Fem Lanjut
-
Author
anonymous-syssobz -
Category
Documents
-
view
233 -
download
0
Embed Size (px)
Transcript of Fem Lanjut
-
7/28/2019 Fem Lanjut
1/73
F inite Element Methods (FEM )
Suzanne Vogel
COMP 259
Spring, 2002
-
7/28/2019 Fem Lanjut
2/73
-
7/28/2019 Fem Lanjut
3/73
1. Set up a global modelin terms of the world
coordinates of mass points of the object.
These equations will be continuous.
2. Discretize the object into a nodal mesh.3. Discretizethe equations using finite
differences and summations (rather than
derivatives and integrals).4. Use (2) and (3) to write the global equations
as a sti ffness matr ixtimes a vector of
(unknown) nodal values.
Top-Down: Steps in FEM
-
7/28/2019 Fem Lanjut
4/73
Top-Down: Steps in FEM
6. Solve for the nodal values.
Staticnodal values at equilibrium
Dynamicnodal values at next time step
7. Interpolate values between nodal coordinates.
5
2 31 4
678
udiscretize interpolate
+
global model
object
nodal mesh interpolate values between nodes+
local model
-
7/28/2019 Fem Lanjut
5/73
Bottom-Up: Steps in FEM
Nodesare point masses connected with springs.A continuum equation is solved for the nodes,
and intermediate points are interpolated.
A collection of nodes forms an element.
A collection of elements forms the object.
5
2
3
1
4
678
u
-
7/28/2019 Fem Lanjut
6/73
Elements and I nterpolations
Interpolating equations for an element are
determined by the number and distribution of
nodes within the element.
More nodes mean higher degree, for smoother
simulation.
-
7/28/2019 Fem Lanjut
7/73
Example: Hermite as 1D Cubic
I nterpolation Equation1. Assume
u
r
dcubuauur 23)(
44332211 )()()()()( ruNruNruNruNur cubic equation
equation using shape (blending) functions
and
-
7/28/2019 Fem Lanjut
8/73
Example: Hermite as 1D Cubic
I nterpolation Equation2. Normalize the element to [0,1] and rewrite
dcubuauur 23)( as a matrix equation
d
c
b
a
d
c
b
a
uuu
uuu
uuu
uuu
r
r
r
r
1111
1272
274
278
13
1
9
1
27
11000
1
1
1
1
4
2
4
3
4
323
33
2
2
2
3
2
1
2
1
3
1
4
3
2
1
or QUR 00
-
7/28/2019 Fem Lanjut
9/73
Example: Hermite as 1D Cubic
I nterpolation Equation3. Solve for the coefficients Q
00
1
000 RMRUQQUR H
4. Plug the coefficients into the cubic equation
dcubuauur 23)(
5. Rewrite the cubic equation in the form
44332211 )()()()()( ruNruNruNruNur
-
7/28/2019 Fem Lanjut
10/73
Example: Hermite as 1D Cubic
I nterpolation Equation4 + 5. are equivalent to the steps
4
3
2
1
4321
000
)()()()()(
)()()(
r
r
r
r
uNuNuNuNur
RMURMUQUur HH
values at the 4 nodes of the element
shape (blending) functions
-
7/28/2019 Fem Lanjut
11/73
Example: Hermite as 1D Cubic
I nterpolation Equation
1
0
U
shape (blending) functions within one elementLet
u
rtuHN ii ,
-
7/28/2019 Fem Lanjut
12/73
1D Elements
(x) (x)
(x)
Example: bungee
-
7/28/2019 Fem Lanjut
13/73
2D Elements
(x,y)
(x,y)
(x,y)
Example: cloth
-
7/28/2019 Fem Lanjut
14/73
3D Elements
(x,y,z)
(x,y,z)
Example: skin
-
7/28/2019 Fem Lanjut
15/73
Staticanalysis is good for engineering, to findjust the end result.
Dynamicanalysis is good for simulation, to
find all intermediate steps.
Static vs. Dynamic FEM
-
7/28/2019 Fem Lanjut
16/73
Types of Global Models[6]
Variational- Find the position function, w(t)that minimizes the some variational integral.
This method is valid only if the position
computed satisfies the governing differentialequations.
Rayleigh-Ritz- Use the variational methodassuming some specific form ofw(t) and
boundary conditions. Find the coefficients and
exponents of this assumed form ofw(t).
-
7/28/2019 Fem Lanjut
17/73
Example of Variational Method[6]
0)(
tf
w
ww
dfwwwcwcwJ 2
2
1)( 1
2
2
cwbwaw
0)(
)(
)(
3
2
1
fcc
bc
ac
Minimizing the variation w.r.t. w of the
variational function
under the conditions
satisfies the governing
equation, Lagranges
Equation
-
7/28/2019 Fem Lanjut
18/73
Galerkin(weighted residual) - Minimize the
residual of the governing differential equation,
F(w,w,w,,t) = 0. The residual is the form ofFthat results by plugging a specific form of the
position function w(t) intoF. Find the
coefficients and exponents of this assumed formofw(t).
Types of Global Models[6]
-
7/28/2019 Fem Lanjut
19/73
We can approximate w(t) using Hookes Law
0)(
tf
w
ww
Example of Galerkin Method[6]
If we use that equation to compute the 1st and
2nd time derivatives ofw, then we can computethe residual as
)(
)(
)(
)(
11
11
1
2
1
2
1
1
00
00
tw
tw
Etf
Etf
LL
LL
E
-
7/28/2019 Fem Lanjut
20/73
Example of Static, Elastic FEM
Problem: If you apply the pressure shown, whatis the resulting change in length?
Object
-
7/28/2019 Fem Lanjut
21/73
First step. Set up a continuum model:
F = force
P = pressure
A = area
L = initial length
E = Youngs modulus
L
LE
A
PF
AE
PLL
duuhwE
PLdu
uwhE
PLdu
AE
PLL
un
u
un
u
un
u 000 )(1
)(
1
Entire length:
Infinitessimal length:
Example of Static, Elastic FEM
-
7/28/2019 Fem Lanjut
22/73
Since the shape is regular, we can integrate to
find the solution analytically. But suppose we
want to find the solution numerically.
Next step. Discretize the object.
Example of Static, Elastic FEM
-
7/28/2019 Fem Lanjut
23/73
Example of Static, Elastic FEM
Discretization of object into
linear elements bounded by nodes1 2 3 4
n1 n2 n3 n4 n5
-
7/28/2019 Fem Lanjut
24/73
Example of Static, Elastic FEM
Next step. Set up a local model.
Stress-Strain Relationship(like Hookes Law)
0,,0,,
0
,)()( LkrrkLrrkLkL
L
Ejijijijijiji
ji
i
0,, )( Lkrrk jijijiij
Youngs modulus distance between adjacent nodes
stress (elastic force)
-
7/28/2019 Fem Lanjut
25/73
Example of Static, Elastic FEM
0,, )( Lkrrk jijijii
0,, )( Lkrrk jijijij
j
i
jiji
jiji
jij
jii
ji
ji
j
i
jiji
jiji
j
i
rr
kkkk
LkLk
Lk
Lk
r
r
kk
kk
,,
,,
0,
0,
0,
0,
,,
,,
11,1,
1,1,
01,1
01,
j
j
jjjj
jjjj
jjj
jjj
r
r
kk
kk
Lk
Lk
Next step. Set up a local (element) stiffness matrix.
Rewrite the
above as a
matrix equation.
Same for the
adjacent element.
element stiffness matrix
nodal stressesnodal coordinates
-
7/28/2019 Fem Lanjut
26/73
2
1
2,12,1
2,12,1
02,12
02,11
r
r
kk
kk
Lk
Lk
Example of Static, Elastic FEMNow, all of the element stiffness matrices are as
follows.
3
2
3,23,2
3,23,2
03,23
03,22
r
r
kk
kk
Lk
Lk
4
3
4,34,3
4,34,3
04,34
04,33
r
r
kk
kk
Lk
Lk
5
4
5,45,4
5,45,4
05,45
05,44
r
r
kk
kk
Lk
Lk
1 2 3 4n1 n2 n3 n4 n5
riis the x-coordinate of node ui
-
7/28/2019 Fem Lanjut
27/73
Example of Static, Elastic FEM
Next step. Set up a global stiffness matrix.
Pad the element stiffness matrices with zeros
and sum them up. Example:
5
4
3
2
1
3,23,2
3,23,2
03,23
03,22
00000
00000000
000
00000
0
0
0
r
rr
r
r
kk
kk
Lk
Lk
-
7/28/2019 Fem Lanjut
28/73
5
4
3
2
1
5,45,4
5,44,35,44,3
4,34,33,23,2
3,23,22,12,1
2,12,1
05,45
05,44,34
04,33,23
03,22,12
02,11
000
00
00
00000
)(
)(
)(
r
r
r
rr
kk
kkkk
kkkk
kkkkkk
Lk
Lkk
Lkk
LkkLk
Example of Static, Elastic FEM
Final step. Solve the matrix equation for thenodal coordinates.
Global stiffness matrix.
Captures material properties.
Nodal coordinates.
Solve for these!Applied forces
-
7/28/2019 Fem Lanjut
29/73
Elastic FEM
A material is elasticif its behavior depends only
on its state during the previous time step.
Think: Finite state machine
The conditions under which an elastic
material behaves elastically are:
Force is small.
Force is applied slowly and steadily.
-
7/28/2019 Fem Lanjut
30/73
I nelastic FEM
A material is inelasticif its behavior depends onallof its previous states.
A material may behave inelastically if:Force is large - fracture, plasticity.
Force is applied suddenly and released, i.e., is
transient- viscoelasticity.
Conditions for elastic vs. inelastic depend on
the material.
-
7/28/2019 Fem Lanjut
31/73
Examples of Elastici ty
Elasticity
Springs, rubber, elastic, with small, slowly-
applied forces
-
7/28/2019 Fem Lanjut
32/73
Examples of I nelastici ty
InelasticityViscoelasticity
Silly putty bounces under transient force (but
flows like fluid under steady force)
Plasticity
Taffy pulls apart much more easily under
more force (material prop.)
Fracture
Lever fractures under heavy load
-
7/28/2019 Fem Lanjut
33/73
L inear and Nonl inear FEMSimilarly to elasticity vs. inelasticity, there are
conditions for linear vs. nonlinear deformation.
Often these coincide, as in elastoplastic.
0
:L
LeEe
= e
-
7/28/2019 Fem Lanjut
34/73
Hookes Law
Describes spring without damping
Linear range of preceding stress vs. strain graph
eaf 0
Elastic Deformation
Elastic vs. I nelastic FEM
e
e
t
loading unloading
0
:L
LeEe orstress strain
Youngs modulus
-
7/28/2019 Fem Lanjut
35/73
Elastic vs. I nelastic FEM
Damped Elastic Deformation
e
e
t
loading unloading
eaeaf 01
viscous linear stress
Rate of deformat ion is c ons tant .
a1e.
a1e.
-
7/28/2019 Fem Lanjut
36/73
Viscoelastic Deformation
Elastic vs. I nelastic FEM
e
e
t
loading unloading
.
eaeaeafbfbfb 012012
viscousnew term!
This graph is actual ly viscou s,
but visc oelast ic is prob ably simi lar
Rate of deform at ion is greatest
immed iately after start ing
loading or unloading.
depends on time t
linear stress
-
7/28/2019 Fem Lanjut
37/73
Elastoplastic Deformation
Elastic vs. I nelastic FEM
e
This graph is actual ly p last ic ,
but visc oelast ic is prob ably simi lar
f
e
x
x
compare
loading
unloading
loadingx
depends on force f
e
eaf 0
-
7/28/2019 Fem Lanjut
38/73
Elastic vs. I nelastic FEM
Fracture
Force response is locally discontinuous
Fracture will propogate if energy release rateis greater than a threshold
e
x
x
loading
unloading
depends on force f
-
7/28/2019 Fem Lanjut
39/73
1. Worldcoordinatesw
in inertial frame
(a frame with
constant velocity)
2. Object
(material)
coordinatesrin non-inertial
frame
r (w,t) = rref(w,t) + e(w,t)
Elastic vs. I nelastic
FEM4,5
world, or
inertial frame
re f
robject, or
non-inertial
frame
origin of
= center of mass in
-
7/28/2019 Fem Lanjut
40/73
Transform
reference
component rrefelastic component e
object frame
w.r.t. world frame
r (w,t) = rref(w,t) + e(w,t)
Elastic vs. I nelastic
FEM4,5
re f
r
-
7/28/2019 Fem Lanjut
41/73
Elastic vs. I nelastic FEM
All these equations are specific for:Elasticity
Viscosity
Viscoelasticity
Plasticity
Elastoplasticity
Fracture
(not mentioned) Elastoviscoplasticity
Ideally: We want a general equation that will
fit all these cases.
-
7/28/2019 Fem Lanjut
42/73
Elastic vs. I nelastic
FEM4,5A More General ApproachTo simulate dynamicswe can use Lagranges
equation ofstrainforce. At each timestep, the
force is calculated and used to update the
objects state (including deformation).
stress component
of force
wwwtwf
),(
mass density damping density
elastic potential energyLagranges Equation
w
e
L
E
w
L
w 0
0 )/(
-
7/28/2019 Fem Lanjut
43/73
wwwtwf
),(
Elastic vs. I nelastic
FEM4,5
Given:
Mass density and damping density are known.Elastic potential energy derivative w.r.t. rcan be
approximated using one of various equations.
The current position wtof all nodes of the object
are known.
Unknown:
The new position wt+dtof nodes is solved for at
each timestep.vector
vector
matrices
next slide
Lagranges
Equation
-
7/28/2019 Fem Lanjut
44/73
wwwtwf
),(
drr
e
r
e
r
er
,...,,,
3
3
2
2
Elastic vs. I nelastic
FEM4,5
For both elastic and inelastic deformation,express elastic potential energy as an integral
in terms ofelastic potential energy density.
elastic potential energy density
elastic potential energy
-
7/28/2019 Fem Lanjut
45/73
Elastic vs. I nelastic
FEM4,5Elastic potential energy density can beapproximated using one of various equations
which incorporate material properties.
Elastic deformation: Use tensors called metric
(1D, 2D, 3D stretch), curvature(1D, 2D
bend), and twist (1D twist).
Inelastic deformation: Use controlled-
continuity splines.
-
7/28/2019 Fem Lanjut
46/73
Elastic FEM4
For elastic potential energy density in 2D, use metrictensors G (for stretch)
curvaturetensorsB (for bend)
2020 ||||||||)( BBGGr
||M|| = weighted norm of matrixM
-
7/28/2019 Fem Lanjut
47/73
Elastic FEM4
Overview of derivation of metric tensor
Since the metric tensorG represents stretch, it
incorporates distances between adjacent points.
T
ji
ji
ji
ji
ji ji
dr
dr
dr
dr
GG
GG
drdr
drdrdrdr
drdr
GGGGdrdrG
drdrr
w
r
wdwdwdL
2
1
2
1
2,21,2
2,11,1
22
12
21
11
2,21,22,11,1
2,1,
,
2,1,
2
11
world coordinatesobject coordinates
-
7/28/2019 Fem Lanjut
48/73
Elastic FEM4
Overview of metric and curvature tensors.From the previous slides, we found:
Similarly:
represents stretch
represents bend
Theorem. G andB together determine shape.
jiji r
w
r
w
rwG ))((,
jiji
rrwrwB
2
, ))((
-
7/28/2019 Fem Lanjut
49/73
Elastic FEM4
For elastic FEM, elastic potential energydensity in 2D incorporates changes in the
metric tensorG and the curvature tensorB.
2020 ||||||||)( BBGGr
||M|| = weighted norm of matrixM
weights = material properties
-
7/28/2019 Fem Lanjut
50/73
I nelastic FEM5
For inelastic FEM, elastic potential energydensity is represented as a controlled-
continuity spl ine.
p
m mjjdjj
m
j
j
d
errr
wjjj
m
0
2
||21
21 ...!!...!
!
2
1
For some degreep, dimensionality d, computethe sum of sums of all combinations of
weighted 1st, 2nd,, mth derivatives of strain e
w.r.t. node location r, where m
-
7/28/2019 Fem Lanjut
51/73
p
m mjjdjj
m
j
jd
jdjj
m
jm
errrwjjj
m
rrre 0 || 212121 ...!!...!
!
...1
I nelastic FEM5
Then the elastic potential energy densityderivative w.r.t. strain e is:weighting function = material property
e
r
w
r
e
r
w
r
e
rr
w
rr
er
wr
er
wr
ewe
2
2
2
022
2
2
2
1
2
202
1
2
21
2
11
21
2
2
01
21
10
1
00
!2!0
!2
!0!2
!2
!1!1
!2
!1!0
!1
!0!1
!1
!0!0
!0
Example:p = 2, d= 3
-
7/28/2019 Fem Lanjut
52/73
wwwtwf
),(
p
m mjjdjj
m
j
j
d
jdjj
m
jme
rrrw
jjj
m
rrre 0 ||21
21
21 ...!!...!
!
...1
p
m mj
jdjj
m
j
j
d
e
rrr
w
jjj
m
0
2
||
21
21 ...!!...!
!
2
1
udr
r
e
r
e
r
er ,...,,,
2
2
2
2
Elastic vs. I nelastic
FEM4,5
2020 ||||||||)( BBGGr Inelastic
Elastic
RecapLagranges Eqn
total force(includes stress)
elastic
potential energy
elastic potential
energy density
45
5
material properties
How it has beenexpanded and is continuing
to be expanded...
-
7/28/2019 Fem Lanjut
53/73
wwwtwf
),(
drBBGGrji
jiji
2,1,
20
,
20
,)(
Elastic FEM4Continuing
2020 ||||||||)( BBGGr
0
,,,, )(),( jijijiji GGwwr 0
,,,, )(),( jijijiji GGwwr
udr
r
e
r
e
r
er ,...,,,
2
2
2
2
elastic
potential
energy
>0: surface wants to shrink
0: surface wants to flatten
-
7/28/2019 Fem Lanjut
54/73
wwwtwf
),(
I nelastic FEM5Continuing
udr
r
e
r
e
r
er ,...,,,
2
2
2
2
p
m mjjdjj
m
j
j
d
jdjj
m
jm errr
wjjj
m
rrre 0 ||21
21
21 ...!!...!
!
...1
Deformation has been modeled by
approximating elastic potential energy.
elastic potential energy
elastic potential
energy density
strain
-
7/28/2019 Fem Lanjut
55/73
I nelastic FEM5Continuing
Now rigid-body motion and other aspects ofdeformation must be computed using physics
equations of motion.
In this way, both (in)elastic deformation and
rigid-body motion can be modeled, providing a
very general framework.
r (w,t) = rref(w,t) + e(w,t)
-
7/28/2019 Fem Lanjut
56/73
),()()()(),( tretcttctrw
I nelastic FEM5
Motion of object (non-inertial) frame w.r.t.world (inertial) frame
drtrwrtc ).,()()(
drtrwdrtredt
dcm
dt
dfv .),(.),()(
drwrdrerdt
dI
dt
df ..)(
ewrerce
dt
dtfe
2)()()(
wwwtwf
),( Combines
dynamics of
deformable
andrigidbodies
elastic
rot
trans
-
7/28/2019 Fem Lanjut
57/73
),()()()(),( tretcttctrw
I nelastic FEM5
Velocity of node of object (non-inertial) framew.r.t. world (inertial) frame (radians / sec) x(radius)
Identically, in another
coordinate system,
r(w,t) = rref(w,t) + e(w,t)
w.r.t. object
velocity of reference
component
velocity of elastic
component
w.r.t. world
wwwtwf
),(
),( trw
)(t)(tc
)(te
-
7/28/2019 Fem Lanjut
58/73
drwrdrerdt
dI
dt
df ..)(
I nelastic FEM5wwwtwf
),(
rot
)(
)(
)(
))(
)(2
3
2
22313
32
2
3
2
112
312123
22
tdw
wwwwww
wwwwww
wwwwww
tI
angular momentum
inertia tensor
Angular momentum is conserved in the absense
of force. So a time-varying angular momentum
indicates the presence of foce.
-
7/28/2019 Fem Lanjut
59/73
drwrdrerdt
dI
dt
df ..)(
I nelastic FEM5wwwtwf
),(
rot
indicates changing angle between position and direction of stretch
)(tr
)(te
-
7/28/2019 Fem Lanjut
60/73
I nelastic FEM5wwwtwf
),(
ewrerce
dt
dtfe
2)()()(elastic
inertial centripetal Coriolis transverse damping
elastic potential energy strain
restoring
If the reference component has no translation or
rotation, then
ee
dt
dtfe
)()(
e
tfe
)(
Furthermore, if the elastic component has no
acceleration, then
-
7/28/2019 Fem Lanjut
61/73
I nelastic FEM5wwwtwf
),(
Recall that non-elastic behavior is characterized
by acceleration of the elastic component
(strain)...
eedt
d
tf
e
)()(
etfe
)(
And elastic behavior is characterized by
constant velocity of strain.
loading x
e
eaf 0
-
7/28/2019 Fem Lanjut
62/73
Now Lagranges equation has been expanded.
Final StepsDiscretize using f inite differences(rather than
derivatives).
Write as a matrixtimes a vector of nodal
coordinates (rather than a single mass point).
Solve for the objects new set of positions of
all nodes.
Elastic vs. I nelastic
FEM4,5
wwwtwf
),(
-
7/28/2019 Fem Lanjut
63/73
Discretization of FEM4,5
wwwtwf
),(
wwCwMtf
)(
Discretize Lagranges equation over all nodes
Procedure described in [4] but not [5]
-
7/28/2019 Fem Lanjut
64/73
tttttttt
ttttttt
ttt
ttt
tt
ttttttt
ttt
ttttttttt
tttttttt
tttttt
vCMtwCtMtwwgwKtMtA
wherewwgwA
vCMt
wCt
Mt
f
t
wwCM
twC
tM
tf
wCt
Mt
wMt
fwwKt
Mt
wwKt
wwC
t
wwwM
wwKwCDwDMD
fwwKtwC
twM
2
11
2
13
),(,)(2
11
_),(
2
11
2
13
2
11
2
13
2
112)(
2
11
)(2
2
)()())((
)(
22
2
2
222
2
2
2
Discretization of Elastic FEM4
-
7/28/2019 Fem Lanjut
65/73
Results of Elastic FEM4
-
7/28/2019 Fem Lanjut
66/73
Results of Elastic FEM4
-
7/28/2019 Fem Lanjut
67/73
Results of Elastic FEM4
-
7/28/2019 Fem Lanjut
68/73
3D plasticine bust of Victor Hugo.
180 x 127 mesh; 68,580 equations.
Results of I nelastic FEM5
-
7/28/2019 Fem Lanjut
69/73
Results of I nelastic FEM5
Sphere pushing through 2D mesh.
23 x 23 mesh; 1,587 equations.
Yield limit is uniform, causing linear tears.
-
7/28/2019 Fem Lanjut
70/73
-
7/28/2019 Fem Lanjut
71/73
References
0. David Baraff. Rigid Body Simulation.Physically Based Modeling, SIGGRAPH
Course Notes, August 2001.
1. George Buchanan. Schaums Outlines:
Finite Element Analysis. McGraw-Hill, 1995.
2. Peter Hunter and Andrew Pullan. FEM/BEM
Notes. The University of Auckland, New
Zealand, February 21 2001.
http://www.esc.auckland.ac.nz/Academic/Texts/FEM-BEM-notes.htmlhttp://www.esc.auckland.ac.nz/Academic/Texts/FEM-BEM-notes.htmlhttp://www.esc.auckland.ac.nz/Academic/Texts/FEM-BEM-notes.htmlhttp://www.esc.auckland.ac.nz/Academic/Texts/FEM-BEM-notes.html -
7/28/2019 Fem Lanjut
72/73
References3. Tom Lassanske. [Slides from class lecture]
4. Demetri Terzopoulost, John Platt, Alan Barr,
and Kurt Fleischert. Elastically Deformable
Models. Computer Graphics, Volume 21,Number 4, July 1987.
5. Demetri Terzopoulos and Kurrt Fleiseher.Modeling Inelastic Deformation:
Viscoelasticity, Plasticity, Fracture. Computer
Graphics, Volume 22, Number 4, August 1988
N i
-
7/28/2019 Fem Lanjut
73/73
Notation
densityenergypotentialelastic
energypotentialelastic
ulussYoungE
f orcestress
stretchstraine
scoordinateworldw
scoordinateobjectr
___
__
mod_'
)_(
)_(
_
_