menyerap lebih banyak air dan nutrisi memungkinkan tanaman untuk

mengatasi kondisi stres. Hasil penelitian ini menunjukkan bahwa program pemuliaan stres di masa

depan harus mempertimbangkan plastisitas sifat akar secara intensif.

Salinitas yang tinggi mengurangi produktivitas dan kualitas tanaman. Rhizobakteri tanah

pemacu pertumbuhan tanaman (PGPR) meningkatkan pertumbuhan tanaman dan toleransi cekaman

abiotik melalui mediasi berbagai mekanisme fisiologis dan molekuler. Salinitas yang tinggi secara

signifikan mengurangi pertumbuhan tanaman dan produksi biomassa, penyerapan nutrisi, kandungan

air relatif daun, kandungan pigmen, atribut pertukaran gas daun, dan kandungan flavonoid dan fenolik

total dalam jagung. Namun, kandungan osmolit (misalnya, protein larut, prolin, dan asam amino bebas),

penanda stres oksidatif, dan tingkat antioksidan enzimatik dan non-enzimatik meningkat pada jagung

di bawah salinitas tinggi. Di sisi lain, inokulasi Serratia liquefaciens KM4 secara signifikan mengurangi

penanda stres oksidatif, tetapi meningkatkan pertumbuhan jagung dan produksi biomassa bersama

dengan pertukaran gas daun yang lebih baik, osmoregulasi, sistem pertahanan antioksidan, dan

penyerapan nutrisi di bawah tekanan garam. Selain itu, ditemukan bahwa semua peningkatan ini disertai

dengan peningkatan regulasi gen terkait stres (APX, CAT, SOD, RBCS, RBCL, H+-PPase, HKT1, dan

NHX1), dan penurunan regulasi gen kunci dalam biosintesis ABA (NCED). Secara keseluruhan,

hasilnya menunjukkan peran menguntungkan dari Serratia liquefaciens KM4 dalam meningkatkan

pertumbuhan tanaman dan toleransi cekaman garam pada jagung dengan mengatur homeostasis ion,

potensi redoks, pertukaran gas daun, dan ekspresi gen terkait stres. Bakteri selain Genus Serratia sp

yang dilaporkan toleran terhadap cekaman garam adalah Genus Micrococcus sp 22. Meski banyak

dilaporkan species Streptomyces sp mampu tolerant terhadap kadar garam 23, pada penelitian ini strain

i18 dan AB8 terbukti tidak tolerant terhadap kadar garam. Hal ini ditandai terjadinya kematian pada

tanaman selada pada perlakuan penambahan kedua isolate tersebut

Secara umum performa pertumbuhan tanaman selada berpengaruh dengan penambahan

Page 15: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

cekaman garam. Jenis bakteri juga menunjukkan pengaruh yang signifikan dalam membantu

memoderasi cekaman garam.

Gambar 7. Pengamatan pengaruh pemberian cekaman garam pada pertumbuhan selada secara

hidroponik.

DAFTAR PUSTAKA

1. Wardhana, I., Hasbi, H. & Wijaya, I. Respon Pertumbuhan dan Produksi Tanaman

Selada (Lactuca savita L.) pada Pemberian Dosis Pupuk Kandang Kambing dan

Interval Waktu Aplikasi Pupuk Cair Super Bionik. Agritop J. Ilmu-ilmu Pertan. 165–

185 (2016).

2. Martins, P. M. M., Merfa, M. V., Takita, M. A. & De Souza, A. A. Persistence in

phytopathogenic bacteria: Do we know enough? Front. Microbiol. 9, 1–14 (2018).

3. Hakim, M. A. R., Sumarsono, S. & Sutarno, S. Pertumbuhan dan produksi dua varietas

selada (Lactuca sativa l.) pada berbagai tingkat naungan dengan metode hidroponik. J.

Agro Complex 3, 15 (2019).

Page 16: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

4. Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd-Allah, E. F. & Hashem, A.

Phytohormones and beneficial microbes: Essential components for plants to balance

stress and fitness. Front. Microbiol. 8, 1–14 (2017).

5. Kudoyarova, G. et al. Phytohormone Mediation of Interactions Between Plants and

Non-Symbiotic Growth Promoting Bacteria Under Edaphic Stresses. Front. Plant Sci.

10, 1–11 (2019).

6. Devi, K. A., Pandey, P. & Sharma, G. D. Plant Growth-Promoting Endophyte Serratia

marcescens AL2-16 Enhances the Growth of Achyranthes aspera L., a Medicinal

Plant. HAYATI J. Biosci. 23, 173–180 (2016).

7. Dar, G. H., Sofi, S., Padder, S. A. & Kabli, A. Molecular characterization of

rhizobacteria isolated from walnut (Juglans regia) rhizosphere in Western Himalayas

and assessment of their plant growth promoting activities. Biodiversitas 19, 632–639

(2018).

8. Namwongsa, J. et al. Endophytic Bacteria Improve Root Traits, Biomass and Yield of

Helianthus tuberosus L. Under normal and deficit water conditions. J. Microbiol.

Biotechnol. 29, 1777–1789 (2019).

9. De Fretes, C. E., Sembiring, L. & Purwestri, Y. A. Characterization of Streptomyces

spp. Producing Indole-3-acetic acid as Biostimulant Agent. Indones. J. Biotechnol. 18,

83–91 (2013).

10. Mathew, B. T. et al. Halotolerant Marine Rhizosphere-Competent Actinobacteria

Promote Salicornia bigelovii Growth and Seed Production Using Seawater Irrigation.

Front. Microbiol. 11, (2020).

11. Backer, R. et al. Plant growth-promoting rhizobacteria: Context, mechanisms of

action, and roadmap to commercialization of biostimulants for sustainable agriculture.

Front. Plant Sci. 871, 1–17 (2018).

12. Herlina, L., Pukan, K. K. & Mustikaningtyas, D. Kajian Bakteri Endofit Penghasil Iaa

(Indole Acetic Acid) Untuk Pertumbuhan Tanaman. Sainteknol 14, 51–58 (2016).

13. Nurkanto A. Identifikasi Aktinomisetes Tanah Hutan Pasca Kebakaran Bukit

Bangkirai Kalimantan Timur dan Potensinya Sebagai Pendegradasi Selulosa dan

Page 17: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

Pelarut Fosfat. Biodiversitas 8, 314–319 (2007).

14. Anwar, S., Ali, B. & Sajid, I. Screening of rhizospheric actinomycetes for various in-

vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds.

Front. Microbiol. 7, 1–11 (2016).

15. Shahzad, R. et al. Indoleacetic acid production and plant growth promoting potential

of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biol. Hung. 68,

175–186 (2017).

16. Dalimunthe, C. I., Dahlan, A. & Tistama, R. The potential of bacteria Serratia sp. as a

biological control of white root rot disease (Rigidoporus microporus). J. Agro Estate 3,

35–46 (2019).

17. Arifiyanto, A., Afriani, H., Putri, M. H., Damayanti, B. & Riyanto, C. L. R. The

biological prospective of red-pigmented bacteria cultured from contaminated agar

media. Biodiversitas, J. Biol. Divers. 22, 1152–1159 (2021).

18. Myo, E. M. et al. Indole-3-acetic acid production by Streptomyces fradiae NKZ-259

and its formulation to enhance plant growth. BMC Microbiol. 19, 1–14 (2019).

19. Lin, Y. B. et al. Streptomyces shaanxiensis sp. nov., a blue pigment-producing

streptomycete from sewage irrigation soil. Int. J. Syst. Evol. Microbiol. 62, 1725–1730

(2012).

20. Kim, H.-J., Fonseca, J. M., Choi, J.-H., Kubota, C. & Kwon, D. Y. Salt in Irrigation

Water Affects the Nutritional and Visual Properties of Romaine Lettuce (Lactuca

sativa L.). J. Agric. Food Chem. 56, 3772–3776 (2008).

21. Arif, M. R., Islam, M. T. & Robin, A. H. K. Salinity Stress Alters Root Morphology

and Root Hair Traits in Brassica napus. Plants (Basel, Switzerland) 8, 192 (2019).

22. Masuo, N. et al. Micrococcus luteus K-3-type glutaminase from Aspergillus oryzae

RIB40 is salt-tolerant. J. Biosci. Bioeng. 100, 576–578 (2005).

23. Sadeghi, A. et al. Taxonomic study of a salt tolerant Streptomyces sp. strain C-2012

and the effect of salt and ectoine on lon expression level. Microbiol. Res. 169, 232–

238 (2014).

Page 18: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id
Page 19: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

BIODIVERSITAS ISSN: 1412-033X Volume 22, Number 7, July 2021 E-ISSN: 2085-4722 Pages: 2817-2823 DOI: 10.13057/biodiv/d220731

Short Communication:

In vitro antimicrobial and antimalarial screening of a crude extract of

Streptomyces sp. AB8 isolated from Lapindo Mud Volcano Area,

Sidoarjo, Indonesia

ACHMAD ARIFIYANTO1,, ENDAH SETYANINGRUM1, NISMAH NUKMAL1, TITIK NUR AENY2 1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Jl. Prof. Soemantri Brojonegoro No 1, Gedong Meneng,

Rajabasa, Bandarlampung 35144, Lampung, Indonesia, Tel.: +62-721 704625 Fax. +62-721 704625, email: [email protected] 2Department of Plant Protection, Faculty of Agriculture, Universitas Lampung, Jl. Prof. Soemantri Brojonegoro No 1, Gedong Meneng, Rajabasa,

Bandarlampung 35144, Lampung, Indonesia

Abstract. Arifiyanto A, Setyaningrum E, Nukmal N, Aeny TN. 2021. Short Communication: In vitro antimicrobial and antimalarial screening of a crude extract of Streptomyces sp. AB8 isolated from Lapindo Mud Volcano Area, Sidoarjo, Indonesia. Biodiversitas 22:

2817-2823. Streptomyces is a potential bacterial genus that has been investigated extensively as a source of natural microbial compounds. Its potential metabolites have been widely developed for pharmaceutical, pathogen control, and other applications in agriculture. This study aimed to determine the ability of the Streptomyces sp AB8 crude extract in inhibiting Plasmodium and pathogenic microbes. Streptomyces was cultured on Gause synthetic media for 10 days. The fermented broth culture media has dissolved in a 1:1 mixture of ethyl acetate and methanol. Biochemical characterization of this isolate has carried out using the standard methods. In-vitro antimalarial activity assay was performed using a chloroquine-sensitive Plasmodium falciparum strain 3D7. Fresh type O-positive human erythrocytes were suspended at 4 percent hematocrit in a complete medium to maintain culture. The inhibitory concentration (IC50) was determined using probit analysis. The results showed the extract of Streptomyces sp. AB8 contains phenolic

and alkaloids. Streptomyces sp. AB8 extract can inhibit Dickeya zeae N-Unila 5, Dickeya zeae N-Unila 10, Aspergillus sp IK3, and Escherichia coli growth. The results also showed that the ICs0 value of extract against P. falciparum 3D7 was 17.56 ug/mL. Further research was needed to determine the types of purified bioactive compounds and their bioactivity.

Keywords: Alkaloids, antimalarial, antimicrobial, phenolic, Streptomyces

INTRODUCTION

Malaria is a disease caused by the Plasmodium parasite,

is one of the deadliest diseases in tropical countries (Hay et

al. 2004). It was transmitted by the bite of a female

Anopheles sp. infected with Plasmodium. Malaria in

humans was caused by five different Plasmodium species, i.e., Plasmodium falciparum, Plasmodium vivax,

Plasmodium malariae, Plasmodium ovale, and

Plasmodium knowlesi (Singh et al. 2013).

Unfortunately, the Plasmodium sp. parasite was

resistant to antimalarial drugs such as chloroquine,

amodiaquine, mefloquine, and artemisinin, according to

many studies (Cui et al. 2015). Malaria research was

actively being conducted to combat parasite resistance. The

analysis of metabolites from different plants has been

performed (Alkandahri et al. 2019; Fatmawaty et al. 2017;

Okokon et al. 2017; Orabuezea et al. 2020; Zeleke et al. 2017), as well as metabolites from microorganisms to

combat multi-drug resistant Plasmodium. Metabolites

derived from microbes were considered to be more

desirable due to their shorter life cycles.

Streptomyces, a Gram-positive bacteria, is a member of

the actinobacteria phylum which is known to have

antimicrobial, anticancer (El-Naggar and El-Ewasy 2017),

anti-inflammatory (Gomathi and Gothandam 2019), and

antioxidant (Li et al. 2018). Several Streptomyces, such as

Streptomyces hygroscopicus subsp. hygroscopicus (Fitri et

al. 2019; Nugraha et al. 2020), Streptomyces SUK10 (Zin

et al. 2017), and Streptomyces spectabilis BCC 4785 (Isaka

et al. 2002) have been studied for their antimalarial activity. Streptomyces sp. AB8 was obtained from the

Lapindo mud volcano (Arifiyanto et al. 2020), has not been

investigated for its antimalarial activity. This study aimed

to conduct an initial screening of the antimicrobial and

antimalarial activity of Streptomyces sp. AB8.

MATERIALS AND METHODS

Culture and fermentation

Streptomyces sp. strain AB8 was rejuvenated on yeast

starch agar (YSA) medium, Yeast Starch Agar medium

consisted of 2.0 g yeast extract (OxoidTM), 10.0 g soluble

starch (Sigma-Aldrich), 15.0 g of agar powder (Sigma-Aldrich), and 1000 mL distilled water adjusted to a pH 7.3.

Bacteria were cultured at room temperature for 1–5 days.

The bacterial stock was cultured on a slanting agar

medium. According to Arifiyanto et al. (2021) and Ezeonu

Manuscript received: 5 April 2021. Revision accepted: 22 June 2021.

Page 20: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

BIODIVERSITAS 22 (7): 2817-2823, July 2021

2818

and Ejikeme (2016), Bacteria were characterized by several

biochemical tests.

Gause's medium consists of soluble starch, KNO3,

NaCl, MgSO4.7H2O, K2HPO4, FeSO4.7H2O, and distilled

water was used as the fermentation medium (Lin et al.

2012). One loop of bacterial inoculum was added to 100

mL of Gause's medium. The fermentation was carried out

at a speed of 150 rpm in a shaking incubator at room

temperature. Bacterial growth was observed for 10 days

and measured using a spectrophotometer at 600 nm wavelength. A free-cell supernatant was separated from

cell biomass using centrifugation at a speed of 6000 rpm,

for 10 minutes. The supernatant was filtered through filter

paper and extracted using a 1:1 methanol-ethyl acetate. A

rotary evaporator was used to evaporate the solvent at 40-

50oC for 40 minutes to obtain concentrate extract and was

subsequently lyophilized into powder (Setyaningrum et al.

2021).

Antimicrobial activity

Fourteen day-olds of Aspergillus IK3 in a test tube

were added with sterile distilled water parasite, then one percent molasses and 0.5 mL Tween 80 were added to the

test tube, and homogenized using a vortex mixer. Conidia's

suspension separated, then fungal spore cell density was

adjusted to 108 cells/mL using a hemocytometer. It was

observed under a microscope with 400x magnification

(Agustina et al. 2019; Rosa et al. 2020).

Some swabs of bacterial suspension ages 18-24 hours

were taken and then put into a test tube containing 5 mL of

sterile 0.9% NaCl so that the turbidity was comparable to

that of 0.5 McFarland suspension (Darmawan et al. 2017;

Putri et al. 2021). E. coli and Dickeya zeae were grown on Mueller

Hinton Agar (MHA) at a 108 CFU/mL density in a Petri

dish. One loop of Streptomyces sp. AB8 aged 24-hour was

inoculated on media and challenged in the center of MHA

media that has been inoculated with bacteria. An antifungal

test was conducted on Potato Dextrose Agar media against

Aspergillus IK3. Clear zones formation was observed after

24 hours of incubation at room temperature (Sumardi et al.

2020).

In vitro antimalarial assay

The in vitro antimalarial activity test was carried out

using chloroquine-sensitive Plasmodium falciparum strain 3D7. As much as 1 mg of the extract was dissolved in 100

μL of DMSO (concentration 10.000 μg/mL) as a stock

solution. The stock solution was diluted serially.

Synchronous parasites (ring stage) with about 1%

parasitemia were used in this test. Fresh type O-positive

human erythrocytes were suspended at 4 percent

hematocrit in a complete medium to maintain culture

(Baniecki et al. 2007). Using a high-throughput liquid

handler, parasites were supplemented into a 96-well plate.

Two microliters of the test solution with various

concentrations were added to the well. The final

concentrations of the extract were 100, 10, 1, 0.1, and 0.01

μg/ mL. The gas mixture (O2 5%, CO2 5%, N2 90%) was

applied to the test plate that has been inserted into the

chamber. The chamber containing the test plate was

incubated for 48 hours at 37°C. The culture was then

harvested and a thin blood layer was made with 20%

Giemsa staining. Data were analyzed by counting the number of infected

erythrocytes per 1000 normal erythrocytes to determine the

growth percentage of Plasmodium and inhibitory activity

of the extract against Plasmodium. A blood smear was

observed under a microscope. The growth percentage was

calculated using the following formula;

(1)

Where: D0 is the initial hour of growth (%)

The inhibition ability is expressed as a percentage using

the formula below:

(2)

Where:

Xu = % growth on the test solution

Xk = % growth on the negative control

The two formulas above were used to determine the

concentration of extract to inhibit the growth of parasites by 50%. The lethal concentration 50 (LC50) was estimated

using probit analysis based on data of the inhibition

percentage.

A B

Figure 1. A. Colonies of Streptomyces AB8 on Yeast Starch Agar; and B. The Gram-stained colony observed under microscope with 1000x magnification

Page 21: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

SETYANINGRUM et al. – Antibacterial and antimalarial of Streptomyces sp AB8

2819

RESULTS AND DISCUSSION

Antimicrobial activity of Streptomyces extract

Streptomyces sp. AB8 bacteria were isolated from

rhizosphere soil in the Lapindo mud volcano field,

Sidoarjo. Previous research showed that Streptomyces sp.

AB8 could inhibit the growth of pathogenic bacteria

(Staphylococcus aureus ATCC 6538P and Escherichia coli

ATCC 25922) (Arifiyanto et al. 2020). Dickeya zeae as a

causative agent of stem and root rot in agricultural and

plantation commodities (Aeny et al. 2020) was also inhibited by Streptomyces sp. AB8 (Table 1). The results

suggested that crop damage caused by D. zeae could be

controlled by the extract of Streptomyces sp. AB8 to

overcome economic losses. These bacteria could also

inhibit the growth of Aspergillus IK3, a cockroach

pathogen, and Escherichia coli, which was isolated from

wastewater around the campus of the University of

Lampung.

Streptomyces is a Gram-positive bacteria that belong to

the order Actinobacteriales with branched mycelium and

chain-shaped. These bacteria could grow in a variety of environments, such as rhizosphere, marine debris,

weathered leaf litter, plant endophytes, and insect

symbionts (Mathew et al. 2020). The initial screening

revealed that Streptomyces sp. AB8 could utilize glucose,

fructose, cellulose, and lactose, galactose, sucrose, chitin,

mannan, and amylum (Table 2) as its carbon source. As a

decomposer group of microbes, Streptomyces has the

ability to degrade complex molecules such as cellulose and

mannan (Sasongko et al. 2015). Chitin is the main

component of fungal cell walls. Streptomyces ability to

decompose chitin potentially used to control mold. (Okay et al. 2013).

Biochemical characterization of Streptomyces sp. AB8

The development of new drug candidates has been

driven by the resistance of pathogenic microbes to

antibiotics and the risk to human health they pose.

Microbial metabolites are increasingly being used to treat

harmful bacteria. Streptomyces, a Gram-positive bacteria,

have been shown to restrict the growth of various harmful

bacteria. This bacterial community was thought to be in the

middle of the bacteria-mold spectrum producing superior

secondary metabolites such as triterpenoids, flavonoids,

and alkaloids, and antibiotics. Gram-negative bacteria and pathogenic fungi were a challenge for humans health (Al-

Ansari et al. 2019). Some of them were responsible for

infection in humans. Pathogenic bacteria such as

Enterobacter aerogenes and Proteus mirabilis were

confirmed to be inhibited by Streptomyces radiopugnans,

Streptomyces atacamensis, Streptomyces fenghuangensis,

Streptomyces verrucosisporus, and Streptomyces mangrove

isolates (Al-Ansari et al. 2019). In humans, Aspergillus

genera cause diseases such as localized infections, deadly

illnesses, allergic responses, and inhaled conidia (Mousavi

et al. 2016). Production of lyase, chitinase, protease, and

cellulase enzymes by Streptomyces is suspected of

supporting antifungal activity. These enzymes can damage

the cell wall of the mold, which was rich in components

that were easily degraded by these enzymes. Therefore,

Streptomyces spp could be used as antifungals (de Lima

Procópio et al. 2012).

There are several pathways of antimicrobial

mechanisms of Streptomyces compounds. In general,

antimicrobial mechanisms are the interactions of

pathogenic microorganisms' biochemical, genetic, and cellular structures. (Chevrette et al. 2019). Metabolites of

Streptomyces spp may cause the inhibition of DNA

division. Disorders of RNA synthesis affect the ability of

pathogens to produce proteins that play an important role in

the cellular structure of membranes, functional enzymes,

and the cell walls of pathogenic microbes. They were also

inhibited pathogenic metabolism and structural breakdown

(de Lima Procópio et al. 2012).

Alkaloids and phenols were detected in synthetic Gause

broth after the fermentation process (Table 2). Alkaloids

are present in a variety of plants and animals, including microbes. Alkaloids extracted from biological compounds

had long been used to treat a range of symptoms (Zhou et

al. 2013), such as cancer, painkillers, high blood pressure,

nervous system damage, Parkinson's disease, and

antimalarials were among them. Meanwhile, indole

alkaloids isolated from Streptomyces sp. CT37 has been

demonstrated to inhibit Candida albicans ATCC 10231 at

low concentrations (Fang et al. 2020).

Table 1. The diameter of the growth inhibition by Streptomyces sp. AB8

Microbes Colony diameter

(x̄ mm)

Clear zone

(x̄ mm)

Escherichia coli 0.56 0.40 Dickeya zeae N-Unila 5 1.60 0.70

Dickeya zeae N-Unila 10 1.50 0.50 Aspergillus sp IK3 0.20 0.10

Table 2. Biochemical characters of Streptomyces sp. AB8

Test Result Test Result

Glucose + Phenol + Fructose + Alkaloids + Cellulose + Flavonoids - Lactose + Saponin - Galactose + Triterpenoids - Sucrose + Anthraquinone glycosides -

Chitinase + Tannin - Mannanase + Catalase + Lipase - Indole + Amylase + Protease +

Note: + : positive reaction; - : negative reaction

Page 22: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

BIODIVERSITAS 22 (7): 2817-2823, July 2021

2820

-2 0 2

2

4

6

8

Gro

wth

(%

)

Log Doses (ug/mL)

Growth (%)

DoseResp Fit of Growth

-2 0 2

0

30

60

Inhib

itio

n (

%)

Log Doses (ug/mL)

Inhibition (%)

DoseResp Fit of Inhibition

A B

-2 -1 0 1 2

0

10

20

30

40

50

60

70

80

Gro

wth

(%

)

Log dose (0.01, 0.1, 1, 10, and 100) ug/mL

Growth (%)

Inhibition (%)

D E

Figure 2. The effect of Streptomyces extracts on growth (A), growth inhibition (B), the ratio of growth to inhibition (C), the IC50 value of extract against Plasmodium parasites (D)

Alkaloids, which have a wide structural variation, are

distinguished by the presence of a specific nitrogen atom.

The majority of alkaloids have only one nitrogen atom, but others had up to five. This nitrogen was discovered in the

form of a primary amine (RNH2), secondary amine

(R2NH), or tertiary amine (R3NH) (R3NH) (Cushnie et al.

2014). Many alkaloids contain oxygen in addition to

carbon, hydrogen, and nitrogen (Cushnie et al. 2014).

Figure 3 showed that there was H bonded NH at an

absorbance range of 3070-3350 cm-1. This was presumed

as a sign of the presence of alkaloids. The acetate and

benzoic groups occurred at 1073.23 cm-1 and above,

followed by double bond -CH=CH- (cis) at 650-750 cm-1.

Phenols also present in the liquid media after the fermentation process (Table 2). It was confirmed by the

emergence of spectroscopy bands around 990 until 1060

cm-1. The secondary cyclic alcohols are found at these

spectra. Phenols donate hydrogen to react with reactive

nitrogen and oxygen species as an antioxidant (Pereira et

al. 2009). Phenols also have a variety of biochemical and

pharmacological properties such as antiviral, anticancer,

antimalarial, and anti-inflammatory activities.

Antimalarial activity Streptomyces extract at a concentration of 100 µg/mL

was able to inhibit parasite growth up to 70.92%, with an

average parasite growth rate of 2.15%. Parasitic growth

was suppressed at a rate of 4.31 % with an inhibitory

percentage of 41.84 percent at a concentration of 10

μg/mL. Extract concentration of 1 μg/mL resulted in

parasite growth of 5.96% with an inhibition percentage of

19.23%. While a concentration of 0.1 μg/mL resulted in

inhibition of 6.55% with parasite growth of 6.93 and a

concentration of 0.01 μg/mL resulted in inhibition of 1%

with growth of 7.33%. Overall, the treatment resulted in lower growth compared to the control. The increasing

extract concentration was linear with inhibition, and vice

versa, parasite growth increased with decreasing concentration

(Figure 2). The inhibitory concentration to suppress a half

parasites population (IC50) was achieved at 17.56 μg/mL.

Page 23: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

SETYANINGRUM et al. – Antibacterial and antimalarial of Streptomyces sp AB8

2821

Figure 3. FT-IR spectra of crude extract produced by Streptomyces sp AB8

Several past studies have reported on the mechanism of alkaloids in preventing the growth of plasmodial and

microbiological infections. Alkaloids inhibit nucleic acid

synthesis by suppressing the enzyme dihydrofolate

reductase in cell-free (Raimondi et al. 2019). It can prevent

cell division by inhibiting the Z-ring formation in bacteria

(Keffer et al. 2013). Another study by Godlewska-

Żyłkiewicz et al. (2020) showed that alkaloids are

sufficient to initiate bacterial homeostasis and disrupt the

stability of the outer membrane and cytoplasmic (Cushnie

et al. 2014). Alkaloids were also able to restrain fimbria-

dependent biofilm formation in E. coli (Notarte et al.

2019). Streptomyces cellulosae strain TES17 produced

phenolic compounds with strong antioxidant properties and

effective in damaging lung cancer cell lines (Rani et al.

2018). The antibacterial and antimalarial mechanism of

phenolic compounds possibly due to the ability to inhibit

respiratory electron transport systems, reduced outer

membrane containing lipopolysaccharides, disrupts the

structure of the cell wall, and the synthesis of cell wall

becomes inefficient, affect the permeability, and disrupt the

cell division protein FtsZ-ring (Aldulaimi et al. 2019).

The findings on Streptomyces extract's antimalarial activity were used as a starting point. Further study to

determine its efficacy using an ex vivo or in vitro approach

is needed (Sinha et al. 2017). Peter’s Test or 4-day

suppression test, histopathological observation, and

cytotoxicity for non-cell-targeted are required (Kifle et al.

2020). A metabolite is categorized as antiplasmodial if this

metabolite can suppress parasite growth by more than 30%

compared to negative controls after completing a set of in

vivo tests (Castro et al. 1996). In conclusion, the qualitative

test approach was supported by infrared spectroscopic data

indicating the presence of phenolic compounds and alkaloids from the bacterial metabolite Streptomyces AB8.

The crude extract of Streptomyces sp AB8 can inhibit

Plasmodium, with an IC50 value of 17.56 μg/mL. The

extract of Streptomyces sp. AB8 could inhibit the growth of

Dickeya zeae N-Unila 5, Dickeya zeae N-Unila 10,

Aspergillus sp IK3, and Escherichia coli. These results on

antimalarial and antimicrobial are preliminary results.

ACKNOWLEDGEMENTS

We would like to thank everyone who contributes to

this research. This work was partly supported by grants

from Universitas Lampung, Indonesia (1661/UN26.21/PN/

2021). The authors have declared that there was no conflict of interests.

REFERENCES

Aeny TN, Suharjo R, Ginting C, Hapsoro D, Niswati A. 2020.

Characterization and host range assessment of Dickeya zeae

associated with pineapple soft rot disease in east Lampung, Indonesia.

Biodiversitas 21 (2): 587-595. DOI: 10.13057/biodiv/d210221.

Agustina D, Surtiningsih T, Manuhara YS, Arifiyanto A, Malewa M.

2019. Study of Cellulase Activity Produced by Penicillium sp.,

Aspergillus niger and Trichoderma viride on Imperata cylindrica (L.)

Beauv. Enrichment Media. IOP Conf Ser Earth Environ Sci 253 (1):

012016. DOI: 10.1088/1755-1315/253/1/012016.

Al-Ansari M, Alkubaisi N, Vijayaragavan P, Murugan K. 2019.

Antimicrobial potential of Streptomyces sp. to the Gram-positive and

Gram-negative pathogens. J Infect Public Health 12 (6): 861-866.

DOI: 10.1016/j.jiph.2019.05.016

Aldulaimi O, Drijfhout F, Uche FI, Horrocks P, Li W-W. 2019.

Discovery, synthesis and antibacterial evaluation of phenolic

Page 24: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

BIODIVERSITAS 22 (7): 2817-2823, July 2021

2822

compounds from Cylicodiscus gabunensis. BMC Compl Altern Med

19 (1): 183. DOI: 10.1186/s12906-019-2589-2.

Alkandahri M, Berbudi AN, Vicahyani Utami AS. 2019. Antimalarial

activity of extract and fractions of Castanopsis costata (Blume)

A.DC. Avicenna J Phytomed 9 (5): 474-481.

Arifiyanto A, Afriani H, Putri MH, Damayanti B, Riyanto CLR. 2021.

The biological prospective of red-pigmented bacteria cultured from

contaminated agar media. Biodiversitas J Biol Divers 22 (3): 1152-

1159. DOI: 10.13057/biodiv/d220310

Arifiyanto A, Surtiningsih T, Ni’matuzahroh, Fatimah, Agustina D, Alami

N. 2020. Antimicrobial activity of biosurfactants produced by

actinomycetes isolated from rhizosphere of Sidoarjo mud region.

Biocatalysis Agric Biotechnol 24: 101513. DOI:

10.1016/j.bcab.2020.101513.

Castro O, Barrios M, Chinchilla M, Guerrero O. 1996. Chemical and

biological evaluation of the effect of plant extracts against

Plasmodium berghei. Revista Biol Trop 44 (2A): 361-367.

Chevrette MG, Carlson CM, Ortega HE, Thomas C, Ananiev GE, Barns

KJ, Book AJ, Cagnazzo J, Carlos C, Flanigan W, Grubbs KJ. 2019.

The antimicrobial potential of Streptomyces from insect microbiomes.

Nat Commun 10 (1): 516. DOI: 10.1038/s41467-019-08438-0.

Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ. 2015.

Antimalarial drug resistance: Literature review and activities and

findings of the ICEMR network. Am J Trop Med Hyg 93 (Suppl 3):

57-68. DOI: 10.4269/ajtmh.15-0007

Cushnie TPT, Cushnie B, Lamb AJ.2014. Alkaloids: an overview of their

antibacterial, antibiotic-enhancing and antivirulence activities. Int J

Antimicrob Agents 44 (5): 377-386. DOI:

10.1016/j.ijantimicag.2014.06.001

Darmawan TS, Zahroh TT, Merindasya M, Masfaridah R, Hartanti DA,

Arum S, Nurhatika S, Muhibuddin A, Surtiningsih T, Arifiyanto A.

2017. Manganese (Mn) stress toward hyperaccumulators plants

combination (HPC) using Jatropha curcas and lamtoro gung (L.

leucocephala) in mycorrhizal addition on soybean (Glycine max)

seedling stage. AIP Conf Proc 1854 (1): 020027. DOI:

10.1063/1.4985418

de Lima Procópio RE, da Silva IR, Martins MK, de Azevedo JL, de

Araújo JM. 2012. Antibiotics produced by Streptomyces. Braz J Infect

Dis 16 (5): 466-471. DOI: 10.1016/j.bjid.2012.08.014

El-Naggar NEA, El-Ewasy SM. 2017. Bioproduction, characterization,

anticancer and antioxidant activities of extracellular melanin pigment

produced by newly isolated microbial cell factories Streptomyces

glaucescens NEAE-H. Sci Rep 7: 42129. DOI: 10.1038/srep42129.

Ezeonu CS, Ejikeme CM. 2016. Qualitative and quantitative

determination of phytochemical contents of indigenous Nigerian

Softwoods. New J Sci 2016: 1-9. DOI: 10.1155/2016/5601327.

Fang Q, Maglangit F, Mugat M, Urwald C, Kyeremeh K, Deng H. 2020.

Targeted isolation of indole alkaloids from Streptomyces sp. CT37.

Molecules 25 (5): 1108. DOI: 10.3390/molecules25051108.

Fatmawaty, Rosmalena, Amalia A, Syafitri I, Prasasty VD. 2017.

Antimalarial effect of flamboyant (Delonix regia) bark and papaya

(Carica papaya L) leaf ethanolic extracts against Plasmodium berghei

in mice. Biomed Pharmacol J 10 (3): 1081-1089. DOI:

10.13005/bpj/1206.

Fitri LE, Alkarimah A, Cahyono AW, Lady WN, Endharti AT, Nugraha

RY. 2019. Effect of metabolite extract of Streptomyces hygroscopicus

subsp. hygroscopicus on Plasmodium falciparum 3D7 in Vitro. Iran J

Parasitol 14 (3): 444-452.

Godlewska-Żyłkiewicz B, Świsłocka R, Kalinowska M, Golonko A,

Świderski G, Arciszewska Ż, Nalewajko-Sieliwoniuk E, Naumowicz

M, Lewandowski W. 2020. Biologically active compounds of plants:

Structure-related antioxidant, microbiological and cytotoxic activity

of selected carboxylic acids. Materials 13 (9): 4454. DOI:

10.3390/ma13194454.

Gomathi A, Gothandam KM. 2019. Investigation of anti-inflammatory

and toxicity effects of mangrove-derived Streptomyces rochei strain

VITGAP173. J Cell Biochem 120 (10): 17080-17097. DOI:

10.1002/jcb.28969

Hay SI, Guerra CA, Tatem AJ, Noor AM, SR. 2004. The global

distribution and population at risk of malaria: past, present, and

future. Lancet Infect Dis 4 (6): 327-336. DOI: 10.1016/S1473-

3099(04)01043-6

Isaka M, Jaturapat A, Kramyu J, Tanticharoen M, Thebtaranonth Y. 2002.

Potent in vitro antimalarial activity of meta cyclo prodigiosin isolated

from Streptomyces spectabilis BCC 4785. Antimicrob Agents

Chemother 46 (4): 1112-1113. DOI: 10.1128/AAC.46.4.1112-

1113.2002.

Keffer JL, Huecas S, Hammill JT, Wipf P, Andreu JM, Bewley CA. 2013.

Chrysophaentins are competitive inhibitors of FtsZ and inhibit Z-ring

formation in live bacteria. Bioorg Med Chem 21 (18): 5673-5678.

DOI: 10.1016/j.bmc.2013.07.033.

Kifle ZD, Adinew GM, Mengistie MG, Gurmu AE, Enyew EF, Goshu

BT, Amare GG. 2020. Evaluation of antimalarial activity of

methanolic root extract of Myrica salicifolia a rich (Myricaceae)

against Plasmodium berghei–Infected mice. J Evid-Based Integr Med

25: 1-12. DOI: 10.1177/2515690X20920539.

Li C, Ji C, Tang B. 2018. Purification, characterization and biological

activity of melanin from Streptomyces sp. FEMS Microbiol Lett 365

(19): 1-8. DOI: 10.1093/femsle/fny077.

Lin YB, Wang XY, Fang H, Ma YN, Tang J, Tang M, Wei GH. 2012.

Streptomyces shaanxiensis sp. nov., a blue pigment-producing

streptomycete from sewage irrigation soil. Intl J Syst Evol Microbiol

62 (8): 1725-1730. DOI: 10.1099/ijs.0.029959-0.

Mathew BT, Torky Y, Amin A, Mourad AH, Ayyash MM, El-Keblawy

A, Hilal-Alnaqbi A, AbuQamar SF, El-Tarabily KA. 2020.

Halotolerant marine rhizosphere-competent actinobacteria promote

Salicornia bigelovii growth and seed production using seawater

irrigation. Front Microbiol 11. DOI: 10.3389/fmicb.2020.00552.

Mousavi B, Hedayati MT, Hedayati N, Ilkit M, Syedmousavi S. 2016.

Aspergillus species in indoor environments and their possible

occupational and public health hazards. Curr Med Mycol 2 (1): 36-42.

DOI: 10.18869/acadpub.cmm.2.1.36.

Notarte KI, Devanadera MK, Mayor AB, Cada MC, Pecundo MH,

Macabeo AP. 2019. Toxicity, antibacterial, and antioxidant activities

of fungal endophytes Colletotrichum and Nigrospora spp. Isolated

from Uvaria grandiflora. Philippine J Sci 148: 505-512.

Nugraha RY, Faratisha IF, Mardhiyyah K, Ariel DG, Putri FF, Winarsih

S, Sardjono TW, Fitri LE. 2020. Antimalarial properties of

isoquinoline derivative from Streptomyces hygroscopicus subsp.

hygroscopicus: an in silico approach. BioMed Res Intl. DOI:

10.1155/2020/6135696.

Okay S, Özdal M, Kurbanoǧlu EB. 2013. Characterization, antifungal

activity, and cell immobilization of a chitinase from Serratia

marcescens MO-1. Turk J Biol 37 (6): 639-644. DOI: 10.3906/biy-

1208-45.

Okokon J, Antia B, Mohanakrishnan D, Sahal D. 2017. Antimalarial and

antiplasmodial activity of husk extract and fractions of Zea mays.

Pharm Biol 55 (1): 1394-1400. DOI:

10.1080/13880209.2017.1302966.

Orabuezea CI, Ota DA, Coker HA. 2020. Antimalarial potentials of

Stemonocoleus micranthus Harms (Leguminosae) stem bark in

Plasmodium berghei infected mice. J Tradit Compl Med 10 (1): 70-

78. DOI: 10.1016/j.jtcme.2019.03.001.

Pereira DM, Valentão P, Pereira JA, Andrade PB. 2009. Phenolics: From

chemistry to biology. Molecules 14 (6): 2202-2211. DOI:

10.3390/molecules14062202.

Putri MH, Handayani K, Setiawan WA, Damayanti B, Ratih CL,

Arifiyanto A. 2021. Screening of extracellular enzymes on Serratia

marcescens strain MBC1. Jurnal Riset Biologi dan Aplikasinya 3 (1):

23-29. [Indonesian]

Quintino L, Namislo A, Davidsson M, Breger LS, Kavanagh P, Avallone

M, Elgstrand-Wettergren E, Isaksson C, Lundberg C. 2019. DHFR

inhibitors: Reading the past for discovering novel anticancer agents.

Molecules 24 (6): 1-19. DOI: 10.3390/molecules24061140.

Rani R, Arora S, Kaur J, Manhas RK. 2018. Phenolic compounds as

antioxidants and chemopreventive drugs from Streptomyces

cellulosae strain TES17 isolated from rhizosphere of Camellia

sinensis. BMC Compl Altern Med 18 (1): 82. DOI: 10.1186/s12906-

018-2154-4.

Rosa E, Ekowati CN, Handayani T, Ikhsanudin A, Apriliani F, Arifiyanto,

A. 2020. Characterization of entomopathogenic fungi as a natural

biological control of American cockroaches (Periplaneta americana).

Biodiversitas 21 (11): 5276-5282. DOI: 10.13057/biodiv/d211131.

Sasongko A, Yopi Y, Rahmani N, Lisdiyanti P, Saepudin E. 2015.

Enzymatic hydrolysis of mannan from Konjac (Amorphophallus sp.)

using mannanase from Streptomyces lipmanii to produce Manno-

oligosaccharides. Makara J Sci 19 (3). DOI: 10.7454/mss.v19i3.4850.

Setyaningrum E, Arifiyanto A, Nukmal N, Aeny TN, Putri MH, Setiawati

UN. 2021. In vitro test for inhibition of Plasmodium falciparum 3D7

parasites using Streptomyces hygroscopicus subsp. hygroscopicus

Page 25: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

SETYANINGRUM et al. – Antibacterial and antimalarial of Streptomyces sp AB8

2823

Strain i18, Isolated from a Pineapple Farm in Lampung. J Pure Appl

Microbiol 15: 891-896. DOI: 10.22207/jpam.15.2.45.

Singh BDC. 2013. Human infections and detection of Plasmodium

knowlesi. Clin Microbiol Rev 26 (2): 165-84. DOI:

10.1128/CMR.00079-12.

Sinha S, Sarma P, Sehgal R, Medhi B. 2017. Development in assay

methods for in vitro antimalarial drug efficacy testing: A Systematic

Review. Front Pharmacol 8: 754. DOI: 10.3389/fphar.2017.00754.

Sumardi, Farisi S, Ekowati CN, Arifiyanto A, Rahmawati DE. 2020.

Halotolerant Bacillus sp. For mannan degradation isolated from

mangrove ecosystem at Hanura beach Lampung. J Pure Appl

Microbiol 14 (2): 1237-1244. DOI: 10.22207/JPAM.14.2.18.

Zeleke G, Kebebe D, Mulisa E, Gashe F. 2017. In vivo antimalarial

activity of the solvent fractions of fruit rind and root of Carica

papaya Linn (Caricaceae) against Plasmodium berghei in Mice. J

Parasitol Res. DOI: 10.1155/2017/3121050.

Zhou H, Yang Y, Zhang J, Peng T, Zhao L, Xu L, Ding Z. 2013.

Alkaloids from an endophytic Streptomyces sp. YIM66017. Nat Prod

Commun 8 (10): 1393-1396. DOI: 10.1177/1934578x1300801012.

Zin NM, Baba MS, Zainal-Abidin AH, Latip J, Mazlan NW, Edrada-Ebel

RA. 2017. Gancidin W, a potential low-toxicity antimalarial agent

isolated from an endophytic Streptomyces SUK10. Drug Design Dev

Ther 11: 351-363. DOI: 10.2147/DDDT.S121283.

Page 26: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

Achmad Arifiyanto, S.Si., M.Si.

Page 27: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

2nd ULICOSTE 2021

Streptomyces hygroscopicus subsp. hygroscopicus strain I18:

Incubation Time and Tryptophan Concentration Effects on

Indole-3-Acetic Acid (IAA) Hormone Production

Mia Fitriani1, Achmad Arifiyanto1*, Sumardi1, Martha Lulus Lande1, Christina

Nugroho Ekowati1, Titik Nur Aeny2, Hapin Afriyani3

1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Lampung, 2Department of Plant

Protection, Faculty of Mathematics and Natural Sciences, Universitas Lampung, 3Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lampung,

* Corresponding author: [email protected]

Abstract. Plant hormones are chemical messengers that regulate a wide range of physiological activities in plants. Microbes need

a definite time to synthesize a compound. The microbial life cycle consists of several phases, often requiring a shorter incubation

time than in complex organisms such as plants, animals, and humans. This study aimed to determine the optimum incubation time

and the best tryptophan levels of Streptomyces hygroscopicus subsp. hygroscopicus strain i18 in Indole-3-acetic acid (IAA)

hormone. IAA has synthesized on liquid ISP4 medium using L-tryptophan supplementation as a precursor. Cell density was

measured every day for 4-11 days using the spectrophotometric approach to track the incubation time. The doses of L-Tryptophan

were 0, 1, 2, 3, 4, 5, and 6 mg/mL, respectively. The levels of IAA produced by bacteria were measured and compared with standard

IAA. Streptomyces hygroscopicus subsp. hygroscopicus strain i18 was obtained the optimum incubation time at 9th days with an

IAA level of 12.30 μg/mL. Supplementing with 5 mg/mL L-tryptophan resulted in the highest IAA level of 17.90 μg/mL. This

study would be worthwhile in assisting agricultural product quality improvement through field application for further research.

Keywords: amino acid, IAA, incubation period, plant growth hormone, and Streptomyces

INTRODUCTION

Plant hormones have required as chemical messengers that impact a plant's ability to respond to the environment and

speed up its growth 1,2. Rhizosphere bacteria can create plant hormones, also known as phytohormones. Because they

dwell in plant roots, these bacteria include plant growth promoter rhizobacteria (PGPR). They live in colonies and aid

in the growth of plants as well as the prevention of illness. Auxin-producing rhizobacteria include Actinomycetes,

Azospirillum, Rhizobium, Pseudomonas, Bacillus, Micrococcus, Kocuria, and Enterobacter 3.

Streptomyces was a soil bacteria member of Actinomycetes whose capable of producing plant hormones, including

Indole-3-acetic acid (IAA) 4. This hormone belongs to the auxin family and served as a signaling molecule in plant

development, root elongation, and enzyme activation. It improved nutrient intake by developing longer roots and

increased lateral root hairs. It also has a significant impact on plant development 5.

Several factors, such as incubation duration and Tryptophan content, can alter the amount of IAA generated by

Actinomycetes 6. In maize and peas, supplementing precursors in the form of Tryptophan to the environment enabled

seed germination and root elongation 7. Streptomyces sp has potentially produced IAA that helped plant growth.

Streptomyces sp had generated biosurfactants and antimicrobial performances from the rhizosphere of the Sidoarjo

mud area 8.

Streptomyces sp. strain i18 had identified as Streptomyces hygroscopicus subsp. hygroscopicus and was isolated from

pineapple plantation soil 9. Metabolite extracted from this strain contained saponins, triterpenoids, and anthraquinone.

It showed the potential to inhibit the growth of Plasmodium parasites 10. Unfortunately, information regarding the

Page 28: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

2nd ULICOSTE 2021

ability of this strain to produce IAA was not yet available. This study intended to determine i18 bacteria' ability to

produce IAA at the optimal time and the effect of the dose of tryptophan amino acid supplementation.

MATERIALS AND METHODS

Bacterial culture

Bacteria were cultured on International Streptomyces Project medium 4 (Inorganic salts-starch) and incubated at room

temperature for 4-7 days. The composition of the medium consisted of 10 g Soluble Starch, 1 g MgSO4 x 7H2O, 1 g

NaCl, 2 g (NH4)2SO4, 2 g CaCO3, 1 L distilled water, 1 mL Trace Salts solution (0.1 g FeSO4 x 7H2O, 0.1 g MnCl2 x

4H2O, 0.1 g ZnSO4 x 7H2O, 100 mL distilled water), and 20 g agar. A loop of inoculum was taken and put in a liquid

inorganic salts-starch medium, incubating for 7th days at room temperature for a 10 mL starter 11.

Incubation time

In 90 mL liquid inorganic salts-starch media, Tryptophan 2 mg/mL was added together with a 10 mL starter and

shaken at 10,000 rpm in the dark. The production medium was taken 2 ml and centrifuged at 3000 rpm for 30 minutes.

The separated supernatant was taken 1 ml and reacted with 2 ml Salkowski solution, incubated for 60 minutes in the

dark, and observed for a pink to red color change. It was measured on days 4-11 with a spectrophotometer with a

wavelength of 530 nm. The data obtained were analyzed using ANOVA and BNT follow-up test 12.

Tryptophan supplementation

The starter was taken in 10 mL and placed in 90 mL of liquid inorganic salts-starch media with 1, 2, 3, 4, 5, and 6

mg/mL of Tryptophan, respectively. They had incubated on a shaker incubator for the optimum incubation time

previously achieved. Culture media containing bacteria without Tryptophan was assigned as a control. The production

medium was taken 2 ml and centrifuged at 3000 rpm for 30 minutes. One milliliter of the separated supernatant was

mixed with two milliliters of Salkowski solution and incubated in the dark for 60 minutes. The data were analyzed

using the non-parametric Kruskal-Wallis test after measurements using a spectrophotometer with a wavelength of 530

nm 13.

RESULTS AND DISCUSSIONS

The presence of IAA can be detected by reacting with the supernatant of the Salkowski reagent. The interaction

between IAA and Fe causes free electrons from the ligand to fill the "d" orbital in Fe3+ with IAA, resulting in the

formation of a complex bond [Fe2 (OH) 2 (IA)4]. The color change indicates the high content of IAA produced is

proportional to the density of the red color. It had seen in Figure 1.

FIGURE 1. Red color change on IAA production with the addition of Tryptophan 0-6 mg/mL

Page 29: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

2nd ULICOSTE 2021

During the incubation time of days 4-11, Strain i18 was adequate to produce the IAA hormone. The optimum

incubation time for strain i18 occurred on day 9 with a value of 12.30 μg/mL. The culture began to enter the optimal

production phase of IAA after day 7, Table 1.

TABLE 1. Production of IAA on days 4-11 by Streptomyces hygroscopicus subsp. hygroscopicus strain i18

Tryptophan administration on IAA production had a significant effect, indicated by the Asymp value. In a non-

parametric test using the Kruskal Walis method, the Significant value is 0.008. The Tryptophan concentration of 5

mg/mL resulted in IAA levels of 17.90 g/mL, which was the highest among other Tryptophan dosing treatments (Table

2).

TABLE 2. Tryptophan supplementation effect at IAA content produced by Streptomyces hygroscopicus subsp.

hygroscopicus strain i18

Day IAA concentration (μg/mL)

4 3.90 ± 0.01

5 6.90 ± 0.09

6 8.00 ± 0.02

7 8.20 ± 0.09

8 8.60 ± 0.04

9 12.30 ± 0.10

10 11.00 ± 0.06

11 8.00 ± 0.10

Tryptophan concentration (mg/mL) IAA concentration (μg/mL)

0 2.90 ± 0.01

1 8.60 ± 0.01

2 11.20 ± 0.01

3 14.80 ± 0.01

4 16.30 ± 0.06

5 17.90 ± 0.06

6 16.80 ± 0.03

Page 30: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

2nd ULICOSTE 2021

The ability of rhizobacterial isolates to produce IAA was considered a beneficial method for identifying helpful

microbes, and they have a significant impact on plant growth 14. IAA was an inorganic-volatile compound produced

by Streptomyces spp 15. The production of secondary metabolites was the ability of each organism. Secondary

metabolites biosynthesis began at the end of the logarithmic or exponential phase until the end of the stationary phase,

after cell division and multiplication stop 16.

3 4 5 6 7 8 9 10 11 12

0

2

4

6

8

10

12IA

A c

on

ce

ntr

atio

n (

ug

/mL

)

Incubation time (day)

IAA concentration (ug/mL)

FIGURE 2. The relation of incubation time to IAA concentration.

0 1 2 3 4 5 6

0

2

4

6

8

10

12

14

16

18

20

IAA

co

nce

ntr

atio

n (

ug

/mL

)

Tryptophan concentration (mg/mL)

IAA concentration (ug/mL)

FIGURE 3. The relation of tryptophan doses to IAA concentration.

Page 31: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

2nd ULICOSTE 2021

IAA hormone production was increased by nutrient sources available during the incubation phase, while IAA

production had decreased by nutrients that began to deplete during the incubation period 17. Types of nutrients that

influenced IAA production were carbon, nitrogen, and precursor type. The oxidase and peroxidase enzymes were

released, which lowered the amount of IAA produced 18. Thus, due to the availability of sufficient nutrients, there is

a pattern of increases from the beginning of the 4th day to the peak on the 9th day (Figure 2).

TABLE 3. Summary of bacterial species, ideal incubation time, total incubation time, liquid medium, IAA levels

produced by dosages, and L-tryptophan doses in a variety of comparative sources

No Strain

The peak

period of

output (day;

hour)

Duration of

incubation

(days)

Liquid

Media

Optimal

IAA content

(μg/mL)

L -tryptophan

optimal doses

(mg/mL)

Sources

1 Streptomyces

fradiae NKZ-259

6; 144 14 Gause’s

No.1

20.46  2 .00 4

2 Streptomyces

hygroscopicus subsp.

hygroscopicus strain i18

9; 216 11 ISP 4 17.90 5.00 This

result

3 Streptomyces sp. MS1 5; 120 7 Yeast

malt

extract

(YM)

125.48 2 .00 19

4 Streptomyces sp. BR27 5; 120 7 104.13 1 .00

5 Streptomyces sp

VSMGT1014

5: 120 8 ISP 2 15.96 2.00 20

6 Streptomyces sp. PT2 5; 120 10 Yeast

extract-

tryptone

3.63 5.00 6

At the beginning of the logarithmic stage, the yield of IAA produced was lower, presumably because the content of

enzymes utilized to convert Tryptophan to IAA remained low (Figure 3). The yield of IAA produced was lower at the

beginning of the logarithmic stage due to a lack of enzyme concentration and bacterial cells. In contrast, at the end of

the logarithmic phase, IAA production entered following bacteria increasing growth. Monooxygenase, IAM

hydrolase, indole pyruvate decarboxylase and IAAld dehydrogenase were utilized during Tryptophan bioconversion

into IAA. They were produced quite a lot and were active in line with the growth rate 21.

Unfortunately, the cell density data at the time of the IAA measurement has not been measured in this study. These

data help reveal that bacterial cell growth is closely related to the production of IAA as a metabolite. Table 3 informs

us that the type of production media affects the amount of IAA produced. Likewise, the dose of tryptophan as a

precursor in each strain of Streptomyces spp gave different results in producing IAA.

Tryptophan has been identified as a major precursor of IAA and plays an important role in modulating the level of

IAA biosynthesis in bacteria. Tryptophan in the rhizosphere was obtained from the degradation of root cells, microbial

cells, and root exudates. IAA produced by bacteria stimulates the growth of a plant. On the other hand, IAA controlled

microbial antibiotic synthesized 22. This growth triggers the exudation of root organic compounds which are used for

Page 32: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

2nd ULICOSTE 2021

the growth of these bacteria 23.1 Tryptophan is used as a source of carbon and energy, which will break down into

several compounds involved in metabolic pathways. This provides a mutually beneficial role between the bacteria and

the plant itself 24.

CONCLUSION

On the 9th day of testing, with an IAA concentration of 12.30 μg/mL, Streptomyces hygroscopicus subsp.

hygroscopicus strain i18 produced the most IAA. The addition of 5 mg/mL of Tryptophan produced an IAA of 17.90

μg/mL as the optimum amount of Tryptophan. It was required to count the number of bacterial cells to assess the

relationship between IAA production and cell growth, and as well as to quantify the amount of IAA tested with various

strains for field applications.

ACKNOWLEDGMENT

We'd like to thank everyone who contributes to this research. This work was partly supported by grants from

Universitas Lampung, Indonesia (1661/UN26.21/PN/2021).

REFERENCES

1. Ryu, R. J. & Patten, C. L. Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is

regulated by tyrr in Enterobacter cloacae UW5. J. Bacteriol. 190, 7200–7208 (2008).

2. Ermavitalini, D., Nurhatika, S., Rahayu, A. E. & Arifiyanto, A. Growth profile of Nannochloropsis sp. with

combination effect of Indole 3-Acetic Acid (IAA) and 6-Benzyl Amino Purine (BAP). Biosci. Res. 16, 2402

(2019).

3. Shailendra Singh, G. G. Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for

Development of Sustainable Agriculture. J. Microb. Biochem. Technol. 07, 96–102 (2015).

4. Myo, E. M. et al. Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to

enhance plant growth. BMC Microbiol. 19, 1–14 (2019).

5. Panigrahi, S., Mohanty, S. & Rath, C. C. Characterization of endophytic bacteria Enterobacter cloacae

MG00145 isolated from Ocimum sanctum with Indole Acetic Acid (IAA) production and plant growth

promoting capabilities against selected crops. South African J. Bot. 000, 1–10 (2019).

6. Goudjal, Y. et al. Endophytic actinomycetes from spontaneous plants of Algerian Sahara: Indole-3-acetic

acid production and tomato plants growth promoting activity. World J. Microbiol. Biotechnol. 29, 1821–

1829 (2013).

7. Khamna, S., Yokota, A., Peberdy, J. F. & Lumyong, S. Indole-3-acetic acid production by Streptomyces sp.

isolated from some Thai medicinal plant rhizosphere soils. EurAsian J. Biosci. 32, 23–32 (2010).

8. Arifiyanto, A. et al. Antimicrobial activity of biosurfactants produced by actinomycetes isolated from

rhizosphere of Sidoarjo mud region. Biocatal. Agric. Biotechnol. (2020) doi:10.1016/j.bcab.2020.101513.

9. Aeny, T. N. et al. Short communication: Isolation and identification of actinomycetes potential as the

antagonist of dickeya zeae pineapple soft rot in Lampung, Indonesia. Biodiversitas 19, 2052–2058 (2018).

10. Setyaningrum, E. et al. In vitro Test for Inhibition of Plasmodium falciparum 3D7 Parasites using

Streptomyces hygroscopicus subsp. hygroscopicus Strain i18, Isolated from a Pineapple Farm in Lampung.

J. Pure Appl. Microbiol. 15, 891–896 (2021).

11. Arifiyanto, A., Afriani, H., Putri, M. H., Damayanti, B. & Riyanto, C. L. R. The biological prospective of

red-pigmented bacteria cultured from contaminated agar media. Biodiversitas, J. Biol. Divers. 22, 1152–

Page 33: IDENTITAS DAN URAIAN UMUM - silemlit21.unila.ac.id

2nd ULICOSTE 2021

1159 (2021).

12. Shahzad, R. et al. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes

isolated from rice (Oryza sativa L.) seeds. Acta Biol. Hung. 68, 175–186 (2017).

13. Devi, K. A., Pandey, P. & Sharma, G. D. Plant Growth-Promoting Endophyte Serratia marcescens AL2-16

Enhances the Growth of Achyranthes aspera L., a Medicinal Plant. HAYATI J. Biosci. 23, 173–180 (2016).

14. Chandra, S., Askari, K. & Kumari, M. Optimization of indole acetic acid production by isolated bacteria

from Stevia rebaudiana rhizosphere and its effects on plant growth. J. Genet. Eng. Biotechnol. 16, 581–586

(2018).

15. Salwan, R. & Sharma, V. Molecular and biotechnological aspects of secondary metabolites in

actinobacteria. Microbiol. Res. 231, 126374 (2020).

16. Bertrand, R. L. Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable Period That Prepares Bacteria

for Cell Division. J. Bacteriol. 201, e00697-18 (2019).

17. Lestari, P., Susilowati, D. N. & Riyanti, E. I. Pengaruh Hormon Asam Indol Asetat yang Dihasilkan

Azospirillum sp. terhadap Perkembangan Akar Padi. J. AgroBiogen 3, 66 (2016).

18. Maksimov, I. V., Yusupova, Z. R., Cherepanova, E. A., Khairulin, R. M. & Vakhitov, V. A. Inhibition of

IAA oxidase activity of wheat anionic peroxidase by chitooligosaccharides. Appl. Biochem. Microbiol. 52,

547–552 (2016).

19. De Fretes, C. E., Sembiring, L. & Purwestri, Y. A. Characterization of Streptomyces spp. Producing Indole-

3-acetic acid as Biostimulant Agent. Indones. J. Biotechnol. 18, 83–91 (2013).

20. Harikrishnan, H., Shanmugaiah, V. & Balasubramanian, N. Optimization for production of Indole acetic

acid (IAA) by plant growth promoting Streptomyces sp VSMGT1014 isolated from rice rhizosphere. Int. J.

Curr. Microbiol. Appl. Sci. 3, 158–171 (2014).

21. Spaepen, S. & Vanderleyden, J. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 3,

a001438 (2011).

22. Matilla, M. A., Daddaoua, A., Chini, A., Morel, B. & Krell, T. An auxin controls bacterial antibiotics

production. Nucleic Acids Res. 46, 11229–11238 (2018).

23. Spaepen, S., Vanderleyden, J. & Remans, R. Indole-3-acetic acid in microbial and microorganism-plant

signaling. FEMS Microbiol. Rev. 31, 425–448 (2007).

24. Palego, L., Betti, L., Rossi, A. & Giannaccini, G. Tryptophan Biochemistry: Structural, Nutritional,

Metabolic, and Medical Aspects in Humans. J. Amino Acids 2016, 8952520 (2016).