GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH...

33
GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH PENGENDALIAN KERACUNAN BESI PADI SAWAH DI LAHAN RAWA PASANG SURUT SULFAT MASAM DISERTASI Oleh : Izhar Khairullah 08/275488/SPN/352 PROGRAM PASCASARJANA FAKULTAS PERTANIAN UNIVERSITAS GADJAH MADA YOGYAKARTA 2012

Transcript of GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH...

Page 1: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH PENGENDALIAN KERACUNAN BESI PADI SAWAH

DI LAHAN RAWA PASANG SURUT SULFAT MASAM

DISERTASI

Oleh : Izhar Khairullah

08/275488/SPN/352

PROGRAM PASCASARJANA FAKULTAS PERTANIAN

UNIVERSITAS GADJAH MADA YOGYAKARTA

2012

Page 2: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

255

RINGKASAN

GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH PENGENDALIAN KERACUNAN BESI PADI SAWAH DI LAHAN RAWA

PASANG SURUT SULFAT MASAM

Padi merupakan komoditas pangan strategis yang produksinya perlu terus

ditingkatkan untuk mengimbangi laju pertumbuhan penduduk yang bertumpu

pada beras sebagai bahan makanan pokoknya. Produksi padi dari tahun ke tahun

mengalami pelandaian akibat berbagai hal termasuk alih fungsi lahan padi ke

nonpadi dan non pertanian, terutama di pulau Jawa. Untuk mengatasi hal tersebut

diperlukan ekstensifikasi areal sawah baru di berbagai ekosistem termasuk di

lahan rawa pasang surut yang tersedia cukup luas.

Lahan rawa pasang surut merupakan salah satu jenis lahan sub-optimal

yang kini dan ke depan semakin berperan penting untuk budidaya padi. Luas

lahan rawa pasang surut di Indonesia sekitar 20,1 juta ha, 33,3 % diantaranya

merupakan lahan sulfat masam. Kontribusi produksi padi pasang surut terhadap

produksi padi nasional cukup tinggi, yaitu sebanyak 3.684 juta ton padi dengan

melaksanakan intensifikasi melalui penerapan teknologi spesifik lokasi. Berbagai

hasil penelitian dan pengembangan mununjukkan bahwa lahan pasang surut

memiliki prospek yang besar untuk dikembangkan menjadi areal produktif

tanaman padi. Produktivitas padi di lahan pasang surut masih rendah, rerata

kurang dari 3 t ha-1 dengan intensitas pertanaman satu kali.

Pengembangan pertanian di lahan rawa pasang surut sulfat masam

menghadapi beberapa kendala antara lain tata air, kemasaman tanah, konsentrasi

Fe, Al, Mn tinggi, kahat hara, dan salinitas tinggi. Konsentrasi Fe2+ sebesar 300-

Page 3: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

256

400 mg kg-1 sangat meracuni tanaman padi. Teknologi pengelolaan air dan tanah

yang tepat akan mempercepat pemanfaatan lahan sulfat masam tersebut, terutama

untuk persawahan. Demikian juga dengan penggunaan varietas padi yang adaptif

dan tahan terhadap keracunan besi.

Keracunan besi menjadi masalah utama produksi padi di persawahan

pasang surut sulfat masam. Pertumbuhan dan hasil padi sawah di lahan sulfat

masam sangat dipengaruhi oleh keracunan besi. Penurunan hasil akibat

keracunan besi mencapai 30-100 % tergantung ketahanan varietas, intensitas

keracunan, dan status kesuburan tanah. Strategi ketahanan terhadap keracunan

besi telah diketahui, tetapi mekanisme fisiologisnya tidak dipahami dengan baik.

Pengendalian keracunan besi dapat dilakukan dengan menggunakan

varietas yang tahan keracunan besi dan menggunakan bahan organik in situ

seperti jerami dan tumbuhan purun tikus (Eleocharis dulcis). Varietas padi

berbeda-beda ketahanannya terhadap keracunan besi. Purun tikus adalah gulma

dominan di lahan rawa pasang surut sulfat masam, terutama di Kalimantan

Selatan dan Tengah. Penelitian mengenai peranan dan pengaruh bahan organik

dalam mengendalikan keracunan besi pada tanaman padi di lahan rawa pasang

surut sulfat masam belum banyak diungkap.

Atas dasar latar belakang tersebut perlu dilakukan serangkaian penelitian

untuk (1) mempelajari pengaruh konsentrasi Fe tanah terhadap serapan Fe

tanaman, pertumbuhan, dan hasil, serta memilih varietas padi yang tahan,

menghindar, dan rentan keracunan besi, (2) mempelajari perubahan serapan Fe,

karakter fisiologis dan agronomis akibat pemberian bahan organik, serta

menentukan aras optimum kompos jerami dan purun tikus dalam mengendalikan

Page 4: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

257

keracunan besi dan meningkatkan hasil padi, dan (3) mempelajari pengaruh

pemberian bahan amelioran dalam mengendalikan keracunan besi, meningkatkan

proses fisiologis, pertumbuhan, dan hasil padi, serta menentukan teknologi

ameliorasi terbaik dalam mengendalikan keracunan besi dan meningkatkan hasil

padi di lahan rawa pasang surut sulfat masam.

Telah dilakukan dua percobaan di rumah kaca dan satu percobaan

lapangan pada Januari 2010 sampai Agustus 2011. Percobaan pertama dan kedua

dilaksanakan di rumah kaca Balai Penelitian Pertanian Lahan Rawa (Balittra),

Banjarbaru. Percobaan ketiga di lapangan dilaksanakan di sawah pasang surut

sulfat masam Kebun Percobaan Belandean milik Balittra di Kabupaten Barito

Kuala, Kalimantan Selatan. Pengamatan meliputi karakter fisiologis dan

agronomis, pertumbuhan dan hasil, konsentrasi Fe tanah dan kadar Fe tanaman,

indeks bronzing daun, indeks ketahanan akar dan tajuk, dan gejala keracunan besi,

serta beberapa sifat kimia tanah sulfat masam rawa pasang surut.

Hasil penelitian menunjukkan bahwa peningkatan konsentrasi Fe tanah

meningkatkan kadar Fe akar dan Fe daun Inpara-2 dan Inpara-1 (padi rawa) paling

kecil, sedangkan IR64 (padi sawah beririgasi) paling besar. Penurunan

pertumbuhan dan hasil gabah Inpara-1 paling kecil diikuti Inpara-2, sedangkan

IR64 paling besar. Dari 15 varietas yang diuji pada empat konsentrasi Fe tanah

(229,44; 236,34; 564,15; dan 1277,50 mg kg-1 Fe), terpilih Inpara-1 sebagai

varietas tahan, Inpara-2 sebagai varietas menghindar, dan IR64 sebagai varietas

rentan keracunan besi. Pemilihan tersebut berdasarkan atas serapan Fe tanaman,

persamaan regresi linear, dan metode pembobotan terhadap pertumbuhan tanaman

(jumlah anakan, tinggi tanaman, bobot kering akar dan jerami), indeks ketahanan

Page 5: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

258

akar dan tajuk, indeks bronzing daun, gejala keracunan besi, komponen hasil dan

hasil gabah per rumpun serta indeks panen.

Inpara-1 memiliki kadar Fe akar dan Fe daun yang tinggi, tetapi

pertumbuhan baik dan hasil gabah tinggi. Inpara-2 dengan kadar Fe akar dan Fe

daun yang rendah, tetapi pertumbuhan baik dan hasilnya tinggi. IR64 dengan

kadar Fe akar dan Fe daun paling tinggi, tetapi pertumbuhan tidak baik dan hasil

gabahnya paling rendah. Inpara-1 menunjukkan slope paling rendah dari

persamaan regresi linear diikuti oleh Inpara-2, sedangkan IR64 dengan slope

paling besar. Inpara-1 juga menunjukkan skor akhir paling besar diikuti Inpara-2

pada metode pembobotan, sedangkan IR64 dengan skor paling kecil. Semakin

besar skor akhir semakin tahan suatu varietas terhadap keracunan besi.

Kadar Fe akar, Fe batang, dan Fe daun Inpara-1 lebih tinggi dibanding

Inpara-2, baik pada percobaan di rumah kaca maupun percobaan di sawah pasang

surut yang mengindikasikan adanya kemampuan meretensi Fe dalam jaringan

batang dari Inpara-2 yang lebih tinggi dibanding Inpara-1. Oleh karena itu Inpara-

2 dinyatakan sebagai varietas yang memiliki mekanisme ketahanan menghindar

(eksklusi dan inklusi). Inpara-1 dengan kadar Fe akar lebih tinggi disertai

aktivitas PPO rendah serta aktivitas POD tinggi yang mengindikasikan adanya

aktivitas enzim dalam mengendalikan kadar Fe tinggi dalam jaringan daun. Hal

ini mengarah pada mekanisme inklusi tahan, di mana tanaman mampu mentolelir

Fe2+ yang tinggi di dalam sel daun melalui detoksifikasi enzimatik, terutama POD.

Varietas IR64 memiliki kadar Fe akar, Fe batang, dan Fe daun yang lebih tinggi

dibanding Inpara-1 dan Inpara-2. IR64 dengan tingkat ketahanan paling rendah,

pertumbuhan dan hasil gabahnya juga paling rendah sehingga termasuk katagori

Page 6: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

259

varietas yang rentan terhadap keracunan Fe. Aktivitas POD IR64 lebih rendah,

sedangkan aktivitas PPO lebih tinggi dibanding Inpara-1 dan Inpara-2.

Varietas Inpara-2 yang memiliki mekanisme menghindar keracunan besi

mampu menekan konsentrasi Fe di daerah perakaran, menyerap Fe dalam jumlah

yang relatif sedikit, proses fisiologis dan pertumbuhan tanaman sedang, dan hasil

gabah per rumpun tinggi (19,56 g). Inpara-1 yang tahan keracunan besi cukup

mampu menekan konsentrasi Fe tanah di daerah perakaran, menyerap Fe dalam

jumlah relatif banyak, proses fisiologis dan pertumbuhan tanaman baik, dan hasil

gabah per rumpun tinggi (21,59 g). IR64 sebagai varietas rentan keracunan besi

tidak mampu menekan konsentrasi Fe tanah di daerah perakaran, menyerap Fe

dalam jumlah banyak, proses fisiologis dan pertumbuhan tanaman tidak baik, dan

hasil gabah per rumpun rendah (13,57 g).

Pemberian bahan organik kompos jerami dan purun tikus meningkatkan

pH tanah, indeks ketahanan akar dan tajuk, kadar P dan K daun, kandungan air

nisbi tanaman, kerapatan dan lebar bukaan stomata, laju transpirasi, aktivitas

enzim POD, kadar klorofil, panjang dan luas permukaan akar, pertumbuhan

tanaman (jumlah anakan maksimum, tinggi tanaman, bobot kering akar, batang,

dan daun, ILD, LPT, LPN, LAB, dan BDK), komponen hasil, hasil gabah per

rumpun serta indeks panen. Sebaliknya bahan organik kompos jerami dan purun

tikus ini menurunkan Fe dan Eh tanah, gejala keracunan besi, indeks bronzing

daun, aktivitas enzim PPO, kadar Fe akar, Fe batang, dan Fe daun varietas Inpara-

1, Inpara-2, dan IR64.

Pola peningkatan atau penurunan variabel tersebut akibat pemberian bahan

organik mengikuti persamaan regresi kuadratik. Peningkatan aras purun tikus

Page 7: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

260

pada 5 t ha-1 jerami menurunkan konsentrasi Fe tanah. Aras optimum purun tikus

Inpara-1, Inpara-2, dan IR64 adalah 5,37 t ha-1, 5,05 t ha-1, dan 5,91 t ha-1.

Penurunan Fe tanah sebesar 47,4 % dan 22,2 % dibanding cara petani dan

pemberian dolomit 2 t ha-1. Aras optimum purun tikus untuk mengurangi gejala

keracunan besi Inpara-1, Inpara-2, dan IR64 sebesar 5,45 t ha-1, 5,55 t ha-1, dan

5,55 t ha-1. Penurunan gejala keracunan besi dan indeks bronzing daun sebesar

90,6 % dan 27,0 % dibanding cara petani dan sebesar 47,6 % dan 16,2 %

dibanding pemberian dolomit 2 t ha-1. Peningkatan aras purun tikus menurunkan

kadar Fe daun 45,5 % dibanding cara petani dan sebesar 30,3 % dibanding

pemberian dolomit 2 t ha-1, serta meningkatkan kadar Fe gabah sebesar 22,2 %

dibanding cara petani dan 18,9 % dibanding pemberian dolomit 2 t ha-1.

Laju asimilasi bersih (LAB) meningkat sebesar 26,2 % dibanding cara

petani dan 17,4 % dibanding pemberian dolomit 2 t ha-1, sedangkan bobot kering

tanaman meningkat 27,3 % dibanding cara petani dan sebesar 13,9 % dibanding

pemberian dolomit 2 t ha-1.

Inpara-1 menunjukkan komponen hasil yang relatif lebih tinggi dibanding

Inpara-2, baik pada percobaan kedua di rumah kaca maupun percobaan ketiga di

sawah pasang surut. Jumlah malai, jumlah gabah, persentase gabah isi, dan bobot

1.000 gabah Inpara-1 dan Inpara-2 pada percobaan kedua berturut-turut adalah

17,1 dan 15,8 malai; 99,0 dan 96,1 butir; 64,4 dan 62,9 %; 23,56 dan 25,44 g.

Hasil gabah dan indeks panen Inpara-1 adalah 21,19 g dan 0,52, sedangkan

Inpara-2 dengan hasil 19,33 g dan indeks panen 0,48. Pada percobaan ketiga,

Inpara-1 dengan jumlah malai, jumlah gabah, persentase gabah isi, dan bobot

1.000 gabah masing-masing 16,62 malai, 145,65 butir, 75,72 %, dan 23,5 g,

Page 8: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

261

sedangkan Inpara-2 masing-masing 15,37 malai, 140,39 butir, 72,56 %, dan 25,3

g. Pemberian bahan organik kompos jerami dan purun tikus meningkatkan

komponen hasil padi. Hasil gabah Inpara-1 dan Inpara-2 masing-masing adalah

4,45 t ha-1 dan 4,17 t ha-1 dengan indeks panen 0,58 dan 0,47.

Pemberian bahan organik kompos jerami dan purun tikus meningkatkan

komponen hasil, hasil gabah, dan indeks panen. Penambahan aras kompos purun

tikus sampai 5 t ha-1 masih menunjukkan peningkatan, setelah itu menurun. Aras

optimum kompos purun tikus yang ditambahkan pada kompos jerami 5 t ha-1 dari

Inpara-1 adalah 5,29 t ha-1 untuk mencapai jumlah malai per rumpun maksimum

26,84 malai; 4,89 t ha-1 untuk mencapai jumlah gabah per malai maksimum

sebesar 140,85 butir; 5,27 t ha-1 untuk mencapai persentase gabah isi maksimum

sebesar 97,28 %; 5,27 t ha-1 untuk mencapai bobot 1.000 gabah maksimum

sebesar 25,82 g; 5,14 t ha-1 untuk mencapai hasil gabah maksimum sebesar 47,80

g; dan 5,38 t ha-1 untuk mencapai indeks panen maksimum sebesar 0,85.

Pemberian kompos jerami 5 t ha-1 ditambah purun tikus 5 t ha-1

meningkatkan jumlah malai per rumpun, jumlah gabah per malai, persentase

gabah isi, dan bobot 1000 gabah, hasil, dan indeks panen masing-masing sebesar

29,1 %, 12,8 %, 28,5 %, 6,3 %, 34,5 %, dan 17,8 % dibanding cara petani dan

sebesar 13,3 %, 5,4 %, 13,6 %, 4,5 %, 16,4 %, dan 8,2 % dibanding pemberian

dolomit 2 t ha-1.

Keracunan besi menurunkan komponen hasil, hasil gabah, dan indeks

panen. Bahan organik kompos aerob dan anaerob jerami dan purun tikus serta

dolomit mampu menurunkan gejala keracunan besi, indeks bronzing daun,

konsentrasi Fe tanah, kadar Fe akar, Fe batang, dan Fe daun, serta meningkatkan

Page 9: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

262

proses fisiologis, pertumbuhan, komponen hasil, dan hasil gabah Inpara-1, Inpara-

2, dan IR64. Hasil gabah Inpara-1 (4,45 t ha-1) sebanding dengan Inpara-2 dan

lebih tinggi 42,9% dibanding IR64 (3,12 t ha-1), tetapi IR64 lebih tanggap

terhadap pemberian bahan amelioran tersebut dibanding Inpara-1 dan Inpara-2.

Kompos aerob jerami 5 t ha-1 ditambah purun tikus 5 t ha-1 merupakan

teknologi ameliorasi terbaik dalam mengendalikan keracunan besi, meningkatkan

proses fisiologis, pertumbuhan, dan hasil. Hasil gabah pada kombinasi tersebut

sebesar 4,83 t ha-1 dan meningkat sebesar 73,4%, 34,5%, dan 14,6 % masing-

masing dibanding tanpa pemberian bahan amelioran, pemberian kompos jerami

dan purun tikus secara anaerob cara petani dan pemberian dolomit 2 t ha-1.

Varietas Inpara-1 yang tahan keracunan besi dan Inpara-2 yang

menghindar keracunan besi dapat ditanam pada sawah pasang surut sulfat masam

yang memiliki konsentrasi Fe tanah tinggi. Bahan organik berupa jerami dan

purun tikus yang dikomposkan secara aerob dapat digunakan pada sawah pasang

surut sulfat masam yang berpotensi keracunan besi dengan inovasi teknologi cara

pembuatan kompos aerob yang efisien di sawah pasang surut sulfat masam.

Page 10: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

263

SUMMARY

PHYSIOLOGICAL AND AGRONOMIC ASPECTS OF THE EFFECT OF IRON TOXICITY CONTROL TO WETLAND RICE AT ACID SULFATE

SOILS OF TIDAL SWAMPLANDS

Rice is a strategic food commodity for Indonesian people because it is a

staple food. It’s production should be increased to keep pace with population

growth. Rice production from year to year has decreased due to conversion of

paddy filed to non-paddy and non-agricultural land, especially in Java. To solve

the problem, it is required to extens the paddy field to other areas including tidal

swamplands that is quite wide.

Tidal swamplands is one type of sub-optimal lands which become

potential areas for rice cultivation in this time and future. Tidal swamplands areas

in Indonesia are around 20.1 million hectares and 33.3% of them are areas with

acid sulfate soils. Contribution of tidal swamps rice production to national rice

production is quite high, i.e. 3,684 million tons of rice with implement

intensification of application of site-specific technologies. Various research and

development at tidal swamplands proved that tidal swamplands has high potential

as field for rice plantation. Productivity of rice in tidal swamplands is still low in

average less than 3 t ha-1 for cultivation per year.

Agricultural development at acid sulfate soil of tidal swamplands may

meet some problems in water management, soil acidity, high concentration of Fe,

Al, Mn, nutrients deficiency, and high salinity. Concentration of 300-400 mg kg-

1 Fe is toxic concentration to rice plants. Technologies of soil and water

management will accellerate appropriate acid sulfate soils of tidal swamplands,

Page 11: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

264

especially for rice. Moreover, using tolerant rice varieties to iron toxicity will

contribute to increase the rice production at tidal swamplands.

Iron toxicity is a major problem of rice production at acid sulfate soils of

tidal swampland. Rice growth and yield at acid sulfate soil is affected by iron

toxicity. Iron toxicity can decrease rice production among 30-100% depends on

variety, intensity of toxicity and soil fertility status. Strategy of resistance to iron

toxicity has been identified, but the physiological mechanisms are not determined.

One method to control iron toxicity is development resistant varieties to

iron toxicity and using in situ organic matter such as straw and purun tikus plants

(Eleocharis dulcis). The resistance of each rice varieties to iron toxicity is

different. Purun tikus is a dominant weed at acid sulfate soils of tidal swamplands,

especially in South and Central Kalimantan. The research of role and effect of

organic matter compost in controlling iron toxicity at acid sulfate soils of tidal

swamplands has not been studied.

Based on the background needs to be conducted a series of researches to (1)

study the effect of Fe concentration in soil to Fe uptake by plant, growth and yield, as

well as to select resistant, avoidant, and susceptibility varieties to iron toxicity, (2) study

the changes in Fe uptake, physiological and agronomic characters due to application of

organic matter, and to determine the optimum rate of straw and purun tikus compost in

controlling iron toxicity and increasing rice yields, and (3) study the effect of ameliorant

in controlling iron toxicity, improving physiological processes, rice growth and yield, and

determine the best amelioration technologies in controlling iron toxicity and increasing

rice yields at acid sulfate soils of tidal swamplands.

The research have been conducted in greenhouse (two experiments) and at paddy

field (one experiment) in January 2010 up to August 2011. The first and second

Page 12: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

265

experiments were conducted in the greenhouse of Indonesian Swampland Agricultural

Research Institute (ISARI), Banjarbaru. The third experiment was conducted at the paddy

field of acid sulfate soils of tidal swamplands, Experimental Station, Belandean, ISARI

in Barito Kuala District, South Kalimantan. Observations were done on physiological

and agronomic characters, growth and yield, soil concentrations of Fe and Fe content in

plants, leaf bronzing index, root and shoot resistance index, iron toxicity symptoms, and

some soil chemical properties of acid sulfate soils of tidal swamplands.

The results showed that increasing of soil Fe concentration increased Fe

content in roots and leaves of Inpara-2 and Inpara-1 (swamps rice) were the

smallest, whereas IR64 (irrigated rice) was the most. Decreasing in growth and

yield of Inpara-1 was the smallest followed by Inpara-2, whereas of IR64 was the

greatest. Of the 15 varieties were tested at four Fe concentrations of soils (229.44,

236.34, 564.15, and 1277.50 mg kg-1 Fe), Inpara-1 was determined as resistant

variety, Inpara-2 as avoidant variety, and IR64 as susceptible variety to iron

toxicity. The selection based on Fe uptake of plants, a simple regression analysis

and weighting methods on plant growth (number of tillers, plant height, dry

weight of root and shoot), root and shoot resistance index, leaf bronzing index,

iron toxicity symptom, yield components, grain yield per hill and harvest index.

Inpara-1 as resistant variety to iron toxicity had high Fe content in roots

and leaves, but its growth was very good and had high grain yield. Inpara-2 as

avoidant variety to iron toxicity had low Fe content in roots and leaves, but its

growth was good and had high yield. IR64 as susceptible variety to iron toxicity

had the highest Fe content in roots and leaves, but its growth was poor and had the

lowest yield. Inpara-1 showed the lowest slope of the regression equation,

followed by Inpara-2, whereas IR64 showed the greatest slope. In weighting

Page 13: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

266

method, Inpara-1 also showed the most average score, followed by Inpara-2,

whereas IR64 shoed the smallest average score. Variety with the greater average

score was identified as more resistant variety to iron toxicity.

Iron content in roots, stems, and leaves of Inpara-1 was higher than Inpara-

2 both in greenhouse and field experiments. That indicated had a Fe retention

power in stems tissue of Inpara-2 which higher than Inpara-1. Therefore Inpara-2

can be expressed as avoidant variety (exclusion and inclusion mechanism).

Inpara-1 had higher Fe content in roots and low PPO activity but high POD

activity. That indicated had enzymatic activity in controlling high Fe content in

leaves tissue. This led to inclusion mechanism, in which plants could tolerate

high Fe in leaves cells through enzymatic detoxification, especially POD. Variety

IR64 had higher Fe content in roots, stems, and leaves than Inpara-1 and Inpara-2.

IR64 showed the lowest level of resistance and had the lowest growth and yield,

therefore it was categoried as susceptible variety to iron toxicity.

Inpara-2 could reduce Fe concentration in root zone, absorb Fe in small

quantities, medium physiological processes and plant growth, and had high grain

yield per hill (19.56 g). Inpara-1 was quite capable to suppress Fe concentration in

root zone, absorbed Fe in large amounts, good physiological processes and plant

growth, and had higher yield per hill (21.59 g). IR64 was not able to decrease Fe

concentration in soil root zone, absorbed Fe in large amounts, poor physiological

processes and plant growth, and had low yield per hill (13.57 g).

Application of straw and purun tikus compost organic matter increased

soil pH, root and shoot resistance index, P and K content in leaves, relative plant

water content, density and width of stomata, transpiration, POD activity,

Page 14: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

267

chlorophyl content, length and surface area of root, plant growth (maximum

number of tillers, plant height, dry weight of roots, stems, and leaves, leaf area

index (LAI), crop growth rate (CGR), relative growth rate (RGR), net assimilation

rate (NAR), and specific leaf weight (SLW), yield components, grain yield per

hill and harvest index. Instead of organic matter of straw and purun tikus compost

decreased soil Fe and Eh, iron toxicity symptoms, leaf bronzing index, PPO

activity, Fe content in roots, stems and leaves of Inpara-1, Inpara-2 and IR64.

The pattern of increasing or decreasing in all variables due to application

of organic matter were following quadratic regression equation. Increasing in rate

of purun tikus at 5 t ha-1 straw reduced soil Fe concentration. Optimum rate of

purun tikus of Inpara-1, Inpara-2 and IR64 were 5.37 t ha-1, 5.05 t ha-1, and 5.91 t

ha-1. Decreasing in soil Fe concentration about 47.4% and 22.2% compared to

farmers way and application of dolomite 2 t ha-1. Optimum rate of purun tikus to

reduce iron toxicity symptoms of Inpara-1, Inpara-2 and IR64 were 5.45 ha-1, 5.55

ha-1, and 5.55 ha-1. Decreasing in iron toxicity symptoms and leaf bronzing index

about 90.6% and 27.0% compared to farmers way and about 47.6% and 16.2%

compared to application of dolomite 2 t ha-1. Increasing in rate of purun tikus

decreased leaves Fe content about 45.5% and 30.3% compared to farmers way

and dolomite application 2 t ha-1, and increased Fe content in grain about 22.2%

and 18.9% compared to farmers way and application of dolomitr 2 t ha-1.

Net assimilation rate (NAR) increased about 26.2% and 17.4% compared

to farmers way and application of dolomite 2 t ha-1, whereas plant dry weight

increased about 27.3% compared to farmers way and about 13.9% compared to

application of dolomite 2 t ha-1.

Page 15: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

268

Inpara-1 showed yield components that were relatively higher than Inpara-

2, both in experiment in greenhouse and in the field at acid sulfate soil of tidal

swamplands. The number of panicles and grain, percentage of fertile grain, and

1000 grain weight of Inpara-1 and Inpara-2 in greenhouse experiment were 17.1

and 15.8 panicles; 99.0 and 96.1 grains; 64.4 and 62.9%, 23.56 and 25.44 grams,

respectively. Grain yield and harvest index of Inpara-1 was 21.19 grams and

0.52, while of Inpara-2 was 19.33 grams and 0.48. In the field experiment,

Inpara-1 had number of panicles and number, percentage of fertile grain and 1000

grain weight were 16.62 panicles, 145.65 grains, 75.72%, and 23.5 grams, while

Inpara-2 was 15.37 panicles, 140.39 grains, 72.56%, and 25.3 grams. Application

of straw and purun tikus compost increased rice yield components. Grain yield of

Inpara-1 and Inpara-2 were 4.45 t ha-1 and 4.17 t ha-1, and harvest index of 0.58

and 0.47, respectively.

Application of straw and purun tikus compost increased yield components,

grain yield and harvest index. The addition of purun tikus up to 5 t ha-1 showed it

increased, over which it decreased. Optimum rate of purun tikus which were

added to the straw 5 t ha-1 of Inpara-1 was 5.29 t ha-1 to reach the maximum

number of panicles per hill (26.84 panicles); 4.89 t ha-1 to reach the maximum

number of grains per panicle (140.85 grains); 5.27 t ha-1 to reach the maximum

percentage of fertile grain (97.28%), 5.27 t ha-1 to reach the maximum 1000 grains

weight (25.82 grams); 5.14 t ha-1 to reach the maximum grain yield (47.80 grams)

and 5.38 t ha-1 to reach the maximum harrvest index (0.85).

Application of straw 5 t ha-1 and purun tikus 5 t ha-1 compost increased

number of panicles per hill, number of grains per panicle, percentage of fertile

Page 16: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

269

grain, and 1000 grain weight, grain yield and harvest index, i.e. 29.1%, 12.8%,

28.5%, 6.3%, 34.5%, and 17.8% compared to farmers way and 13.3%, 5.4%,

13.6%, 4.5%, 16.4%, and 8.2% compared to application of dolomite 2 t ha-1.

Iron toxicity decreased yield components, grain yield and harvest index.

Organic matter in form of aerobic and anaerobic compost of straw and purun tikus

and dolomite could reduce iron toxicity symptoms, leaf bronzing index, soil Fe

concentrations, Fe content in roots, stems and leaves, and increased physiological

processes, growth, yield components, and yield of Inpara-1, Inpara-2, and IR64.

Grain yield of Inpara-1 (4.45 t ha-1) was not msignificantly different with Inpara-

2, but it was 42.9% higher than IR64 (3.12 t ha-1). Variety IR64 was greater

responsive to application of these ameliorant than Inpara-1 and Inpara-2.

Aerobic compost of straw 5 t ha-1 and purun tikus 5 t ha-1 was the best

technology amelioration in controlling iron toxicity, improved physiological

processes, growth and grain yield. Grain yield at the rate was 4.83 t ha-1 and

increased 73.4%, 34.5%, and 14.6%, respectively compared to no application

ameliorant, application of straw and purun tikus compost, farmers way and

application of dolomite 2 t ha-1.

Inpara-1 and Inpara-2 can be grew at acid sulfate soils of tidal swamplands

with high Fe concentrations in soil. Organic matter of straw and purun tikus in

form aerobic compost can be used at acid sulfate soil that potential to iron toxicity

with technological innovation to efficient aerobic composting at acid sulfate soil

of tidal swamplands.

Page 17: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

270

DAFTAR PUSTAKA

Abifarin, A. O. 1988. Grain yield loss due to iron toxicity. WARDA Technical

Newsletter 8(1):1-2.

Aboa, K. and S. Y. Dogbe. 2006. Effect of iron toxicity on rice yield in the Amou-Oblo lowland in Togo. In: Audebert A, L.T. Narteh, P. Klepe, D. Millar, and B. Beks (eds.). Iron Toxicity in Rice-based Systems in West Africa. Africa Rice Center WARDA, Cotonou, Benin. 175 p.

Abraham, M. J. and D. K. Pandey. 1989. Performance of selected varieties and advanced generation genotypes in rainfed lowland iron toxic soil. Int. Rice Res. Newsletter 14:21-21.

Abu, M. B, E. S. Tucker, S. S. Harding, and J. S. Sesay. 1989. Cultural practices to reduce iron toxicity in rice. Int. Rice Res. Newsletter 14(1):19.

Aida, S. N., D. Widianto, dan R. Sutanto. 2004. Pengaruh pemberian asam-asam organik terhadap kelarutan Fe (besi) di tanah sulfat masam. Agrosains 17(1):99-109.

Akbar, M., I. Gunawardena, and N. Ponnamperuma. 1987. Breeding for soil stresses : Progress in rainfed lowland rice. Int. Rice Res. Inst., Los Banos, The Philippines.

Alihamsyah, T., M. Sarwani, dan I. Ar-Riza. 2002. Komponen utama teknologi optimalisasi lahan pasang surut sebagai sumber pertumbuhan produksi padi masa depan. Makalah disajikan pada Seminar IPTEK Padi, Pekan Padi Nasional di Sukamandi, 5 Maret 2002.

Alihamsyah, T., M. Sarwani, dan I. Ar-Riza. 2003. Lahan pasang surut sebagai sumber pertumbuhan produksi padi masa depan. Dalam : Kebijakan Perberasan dan Inovasi Teknologi Padi. Buku 2. Pusat Penelitian dan Pengembangan Tanaman Pangan. Badan Litbang Pertanian. hal. 263-287.

Ananto, E. E., Hermanto, K. Ketut, Soentoro, I. W. Suastika, I. G. M Subiksa, dan T. Alihamsyah. 1999. Laporan Utama Pengembangan Sistem Usaha Pertanian Lahan Pasang Surut Sumatera Selatan. P2SLPS2. Badan Litbang Pertanian.

Ando, T. 1983. Nature of oxidation power of rice roots. Plant Soil (72):57-71.

Armstrong, W. 1979. Aeration in higher plants. Adv. Bot. Res., 7:226-332.

Asch, F., K. P. Dahal, and U. S. Das. 2003. Is the transpiration history of rice leaves indicative for the salt load of individual leaves? In university of Gottingen and ATSAF: Technological and Institutional Innovation for Sustainable Rural development. Klartext GmbH, Gottingen, Germany.

Page 18: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

271

Asch, F., M. Becker, and D. S. Kpongor. 2005. A quick and efficient screen for tolerance to iron toxiity in lowland rice. J. Plant Nutrition Soil Science. 168: 764-773.

Audebert, A and K. L. Sahrawat. 2000. Mechanism for iron toxicity tolerance in lowland rice. J. Plant Nutr. 23, 1877-1885.

Audebert, A. 2006a. Diagnosis of risk and approaches to iron toxicity management in lowland rice farming. In: Audebert A, L.T. Narteh, P. Klepe, D. Millar, and B. Beks (eds.). Iron Toxicity in Rice-based Systems in West Africa. Africa Rice Center WARDA, Cotonou, Benin. 175 p.

Audebert, A. 2006b. Iron toxicity in rice – environmental conditions and symptoms. In: Audebert A, L.T. Narteh, P. Klepe, D. Millar, and B. Beks (eds.). Iron Toxicity in Rice-based Systems in West Africa. Africa Rice Center WARDA, Cotonou, Benin. 175 p.

Audebert, A. 2006c. Iron partioning as a mechanism for iron toxicity tolerance in lowland rice. In: Audebert A, L.T. Narteh, P. Klepe, D. Millar, and B. Beks (eds.). Iron Toxicity in Rice-based Systems in West Africa. Africa Rice Center WARDA, Cotonou, Benin. 175 p.

Ayotade, K. A. 1979. Reaction of some rice varieties to iron toxicity in flooded strongly acid ferralitic soil in Nigeria. West Africa Rice Development Association) Technical Newsletter 1(1).

Badan Pusat Statistik. 2011. Statistik Indonesia 2011. Badan Pusat Statistik Republik Indonesia, Jakarta (data diolah).

Balai Penelitian Tanah. 2005. Petunjuk analisis kimia tanah, tanaman, air, dan pupuk. Balai Penelitian Tanah, Bogor. Badan Penelitian dan Pengembangan Pertanian.

Bandal, I. S. dan C. P. Malik. 1988. Pottasiumestimation, uptake, and its role in the physiology and metabolism of flowering plants. International Review of Cytology 110:205-254.

Bandara, W. M. J. and G. A. Gunatilaka. 1994. Effect of iron toxicity on growth, photosynthesis, and dry matter production of rice. p.166-175. In: Senadhira, D. (ed). Rice and Problem Soils in South and Southeast Asia. IRRI Discussion Paper Series No. 4. International rice Research Institute, P.O. Box 933, Manila, Philippines.

Bangerth, F. 1979. Calcium related physiological disorders of plants. Ann. Rev. Phytopathol. 17:97-122.

Barker, A. V. and D. J. Pilbeam. 2007. Handbook of plant nutrition. Taylor and Francis Group. Boca Raton-London-New York. 613 p.

Becker, M and F. Asch. 2005. Iron toxicity – condition and management concepts. J. plant Nutr. Soil Sci, 168:558-573.

Page 19: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

272

Bell, I. C and T. Bessho. 1993. Assesment of Al detoxification and plant response. In: Mulongoy, K (Ed). Soil Oganic Matter Dynamic and Sustainability of Tropical Agriculture. John Wiley & Sons, New York.

Benckiser, G., J.C.G. Ottow, S. Santiago, and I. Watanabe. 1982. Physicochemical characterization of iron toxic soil in some Asian Countries. IRRI Res. Pap. Ser. 85:1982.

Benckiser, G., S. Santiago, H. U. Neue, I. Watanabe, and J. C. G. Ottow. 2005. Effect of fertilization on exudation, dehydrogenase activity, population and Fe2+ formatin in the rhizosphere of rice (Oryza sativa L.) in relation to iron toxicity. Springer Netherlands, p 305-316.

Bienfait, H. F. 1985. Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. Journal for Bioenergy Biomembrane 17:73-83.

Bienfait, H. F. 1989. Prevention of stress in iron metabolism of plants. Acta Bot Neeri. 38:105-129.

Blake, D. J. and D. M. Reid. 1981. Ethylene, water relations and tolerance to water logging of three Eucalyptus species. Austr. J. plant Physiol, (8):497-505.

Bode, K., O. Doring, S. Luthje, and M. Bottger. 1995. Introduction of iron toxicity symptoms in rice (Oryza sativa L.). Hamburg: Mitt. Inst. Allg.Bot. 25:35-43.

Cai, M. Z., A. C. Luo, X. Y. Lin, and Y. S. Zhang. 2003. Nutrient uptake and partitioning in rice plant under excessive Fe2+ stress. J. Zhejiang Univ. (Agric. & Life Sci.), 29(3):305-310.

Cheema, S. S, U. Chaudhary, P. N. Takkar, and B. D. Sharma. 1990. Effect of dates of transplanting on uptake of micronutrients by rice cultivars of different growth stages. J. Res. Punjab Agric. Univ. 27: 199-206.

Chen, C. C., J. B. Dixon, and F. B. Turner. 1980a. Iron coatings on rice leaves: Morphology and model of development. Soil Sci.Soc.Am. J. 44, 1113-1119.

Chen, C. C., J. B. Dixon, F. B. Turner. 1980b. Iron coatings on rice leaves: Mineralogy and quantity influencing factors. Soil Sci.Soc.Am. J. 44, 635-639.

Chesworrth. 2006. The redox-pH approach to the geochemistry of the earth’s land surface with application to peatland. In: I.P. Martini, M. Cortizas, and Chesworth. Peatlands Evolution and Records of Environmental and Climate Changes.

Chevrier, N., F. Sarkan, and Y. S. Chung. 1988. Oxidative damages and repair in Euglean gracilis exposed to ozone. Plant Cell Physiol., 29:321-327.

Page 20: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

273

Cumming, J. R. and G. J. Taylor. 1990. Mechanism of metal tolerance in plants : Physiological adaptation for eclution of metal iron from the cytoplasm. In: Alscher, R.G and J.R. Cumming (eds.). Stress responses in plants: adaptation and acclimation mechanism. Wiley-liss, Newyork, p 329-356.

De Datta, S, K., H. U. Neue, D. Senadhira, and C. Quijano. 1994. Success in rice improvement for poor soils. In: Proc. of. The Workshop on Adaptation of Plants to Soil Stresses. 1-4 August 1993. University of Nebraska, Lincoln, nebraska. INTSORMIL Publication No. 94-2. Lincoln Nebraska, USA. Pp 248-268.

De Datta, S. K. 1981. Principles and Practices of Rice Production. Pp 41-45, 345-419. John Wiley and Sons, New York.

Dent, D. L. 1986. Acid sulphate soils: a baseline for research and development. ILRI Publication. Wageningen, The Netherlands .

Direktorat Bina Rehabilitasi dan Pengembangan Lahan. 1995. Luas penggunaan lahan rawa pasang surut, lebak, polder dan rawa lainnya di tujuh propinsi. Dirjen Tanaman Pangan dan Hortikultura. Departemen Pertanian. Jakarta.

Direktorat Jenderal Tanaman Pangan. 2007. Kebijakan pengembangan lahan rawa dalam mendukung ketahanan pangan nasional. Dalam : Prosiding Seminar Nasional Pertanian Lahan Rawa. Buku I. Kuala Kapuas, 3-4 Agustus 2007. Hal. 9-16.

Dobermann A and T. Fairhurst . 2000. Rice. nutrient disorders & nutrient management. Handbook series. Potash & Phosphate Institute (PPI). Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute.

Elstner, E. F. 1982. Oxygen activation and oxygen toxicity. Ann. Rev. Plant Physiol. (33): 73-96.

Fageria, N. K. 1988. Influence of iron on nutrient uptake by rice. Int.Rice Res. Newsl. 13(1):20-21.

Fairhurst, T., A. Dobermann, C. Quijano-Guerta, and V. Balasubramanian. 2002. Mineral deficiencies and toxicities. In: T. Fairhurst and C. Witt (eds). Rice, a Practical Guide to Nutrient Management. Potash & Phosphate Institute (PPI). Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute.

Foth, K. H. 1982. Principles of Soil Chemistry. Marcel Dekker Inc, New York.

Foy, C. D. 1983. Plant adaptation to mineral stress in problem soils. IOWA State J. Res 57a:339-345.

Gardner, F. P., R. B. Pearce, and R. L. Mitchell. 1985. Physiology of Crop Plants. The Iowa State University Press.

Page 21: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

274

Genon, J. G., N. de Hepcee, J. E. Duffy, B. Delvaux, and P. A. Hennebert. 1994. Iron toxicity and other chemical soil constraints to rice in highland swamps of Burundi, Plan and Soil 166:109-115.

Green, M. S. and J. R. Etherington. 1977. Oxidation of ferrous iron by rice roots : A mechanism for water logging tolerance. J.Exp.Bot. (28):678-690.

Gunatilaka, G. A. and W. M. J. Bandara. 1994. Effect of applied pottasium in rice grown in iron toxic mineral and organic soils. p.176-186. In: Senadhira, D. (ed). Rice and Problem Soils in South and Southeast Asia. IRRI Discussion Paper Series No. 4. International rice Research Institute.

Gunawardena, I., S. S. Virmani, and F. J. Sumo. 1982. Breeding rice for tolerance to iron toxicity. Oryza19(1):5-12

Gupta, A. S., R. P. Webb, A. S. Holaday, and R. D. Allen. 1993. Over expression of superoxide dismutase protecs plants from oxidatives stress. Plant Physiol., 103:1067-1073.

Halliwell, B. and J. M. C. Gutteridge. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J.219: 1-14.

Hamming, A. F. J., S. Kasdi, and T. Vadari. 1990. Soil permeability aspect in Pulau Petak, Kalimantan. In: AARD-LAWOO. Paper Workshop on Acid Sulphate Soils in The Humid Tropics, November 20-22, 1990. AARDLAWOO. Bogor. p 295-323.

Hanafiah, K. A. 2004. Dasar-dasar Ilmu Tanah. PT. RajaGrafindo Persada. Jakarta. 360 hal.

Hardjowigeno, S. 2003. Ilmu Tanah. Penerbit Akademika Pressindo, Jakarta. 286 p.

Howeler, R. H. 1973. Iron-induced oranging disease of rice in relation to physiochemical changes in a flooded Oxisol. Soil Sci.Soc.Am.Proc. 37:898-903.

Hu, B., P. Wu, C. Y. Liao, W. Z. Jing, and J. M. Zhu. 1999. Effect of ascorbate-spesific H2O2-scavenging on tolerance to iron toxicity in rice. Acta Physiol. Sin. (25):43-48.

Huang, W. H and W. D. Keller. 1970. Dissolution of rock-forming silicate mineral in organic acids : simulated first-stage weathering of fresh minerals surface. Am. Mineral 55:2076-2094.

Ikehashi, H and F. N. Ponnamperuma. 1978. Varieties tolerance of rice for adverse soils. In: Soil and Rice. International Rice Research Institute, Los Banos, Philippines.

Indradewa, D. 2002. Gatra Agronomis dan Fisiologis Pengaruh Genangan dalam Parit pada Tanaman Kedelai. (Disertasi). Universitas Gadjah Mada. Yogyakarta.

Page 22: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

275

Inoue, K and P. M. Huang. 1984. Influence of citric acid on the natural formation of imogolite. Nature (London) 308:58-60.

IRRI. 1996. Standard evaluation system for rice. Int. Ric Res Inst. Los Banos, The Philippines.

IRRI. 2001a. Morphology of the rice plant. Rice production training mpodules. Int. Ric Res Inst. Los Banos, The Philippines. 28 p.

IRRI. 2001b. Growth stages of the rice plant. Rice production training modules. Int. Ric Res Inst. Los Banos, The Philippines. 21 p.

IRRI. 1972. Annual Report for 1971. Int.Ric.Res.Inst. Los Banos, The Philippines. 238 p.

Ismail, I. G., T. Alihamsyah, I. P. G. Widjaja-Adhi, Suwarno, T. Herawati,, R. Thahir, dan D. E. Sianturi. 1993. Sewindu penelitian pertanian di lahan rawa: Kontribusi dan prospek pengembangan. Proyek Swamps II. Puslitbang Tanaman Pangan, Bogor.

Ismunadji, M,. W. S. Ardjasa, and H. R. Von Uexkull. 1989. Increasing productivity of lowland rice grown on iron toxic soil. Paper presented at International Symposium on Rice Production on Acid Soils of Tropics, June 26-30, 1989. Kandy, Srilanka.

Ismunadji, M., and H. R. von Uexkull. 1977. Potasium requirement of some paddy soils in Java. Paper presented at the Conference Classification and Management of Tropical Soils, August 15-20, 1977. Kuala Lumpur, Malaysia.

Ismunadji, M., L. N. Hakim, I. Zulkarnain, and F. Yazawa. 1973. Physiological disease of rice in Cihea. Contr. Cent. Res. Inst. Agric. Pusat Penelitian dan Pengembangan Tanaman Pangan, Bogor. 4:10.

Iyemuremye, F., R. P. Dick, and J. Baham. 1996. Organic amandements and phosphorus dinamics. I. Phosphorus Chemistry and Sorption. Soil Sci. 161:426-442.

Jayawardena, S. D. G., T. Watanabe, and K. Tanaka. 1977. Relation between root oxidation power and resistance to iron toxicity in rice. Crop Sience Plant Breeding Society Journal. 22: 38-47.

Jumberi, A., A. Supriyo, dan S. Raihan. 1998. Penggunaan bahan amelioran untuk meningkatkan produktivitas tanaman pangan di lahan pasang surut. Dalam : M. Sabran et al. Prosiding Seminar Nasional Hasil Penelitian Menunjang Akselerasi Pengembvangan Lahan Pasang Surut. Balittra. Banjarbaru.

Kawase, M. 1981. Automatical and morphological adaptation of plants to water logging. Hort.Sci (16):30-34.

Page 23: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

276

KEPAS. 1985. Tidal Swamp Agroecosystem of Southern Kalimantan : Workshop report on the sustainable intensification of tidal swamp lands in Indonesia. Kelompok Peneliti Agroekosistem. Agency for Agricultural Research and Development, Jakarta.

Khairullah, I. dan M. Imberan. 2004. Penampilan genotipe padi di lahan pasang surut sulfat masam di Kalimantan Tengah. Dalam : Prosiding Seminar Nasional Perhimpunan Agronomi Indonesia (PERAGI), Yogyakarta, 5 Agustus 2006.

Kim, J and D. C. Rees. 1992. Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science 257:1677-1682.

Kirk, G. J. D. 2004. The biogeochemistry of submerged soils. Chichester, UK: John Wiley and Sons, 291 p.

Kirk, G. J. D., P. H. Nye, and A. R. Ahmad. 1990. Diffusion and oxidation of iron in the rice rhizosphere. Transactions 14th International Congress of Soil Science, Kyoto, japan, August 1990. Volume II, p 153-157.

Konsten, C. J. M., S. Suping, I. B. Aribawa, and I. P. G. Widjaja-Adhi. 1990. Chemical processes in acid sulphate soils in Pulau Petak, South and Central Kalimantan, Indonesia. p 109-135. In : Papers Workshop on Acid Sulphate Soils in The Humid Tropics. Bogor, 20-22 November 1990. AARD and LAWOO.

Kosegarten, H., B. Hofmann, and K. Mengel. 1999. Apoplastic pH and Fe3+ reduction in intact sunflower leaves. Plant Physiol. (121):1069-1079.

Kyuma, K. 2004. Paddy Soil Science. Kyoto University Press (Japan) and Trans Pacific Press (Australia). 279 p.

Landsberg, E. C. 1996. Hormonal regulation of iron-stress response in sunflower root: a microbial and cytological investigation. Protoplasm (194):69-80.

Lantin, R. S dan H. U. Neue. 1989. Iron toxicity: a nutritional disorder in wetland rice. Int. Rice Res. Inst. Los Banos, Philippines. 17 Irrigated Rice Meeting. Brazil, 26-30 Sep 1989.

Larson, R. A. 1988. The antioxidants of higher plants. Phytochem (27):969-978.

Las, I., Sukarman, K. Subagyono, D. A. Suriadikarta, dan A. Jumberi. 2007. Grand design lahan rawa. Dalam : Prosiding Seminar Nasional Pertanian Lahan Rawa. Buku I. Kuala Kapuas, 3-4 Agustus 2007. Hal. 29-48.

Levitt, J. 1980. Responses of Plant to Environmental Stresses. Volume II. Water, Radiation, Salt, and Other Stresses. Academic Press, New York. 607 p.

Page 24: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

277

Lucena, J. J. 2000. Effect of bicarbonate, nitrate and other environmental factors on iron deficiency chlorosis. A review. In: Lopez, M. Environmental Factors and Fe Defiiciency Chlorosis. Marcel Dekker Inc. New York. Pp. 1591-1605.

Maas, A. 2003. Peluang dan konsekuensi pemanfaatan lahan rawa pada masa mendatang. Makalah Pidato Pengukuhan Jabatan Guru Besar pada Fakultas Pertanian UGM. Yogyakarta, 19 Juli 2003.

Maas, A., R. Afandie, dan Suryanto. 1992. Potensi dan kendala reklamasi lahan pasang surut. Makalah pada Pertemuan Nasional Pengembangan Pertanian Lahan Pasang Surut, Cisarua 3-4 Maret 1992.

Mahadevappa, M., A. V. Bulbule, R. Siddaramappa, and R. S. Kulkarni. 1991. Field screening of rice for growth, yield and nutrient uptake in acidic soil. Develop.Plant Soil Sci. 45:959-965.

Majerus, V., P. Bertin, and S. Lutts. 2007. Effects of iron toxicity on osmotic potential, osmolytes and Polyamines concentrations in the African rice (Oryza glaberrima Steud). Plant Science 173:96-105.

Makarim, A. K., O. Sudarman, dan H. Supriadi. 1989. Status hara tanaman padi berkeracunan besi di daerah Batumarta, Sumatera Selatan. Penelitian Pertanian Vol 9 No. 4 : 166-170.

Manwan, I., I. G. Ismail, T. Alihamsyah, dan S. Partohardjono. 1992. Teknologi pengembangan pertanian lahan rawa pasang surut: Potensi, relevansi, dan faktor penentu. Dalam : Prosiding nPertemuan Nasional Pengembangan Lahan Pertanian Pasang Surut dan Rawa. Cisarua, 3-4 Maret 1992.

Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. Functions of mineral nutriens: Micronutrients : Iron. Academic Press, London. pp.313-323.

Masajo, T. M., K. Alluri, A. O. Abifarin, and D. Jankiram. 1986. Breeding for high and stable yields in Africa. In: The Wetlands and Rice in Subsaharan Africa. ASR Juo and JA Lowe(Eds.) Ibadan, Nigeria. Int. Inst. Of Tropical Agriculture. Pp107-114.

Mayer, A. M. 2006. Polyphenol oxidases in plant and fungi: Going places? A review Phytochemistry, 67 (21):2318-2331.

Mehraban, P., A. A. Zadeh, and H. R. Sadeghipour. 2008. Iron toxicity in rice (Oryza sativa L.) under different potassium nutrition. Asian Juornal of Plant Sciences, 2208 : 1-9.

Mengel, K and E. Kirkby. 1987. Principles of Plant Nutrition. International Potash Institute. 685p.

Page 25: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

278

Minardi, S., E. Handayanto, Syekhfani, dan Suntoro. 2007. Penggunaan macam bahan organik dengan kandungan total asam humat dan fulvat berbeda dan pupuk P terhadap ketersediaan dan serapan P pada tanaman jagung. Agrivita 29(2):131-142

Monteiro, H. P. and C. C. Winterbourn. 1988. The superoxide-dependent transfer of iron from ferritin to transferrin. Biochem.J. 256: 923-928.

Moore, P. A. Jr. and W. H. Jr. Patrick. 1989. Iron availability and uptake by rice in acis sulfate soil. Soil Sci. Soc. Am. J. 53:471-476.

Moore, P. A. Jr., T. Attanandana, and W. H. Jr. Patrick. 1990. Factors affecting rice growth on acid sulfate soils. Soil Sci. Soc. Am. J. 54:1651-1656.

Moormann, F. R. and N. Van Breemen. 1978. Rice: soil, water, and land. International Rice Research Institute, Los Banos, Philippines.

Neue, H. U. 1994. Variability in rice to chemical stresses of problem soils and their method of identification. p 115-144. In: D. Senadhira (ed.). Rice and Problem Soils in South and Southeast Asia. IRRI Discussion Paper Series No. 4. Int. Rice Res. Ins., Los Banos, The Philippines.

Noorsyamsi H and M. Sarwani. 1989. Management of the tidal for food crops: Southern Kalimantan experiences. IARD Journal (11): 18-24.

Nozoe, T., R. Agbisit, Y. Fukuta, R. Rodriguez, and S. Yanagihara. 2004. The iron (Fe)-excluding power of rice roots as a mechanism of tolerance of elite breeding lines to iron toxicity. New Directions for A Diverse Planet: Proc. of The Int. Crop Sci Congress. Brisbane, Australia, 26 Sept – 1 Oct 2004.

Nozoe, T., R. Agbisit, Y. Fukuta, R. Rodriguez, and S. Yanagihara. 2008. Characteristics of iron tolerantt rice lines developed at IRRI under field condition. JARQ 42(3):187-192.

Nugroho, K., A. Paidi, W. Wahidin, Abdulrachman, H. Suhardjo, dan I. P. G. Widjaja-Adhi. 1992. Peta areal potensial untuk pengembangan pertanian lahan pasang surut, rawa, dan pantai. Proyek Penelitian Sumberdaya Lahan. Pusat Penelitian Tanah dan Agroklimat, Bogor.

Ota, Y. and N. Yamada. 1962. Physiological studies on bronzing of the rice plant in Ceylon. In: Proc.Crop Sci. Soc. Japan 31:90-97.

Ottow, J. C. G., G. Benckiser and I. Watanabe. 1982. Iron toxicity of rice as a multiple nutrition soil stress. In:. Proc. of Symposium on Tropical Agricultural Research. Trop. Agric. Res. Series No. 15. Trop.l Agric. Res. Center. Ministry of Agric. Forestry and Fisheries, Japan. p. 167-179.

Page 26: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

279

Ottow, J. C. G., K. Prade, W. Bertenbreiter, and V. A. Jack. 1989. Strategis to alleviate iron toxicity of wetland rice on acid sulphate soils. In : Deturk, P and F.N. Ponnamperuma (eds.) Rice Production on Acid Soils of the Tropics. Proceeding of International Symposium, Institute of Fundamental Study, Kandy, Sri Lanka, 26-30 June 1989.

Patrick Jr, W. H. and C. N. Reddy. 1978. Chemical changes in rice soils. In : Soils and Rice. Int. Rice Res. Inst., Los Banos, The Philippines. p 361-379.

Peng, X. X. 1995. Iron toxicity and stress ethylene production in rice. J. of Trop. and Subtrop. Bot 4(1):43-51.

Peng, X. X., and M. Yamauchi. 1993. Ethylene production in rice bronzing leaves induced by ferrous iron. Plant Soil 149:227-234.

Peterson, D. A. 1991. Enhanced electron transfer by unsaturated fatty acids and superoxide dismutase. Free Radicals Res. Comm. 12/13:161-166.

Pitchtel, J. R., W. A. Dick, and E. L. McCoy. 1989. Binding of iron from pyritic mine spoil by water soluble organic materials extracted from sewage sludge. Soil Sci. 148:140-148.

Ponnamperuma, F. N. 1958. Lime as a remedy for physiological disease of rice associated with excess iron. IRC Newsletter, I(1):10-13.

Ponnamperuma, F. N. 1977a. Screening rice for tolerance to mineral stresses. IRRI Research Paper Series, No. 6. Int.Rice Res. Ins., Los Banos, The Philippines.

Ponnamperuma, F. N. 1977b. Physico-chemical properties of submerged soil in relation to fertility. IRRI Research Paper Series No.5. Int. Rice Res. Ins., Los Banos, The Philippines.

Ponnamperuma, F. N., R. Bradfield, and M. Peech. 1955. Physiological disease of rice attributable to iron toxicity. Nature 175: 265.

Ponnamperuma, F. N and J. L. Solivas. 1982. Field amelioration of an acid sulfate soil for rice with manganese dioxide and lime. p.213-222 In: H. Dost and N. Van Breemen (eds.). Proc. of the Bangkok Symposium on Acid Sulfate Soils. Second Int’t Symposium on Acid Sulphate Soils, Bangkok, Thailand. January, 18-24 1981. ILRI, Wageningen, The Netherlands.

Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Advance Agronomy 24: 29-96.

Ponnamperuma, F. N. 1994. Evaluation and improvement of lands for wetland rice production. p 3-19. In: Senadhira, D. (ed). Rice and Problem Soils in South and Southeast Asia. IRRI Discussion Paper Series No. 4. Int. Rice Res. Ins., P.O. Box 933, Manila, The Philippines.

Page 27: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

280

Ponnamperuma, F. N., E. M. Tianco, and T. Loy. 1967. Redox equilibria in flooded soils: the iron hydroxide systems. Soil Sci. 103:374-382.

Ponnamperuma, F. N., T. Attanandana, and G. Beye. 1973. Amelioration of three acid sulphate soils for lowland rice. p.391-406 in International Institute for Land Reclamation and Improvement Acid Sulphate Soils. Proc. of Int. Symp. of Acid Sulphate Soils, 13-20 August 1972. Wageningen. The Netherlands Publ. 18.

Pons, L. J., N. V. Breemen, and P. M. Driessen. 1982. Physiography of coastal sediment and development of potential soil acidity. In: Acid Sulphate Weathering. SSSA Special Publ. No. 10. Madison, Wisconsin. USA. p 1-18.

Prade, K., J. C. G. Ottow, and V. A. Jacq. 1986. Excessive iron uptake (iron toxicity) by wetland rice (Oryza sativa L.) on an acid sulphate soil in the Casamace/Senegal. P.150-161. In: H.Dost (ed.). Selected Papers of the Dakkar Symposium on Acid Sulphate Soils january 1986, Dakar, Senegal. ILRI publication 44.

Prade, K., J. C. G. Ottow, V. Jacq, G. Malouf, and J. Y. Loyer. 1990. Relationships between the properties of flooded rice soils and iron toxicity in Lower Casamance (Senegal). Studies, review and summary of previous work. Cashiers ORSTOM, serie Pedologie. IRD, Montpellier, France. p 453-474.

Pulford, I. D., C. A. Backes, and H. J. Duncan. 1986. Inhibition of pyrite oxidation in coal mine waste. P.59-67. In: Dost (ed). Selected Papers of the Dakar Symp. Acid Sulphate Soils. ILRI Publ 44.

Puslitbangtan. 1991. Sumber pertumbuhan produksi padi dan kedelai. Pusat Penelitian dan Pengembangan Tanaman Pangan, Bogor.

Quijano, C. and R. Mendoza. 1994. Mineral toxicities in rice. Breeding Flood-Prone Rice. IRRI, Los Banos, Philippines.

Rao, I. M. 1995. The role phosphorous in photosynthesis. In: M. Pessarakli (ed). Handbook of Photosynthesis. Marcel Dekker, New York . p 173-194.

Reedy, K. R. and R.D. DeLaune. 2008. The Biogeochemistry of Wetland : Science and Application. CRC Press. New York.

Reichard, P. 1993. From RNA to DNA, why so many ribonucleuotide reductase? Science 260 : 1773-1777.

Revsbech, N. P., B. B. Jorgensen, and T. H. Blackburn. 1980. Oxygen in the sea bottom measured with a microelectrode. Science 207: 1355-1356.

Sahrawat, K. L and S. Diatta. 1995. Nutrient management and season affect soil iron toxicity. Annual Report 1994. Bouake, Coted’Ivoire: West Africa Rice Development Association. P.34-35.

Page 28: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

281

Sahrawat, K. L. 2000. Elemental composition of the rice plant as affected by iron toxicity under field condition. Commun. Soil Sci. Plant Anal. 31(17/18):2819-2827.

Sahrawat, K. L. 2004. Iron toxicity in wetland rice and the role of other nutrient. J. Plant Nutr. 27:1471-1504.

Sahrawat, K. L. 2005. Managing iron toxicity in lowland rice: the role of tolerant genotypes and plant nutrient. Rice is life: scientific prospectives for the 21st century. In: K. Toriyama, K.L. Heong, B. Hardy (Eds.) Proc. of the World Rice Research Conference, Nov. 4-7, 2004. Tsukuba, Japan. pp 452-54.

Sahrawat, K. L., C. K. Mulbah, S. Diatta, R. D. De Laune, W. H. Jr. Patrick, B. N. Sing, and M. P. Jones. 1996. The role of tolerant genotypes and nutrients in the management of iron toxicity in lowland rice. Journal of Agricultural Science 126:143-149. Cambridge.

Salisbury, F. B. dan C. W. Ross. 1995. Fisiologi Tumbuhan. Jilid 1. Sel: Air, larutan, dan permukaan (terjemahan Diah R Lukman dan Sumaryono). Penerbit ITB Bandung. 241 h.

Sarwani, M., S. Saragih, K. Anwar, A. Jumberi, M. Noor, A. Noor, L. Indrayati, Nurita, dan R. Dirgahayuningsih. 1995. Penelitian tata guna air dan pengelolaan hara di lahan marginal Kalimantan. Laporan Hasil Penelitian Proyek Penelitian dan Pengembangan Teknik Produksi Tanaman Pangan Banjarbaru. Balai Penelitian Tanaman Pangan Banjarbaru.

Schmidt, W. 1999. Mechanism and regulation of reduction-based iron uptake in plants. New Phytol. 141:1-26.

Schnitzer, M. 1977. Recent findings on the characterization of humic substances extracted from soil from widely differing climatic zones. p. 117-131. In: Proc. Symp. on Soil Organic Matter Studies. Braunschweig. Int. Atomic Energy Agency. Wina.

Schnitzer, M. 1982. Organic matter characterization. p. 581-594. In : A.L. Page (eds.). Methods of Soil Analysis. 2nd Am.Soc.Agron.Soil Sci. Madison.

Seckbach, J. 1982. Ferreting out the secrets of plant ferritin – a review. J. Plant Nutrition. 5: 369-394.

Siedow, J. N. 1991. Plant lipoxygenase: structure and function. Ann. Rev. Plant Physiol Plant Mol. Biol. 42: 145-188.

Singh, B. P., M. Das, R. N. Prasad, and M. Ram. 1992. Characteristics of Fe-toxic soils and affected plants and their correction in acid Haplaquents of Meghalaya. Int. Rice Res. Newsl. 17 : 18-19.

Page 29: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

282

Situmorang, R. 1999. Peranan bahan organik dan fosfat alam terhadap asam humat dan fulvat serta Fe dapat dipertukarkan pada tanah terdegradasi. Agrista 3(3):185-190.

Smith, B. N. 1984. Iron in higher plants storage and metabolic role. J. of Plant Nutrition 7:759-766.

Stevenson, F. J. 1994. Humus chemistry, Genesis, Composition and Reactions. John Wiley & Sons Inc, New York.

Subagyo, H. 2006. Lahan rawa pasang surut. Hal. 23-98. Dalam: Didi Ardi S et al. (eds). 2006. Karakteristik dan Pengelolaan Lahan Rawa. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Badan Litbang Pertanian.

Sudjana. 2001. Metoda Statistika. Edisi ke-6. Penerbit Tarsito Bandung. 508 hal.

Suhartini, T., W. S. Ardjasa, dan Suwarno. 1992. Evaluasi potensi hasil varietas dan galur harapan padi pada lahan keracunan Fe. Dalam : Prosiding Lokakarya Penelitian Komoditas dan Studi Khusus. 1992. Vol. 3. Padi. AARP dan Badan Litbang Pertanian.

Sulaiman, S. 1993. Aksi gen dalam pengendalian toleransi terhadap keracunan besi pada padi sawah. Kindai (4) 1:7-15.

Suprihatno, B., T. Alihamsyah dan E. E. Ananto. 2000. Teknologi pemanfaatan lahan pasang surut dan lebak untuk pertanian tanaman pangan. Dalam Prosiding Simposium Penelitian Tanaman Pangan IV. Bogor, 2000.

Suriadikarta, D. A. dan D. Setyorini. Teknologi pengelolaan lahan sulfat masam. Hal. 117-150. Dalam: Didi Ardi S et al. (eds). 2006. Karakteristik dan Pengelolaan Lahan Rawa. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Badan Litbang Pertanian.

Suryana, A., S. Mardiyanto, K. Kariyasa, dan I. Putu Wardana. 2008. Kedudukan padi dalam perekonomian Indonesia. Dalam : Suyamto et al. (eds). Padi : Inovasi Teknologi dan Ketahanan Pangan. Buku 1. Balai Besar Penelitian Tanaman Padi. Badan Litbang Pertanian. Hal. 7-33.

Tadano, T. and A. Tanaka. 1970. Studies on the iron nutrition of rice plants. 3. The iron absorbtion as affected by pottasium status of the plant. J. Sci. Soil manure, Japan 41:142-148.

Tadano, T. and S. Yoshida. 1978. Chemical changes in submergence soils and their effect on rice growth. In : Soil and Rice. Int. Rice Res.Inst., Los Banos, The Philippines.

Tadano, T. 1975. Devices of rice roots to tolerated high iron concentration in growth media. Japan Agr. Res. Quart. (JARQ) 9:34-39.

Page 30: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

283

Tadano, T. 1976. Studies on the method to prevent iron toxicity in the paddy rice. Mem. Fac. Agri. Hokkaido Univ. 10:22-68.

Tadano, T. 1974. Studies on the iron nutrition of rice plants. 5. Changes in the susceptability to iron toxicity with the growth advancement. J. Sci. Soil Manure, Japan 45:521-524.

Tadano, T. 1995. Akagare disease induced by iron toxicity. In: T. Matsuo, K. Kumazawa, R. Ishii, K. Ishihara, and H Hirata (eds.). Science of the Rice Plant. Physiology (2). Food And Agriculture Policy Research Center, Tokyo.

Takajima, Y. 1960. The metabolism of organic acids in soils of paddy fields and their inhibitory effects on plant growth. Soil Sci. Plant Nutr. 7:80.

Takenaga, H. 1995. Nutrient absorption in relation to environmental factors. Science of Rice Plant Physiology, Vol 2. p 278-368.

Talbot, R. J. and J. R. Etherington. 1987. Comparative studies on plant growth and distribution in relation to waterlogging. XIII. The effect of Fe2+ on photosynthesis and respiration of Salix caperea and S. Cineraea ssp aleifolia. New Phytol. 105:575-587.

Tan, K. H. 1997. Degradasi mineral tanah oleh asam organik. Hal. 1-40. Dalam : P. M. Huang dan M. Schnitzer. Interaksi Mineral Tanah dengan asam Organik Alami dan Mikroba (Terjemahan). Gadjah Mada University Press.

Tan, K. H. 1998. Dasar-dasar Kimia Tanah. Gadjah Mada University Press. Yogyakarta. 295 hal.

Tan, K. H. 2003. Humic Matter in Soil and the Environment: Principles and Controversies. Marcel Dekker, Inc. New York-Basel.359 p.

Tanaka, A. and S. Yoshida. 1970. Nutritional disorders of the rice plant in Asia. Int. Rice Res. Inst. Tech. Bull. 10. 51p. Int. Rice Res Inst., Los Banos, The Philippines.

Tanaka, A. and S. Yoshida. 1972. Nutritional disorders of the rice plant in Asia. p. 1-51. Their Method of Identification. In: Rice and Problem Soils in South and Southest Asia. Int. Ric. Res. Ins, Los Banos, The Philippines.

Tanaka, A. and T. Tadano. 1969. Studies on the iron nutrition of rice plants. 1. Absorbtion and distribution of iron in rice plant as affected by the level of iron in the culture solution. J. Sci. Soil manure, Japan 40:380-384.

Tanaka, A., R. Loe, and S. A. Navasero. 1966. Some mechanism involved in the development of iron toxicity symptoms in the rice plant. Soil Sci. Plant Nutr. 12:158-164.

Page 31: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

284

Tanaka, A., R. P. Mulleriyawa, and T. Yasu. 1968. Possibility of hydrogen sulfide induced iron toxicity of the rice plant. Soil Sci. Plant Nutr. 14:1-6. Tokyo, Japan.

Tate, K. R. and B. K. G. Teng. 1980. Organic matter and its interactions with inorganic soil constituents. p 225-249. In: B.K.G. Theng (ed.). Soil with Variable Charge. New Zealand Soc. Of Soil Sci, Soil Bureau, Department of Science and Industrial Research, Lower Hutt.

Taylor, G. J. and C. D. Foy. 1985. Mechanism of aluminium tolerance in Triticum aestivum L. (Wheat). I. Differential pH induced by winter cultivar in nutrient solution. American Journal of Botany 72:695-701.

Taylor, G. J. 1987. Exclusion of metals from the symplasm : a possible mechanism of metal tolerance in higher plant. Journal of Plant Nutrition 10:1213-1222.

Theng, B. K. G. 1986. Interactions of soil minerals with natural organics and microbes. Soil Science 144 (2):155-157. August, 1987.

Thompson, J. E. and R. L. Legge. 1987. The role of free radicals in senescence and wounding. New Phytol. 105 : 317-344.

Thongbai, P. and B. A. Goodman. 2000. Free radical generation and post-anoxic injury in rice grown in an iron-toxic soil. J. Plant Nutr. 23: 1887-1900.

Tinh, T. K. 1999. Reduction chemistry of acid sulphate soils: Reduction rates and influence of rice croping. Acta Universitatis Agriculturae Sueciae, Agraria 206, Uppsala, sweden.

Tisdale, S. L. and W. L. Nelson. 1975. Soil Fertility and Fertilizers. The McMillandCoy, Ney York.

Trolldenier, G. 1977. Mineral nutrition and reduction process in the rhizosphere of rice. Plant and Soil 47:193-202.

Van Breemen, N. and F. R. Moormann. 1978. Iron toxic soils, In : Soils and Rice. Int. Rice Res. Inst., Los Banos, The Philippines. pp. 781-799.

Van Breemen, N. and L. J. Pons. 1978. Acid sulfate soils and rice. , In : Soils and Rice. Int. Rice Res. Inst., Los Banos, The Philippines. pp. 739-762.

Van Breemen, N. 1982. Genesis, morphology, and classification of acid sulphate soils in coastal plains. In: SSSA. Acid Sulphate Weathering. SSSA Special Publ. No. 10:95-108.

Van Breemen, N. 1976. Genesis and solution chemistry of acid sulfate soils in Thailand. Center of Agricultural Publishing and Documentation. Wageningen, 1976. Ph.D. Dissertation.

Van Egmond, F. and M. Akts. 1977. Iron-nutritional aspect of the ionic balance of plants. Plant and Soil 48:685-703.

Page 32: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

285

Virmani, S. S. 1977. Varietal tolerance of rice to iron toxicity in Liberia. Int. Ric.Res. Newsl. 2(1):4-5

Vladimirov, Y. A. 1980. Lipid peroxidation in mithochondrial membarane. Adv. Lipid Res. 17 : 409-423.

Vose, P. B. 1983. Rationale of selection for spesific nutritional characters in crop improvement with Phaseolus vulgaris L. as a case study. Plant Soil 72:351-364.

Wan, J. L., H. Q. Zhar, J. M. Wan, and H. Ikehashi. 2002. Detection and analysis of QTLs for ferrous iron toxicity tolerance in rice (Oryza sativa L). Rice Genetics Newsletter, Vol. 19, pp 56-59.

Welch, R. M., W. A. Norvell, S. C. Schaefer, J. E. Shaff, L. V. Kochian. 1993. Induction of iron (III) and copper (II) reduction in pea (Pisum sativum L.) by Fend Cu status: Does the root-cell Fe (III)-chelate reductase perform a general role in regulating cation uptake? Planta (190):555-561.

Winarso, S., 2005. Kesuburan Tanah : Dasar Kesehatan dan Kualitas Tanah. Penerbit Media, Yogyakarta.

Widjaja-Adhi, I. P. G, D. A. Suriadikarta, M. T. Sutriadi, I. G. M. Subiksa, dan I. W. Suastika. 2000. Pengelolaan, pemanfaatan, dan pengembangan lahan rawa. hal. 127-164. Dalam: Adimihardja, A., L.I. Amien, F. Agus, dan D. Jaenuddin (eds.). Sumberdaya Lahan Indonesia dan Pengelolaannya. Pusat Penelitian Tanah dan Agroklimat, Bogor.

Widjaja-Adhi, I. P. G. 1986. Pengelolaan lahan rawa pasang surut dan lebak. J. Litbang Pertanian 5. Badan Litbang Pertanian. Jakarta.

Widjaja-Adhi, I. P. G., K. Nugroho, D. A. Suriadikarta, dan A. S Karama. 1992. Sumberdaya lahan rawa: Potensi, keterbatasan, dan pemanfaatan. Risalah PERNAS Pengembangn Pertanian di Lahan Rawa Pasang Surut dan Lebak. Cisarua 3-4 Maret 1992. Badan Litbang Pertanian.

Withehead, D. C. 1964. Identification of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids in soils. Nature (London) 202:417-418.

Woolhouse, H. W. 1983. Toxicity and tolerance in the responses of plants to metals. Pages 245-300 in O.L. Lange, P.S. Nobel, C.B. Osmond, and H. Ziegler (eds.), Encyclopedia of Plant Physiology. New Series, Vol 12C, Physiological Plant Ecology III, Responses to the Chemical and Biological Environment. Springer-Verlag. Berlin.

Yamanouchi, M. and S. Yoshida. 1981. Physiological mechanisms of rice’s tolerance for iron toxicity. Paper presented at the IRRI Saturday Seminar, June 6, 1981. Int. Rice Res. Inst., Los Banos, The Philippines.

Yamauchi, M. and X. X. Peng. 1993. Ethylene production in rice bronzing leaves induced by ferrous iron. Plant Soil (149):227-234.

Page 33: GATRA FISIOLOGIS DAN AGRONOMIS PENGARUH …repository.ugm.ac.id/digitasi/download.php?file=3086_RD12110001-izhar k.pdfPengembangan pertanian di lahan rawa pasang surut sulfat masam

286

Yamauchi, M. and X. X. Peng. 1995. Iron toxicity and stress induced ethylene production in rice leaves. Plant Soil (173):21-28.

Yamauchi, M. 1989. Rice bronzing in Nigeria caused by nutrients imbalances and its control by Pottasium Sulphate aplication. Plant and Soils (117):275-286.

Yoshida, S. 1981. Fundamentals of rice crop science. Int. Rice Res. Inst., Los Banos, The Philippines.

Yoshida, S., D. A. Forno, and J. H Cook. 1971. Laboratory manual for physiological studies of rice. IRRI., Manila, The Philippines.

Yusuf, W. A. 2010. Pemberian Jerami Padi dan Purun Tikus pada Berbagai Tingkat Dekomposisi terhadap Konsentrasi Besi dalam Tanah dan serapan Besi oleh Padi di Tanah Sulfat masam. Tesis. Tidak dipublikasi. Program Pascasarjana Faperta UGM,Yogyakarta.

Zhang, X, F. Zhang, and D. Mao. 1998. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L). Zinc uptake by Fe-deficient rice. Plant and Soil 23:33-39.