Elemen Mesin II - Rodagigi Lurus

40
PEMINDAH DAYA RODAGIGI Fenomena slip biasa terjadi pada pemindah daya sabuk atau tali, dalam pemindahan berupa gerak atau daya antara dua poros . Pengaruh slip adalah mengurangi perbandingan kecepatan dari sistem. Pada mesin-mesin yang presisi, perbandingan kecepatan definitif adalah penting (seperti mekanisme jam), yang penggerakannya hanya positif dengan rodagigi-rodagigi atau roda-roda bergigi. Sebuah penggerak rodagigi juga dibutuhkan jika jarak antara penggerak dan yang digerakkan sangat kecil.

description

Perhitungan pada rodagigi lurus

Transcript of Elemen Mesin II - Rodagigi Lurus

Page 1: Elemen Mesin II - Rodagigi Lurus

PEMINDAH DAYA RODAGIGIFenomena slip biasa terjadi pada pemindah daya

sabuk atau tali, dalam pemindahan berupa gerak ataudaya antara dua poros .

Pengaruh slip adalah mengurangi perbandingankecepatan dari sistem. Pada mesin-mesin yang presisi, perbandingan kecepatan definitif adalah penting (sepertimekanisme jam), yang penggerakannya hanya positifdengan rodagigi-rodagigi atau roda-roda bergigi.

Sebuah penggerak rodagigi juga dibutuhkan jika jarakantara penggerak dan yang digerakkan sangat kecil.

Page 2: Elemen Mesin II - Rodagigi Lurus

Roda-roda gesek

• Gerak dan daya yang ditransmisikan olehrodagigi secara kinematika sama dengan gerakdan daya yang transmisikan oleh roda-rodaatau cakram-cakram.

Page 3: Elemen Mesin II - Rodagigi Lurus

Keuntungan1. memindahkan perbandingan kecepatan secara tepat; 2. dapat digunakan memindahkan tenaga yang besar;3. dapat digunakan untuk jarak poros yang kecil atau pendek;4. memliki efisiensi yang tinggi;5. memiliki layanan yang layak;6. memiliki susunan yang kompak.

Kerugian1. Selama pembuatan rodagigi membutuhkan alat-alat dan

perlengkapan khusus, maka butuh biaya tinggi daripadapenggerak lain;

2. Kesalahan dalam pembuatan gigi dapat menyebabkangetaran dan bising selama pengoperasian;

3. Butuh pelumasan yang sesuai dan metode yang layak dalampenerapannya, untuk pengoperasian awal dari penggerakanrodagigi.

Keuntungan dan Kerugian

Page 4: Elemen Mesin II - Rodagigi Lurus

Klasifikasi RodagigiBerdasar Posisi sumbu poros:

(a) Parallel, dua poros dihubungkan rodagigi yang disebut rodagigilurus, yang memiliki gigi paralel terhadap poros, atau nama lain rodagigi miring karena gigi miring terhadap sumbu, dobel paralel(rodagigi herringbone)untuk mengimbangi ujung tumpuan termasukrodagigi miring saat memindahkan beban;

(b) Interseksi, dua sumbu non paralel tetapi bertemu dan sebidang, disebut rodagigi payung dan tersusun sebagai penggerakan sudut, jugagigi miring terhadap pemukaan payung dan disebut rodagigi payunghelik; dan

(c) Non-interseksi dan non-parallel

Page 5: Elemen Mesin II - Rodagigi Lurus

3. Berdasar Jenis Penggerakan: (a) Rodagigi Luar, rodagigi dari dua poros bersentuhan luar satu dengan lainnya,

gerak kedua roda selalu tidak sama; (b) Rodagigi Dalam; rodagigi dari dua poros bersentuhan dalam, antar satu

rodagigi dengan lainnya, gerak kedua roda selalu sama; dan(c) Rodagigi Rak dan Pinion, rodagigi secara eksternal atau internal bersentuhan

pada batang gigi lurus, gerak linear atau lurus ke dalam gerak putar.

4. Berdasar Letak Gigi pada Permukaan Rodagigi: (a) Straight, gigi lurus terhadap permukaan peleg roda; (b) Inclined, gigi miring terhadap permukaan peleg roda; dan(c) Curved, gigi melengkung terhadap permukaan peleg

2. Berdasar Kecepatan Keliling Rodagigi: (a) Rpdagigi Kecepatan Rendah, kurang 3meter/detik;(b) (b) Rodagigi Kecepatan Menengah, 3 sampai 15 meter/detik, dan(c) (c) Rodagigi Kecepatan Tinggi , lebih dari 15 meter/detik.

Page 6: Elemen Mesin II - Rodagigi Lurus

Istilah yang Digunakan dalam Rodagigi

1. Lingkaran jarak bagi (Pitch circle): lingkaran imajiner dengan aksi rolingmurni, memberikan gerak yang sama sebagaimana rodagigi aktual.

2. Diameter lingkaran jarak bagi (Pitch circle diameter): ukuran rodagigikhusus. disebut juga diammeter jarak bagi.

3. Titik jarak bagi (Pitch point): titik kontak antara dua lingkaran jarak bagi.4. Permukaan jaraj bagi (Pitch surface): permukaan cakram roling dari

rodagigi yang bersentuhan terletak pada lingkaran jarak bagi. .

Page 7: Elemen Mesin II - Rodagigi Lurus

5. Sudut Tekan (Pressure angle, φ): sudut antara garis normal dua gigi pada titikkontak dan garis tangen pada titik jarak bagi, dengan standar 14½° dan 20°.

6. Addendum: jarak radial sebuah gigi dari lingkaran jarak bagi ke puncak gigi. 7. Dedendum: jarak radia sebuah gigi dari lingkaran jarak bagi ke dasar gigi. . 8. Lingkaran kepala gigi (Addendum circle): gambaran lingkaran melalui puncak

gigi dan konssentris dengan lingkaran jarak bagi.9. Lingkaran kaki gigi (Dedendum circle atau root circle): gambaran lingkaran

melalui dasar/lembah gigi.

Diameter lingkaran kaki = diameter lingkaran jarak bagi × cos φ

10. Jarak bagi lingkaran (Circular pitch, pc): jarak yang diukur pada kelilinglingkaran jarak bagi dari titik salah satu gigi ke titik pada gigi berikutnya.

Jarak bagi lingkaran, , dengan D = diameter lingkaranjarak bagi

T = jumlah gigi padarodagigi

* Dua rodagigi akan bersentuhan bersama-sama secara teliti, jika dua rodagigi memiliki jarak bagi lingkaran yang sama.

Catatan: Jika D1 and D2 adalah diameter-diameter dua rodagigi berpasangan yang memiliki jumlah gigi T1 and T2.

Page 8: Elemen Mesin II - Rodagigi Lurus

11. Jarak bagi diametral (Diametral pitch) : perbandingan jumlah gigi dengandiameter lingkaran jarak bagi, dalam milimeter.

12. Modul (Module): perbandingan diameter lingkaran jarak bagi dengan jumlah gigi.

m = D / T

Catatan: Seri modul yang disarankan dalam Standard Indian adalah 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40 and 50.Modul-modul: 1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5,5.5, 7, 9, 11, 14, 18, 22, 28, 36 dan 45 adalah pilihan kedua.

13. Celah (Clearance): jarak radial dari puncak gigi ke dasar gigi. Sementara, lingkaran celah (clearance circle) adalah lingkaran yang melewati puncakdari pasangan rodagigi.

14. Kedalaman total (Total depth) merupakan jarak radial antara tinggi kepala dantinggi kaki dari gigi.

Lingkaran rodagigi (circle of a gear) sama dengan jumlah kepala gigi dan kaki gigi.

15. Kedalaman Kerja Gigi (Working depth) merupakan jarak dari lingkaran kepalagigi ke lingkaran celah gigi yaitu sama dengan jumlah kepala gigi dari duarodagigi berpasangan.

Page 9: Elemen Mesin II - Rodagigi Lurus

16. Tebal gigi (Tooth thickness) merupakan lebar gigi diukur sepanjang lingkaranjarak-bagi .

17. Ruang gigi merupakan lebar dari ruang antar dua gigi bayangan yang diukursepanjang lingkaran jarak bagi.

18. Backlash merupakan perbedaan antara ruang gigi dan tebal gigi, seperti yang diukurpada lingkaran jarak-bagi.

19. Muka gigi (Face of the tooth) merupakan permukaan gigi di atas permukaan jarak-bagi.

20. Landasan atas (Top land) merupakan permukaan atas dari suatu gigi.21. Badan gigi (Flank of the tooth) merupakan permukaan gigi di bawah permukaan

jarak-bagi. 22. Lebar muka (Face width) merupakan lebar dari gigi rodagigi diukur sejajar terhadap

sumbunya.23. Profil (Profile) merupakan kurva yang dibentuk oleh permukaan dan badan dari

sebuah gigi.24. Jari-jari filet (Fillet radius) merupakan\ jari-jari yang menghubungkan lingkaran kaki

dengan profil gigi. 25. Jalur kontak (Path of contact) merupakan jejak jalur dengan titik kontak dua gigi dari

awal ke akhir pasangan gigi.26. Panjang jalur kontak (Length of the path of contact) merupakan panjang dari

potongan normal biasa dari lingkaran kepala gigi dari roda yang digerakkandan roda penggeraknya.

Page 10: Elemen Mesin II - Rodagigi Lurus

27. Lengkung kontak (Arc of contact) merupakan jejak jalur dari titik padalingkaran jarak bagi dari awal dan akhir pasangan pasangan gigi.

Lengkung kontak terdiri atas dua bagian, yaitu (a) Arc of approachmerupakan bagian dari jalur kontak dari awal penggerakan ke titik jarak-bagi.b) Arc of recess merupakan bagian jalur kontak dari titik jarak-bagi ke akhir daripenggerakan suatu pasangan gigi.

Note : Perbandingan panjang lengkung kontak terhadap jarak-bagilingkaran yang disebut perbandingan kontak yaitu jumlah pasangan gigi dalamkontak.

28.6 Condition for Constant Velocity Ratio of Gears–Law of GearingConsider the portions of the two teeth, one on the wheel 1 (or pinion)

and the other on the wheel 2, as shown by thick line curves in Fig. 28.7. Let the two teeth come in contact at point Q, and the wheels rotate in the directions as shown in the figure.

Let T T be the common tangent and MN be the common normal to the curves at point of contact Q. From the centres O1 and O2, draw O1M and O2N perpendicular to MN. A little consideration will show that the point Q moves in the direction QC, when considered as a point on wheel 1, and in the direction QD when considered as a point on wheel 2.

Let v1 and v2 be the velocities of the point Q on the wheels 1 and 2 respectively. If the teeth are to remain in contact, then the components of these velocities along the common normal MN must be equal.

Page 11: Elemen Mesin II - Rodagigi Lurus

∴ v1 cos α = v2 cos β

Page 12: Elemen Mesin II - Rodagigi Lurus

We see that the angular velocity ratio is inversely proportional to the ratio of the distance of P from the centres O1 and O2, or the common normal to the two surfaces at the point of contact Q intersects the line of centres at point P which divides the centre distance inversely as the ratio of angular velocities.

Therefore, in order to have a constant angular velocity ratio for all positions of the wheels, P must be the fixed point (called pitch point) for the two wheels. In other words, the common normal at the point of contact between a pair of teeth must always pass through the pitch point. This is fundamentalcondition which must be satisfied while designing the profiles for the teeth of gear wheels. It is also known as law of gearing. Notes : 1. The above condition is fulfilled by teeth of involute form, provided that the root circles from which the profiles are generated are tangential tothe common normal. 2. If the shape of one tooth profile is arbitrary chosen and another tooth is designed to satisfy the above condition, then the second tooth is said to beconjugate to the first. The conjugate teeth are not in common use because of difficulty in manufacture and cost of production.

Page 13: Elemen Mesin II - Rodagigi Lurus

3. If D1 and D2 are pitch circle diameters of wheel 1 and 2 having teeth T1 and T2 respectively, then velocity ratio,

Forms of TeethWe have discussed in Art. 28.6 (Note 2) that conjugate teeth are not in

common use. Therefore, in actual practice, following are the two types of teeth commonly used. 1. Cycloidal teeth ; and 2. Involute teeth.

We shall discuss both the above mentioned types of teeth in the following articles. Both these forms of teeth satisfy the condition as explained in Art. 28.6.

Cycloidal TeethA cycloid is the curve traced by a point on the circumference of a circle

which rolls without slipping on a fixed straight line. When a circle rolls without slipping on the outside of a fixed circle, the curve traced by a point on the circumference of a circle is known as epicycloid. On the other hand, if a circle rolls without slipping on the inside of a fixed circle, then the curve traced by a point on the circumference of a circle is called hypocycloid.

Page 14: Elemen Mesin II - Rodagigi Lurus
Page 15: Elemen Mesin II - Rodagigi Lurus

Involute TeethAn involute of a circle is a plane curve generated by a point on a tangent,

which rolls on the circle without slipping or by a point on a taut string which is unwrapped from a reel as shown in Fig. 28.10 (a). In connection with toothed wheels, the circle is known as base circle. The involute is traced as follows:

Let A be the starting point of the involute. The base circle is divided into equal number of parts e.g. AP1, P1 P2, P2 P3 etc.The tangents at P1, P2, P3 etc., are drawn and the lenghts P1A1, P2A2, P3A3 equal to the arcs AP1, AP2 and AP3 are set off. Joining the points A, A1, A2, A3 etc., we obtain the involute curve AR. A little consideration will show that at any instantA3, the tangent A3T to the involuteis perpendicular to P3A3 and P3A3 is the normal to the involute. In other words, normal at any point of an involute is a tangent to the circle.

Now, let O1 and O2 be the fixed centres of the two base circles as shown in Fig. 28.10(b). Let the corresponding involutes AB and A'B' be in contact at point Q. MQ and NQ are normals to the involute at Q and are tangents to base circles.Since the normal for an involute at a given point is the tangent drawn from that point to the base circle, therefore the common normal MN at Q is also the common tangent to the two base circles.

We see that the common normal MN intersects the line of centres O1O2 at the fixed point P (called pitch point). Therefore the involute teeth satisfy the fundamental condition of constant velocity ratio.

Page 16: Elemen Mesin II - Rodagigi Lurus

From similar triangles O2 NP and O1 MP,

which determines the ratio of the radii of the two base circles. The radii of the base circles is given by

where φ is the pressure angle or the angle of obliquity.Also the centre distance between the base circles

Page 17: Elemen Mesin II - Rodagigi Lurus

Systems of Gear TeethTerdapat 4 sistem gigi rodagigi digunakan dalam praktik, yaitu:

(1) 14 /2° Composite system, digunakan untuk rodagigi tujuan umum, sangatkuat tetapi tidak dapat dipertukarkan, bentuk kurva sikloid pada puncak dandasar, serta kurva involut di bagian tengah ; (2) 14 /2° Full depth involute system, bentuk yang telah dikembangkan untuk hobs rodagigi pada rodagigi lurus danmiring; (3) 20° Full depth involute system, profil gigi yang dipotong oleh hobs, sudut tekan menghasilkan gigi yang kuat karena gigi bekerja seperti batang yang luas pada bagian dasar; dan (4) 20° Stub involute system, memiliki gigi yang kuatuntuk menerima beban berat.

Proporsi Standar dari Sistem RodagigiProporsi standar pada modul (m) untuk empat sistem gigi rodagigi.

Page 18: Elemen Mesin II - Rodagigi Lurus

Interference in Involute GearsA pinion gearing with a wheel is shown in Fig. 28.11. MN is the common

tangent to the base circles and KL is the path of contact between the two mating teeth. A little consideration will show, that if the radius of the addendum circle of pinion is increased to O1N, the point of contact L will move from L to N. When this radius is further increased, the point of contact L will be on the inside of base circle of wheel and not on the involute profile of tooth on wheel.

The tip of tooth on the pinion will then undercut the tooth on the wheel at the root and remove part of the involute profile of tooth on the wheel. This effect is known as interference and occurs when the teeth are being cut. In brief, the phenomenon when the tip of a tooth undercuts the root on its mating gear is known as interference.

Page 19: Elemen Mesin II - Rodagigi Lurus

Similarly, if the radius of the addendum circle of the wheel increases beyond O2M, then the tip of tooth on wheel will cause interference with the tooth on pinion. The points M and N are called interference points. Obviously interference may be avoided if the path of contact does not extend beyond interference points. The limiting value of the radius of the addendum circle of the pinion is O1N and of the wheel is O2M. From the above discussion, we conclude that the interference may only be avoided, if the point of contact between the two teeth is always on the involute profiles of both the teeth.

In other words, interference may only be prevented, if the addendum circles of the two mating gears cut the common tangent to the base circles between the points of tangency. Note : In order to avoid interference, the limiting value of the radius of the addendum circle of the pinion (O1 N) and of the wheel (O2 M), may be obtained as follows

Minimum Number of Teeth on the Pinion in Order to Avoid InterferenceWe have seen in the previous article that the interference may only

be avoided, if the point of contact between the two teeth is always on the involute profiles of both the teeth. The minimum number of teeth on the pinion which will mesh with any gear (also rack) without interference aregiven in the following table.

Page 20: Elemen Mesin II - Rodagigi Lurus

The number of teeth on the pinion (TP) in order to avoid interference may be obtained from the following relation :

AW = Fraction by which the standard addendum for the wheel should bemultiplied,

G = Gear ratio or velocity ratio = TG / TP = DG / DP,φ = Pressure angle or angle of obliquity.

Page 21: Elemen Mesin II - Rodagigi Lurus

Gear MaterialsThe material used for the manufacture of gears depends upon the

strength and service conditions like wear, noise etc. The gears may be manufactured from metallic or non-metallic materials. The metallic gears with cut teeth are commercially obtainable in cast iron, steel and bronze. The nonmetallic materials like wood, rawhide, compressed paper and synthetic resins like nylon are used for gears, especially for reducing noise.

The cast iron is widely used for the manufacture of gears due to its good wearing properties, excellent machinability and ease of producing complicated shapes by casting method. The cast iron gears with cut teeth may be employed, where smooth action is not important. The steel is used for high strength gears and steel may be plain carbon steel or alloy steel. The steel gears are usually heat treated in order to combine properly the toughness and toothhardness.

The phosphor bronze is widely used for worm gears in order to reduce wear of the worms which will be excessive with cast iron or steel. The following table shows the properties of commonly used gear materials.

Page 22: Elemen Mesin II - Rodagigi Lurus

Table 28.3. Properties of commonly used gear materials.

Page 23: Elemen Mesin II - Rodagigi Lurus
Page 24: Elemen Mesin II - Rodagigi Lurus

Design Considerations for a Gear Drive1. The power to be transmitted.

2. The speed of the driving gear,3. The speed of the driven gear or the velocity ratio, and4. The centre distance.

The following requirements must be met in the design of a gear drive :(a) The gear teeth should have sufficient strength so that they will not fail under

static loading or dynamic loading during normal running conditions.(b) The gear teeth should have wear characteristics so that their life is satisfactory.(c) The use of space and material should be economical.(d) The alignment of the gears and deflections of the shafts must be considered

because they effect on the performance of the gears.(e) The lubrication of the gears must be satisfactory.

Page 25: Elemen Mesin II - Rodagigi Lurus

Beam Strength of Gear Teeth – Lewis EquationThe beam strength of gear teeth is determined from an equation

(known as *Lewis equation) and the load carrying ability of the toothed gears as determined by this equation gives satisfactory results. In the investigation, Lewis assumed that as the load is being transmitted from one gear to another, it is all given and taken by one tooth, because it is not always safe to assume that the load is distributed among several teeth.

When contact begins, the load is assumed to be at the end of the driven teeth and as contact ceases, it is at the end of the driving teeth. This may not be true when the number of teeth in a pair of mating gears is large, because the load may be distributed among several teeth. But it is almost certain that at some time during the contact of teeth, the proper distribution of load does not exist and that one tooth must transmit the full load. In any pair of gears having unlike number of teeth, the gear which have the fewer teeth (i.e. pinion) will be the weaker, because the tendency toward undercutting of the teeth becomesmore pronounced in gears as the number of teeth becomes smaller.

Page 26: Elemen Mesin II - Rodagigi Lurus

Consider each tooth as a cantilever beam loaded by a normal load (WN) as shown in Fig. 28.12. It is resolved into two components i.e. tangential component (WT) and radial component (WR) acting perpendicular and parallel to the centre line of the tooth respectively. The tangential component (WT) induces a bending stress which tends to break the tooth. The radial component (WR) induces a compressive stress of relatively small magnitude, therefore its effect on the tooth may be neglected. Hence, the bending stress is used as the basis for design calculations. The critical section or the section of maximum bending stress may be obtained by drawing a parabola through A and tangential to the tooth curves at B and C.

This parabola, as shown dotted in Fig. 28.12, outlines a beam of uniform strength, i.e. if the teeth are shaped like a parabola, it will have the same stress at all the sections. But the tooth is larger than the parabola atevery section except BC. We therefore, conclude that the section BC is the section of maximum stress or the critical section. The maximum value of the bending stress (or the permissible working stress), at the section BC is given by

M = Maximum bending moment at the critical section BC = WT × h,WT = Tangential load acting at the tooth,h = Length of the tooth,y = Half the thickness of the tooth (t) at critical section BC = t/2,I = Moment of inertia about the centre line of the tooth = b.t3/12,b = Width of gear face.

Page 27: Elemen Mesin II - Rodagigi Lurus

Masukkan nilai-nilai M, y, dan I ke dalam persamaan(i), diperoleh:

t dan h adalah variabel-variabel yang bergantung atas ukurangigi yaitu jarak bagi lingkaran dan profil giginya.

Masukkan x2 / 6k = y, didapat:

WT = σw . b . pc . y = σw . b . π m . y ...(pc = π m)y = faktor bentuk gigi

WT =beban tangensial, disebut kekuatan batang gigi.

therefore in order to find the value of y, the quantities t, h and pc may be determined analytically or measured from the drawing similar to Fig. 28.12. It may be noted that if the gear is enlarged, the distances t, h and pc will each increase proportionately. Therefore the value of y will remain unchanged. A little consideration will show that the value of y is independent of the size of the tooth and depends only on the number of teeth on a gear and the system of teeth. The value of y in terms of the number of teeth may be expressed as follows :

Page 28: Elemen Mesin II - Rodagigi Lurus

Permissible Working Stress for Gear Teeth in the Lewis EquationThe permissible working stress (σw) in the Lewis equation depends upon the material for which an allowable static stress (σo) may be determined. The allowable static stress is the stress at the elastic limit of the material. It is also called the basic stress. In order to account for the dynamiceffects which become more severe as the pitch line velocity increases, the value of σw is reduced.According to the Barth formula, the permissible working stress,

= tegangan statis ijin= faktor kecepatan

Page 29: Elemen Mesin II - Rodagigi Lurus

Harga faktor kecepatan, :

Untuk rodagigi ordinary cut yang beroperasipada kecepatan sampai 12.5 m/s.

Untuk rodagigi carefully cut yang beroperasipada kecepatan sampai 12.5 m/s.

Untuk rodagigi very accurately cut yang beroperasi pada kecepatan sampai 20 m/s.

Untuk rodagigi precision cut dengan high accuracy yang beroperasi pada kecepatan sampai 20 m/s.

Untuk rodagigi non metallic.

Dynamic Tooth LoadIn the previous article, the velocity factor was used to make approximate allowance for the effect of dynamic loading. The dynamic loads are due to the following reasons :1. Inaccuracies of tooth spacing,2. Irregularities in tooth profiles, and3. Deflections of teeth under load.A closer approximation to the actual conditions may be made by the use of equations based on extensive series of tests, as follows :

Page 30: Elemen Mesin II - Rodagigi Lurus

Beban gigi dinamis:

= beban dinamik total

= beban diam yang bekerja memindahkan momen puntir

= beban tambahan yang bekerja terhadap gerak dinamik,

Beban tambahan bergantung atas: 1. kecepatan lintasan jarak bagi, 2. keakuratan pemotongan, dan3. beban tangensial:

= beban dinamik total, dalam N

= beban diam yang dipindahkan, dalam N

= kecepatan lintasan jarak bagi, dalam m/s= lebar permukaan gigi, dalam mm

= faktor dinamis atau deformasi, dalam N/mm

Page 31: Elemen Mesin II - Rodagigi Lurus

Faktor deformasi (C) bergantung atas:1. kesalahan pada gerak gigi, 2. tumbukan potong dari gigi, 3. bentuk gigi, dan4. bahan rodagigi.

, dalam N/mm.

K = faktor yang bergantung bentuk gigi:

0,107 untuk sistem rodagigi 14,5 ° full depth involute,0,111 untuk sistem rodagigi 20 ° full depth involute,0,107 untuk sistem rodagigi 20° stub.

= modulus Young untuk bahan pinion, dalam N/mm².

= modulus Young untuk bahan gear, dalam N/mm².

= gerak kesalahan gigi, dalam mm.

Page 32: Elemen Mesin II - Rodagigi Lurus
Page 33: Elemen Mesin II - Rodagigi Lurus
Page 34: Elemen Mesin II - Rodagigi Lurus

Beban Statis GigiBeban Statis Gigi (kekuatan balok atau kekuatan ketahanan

dari gigi) didapat dari rumus Lewis dengan memasukkan batasketahanan flexural atau tegangan batas elastis. Beban gigi statis (jugadisebut kekuatan gelagar atau kekuatan ketahanan gigi).he static tooth load (also called beam strength or endurance strength of the tooth) is obtained by Lewis formula by substituting flexural endurance limit or elastic limit stress (σe) in place of permissible working stress (σw).

∴ Static tooth load or beam strength of the tooth, WS = σe.b.pc.y = σe.b.π m.y

Page 35: Elemen Mesin II - Rodagigi Lurus

Contoh 1. Berikut diketahui bagian-bagian dari sebuah rodagigi lurus reduksi

tunggal: Perbandingan rodagigi = 10 : 1; jarak antar pusat = 660 mm; pinion memindahkan 500 kW at 1800 r.p.m.; gigi involut proporsi standar(tinggi kepala gigi atau adendum = m) dengan sudut tekan 22,5°; gayatekan normal yang diijinkan antar gigi = 175 N tiap mm lebar gigi. Tentukan:1. modul standar yang mendekati jika tanpa terjadi interferensi; 2. Jumlah gigi pada setiap roda;3. Lebar gigi pinion yang diperlukan; dan4. Beban pada bantalan dari rodagigi-rodagigi yang memindahkan daya.

Penyelesaian : Diketahui: G = TG / TP = DG / DP = 10 ; L = 660 mm;

P = 500 kW = 500000 W; NP = 1800 r.p.m.;φ = 22.5° ; WN = 175 N/mm lebar.

Ditanyakan:

𝒎; 𝑻𝑷 ; 𝑻𝑮 ; 𝒃;𝒅𝒂𝒏 𝑾𝑹

Page 36: Elemen Mesin II - Rodagigi Lurus

1. Modul standar terdekat jika tanpa terjadi interferensi:

Oleh karena harga modul standar terdekat 8mm, maka diambil:m = 8 mm.

2. Jumlah gigi minimum yang dibutuhkan:

Page 37: Elemen Mesin II - Rodagigi Lurus

Oleh karena gaya tekan antar gigi adalah 175 N tiap mm lebar gigi, makalebar gigi pinion:

3. Lebar gigi pinion:

4. Beban pada bantalan roda:

Page 38: Elemen Mesin II - Rodagigi Lurus

Contoh Soal 2: Pinion lurus dari bronz berputar pada 600 rpm menggerakkanrodagigi besi tuang pada perbandingan transmisi 4:1. Tegangan statis ijin pinion bronz dan rodagigi berturut-turut 84 Mpa dan 105 Mpa. Pinion memiliki 16 gigistandar full depth involute 20 derajad yang bermodul 8 mm. Lebar permukaankedua gigi 90 mm. Tentukan daya yang dapat dipindahkan berdasar sisikekuatannya!

Penyelesaian: Diketahui:

𝑵𝑷 = 𝟔𝟎𝟎 𝒓𝒑𝒎;𝑽.𝑹 =𝑻𝑮

𝑻𝑷= 𝟒; 𝝈𝑶𝑷 = 𝟖𝟒 𝑴𝑷𝒂 = 𝟖𝟒

𝑵

𝒎𝒎𝟐 ; 𝝈𝑶𝑮 = 𝟏𝟎𝟓 𝑴𝑷𝒂 =

𝟏𝟎𝟓𝑵

𝒎𝒎𝟐 ; 𝑻𝑷 = 𝟏𝟔; 𝒎 = 𝟖 𝒎𝒎; 𝒃 = 𝟗𝟎 𝒎𝒎.

Untuk kecepatan jarak bagi kurang dari 12,5 m/s, maka faktor keceptan:

Ditanyakan: P

Jawab:

Page 39: Elemen Mesin II - Rodagigi Lurus

Selama kurang dari maka pinion yang paling lemah, dandigunakan sebagai dasar menghitung ..

P

Untuk gigi 20 derajad full depth involute, faktor bentuk gigi pinion:

Page 40: Elemen Mesin II - Rodagigi Lurus