Fem Lanjut

download Fem Lanjut

of 73

Transcript of Fem Lanjut

  • 7/28/2019 Fem Lanjut

    1/73

    F inite Element Methods (FEM )

    Suzanne Vogel

    COMP 259

    Spring, 2002

  • 7/28/2019 Fem Lanjut

    2/73

  • 7/28/2019 Fem Lanjut

    3/73

    1. Set up a global modelin terms of the world

    coordinates of mass points of the object.

    These equations will be continuous.

    2. Discretize the object into a nodal mesh.3. Discretizethe equations using finite

    differences and summations (rather than

    derivatives and integrals).4. Use (2) and (3) to write the global equations

    as a sti ffness matr ixtimes a vector of

    (unknown) nodal values.

    Top-Down: Steps in FEM

  • 7/28/2019 Fem Lanjut

    4/73

    Top-Down: Steps in FEM

    6. Solve for the nodal values.

    Staticnodal values at equilibrium

    Dynamicnodal values at next time step

    7. Interpolate values between nodal coordinates.

    5

    2 31 4

    678

    udiscretize interpolate

    +

    global model

    object

    nodal mesh interpolate values between nodes+

    local model

  • 7/28/2019 Fem Lanjut

    5/73

    Bottom-Up: Steps in FEM

    Nodesare point masses connected with springs.A continuum equation is solved for the nodes,

    and intermediate points are interpolated.

    A collection of nodes forms an element.

    A collection of elements forms the object.

    5

    2

    3

    1

    4

    678

    u

  • 7/28/2019 Fem Lanjut

    6/73

    Elements and I nterpolations

    Interpolating equations for an element are

    determined by the number and distribution of

    nodes within the element.

    More nodes mean higher degree, for smoother

    simulation.

  • 7/28/2019 Fem Lanjut

    7/73

    Example: Hermite as 1D Cubic

    I nterpolation Equation1. Assume

    u

    r

    dcubuauur 23)(

    44332211 )()()()()( ruNruNruNruNur cubic equation

    equation using shape (blending) functions

    and

  • 7/28/2019 Fem Lanjut

    8/73

    Example: Hermite as 1D Cubic

    I nterpolation Equation2. Normalize the element to [0,1] and rewrite

    dcubuauur 23)( as a matrix equation

    d

    c

    b

    a

    d

    c

    b

    a

    uuu

    uuu

    uuu

    uuu

    r

    r

    r

    r

    1111

    1272

    274

    278

    13

    1

    9

    1

    27

    11000

    1

    1

    1

    1

    4

    2

    4

    3

    4

    323

    33

    2

    2

    2

    3

    2

    1

    2

    1

    3

    1

    4

    3

    2

    1

    or QUR 00

  • 7/28/2019 Fem Lanjut

    9/73

    Example: Hermite as 1D Cubic

    I nterpolation Equation3. Solve for the coefficients Q

    00

    1

    000 RMRUQQUR H

    4. Plug the coefficients into the cubic equation

    dcubuauur 23)(

    5. Rewrite the cubic equation in the form

    44332211 )()()()()( ruNruNruNruNur

  • 7/28/2019 Fem Lanjut

    10/73

    Example: Hermite as 1D Cubic

    I nterpolation Equation4 + 5. are equivalent to the steps

    4

    3

    2

    1

    4321

    000

    )()()()()(

    )()()(

    r

    r

    r

    r

    uNuNuNuNur

    RMURMUQUur HH

    values at the 4 nodes of the element

    shape (blending) functions

  • 7/28/2019 Fem Lanjut

    11/73

    Example: Hermite as 1D Cubic

    I nterpolation Equation

    1

    0

    U

    shape (blending) functions within one elementLet

    u

    rtuHN ii ,

  • 7/28/2019 Fem Lanjut

    12/73

    1D Elements

    (x) (x)

    (x)

    Example: bungee

  • 7/28/2019 Fem Lanjut

    13/73

    2D Elements

    (x,y)

    (x,y)

    (x,y)

    Example: cloth

  • 7/28/2019 Fem Lanjut

    14/73

    3D Elements

    (x,y,z)

    (x,y,z)

    Example: skin

  • 7/28/2019 Fem Lanjut

    15/73

    Staticanalysis is good for engineering, to findjust the end result.

    Dynamicanalysis is good for simulation, to

    find all intermediate steps.

    Static vs. Dynamic FEM

  • 7/28/2019 Fem Lanjut

    16/73

    Types of Global Models[6]

    Variational- Find the position function, w(t)that minimizes the some variational integral.

    This method is valid only if the position

    computed satisfies the governing differentialequations.

    Rayleigh-Ritz- Use the variational methodassuming some specific form ofw(t) and

    boundary conditions. Find the coefficients and

    exponents of this assumed form ofw(t).

  • 7/28/2019 Fem Lanjut

    17/73

    Example of Variational Method[6]

    0)(

    tf

    w

    ww

    dfwwwcwcwJ 2

    2

    1)( 1

    2

    2

    cwbwaw

    0)(

    )(

    )(

    3

    2

    1

    fcc

    bc

    ac

    Minimizing the variation w.r.t. w of the

    variational function

    under the conditions

    satisfies the governing

    equation, Lagranges

    Equation

  • 7/28/2019 Fem Lanjut

    18/73

    Galerkin(weighted residual) - Minimize the

    residual of the governing differential equation,

    F(w,w,w,,t) = 0. The residual is the form ofFthat results by plugging a specific form of the

    position function w(t) intoF. Find the

    coefficients and exponents of this assumed formofw(t).

    Types of Global Models[6]

  • 7/28/2019 Fem Lanjut

    19/73

    We can approximate w(t) using Hookes Law

    0)(

    tf

    w

    ww

    Example of Galerkin Method[6]

    If we use that equation to compute the 1st and

    2nd time derivatives ofw, then we can computethe residual as

    )(

    )(

    )(

    )(

    11

    11

    1

    2

    1

    2

    1

    1

    00

    00

    tw

    tw

    Etf

    Etf

    LL

    LL

    E

  • 7/28/2019 Fem Lanjut

    20/73

    Example of Static, Elastic FEM

    Problem: If you apply the pressure shown, whatis the resulting change in length?

    Object

  • 7/28/2019 Fem Lanjut

    21/73

    First step. Set up a continuum model:

    F = force

    P = pressure

    A = area

    L = initial length

    E = Youngs modulus

    L

    LE

    A

    PF

    AE

    PLL

    duuhwE

    PLdu

    uwhE

    PLdu

    AE

    PLL

    un

    u

    un

    u

    un

    u 000 )(1

    )(

    1

    Entire length:

    Infinitessimal length:

    Example of Static, Elastic FEM

  • 7/28/2019 Fem Lanjut

    22/73

    Since the shape is regular, we can integrate to

    find the solution analytically. But suppose we

    want to find the solution numerically.

    Next step. Discretize the object.

    Example of Static, Elastic FEM

  • 7/28/2019 Fem Lanjut

    23/73

    Example of Static, Elastic FEM

    Discretization of object into

    linear elements bounded by nodes1 2 3 4

    n1 n2 n3 n4 n5

  • 7/28/2019 Fem Lanjut

    24/73

    Example of Static, Elastic FEM

    Next step. Set up a local model.

    Stress-Strain Relationship(like Hookes Law)

    0,,0,,

    0

    ,)()( LkrrkLrrkLkL

    L

    Ejijijijijiji

    ji

    i

    0,, )( Lkrrk jijijiij

    Youngs modulus distance between adjacent nodes

    stress (elastic force)

  • 7/28/2019 Fem Lanjut

    25/73

    Example of Static, Elastic FEM

    0,, )( Lkrrk jijijii

    0,, )( Lkrrk jijijij

    j

    i

    jiji

    jiji

    jij

    jii

    ji

    ji

    j

    i

    jiji

    jiji

    j

    i

    rr

    kkkk

    LkLk

    Lk

    Lk

    r

    r

    kk

    kk

    ,,

    ,,

    0,

    0,

    0,

    0,

    ,,

    ,,

    11,1,

    1,1,

    01,1

    01,

    j

    j

    jjjj

    jjjj

    jjj

    jjj

    r

    r

    kk

    kk

    Lk

    Lk

    Next step. Set up a local (element) stiffness matrix.

    Rewrite the

    above as a

    matrix equation.

    Same for the

    adjacent element.

    element stiffness matrix

    nodal stressesnodal coordinates

  • 7/28/2019 Fem Lanjut

    26/73

    2

    1

    2,12,1

    2,12,1

    02,12

    02,11

    r

    r

    kk

    kk

    Lk

    Lk

    Example of Static, Elastic FEMNow, all of the element stiffness matrices are as

    follows.

    3

    2

    3,23,2

    3,23,2

    03,23

    03,22

    r

    r

    kk

    kk

    Lk

    Lk

    4

    3

    4,34,3

    4,34,3

    04,34

    04,33

    r

    r

    kk

    kk

    Lk

    Lk

    5

    4

    5,45,4

    5,45,4

    05,45

    05,44

    r

    r

    kk

    kk

    Lk

    Lk

    1 2 3 4n1 n2 n3 n4 n5

    riis the x-coordinate of node ui

  • 7/28/2019 Fem Lanjut

    27/73

    Example of Static, Elastic FEM

    Next step. Set up a global stiffness matrix.

    Pad the element stiffness matrices with zeros

    and sum them up. Example:

    5

    4

    3

    2

    1

    3,23,2

    3,23,2

    03,23

    03,22

    00000

    00000000

    000

    00000

    0

    0

    0

    r

    rr

    r

    r

    kk

    kk

    Lk

    Lk

  • 7/28/2019 Fem Lanjut

    28/73

    5

    4

    3

    2

    1

    5,45,4

    5,44,35,44,3

    4,34,33,23,2

    3,23,22,12,1

    2,12,1

    05,45

    05,44,34

    04,33,23

    03,22,12

    02,11

    000

    00

    00

    00000

    )(

    )(

    )(

    r

    r

    r

    rr

    kk

    kkkk

    kkkk

    kkkkkk

    Lk

    Lkk

    Lkk

    LkkLk

    Example of Static, Elastic FEM

    Final step. Solve the matrix equation for thenodal coordinates.

    Global stiffness matrix.

    Captures material properties.

    Nodal coordinates.

    Solve for these!Applied forces

  • 7/28/2019 Fem Lanjut

    29/73

    Elastic FEM

    A material is elasticif its behavior depends only

    on its state during the previous time step.

    Think: Finite state machine

    The conditions under which an elastic

    material behaves elastically are:

    Force is small.

    Force is applied slowly and steadily.

  • 7/28/2019 Fem Lanjut

    30/73

    I nelastic FEM

    A material is inelasticif its behavior depends onallof its previous states.

    A material may behave inelastically if:Force is large - fracture, plasticity.

    Force is applied suddenly and released, i.e., is

    transient- viscoelasticity.

    Conditions for elastic vs. inelastic depend on

    the material.

  • 7/28/2019 Fem Lanjut

    31/73

    Examples of Elastici ty

    Elasticity

    Springs, rubber, elastic, with small, slowly-

    applied forces

  • 7/28/2019 Fem Lanjut

    32/73

    Examples of I nelastici ty

    InelasticityViscoelasticity

    Silly putty bounces under transient force (but

    flows like fluid under steady force)

    Plasticity

    Taffy pulls apart much more easily under

    more force (material prop.)

    Fracture

    Lever fractures under heavy load

  • 7/28/2019 Fem Lanjut

    33/73

    L inear and Nonl inear FEMSimilarly to elasticity vs. inelasticity, there are

    conditions for linear vs. nonlinear deformation.

    Often these coincide, as in elastoplastic.

    0

    :L

    LeEe

    = e

  • 7/28/2019 Fem Lanjut

    34/73

    Hookes Law

    Describes spring without damping

    Linear range of preceding stress vs. strain graph

    eaf 0

    Elastic Deformation

    Elastic vs. I nelastic FEM

    e

    e

    t

    loading unloading

    0

    :L

    LeEe orstress strain

    Youngs modulus

  • 7/28/2019 Fem Lanjut

    35/73

    Elastic vs. I nelastic FEM

    Damped Elastic Deformation

    e

    e

    t

    loading unloading

    eaeaf 01

    viscous linear stress

    Rate of deformat ion is c ons tant .

    a1e.

    a1e.

  • 7/28/2019 Fem Lanjut

    36/73

    Viscoelastic Deformation

    Elastic vs. I nelastic FEM

    e

    e

    t

    loading unloading

    .

    eaeaeafbfbfb 012012

    viscousnew term!

    This graph is actual ly viscou s,

    but visc oelast ic is prob ably simi lar

    Rate of deform at ion is greatest

    immed iately after start ing

    loading or unloading.

    depends on time t

    linear stress

  • 7/28/2019 Fem Lanjut

    37/73

    Elastoplastic Deformation

    Elastic vs. I nelastic FEM

    e

    This graph is actual ly p last ic ,

    but visc oelast ic is prob ably simi lar

    f

    e

    x

    x

    compare

    loading

    unloading

    loadingx

    depends on force f

    e

    eaf 0

  • 7/28/2019 Fem Lanjut

    38/73

    Elastic vs. I nelastic FEM

    Fracture

    Force response is locally discontinuous

    Fracture will propogate if energy release rateis greater than a threshold

    e

    x

    x

    loading

    unloading

    depends on force f

  • 7/28/2019 Fem Lanjut

    39/73

    1. Worldcoordinatesw

    in inertial frame

    (a frame with

    constant velocity)

    2. Object

    (material)

    coordinatesrin non-inertial

    frame

    r (w,t) = rref(w,t) + e(w,t)

    Elastic vs. I nelastic

    FEM4,5

    world, or

    inertial frame

    re f

    robject, or

    non-inertial

    frame

    origin of

    = center of mass in

  • 7/28/2019 Fem Lanjut

    40/73

    Transform

    reference

    component rrefelastic component e

    object frame

    w.r.t. world frame

    r (w,t) = rref(w,t) + e(w,t)

    Elastic vs. I nelastic

    FEM4,5

    re f

    r

  • 7/28/2019 Fem Lanjut

    41/73

    Elastic vs. I nelastic FEM

    All these equations are specific for:Elasticity

    Viscosity

    Viscoelasticity

    Plasticity

    Elastoplasticity

    Fracture

    (not mentioned) Elastoviscoplasticity

    Ideally: We want a general equation that will

    fit all these cases.

  • 7/28/2019 Fem Lanjut

    42/73

    Elastic vs. I nelastic

    FEM4,5A More General ApproachTo simulate dynamicswe can use Lagranges

    equation ofstrainforce. At each timestep, the

    force is calculated and used to update the

    objects state (including deformation).

    stress component

    of force

    wwwtwf

    ),(

    mass density damping density

    elastic potential energyLagranges Equation

    w

    e

    L

    E

    w

    L

    w 0

    0 )/(

  • 7/28/2019 Fem Lanjut

    43/73

    wwwtwf

    ),(

    Elastic vs. I nelastic

    FEM4,5

    Given:

    Mass density and damping density are known.Elastic potential energy derivative w.r.t. rcan be

    approximated using one of various equations.

    The current position wtof all nodes of the object

    are known.

    Unknown:

    The new position wt+dtof nodes is solved for at

    each timestep.vector

    vector

    matrices

    next slide

    Lagranges

    Equation

  • 7/28/2019 Fem Lanjut

    44/73

    wwwtwf

    ),(

    drr

    e

    r

    e

    r

    er

    ,...,,,

    3

    3

    2

    2

    Elastic vs. I nelastic

    FEM4,5

    For both elastic and inelastic deformation,express elastic potential energy as an integral

    in terms ofelastic potential energy density.

    elastic potential energy density

    elastic potential energy

  • 7/28/2019 Fem Lanjut

    45/73

    Elastic vs. I nelastic

    FEM4,5Elastic potential energy density can beapproximated using one of various equations

    which incorporate material properties.

    Elastic deformation: Use tensors called metric

    (1D, 2D, 3D stretch), curvature(1D, 2D

    bend), and twist (1D twist).

    Inelastic deformation: Use controlled-

    continuity splines.

  • 7/28/2019 Fem Lanjut

    46/73

    Elastic FEM4

    For elastic potential energy density in 2D, use metrictensors G (for stretch)

    curvaturetensorsB (for bend)

    2020 ||||||||)( BBGGr

    ||M|| = weighted norm of matrixM

  • 7/28/2019 Fem Lanjut

    47/73

    Elastic FEM4

    Overview of derivation of metric tensor

    Since the metric tensorG represents stretch, it

    incorporates distances between adjacent points.

    T

    ji

    ji

    ji

    ji

    ji ji

    dr

    dr

    dr

    dr

    GG

    GG

    drdr

    drdrdrdr

    drdr

    GGGGdrdrG

    drdrr

    w

    r

    wdwdwdL

    2

    1

    2

    1

    2,21,2

    2,11,1

    22

    12

    21

    11

    2,21,22,11,1

    2,1,

    ,

    2,1,

    2

    11

    world coordinatesobject coordinates

  • 7/28/2019 Fem Lanjut

    48/73

    Elastic FEM4

    Overview of metric and curvature tensors.From the previous slides, we found:

    Similarly:

    represents stretch

    represents bend

    Theorem. G andB together determine shape.

    jiji r

    w

    r

    w

    rwG ))((,

    jiji

    rrwrwB

    2

    , ))((

  • 7/28/2019 Fem Lanjut

    49/73

    Elastic FEM4

    For elastic FEM, elastic potential energydensity in 2D incorporates changes in the

    metric tensorG and the curvature tensorB.

    2020 ||||||||)( BBGGr

    ||M|| = weighted norm of matrixM

    weights = material properties

  • 7/28/2019 Fem Lanjut

    50/73

    I nelastic FEM5

    For inelastic FEM, elastic potential energydensity is represented as a controlled-

    continuity spl ine.

    p

    m mjjdjj

    m

    j

    j

    d

    errr

    wjjj

    m

    0

    2

    ||21

    21 ...!!...!

    !

    2

    1

    For some degreep, dimensionality d, computethe sum of sums of all combinations of

    weighted 1st, 2nd,, mth derivatives of strain e

    w.r.t. node location r, where m

  • 7/28/2019 Fem Lanjut

    51/73

    p

    m mjjdjj

    m

    j

    jd

    jdjj

    m

    jm

    errrwjjj

    m

    rrre 0 || 212121 ...!!...!

    !

    ...1

    I nelastic FEM5

    Then the elastic potential energy densityderivative w.r.t. strain e is:weighting function = material property

    e

    r

    w

    r

    e

    r

    w

    r

    e

    rr

    w

    rr

    er

    wr

    er

    wr

    ewe

    2

    2

    2

    022

    2

    2

    2

    1

    2

    202

    1

    2

    21

    2

    11

    21

    2

    2

    01

    21

    10

    1

    00

    !2!0

    !2

    !0!2

    !2

    !1!1

    !2

    !1!0

    !1

    !0!1

    !1

    !0!0

    !0

    Example:p = 2, d= 3

  • 7/28/2019 Fem Lanjut

    52/73

    wwwtwf

    ),(

    p

    m mjjdjj

    m

    j

    j

    d

    jdjj

    m

    jme

    rrrw

    jjj

    m

    rrre 0 ||21

    21

    21 ...!!...!

    !

    ...1

    p

    m mj

    jdjj

    m

    j

    j

    d

    e

    rrr

    w

    jjj

    m

    0

    2

    ||

    21

    21 ...!!...!

    !

    2

    1

    udr

    r

    e

    r

    e

    r

    er ,...,,,

    2

    2

    2

    2

    Elastic vs. I nelastic

    FEM4,5

    2020 ||||||||)( BBGGr Inelastic

    Elastic

    RecapLagranges Eqn

    total force(includes stress)

    elastic

    potential energy

    elastic potential

    energy density

    45

    5

    material properties

    How it has beenexpanded and is continuing

    to be expanded...

  • 7/28/2019 Fem Lanjut

    53/73

    wwwtwf

    ),(

    drBBGGrji

    jiji

    2,1,

    20

    ,

    20

    ,)(

    Elastic FEM4Continuing

    2020 ||||||||)( BBGGr

    0

    ,,,, )(),( jijijiji GGwwr 0

    ,,,, )(),( jijijiji GGwwr

    udr

    r

    e

    r

    e

    r

    er ,...,,,

    2

    2

    2

    2

    elastic

    potential

    energy

    >0: surface wants to shrink

    0: surface wants to flatten

  • 7/28/2019 Fem Lanjut

    54/73

    wwwtwf

    ),(

    I nelastic FEM5Continuing

    udr

    r

    e

    r

    e

    r

    er ,...,,,

    2

    2

    2

    2

    p

    m mjjdjj

    m

    j

    j

    d

    jdjj

    m

    jm errr

    wjjj

    m

    rrre 0 ||21

    21

    21 ...!!...!

    !

    ...1

    Deformation has been modeled by

    approximating elastic potential energy.

    elastic potential energy

    elastic potential

    energy density

    strain

  • 7/28/2019 Fem Lanjut

    55/73

    I nelastic FEM5Continuing

    Now rigid-body motion and other aspects ofdeformation must be computed using physics

    equations of motion.

    In this way, both (in)elastic deformation and

    rigid-body motion can be modeled, providing a

    very general framework.

    r (w,t) = rref(w,t) + e(w,t)

  • 7/28/2019 Fem Lanjut

    56/73

    ),()()()(),( tretcttctrw

    I nelastic FEM5

    Motion of object (non-inertial) frame w.r.t.world (inertial) frame

    drtrwrtc ).,()()(

    drtrwdrtredt

    dcm

    dt

    dfv .),(.),()(

    drwrdrerdt

    dI

    dt

    df ..)(

    ewrerce

    dt

    dtfe

    2)()()(

    wwwtwf

    ),( Combines

    dynamics of

    deformable

    andrigidbodies

    elastic

    rot

    trans

  • 7/28/2019 Fem Lanjut

    57/73

    ),()()()(),( tretcttctrw

    I nelastic FEM5

    Velocity of node of object (non-inertial) framew.r.t. world (inertial) frame (radians / sec) x(radius)

    Identically, in another

    coordinate system,

    r(w,t) = rref(w,t) + e(w,t)

    w.r.t. object

    velocity of reference

    component

    velocity of elastic

    component

    w.r.t. world

    wwwtwf

    ),(

    ),( trw

    )(t)(tc

    )(te

  • 7/28/2019 Fem Lanjut

    58/73

    drwrdrerdt

    dI

    dt

    df ..)(

    I nelastic FEM5wwwtwf

    ),(

    rot

    )(

    )(

    )(

    ))(

    )(2

    3

    2

    22313

    32

    2

    3

    2

    112

    312123

    22

    tdw

    wwwwww

    wwwwww

    wwwwww

    tI

    angular momentum

    inertia tensor

    Angular momentum is conserved in the absense

    of force. So a time-varying angular momentum

    indicates the presence of foce.

  • 7/28/2019 Fem Lanjut

    59/73

    drwrdrerdt

    dI

    dt

    df ..)(

    I nelastic FEM5wwwtwf

    ),(

    rot

    indicates changing angle between position and direction of stretch

    )(tr

    )(te

  • 7/28/2019 Fem Lanjut

    60/73

    I nelastic FEM5wwwtwf

    ),(

    ewrerce

    dt

    dtfe

    2)()()(elastic

    inertial centripetal Coriolis transverse damping

    elastic potential energy strain

    restoring

    If the reference component has no translation or

    rotation, then

    ee

    dt

    dtfe

    )()(

    e

    tfe

    )(

    Furthermore, if the elastic component has no

    acceleration, then

  • 7/28/2019 Fem Lanjut

    61/73

    I nelastic FEM5wwwtwf

    ),(

    Recall that non-elastic behavior is characterized

    by acceleration of the elastic component

    (strain)...

    eedt

    d

    tf

    e

    )()(

    etfe

    )(

    And elastic behavior is characterized by

    constant velocity of strain.

    loading x

    e

    eaf 0

  • 7/28/2019 Fem Lanjut

    62/73

    Now Lagranges equation has been expanded.

    Final StepsDiscretize using f inite differences(rather than

    derivatives).

    Write as a matrixtimes a vector of nodal

    coordinates (rather than a single mass point).

    Solve for the objects new set of positions of

    all nodes.

    Elastic vs. I nelastic

    FEM4,5

    wwwtwf

    ),(

  • 7/28/2019 Fem Lanjut

    63/73

    Discretization of FEM4,5

    wwwtwf

    ),(

    wwCwMtf

    )(

    Discretize Lagranges equation over all nodes

    Procedure described in [4] but not [5]

  • 7/28/2019 Fem Lanjut

    64/73

    tttttttt

    ttttttt

    ttt

    ttt

    tt

    ttttttt

    ttt

    ttttttttt

    tttttttt

    tttttt

    vCMtwCtMtwwgwKtMtA

    wherewwgwA

    vCMt

    wCt

    Mt

    f

    t

    wwCM

    twC

    tM

    tf

    wCt

    Mt

    wMt

    fwwKt

    Mt

    wwKt

    wwC

    t

    wwwM

    wwKwCDwDMD

    fwwKtwC

    twM

    2

    11

    2

    13

    ),(,)(2

    11

    _),(

    2

    11

    2

    13

    2

    11

    2

    13

    2

    112)(

    2

    11

    )(2

    2

    )()())((

    )(

    22

    2

    2

    222

    2

    2

    2

    Discretization of Elastic FEM4

  • 7/28/2019 Fem Lanjut

    65/73

    Results of Elastic FEM4

  • 7/28/2019 Fem Lanjut

    66/73

    Results of Elastic FEM4

  • 7/28/2019 Fem Lanjut

    67/73

    Results of Elastic FEM4

  • 7/28/2019 Fem Lanjut

    68/73

    3D plasticine bust of Victor Hugo.

    180 x 127 mesh; 68,580 equations.

    Results of I nelastic FEM5

  • 7/28/2019 Fem Lanjut

    69/73

    Results of I nelastic FEM5

    Sphere pushing through 2D mesh.

    23 x 23 mesh; 1,587 equations.

    Yield limit is uniform, causing linear tears.

  • 7/28/2019 Fem Lanjut

    70/73

  • 7/28/2019 Fem Lanjut

    71/73

    References

    0. David Baraff. Rigid Body Simulation.Physically Based Modeling, SIGGRAPH

    Course Notes, August 2001.

    1. George Buchanan. Schaums Outlines:

    Finite Element Analysis. McGraw-Hill, 1995.

    2. Peter Hunter and Andrew Pullan. FEM/BEM

    Notes. The University of Auckland, New

    Zealand, February 21 2001.

    http://www.esc.auckland.ac.nz/Academic/Texts/FEM-BEM-notes.htmlhttp://www.esc.auckland.ac.nz/Academic/Texts/FEM-BEM-notes.htmlhttp://www.esc.auckland.ac.nz/Academic/Texts/FEM-BEM-notes.htmlhttp://www.esc.auckland.ac.nz/Academic/Texts/FEM-BEM-notes.html
  • 7/28/2019 Fem Lanjut

    72/73

    References3. Tom Lassanske. [Slides from class lecture]

    4. Demetri Terzopoulost, John Platt, Alan Barr,

    and Kurt Fleischert. Elastically Deformable

    Models. Computer Graphics, Volume 21,Number 4, July 1987.

    5. Demetri Terzopoulos and Kurrt Fleiseher.Modeling Inelastic Deformation:

    Viscoelasticity, Plasticity, Fracture. Computer

    Graphics, Volume 22, Number 4, August 1988

    N i

  • 7/28/2019 Fem Lanjut

    73/73

    Notation

    densityenergypotentialelastic

    energypotentialelastic

    ulussYoungE

    f orcestress

    stretchstraine

    scoordinateworldw

    scoordinateobjectr

    ___

    __

    mod_'

    )_(

    )_(

    _

    _