Fotosintesis

14

Click here to load reader

Transcript of Fotosintesis

Page 1: Fotosintesis

Fotosintesis

Organisasi dan fungsi suatu sel hidup bergantung pada persediaan energi yang tak henti-hentinya. Sumber energi ini tersimpan dalam molekul-molekul organik seperti karbohidrat. Untuk tujuan praktis, satu-satunya sumber molekul bahan bakar yang menjadi tempat bergantung seluruh kehidupan adalah fotosintesis. Fotosintesis merupakan salah satu reaksi yang tergolong ke dalam reaksi anabolisme. Fotosintesis adalah proses pembentukan bahan makanan (glukosa) yang berbahan baku karbon dioksida dan air.

Fotosintesis hanya dapat dilakukan oleh tumbuhan dan ganggang hijau yang bersifat autotrof. Artinya, keduanya mampu menangkap energi matahari untuk menyintesis molekul-molekul organik kaya energi dari prekursor anorganik H2O dan CO2. Sementara itu, hewan dan manusia tergolong heterotrof, yaitu memerlukan suplai senyawa-senyawa organik dari lingkungan (tumbuhan) karena hewan dan manusia tidak dapat menyintesis karbohidrat. Karena itu, hewan dan manusia sangat bergantung pada organisme autotrof.

Fotosintesis terjadi di dalam kloroplas. Kloroplas merupakan organel plastida yang mengandung pigmen hijau daun (klorofil). Sel yang mengandung kloroplas terdapat pada mesofil daun tanaman, yaitu sel-sel jaringan tiang (palisade) dan sel-sel jaringan bunga karang (spons). Di dalam kloroplas terdapat klorofil pada protein integral membran tilakoid. Klorofil dapat dibedakan menjadi klorofil a dan klorofil b. Klorofil a merupakan pigmen hijau rumput (grass green pigment) yang mampu menyerap cahaya merah dan biru-keunguan. Klorofil a ini sangat berperan dalam reaksi gelap fotosintesis yang akan dijelaskan pada bagian berikutnya. Klorofil b merupakan pigmen hijau kebiruan yang mampu menyerap cahaya biru dan merah kejinggaan. Klorofil b banyak terdapat pada tumbuhan, ganggang hijau, dan beberapa bakteri autotrof.

Selain klorofil, di dalam kloroplas juga terdapat pigmen karotenoid, antosianin, dan fikobilin. Karotenoid mampu menyerap cahaya biru kehijauan dan biru keunguan, dan memantulkan cahaya merah, kuning, dan jingga. Antosianin dan fikobilin merupakan pigmen merah dan biru. Antosianin banyak ditemukan pada bunga, sedangkan fikobilin banyak ditemukan pada kelompok ganggang merah dan Cyanobacteria.

Reaksi fotosintesis secara ringkas berlangsung sebagai berikut.

Seorang fisiologis berkebangsaan Inggris, F. F. Blackman, mengadakan percobaan dengan melakukan penyinaran secara terus-menerus pada tumbuhan Elodea. Ternyata, ada saat dimana laju fotosintesis tidak meningkat sejalan dengan meningkatnya penyinaran. Akhirnya, Blackman menarik kesimpulan bahwa paling tidak ada dua proses berlainan yang terlibat:1. Suatu reaksi yang memerlukan cahaya2. Reaksi yang tidak memerlukan cahayaYang terakhir dinamai reaksi gelap, walau dapat berlangsung terus saat keadaan terang. Blackman berteori bahwa pada intensitas cahaya sedang, reaksi terang membatasi atau melajukan seluruh proses. Dengan kata lain, pada intensitas ini reaksi gelap mampu menangani semua substansi intermediat yang dihasilkan reaksi cahaya. Akan tetapi, dengan meningkatnya

Page 2: Fotosintesis

intensitas cahaya pada akhirnya akan tercapai suatu titik dimana reaksi gelap berlangsung pada kapasitas maksimum.

Teori ini diperkuat dengan mengulangi percobaan pada temperatur yang agak lebih tinggi. Seperti diketahui, kebanyakan reaksi kimia berjalan lebih cepat pada suhu lebih tinggi (sampai suhu tertentu). Pada suhu 35°C, laju fotosintesis tidak menurun sampai ada intensitas cahaya yang lebih tinggi. Hal ini menunjukkan bahwa reaksi gelap kini berjalan lebih cepat. Faktor bahwa pada intensitas cahaya yang rendah laju fotosintesis itu tidak lebih besar pada 35°C dibandingkan pada 20°C juga menunjang gagasan bahwa yang menjadi pembatas pada proses ini adalah reaksi terang. Reaksi terang ini tidak tergantung pada suhu, tetapi hanya tergantung pada intensitas penyinaran. Laju fotosintesis yang meningkat dengan naiknya suhu tidak terjadi jika suplai CO2 terbatas. Jadi, konsentrasi CO2 harus ditambahkan sebagai faktor ketiga yang mengatur laju fotosintesis itu berlangsung.

Jadi, secara umum fotosintesis terbagi menjadi dua tahap reaksi:1. Reaksi Terang, yang membutuhkan cahaya2. Reaksi Gelap, yang tidak membutuhkan cahaya

Reaksi Terang

Tahap pertama dari sistem fotosintesis adalah reaksi terang, yang sangat bergantung kepada ketersediaan sinar matahari. Reaksi terang merupakan penggerak bagi reaksi pengikatan CO2 dari udara. Reaksi ini melibatkan beberapa kompleks protein dari membran tilakoid yang terdiri dari sistem cahaya (fotosistem I dan II), sistem pembawa elektron, dan komplek protein pembentuk ATP (enzim ATP sintase). Reaksi terang mengubah energi cahaya menjadi energi kimia, juga menghasilkan oksigen dan mengubah ADP dan NADP+ menjadi energi pembawa ATP dan NADPH.

Reaksi terang terjadi di tilakoid, yaitu struktur cakram yang terbentuk dari pelipatan membran dalam kloroplas. Membran tilakoid menangkap energi cahaya dan mengubahnya menjadi energi kimia. Jika ada bertumpuk-tumpuk tilakoid, maka disebut grana.

Secara ringkas, reaksi terang pada fotosintesis ini terbagi menjadi dua, yaitu fosforilasi siklik dan fosforilasi nonsiklik. Fosforilasi adalah reaksi penambahan gugus fosfat kepada senyawa organik untuk membentuk senyawa fosfat organik. Pada reaksi terang, karena dibantu oleh cahaya, fosforilasi ini disebut juga fotofosforilasi.

 

Fotofosforilasi Siklik [kembali ke atas]

Reaksi fotofosforilasi siklik adalah reaksi yang hanya melibatkan satu fotosistem, yaitu fotosistem I. Dalam fotofosforilasi siklik, pergerakan elektron dimulai dari fotosistem I dan berakhir di fotosistem I.

Page 3: Fotosintesis

Pertama, energi cahaya, yang dihasilkan oleh matahari, membuat elektron-elektron di P700 tereksitasi (menjadi aktif karena rangsangan dari luar), dan keluar menuju akseptor elektron primer kemudian menuju rantai transpor elektron. Karena P700 mentransfer elektronnya ke akseptor elektron, P700 mengalami defisiensi elektron dan tidak dapat melaksanakan fungsinya. Selama perpindahan elektron dari akseptor satu ke akseptor lain, selalu terjadi transformasi hidrogen bersama-sama elektron. Rantai transpor ini

menghasilkan gaya penggerak proton, yang memompa ion H+ melewati membran, yang kemudian menghasilkan gradien konsentrasi yang dapat digunakan untuk menggerakkan sintase ATP selama kemiosmosis, yang kemudian menghasilkan ATP. Dari rantai transpor, elektron kembali ke fotosistem I. Dengan kembalinya elektron ke fotosistem I, maka fotosistem I dapat kembali melaksanakan fungsinya. Fotofosforilasi siklik terjadi pada beberapa bakteri, dan juga terjadi pada semua organisme fotoautotrof.

 

Fotofosforilasi Nonsiklik [kembali ke atas]

Reaksi fotofosforilasi nonsiklik adalah reaksi dua tahap yang melibatkan dua fotosistem klorofil yang berbeda, yaitu fotosistem I dan II. Dalam fotofosforilasi nonsiklik, pergerakan elektron dimulai di fotosistem II, tetapi elektron tidak kembali lagi ke fotosistem II.

Mula-mula, molekul air diurai menjadi 2H+ + 1/2O2 + 2e-. Dua elektron dari molekul air tersimpan di fotosistem II, sementara ion H+ akan digunakan pada reaksi yang lain dan O2 akan dilepaskan ke udara bebas. Karena tersinari oleh cahaya matahari, dua elektron

yang ada di P680 menjadi tereksitasi dan keluar menuju akseptor elektron primer. Setelah terjadi transfer elektron, P680 menjadi defisiensi elektron, tetapi dapat cepat dipulihkan berkat elektron dari hasil penguraian air tadi. Setelah itu mereka bergerak lagi ke rantai transpor elektron, yang membawa mereka melewati pheophytin, plastoquinon, komplek sitokrom b6f, plastosianin, dan akhirnya sampai di fotosistem I, tepatnya di P700. Perjalanan elektron diatas disebut juga dengan “skema Z”. Sepanjang perjalanan di rantai transpor, dua elektron tersebut mengeluarkan energi untuk reaksi sintesis kemiosmotik ATP, yang kemudian menghasilkan ATP.

Sesampainya di fotosistem I, dua elektron tersebut mendapat pasokan tenaga yang cukup besar dari cahaya matahari. Kemudian elektron itu bergerak ke molekul akseptor, feredoksin, dan akhirnya sampai di ujung rantai transpor, dimana dua elektron tersebut telah ditunggu oleh NADP+ dan H+, yang berasal dari penguraian air. Dengan bantuan suatu enzim bernama Feredoksin-NADP reduktase, disingkat FNR, NADP+, H+, dan elektron tersebut menjalani suatu reaksi:>> NADP+ + H+ + 2e- —> NADPHNADPH, sebagai hasil reaksi diatas, akan digunakan dalam reaksi Calvin-Benson, atau reaksi gelap.

Page 4: Fotosintesis

Fotofosforilasi siklik dan fotofosforilasi nonsiklik memiliki perbedaan yang mendasar, yaitu sebagai berikut

FOTOFOSFORILASI SIKLIK

FOTOFOSFORILASI NONSIKLIK

Hanya melibatkan fotosistem I Melibatkan fotosistem I dan II

Menghasilkan ATP Menghasilkan ATP dan NADPH

Tidak terjadi fotolisis air Terjadi fotolisis air untuk menutupi kekurangan

Reaksi Gelap

Reaksi gelap merupakan reaksi lanjutan dari reaksi terang dalam fotosintesis. Reaksi ini tidak membutuhkan cahaya. Reaksi gelap terjadi pada bagian kloroplas yang disebut stroma. Bahan reaksi gelap adalah ATP dan NADPH, yang dihasilkan dari reaksi terang, dan CO2, yang berasal dari udara bebas. Dari reaksi gelap ini, dihasilkan glukosa (C6H12O6), yang sangat diperlukan bagi reaksi katabolisme. Reaksi ini ditemukan oleh Melvin Calvin dan Andrew Benson, karena itu reaksi gelap disebut juga reaksi Calvin-Benson.

Salah satu substansi penting dalam proses ini ialah senyawa gula beratom karbon lima yang terfosforilasi yaitu ribulosa fosfat. Jika diberikan gugus fosfat kedua dari ATP maka dihasilkan ribulosa difosfat (RDP). Ribulosa difosfat ini yang nantinya akan mengikat CO2 dalam reaksi gelap. Secara umum, reaksi gelap dapat dibagi menjadi tiga tahapan (fase), yaitu fiksasi, reduksi, dan regenerasi.

Pada fase fiksasi, 6 molekul ribulosa difosfat mengikat 6 molekul CO2 dari udara dan membentuk 6 molekul beratom C6 yang tidak stabil yang kemudian pecah menjadi 12 molekul beratom C3 yang dikenal dengan 3-asam fosfogliserat (APG/PGA). Selanjutnya, 3-asam fosfogliserat ini mendapat tambahan 12 gugus fosfat, dan membentuk 1,3-bifosfogliserat. Kemudian, 1,3-bifosfogliserat masuk ke dalam fase reduksi, dimana senyawa ini direduksi oleh H+ dari NADPH, yang kemudian berubah menjadi NADP+, dan terbentuklah 12 molekul fosfogliseraldehid (PGAL) yang beratom 3C. Selanjutnya, 2 molekul fosfogliseraldehid melepaskan diri dan menyatukan diri menjadi 1 molekul glukosa yang beratom 6C (C6H12O6). 10 molekul

fosfogliseraldehid yang tersisa kemudian masuk ke dalam fase regenerasi, yaitu pembentukan kembali ribulosa difosfat. Pada fase ini, 10 molekul fosfogliseraldehid berubah menjadi 6 molekul ribulosa fosfat. Jika mendapat tambahan gugus fosfat, maka ribulosa fosfat akan berubah menjadi ribulosa difosfat (RDP), yang kemudian kembali mengikat CO2 dan menjalani siklus reaksi gelap. (Lihat Bagan)

Page 5: Fotosintesis

Reaksi gelap ini menghasilkan APG (asam fosfogliserat), ALPG (fosfogliseraldehid), RDP (ribulosa difosfat), dan glukosa (C6H12O6).

FOTOSISTEM

Penangkapan Energi Cahaya (Fotosistem)

Fotosistem merupakan tahap pertama dari proses fotosintesis. Ketika klorofil menyerap energi foton dari cahaya, elektron pada klorofil akan terlepas ke

orbit luar (tereksitasi). Elektron ini akan ditangkap oleh penerima elektron yaitu plastokuinon. Jadi unit penangkapan elektron inilah yang disebut dengan fotosistem. Ketika elektron ditangkap oleh plastokuinon, akibatnya jumlah elektron di dalam klorofil

menjadi tidak stabil. Untuk itu klorofil harus disuplai elektron dari molekul lain. Dalam waktu yang bersamaan H2O terpecah menjadi 2H+, OH- dan elektron (fotolisis).

Elektron dari air inilah yang dipakai untuk menstabilkan klorofil. Jadi secara sederhana, Unit yang mampu untuk menangkap energi cahaya matahari, yaitu

klorofil yang melepaskan elektron dan menyerap foton (energi cahya dengan panjang gelombang yang sesuai), disebut dengan fotosistem.

Dikenal ada 2 macam fotosistem di dalam tilakoid, yaitu fotosistem I dan fotosistem II.

Fotosistem I

Di dalam fotosistem I, terdapat molekul klorofil yang berada pada pusat reaksi dari fotosistem I dinamakan P700.

Di sebut demikian karena sangat baik menyerap energi cahaya dengan panjang gelombang 700nanometer.

Fotosistem II

Di dalam fotosistem II, terdapat molekul klorofil yang berada pada pusat reaksi fotosistem II dan dinamakan P680, karena sangat baik menyerap energi cahaya dengan panjang gelombang 680 nanometer.

Proses penyerapan cahaya yang selanjutnya berdampak pada lepasnya elektron dari klorofil, untuk selanjutnya di salurkan dan ditangkap oleh akseptor elektron.

Proses ini merupakan awal dari proses fotosintesis. Berdasarkan aliran elektron, fotosistem I bersifat siklis dan fotosistem II bersifat

nonsiklis. Untuk jelasnya semua ini akan diuraikan pada tahap selanjutnya yaitu Aliran atau siklus

elektron

Page 6: Fotosintesis

Baik pada Fotosistem I dan II merupakan suatu unit yang terdiri atas klorofil a, kompleks antene dan akseptor elektron yang mampu menangkap energi cahaya (foton) matahari.

Jika klorofil hanya menyerap cahaya merah, ungu, dan biru kemudian dipantulkan kembali maka terlihat warna hijau.

Warna klorofil dapat berbeda-beda tergantung dari jenis klorofil dan cahaya yang terserap kemudian dipantulkan.

Ada dua macam klorofil, yaitu sebagai berikut.

1. Klorofil a, yaitu klorofil yang memiliki pigmen warna hijau, pigmen merupakan senyawa kimia yang dapat menyerap cahaya tampak.

2. Klorofil b, klorofil yang memiliki pigmen warna kuning sampai jingga disebut karoten memiliki struktur mirip dengan klorofil a.

Klorofil a dan pigmen-pigmen lain mengelompok di dalam tilakoid membentuk bangunan unit pigmen, klorofil a terletak di tengah bangunan yang disebut sebagai pusat reaksi.

Klorofil a memperoleh energi cahaya dari akseptor elektron berasal dari sekelompok molekul pada perangkat pigmen yang dapat menangkap elektron cahaya berenergi tinggi disebut antene.

Cahaya yang terserap klorofil a merupakan cahaya yang berenergi tinggi, sehingga dapat menyebabkan terlemparnya elektron yang ada pada pigmen.

Elektron yang terlempar keluar orbit berada dalam keadaan tidak stabil yang menyimpan energi tinggi disebut tereksitasi.

Dalam keadaan demikian, klorofil berusaha mensuplai elektron dari molekul lain dan dalam waktu bersamaan H2O terpecah menjadi 2H+, OH- dan elektron (fotolisis), elektron dari air ini diambil untuk menstabilkan keadaan klorofil kembali.

Pada klorofil a terdapat dua macam fotosistem, yaitu fotosistem I atau disebut P700 karena sensitif terhadap energi cahaya dengan panjanggelombang 700 nm

Dan fotosistem II atau disebut P680 yang sensitif terhadap energi cahaya dengan panjang gelombang 680 nm.

Proses penyerapan energi cahaya dapat mengakibatkan terlepasnya elektron berenergi tinggi dari klorofil a, selanjutnya disalurkan dan ditangkap oleh akseptor elektron, maka proses tersebut merupakan awal dari proses terjadinya proses fotosintesis.

Proses berikutnya elektron masuk dalam aliran elektron, jika elektronnya berasal dari fotosistem I bersifat nonsiklus dan apabila elektronnya berasal dari fotosistem II bersifat siklus.

Aliran Elektron pada FOTOSISTEM

Perjalanan yang ditempuh oleh elektron ada dua yaitu sebagai berikut.

Cahaya berenergi tinggi yang terserap klorofil a dapat menyebabkan elektron (e-) berasal dari fotosistem I atau P700 terlempar keluar orbitnya.

Page 7: Fotosintesis

Pada saat perjalanan elektron (e-) berasal dari P700 yang terlempar keluar orbit tersebut lalu ditangkap oleh akseptor penerima elektron seperti plastokuinon atau sitokrom.

Kemudian elektron itu pindah ke akseptorlain, lalu pindah kembali ke klorofil P700 semula.

KloroplasDari Wikipedia bahasa Indonesia, ensiklopedia bebas

Belum Diperiksa

Langsung ke: navigasi, cari

Bagian-bagian Chloroplast.

Kloroplas atau Chloroplast adalah plastid yang mengandung klorofil. Di dalam kloroplas berlangsung fase terang dan fase gelap dari fotosintesis tumbuhan. Kloroplas terdapat pada hampir seluruh tumbuhan, tetapi tidak umum dalam semua sel. Bila ada, maka tiap sel dapat memiliki satu sampai banyak plastid. Pada tumbuhan tingkat tinggi umumnya berbentuk cakram (kira-kira 2 x 5 mm, kadang-kadang lebih besar), tersusun dalam lapisan tunggal dalam sitoplasma tetapi bentuk dan posisinya berubah-ubah sesuai dengan intensitas cahaya. Pada ganggang, bentuknya dapat seperti mangkuk, spiral, bintang menyerupai jaring, seringkali disertai pirenoid.Kloroplas matang pada beberapa ganggang , biofita dan likopoda dapat memperbanyak diri dengan pembelahan. Kesinambungan kloroplas terjadi melalui pertumbuhan dan pembelahan proplastid di daerah meristem. Secara khas kloroplas dewasa mencakup dua membran luar yang menyalkuti stroma homogen, di sinilah berlangsung reaksi-reaksi fase gelap. Dalam stroma tertanam sejumlah grana, masing-masing terdiri atas setumpuk tilakoid yang berupa gelembung bermembran, pipih dan diskoid (seperti cakram). Membran tilakoid menyimpan pigmen-pigmen fotosintesis dan sistem transpor elektron yang terlibat dalam fase fotosintesis yang bergantung pada cahaya. Grana biasanya terkait dengan lamela intergrana yang bebas pigmen.Prokariota yang berfotosintesis tidak mempunyai kloroplas, tilakoid yang banyak itu terletak bebas dalam sitoplasma dan memiliki susunan yang beragam dengan bentuk yang beragam pula. Kloroplas mengandung DNA lingkar dan mesin sistesis protein, termasuk ribosom dari tipe prokariotik.

Page 8: Fotosintesis

Struktur Kloroplas Kloroplas terdiri atas dua bagian besar, yaitu bagian amplop dan bagian dalam.Bagian amplop kloroplas terdiri dari membran luar yang bersifat sangat permeabel, membran dalam yang bersifat permeabel serta merupakan tempat protein transpor melekat, dan ruang antar membran yang terletak di antara membran luar dan membran dalam. Bagian dalam kloroplas mengandung DNA , RNAs, ribosom, stroma (tempat terjadinya reaksi gelap), dan granum. Granum terdiri atas membran tilakoid (tempat terjadinya reaksi terang) dan ruang tilakoid (ruang di antara membran tilakoid). Pada tanaman C3, kloroplas terletak pada sel mesofil. Contoh tanaman C3 adalah padi (Oryza sativa), gandum (Triticum aestivum), kacang kedelai (Glycine max), dan kentang (Solanum tuberosum). Pada tanaman C4, kloroplas terletak pada sel mesofil dan bundle sheath cell. Contoh tanaman C4 adalah jagung (Zea mays) dan tebu (Saccharum officinarum).

Genom Kloroplas Kloroplas pada tanaman tingkat tinggi merupakan evolusi dari bakteri fotosintetik menjadi organel sel tanaman. Genom kloroplas terdiri dari 121 024 pasang nukleotida serta mempunyai inverted repeats (2 kopi) yang mengandung gen-gen rRNA (16S dan 23S rRNAs) untuk pembentukan ribosom. Genom kloroplas mempunyai subunit yang besar yaitu penyandi ribulosa biphosphate carboxylase. Protein yang terlibat di dalam kloroplas sebanyak 60 protein. 2/3nya diekspresikan oleh gen yang terdapat di inti sel sementara 1/3nya diekspresikan dari genom kloroplas

Kloroplas

1. Kloroplas

Kloroplas ditemukan pada sel tumbuhan. Pengamatan dengan mikroskop cahaya, dengan pembesaran yang paling kuat, kloroplast terlihat berbentuk butir. Bentuk kloroplast yang beraneka ragam ditemukan pada alga. Kloroplast bernbentuk pita spiral ditemukan pada Spirogyra, sedangkan yang berbentuk jala ditemukan pada Cladophora, sedangkan kloroplast berbentuk pita ditemukan pada Zygnema.

Seperti halnya mitokondria, kloroplas dikelilingi oleh membran luar dan membran dalam (Gambar 1). Membran dalam menutupi daerah yang berisi cairan yang disebut stroma yang mengandung enzim untuk reaksi terang pada proses fotosintesis. Stroma juga mengandung DNA dan ribosom. Pelipatan membran dalam membentuk struktur seperti tumpukan piringan yang saling berhubungan yang disebut tilakoid yang tersusun membentuk grana. Membran tilakoid yang mengelilingi ruang interior tilakoid yang berisi cairan mengandung klorofil dan pigmen fotosintesis lain serta rantai transport elektron. Reaksi terang dari fotosintesis terjadi di tilakoid. Membran luar kloroplas menutupi ruang intermembran antara membran dalam dan membran luar kloroplas. Walaupun kloroplas memiliki DNA, sebagian besar protein dalam kloroplas dikode oleh gen nuklear, dihasilkan di sitoplasma dan selanjutnya dikirim ke kloroplas.

Page 9: Fotosintesis

Gambar 1. Struktur kloroplas

Fungsi kloroplas adalah sebagai tempat fotosintesis. Pada dasarnya fotosintesis seperti juga reaksi pada mitokondria merupakan pembentukan ATP dan melibatkan transport hidrogen dan elektron dalam senyawa-senyawa seperti NADH dan sitokrom. Perbedaannya adalah bahwa fotosintesis menggunakan cahaya sebagai sumber energy dan bukan substrat kimia, fotosintesis menggunakan CO2 dan air, menghasilkan oksigen dan karbohidrat.

Reaksi fotosintesis dirangkum sebagai berikut:

6CO2 + 12H2O + energy cahaya –> C6H12O6 + 6O2 + 6H2O

Download Slide Kloroplas (PPT)

Bagian dari struktur kloroplas

1. outer membrane2. intermembrane space3. inner membrane (1+2+3: envelope)4. stroma (aqueous fluid)5. thylakoid lumen (inside of thylakoid)6. thylakoid membrane7. granum (stack of thylakoids)8. thylakoid (lamella)9. starch10. ribosome11. plastidial DNA

Page 10: Fotosintesis

12. plastoglobule (drop of lipids)

13. Kemosintesis 14. Kemosintesis merupakan contoh reaksi anabolisme selain fotosintesis. Kemosintesis

adalah konversi biologis satu molekul karbon atau lebih (biasanya karbon dioksida atau metana), senyawa nitrogen dan sumber makanan menjadi senyawa organik dengan menggunakan oksidasi molekul anorganik (contohnya gas hidrogen, hidrogen sulfida) atau metana sebagai sumber energi, daripada cahaya matahari, seperti pada fotosintesis. Dalam penjelasan yang lebih sederhana, kemosintesis adalah anabolisme yang menggunakan energi kimia. Energi kimia yang digunakan pada reaksi ini adalah energi yang dihasilkan dari suatu reaksi kimia, yaitu reaksi oksidasi.

15. Organisme autotrof yang melakukan kemosintesis disebut kemoautotrof. Kemampuan melakukan kemosintesis hanya dimiliki oleh beberapa jenis mikroorganisme, misalnya bakteri belerang nonfotosintetik (Thiobacillus) dan bakteri nitrogen (Nitrosomonas dan Nitrosococcus). Banyak mikroorganisme di daerah laut dalam menggunakan kemosintesis untuk memproduksi biomassa dari satu molekul karbon. Dua kategori dapat dibedakan. Pertama, di tempat yang jarang tersedia molekul hidrogen, energi yang tersedia dari reaksi antara CO2 dan H2 (yang mengawali produksi metana, CH4) dapat menjadi cukup besar untuk menjalankan produksi biomassa. Kemungkinan lain, dalam banyak lingkungan laut, energi untuk kemosintesis didapat dari reaksi antara O2 dan substansi seperti hidrogen sulfida atau amonia. Pada kasus kedua, mikroorganisme kemosintetik bergantung pada fotosintesis yang berlangsung di tempat lain dan memproduksi O2 yang mereka butuhkan.

16. Reaksi kemosintesis pada bakteri belerang berlangsung sebagai berikut.

17. Bakteri nitrogen, seperti Nitrosomonas dan Nitrosococcus memperoleh energi hasil dengan cara mengoksidasi NH3 yang telah bereaksi dengan CO2 dan membentuk amonium karbonat ((NH4)2CO3).

18. Jenis bakteri lain yang mampu melaksanakan kemosintesis antara lain Nitrobacter. Bakteri ini mampu mengoksidasi senyawa nitrit dalam mediumnya. Hasilnya adalah senyawa nitrat dan membebaskan energi yang akan dipergunakan untuk menyintesis senyawa organik.