Barang

41
Barang-barang bekas yang tidak dipakai umunya langsung dibuang, padahal barang bekas tersebut masih bisa direkondisi alias direpair. Salah satu barang tersebut adalah lampu hemat energi, namun belum banyak orang yang tahu dan mampu memenfaatkan lampu hemet energi yang sudah tidak bias menyala lagi. Sebenarnya apasih lampu hemat energi itu? Lampu Hemat Energi alias Compact Flourescent Lamp(CFL) atau sering disebut lampu jari memiliki beberapa keunggulan dibandingkan dengan lampu jenis bohlam. Lampu jenis ini mampu menghemat konsumsi daya 80% daripada lampu konfesional yang lain. Walaupun lebih hemat energi lampu ini mempunyai kelemahan dalam segi harga yang lebih mahal, sebagai contoh lampu jenis bohlam 10 Watt hanya Rp.1.500-3.000,- sedangkan harga lampu hemat energi paling murah(merek abal-abal) Rp.5.000,- Cara kerja lampu hemat energi yaitu arus listrik AC dari PLN kemudian di ubah menjadi arus dc oleh dioda bridge selanjutnya difilter oleh kondensator elektrolit. Tegangan tersebut kemudian diolah secara elektronik oleh rang kaian converter DC to AC kemudian arus AC tersebut akan menyulut tabung Flourescent. Untuk lebih jelasnya bias kita lihat pada gambar berikut ini : Bagian pokok lampu hemat energi : 1. Bagian Konektor atau fitting : Berfungsi sebagai penghubung lampu dengan jaringan AC listrik PLN. Untuk lebih jelasnya dapat kita lihat seperti gambar berikut ini : 2. Bagian Elaktronik atau Ballast elektronik : Rangkaian elektronika yang meruipakan system switching. 3.Bagian filamen atau tabung lampu : Merupakan tabung flourescen yang akan berpendar saat filament didalamnya dialiri arus listrik. Cara rekondisi lampu hemat energi : Pertama-tama kita siapkan alat berupa solder,atraktor,tenol,multi tester,obeng kecil. Setelah alat-alat lengkap maka kita mulai membuka tutup dari rangkaian lampu dengan cara mencongkel dengan obeng kecil. Setelah tutup tersebut terbuka maka kita dapat melihat rangkaian elektronika/ballast elektronik.Kemudian pisahkan rangkaian tersebut dengan lampu tabung tersebut dengan cara melepas 4 kawat sambungan pada rangkaian. Untuk mengetes filament tersebut kita gunakan multi

Transcript of Barang

Page 1: Barang

Barang-barang bekas yang tidak dipakai umunya langsung dibuang, padahal barang bekas tersebut masih bisa direkondisi alias direpair. Salah satu barang tersebut adalah lampu hemat energi, namun belum banyak orang yang tahu dan mampu memenfaatkan lampu hemet energi yang sudah tidak bias menyala lagi. Sebenarnya apasih lampu hemat energi itu?Lampu Hemat Energi alias Compact Flourescent Lamp(CFL) atau sering disebut lampu jari memiliki beberapa keunggulan dibandingkan dengan lampu jenis bohlam. Lampu jenis ini mampu menghemat konsumsi daya 80% daripada lampu konfesional yang lain. Walaupun lebih hemat energi lampu ini mempunyai kelemahan dalam segi harga yang lebih mahal, sebagai contoh lampu jenis bohlam 10 Watt hanya Rp.1.500-3.000,- sedangkan harga lampu hemat energi paling murah(merek abal-abal) Rp.5.000,-Cara kerja lampu hemat energi yaitu arus listrik AC dari PLN kemudian di ubah menjadi arus dc oleh dioda bridge selanjutnya difilter oleh kondensator elektrolit. Tegangan tersebut kemudian diolah secara elektronik oleh rang kaian converter DC to AC kemudian arus AC tersebut akan menyulut tabung Flourescent. Untuk lebih jelasnya bias kita lihat pada gambar berikut ini :

Bagian pokok lampu hemat energi :1. Bagian Konektor atau fitting : Berfungsi sebagai penghubung lampu dengan jaringan AC listrik PLN. Untuk lebih jelasnya dapat kita lihat seperti gambar berikut ini :2. Bagian Elaktronik atau Ballast elektronik : Rangkaian elektronika yang meruipakan system switching.3.Bagian filamen atau tabung lampu : Merupakan tabung flourescen yang akan berpendar saat filament didalamnya dialiri arus listrik.Cara rekondisi lampu hemat energi :Pertama-tama kita siapkan alat berupa solder,atraktor,tenol,multi tester,obeng kecil. Setelah alat-alat lengkap maka kita mulai membuka tutup dari rangkaian lampu dengan cara mencongkel dengan obeng kecil. Setelah tutup tersebut terbuka maka kita dapat melihat rangkaian elektronika/ballast elektronik.Kemudian pisahkan rangkaian tersebut dengan lampu tabung tersebut dengan cara melepas 4 kawat sambungan pada rangkaian. Untuk mengetes filament tersebut kita gunakan multi tester pada posisi 10X. Apabila jarum bergerak saat pengukuran masing-masing filament maka dapat kita simpulkan bahwa lampu tabung masih layak digunakan. Karena lampu tabung masih baik maka kemungkinan besar kerusakan terjadi pada rangkaian ballast elektronik. Apabila filament lampu tabung yang putus maka kemungkinan rangkaian ballast elektronik masih baik. Kerusakan pada lampu biasanya ada 2 kemungkinan yaitu Rangkaian ballat rusak atau lampu tabung yang putus, maka dapat kita akali dengan cara kanibal. Cara kanibal dapat kita gunakan apabila kita mempunyai 2 lampu yang rusak dan kerusakannya berbeda cotohnya kita mempunyai sebuah lampu yang rusak ballast elektronik dan lampu yang lain rusak pada lampu tabungnya. Kita dapat memanfaatkan ballast elektronik yang masih bagus dan kita pasang pada tabung lampu yang masih bagus.

Pada komponen ballast elektronik yang sering rusak adalah transistor. Karena hampir semua jenis ballast elektronika yang ada hamper sama, maka bisa kita gunakan system kanibal pada ballast elektronik yang lain. Dengan system kanibal kita dapat menghemat biaya. Biasanya transistor yang digunakan yaitu seri 13001 untuk daya <8>, kerusakan pada umumnya capasitor terlihat menggembung. Cara pengetesan menggunakan multi tester posisi 10X apabila jarum bergerak kemudian kembali ke-

Page 2: Barang

posisi nol berarti capasitor baik. Apabila jarum bergerak dan tidak kembali maka capasitor korslet.4. Resitor, kerusakan biasanya ditandai dengan terlihat terbakarnya resistor. Cara pengetesan dengan multi tester, bila jarum bergerak menunjukkan nilai yang sama dengan nilai resistor maka resistor baik,apabila jarum tidak bergerak maka resistor putus.5. transistor, biasanya transistor pecah, untuk mengetesnya menggunakan multi tester posisi 10X. Transistor baik jika jarum bergerak apabila basis pada kabel merah dan colektor atau emitor pada kabel hitam dan jarum tidak bergerak pada saat dites menggunakan multi tester antara colektor dan emitor.

Sudah sejak lama lampu pijar dipakai orang, menggantikan obor, pelita, dan penerangan dengan gas. Ketika dunia semakin benderang, pikiran pun bertambah cerah. Lampu alternatif dicari dan diselidiki, dan kemudian muncul lampu hemat energi, yang sekarang berangsur banyak digunakan. Sebenarnya, bagaimana cara lampu ini bekerja?

Petir mini

Lampu pijar bisa bersinar dan membagikan terang karena ada kawat tipis di dalamnya, yang jika dialiri listrik menjadi panas, membara dan menyala. Asal energinya memang listrik. Tetapi tidak selamanya listrik bertugas memanaskan kawat pijar. Ada jenis lampu lain yang berisi gas dan listriknya dipakai untuk menerbitkan loncatan listrik, semacam petir mini. Sebagai hasilnya, energi gas menjadi lebih tinggi dari pada normalnya.

Keadaan dengan tenaga lebih itu tidak berlangsung lama. Gas lekas turun ke harga semula sambil melepaskan tambahan energi dari petir mini tadi. Pada beberapa jenis gas, energi yang dilepas berbentuk cahaya. Ini terjadi misalnya pada lampu natrium, yang sorotan kuningnya menerangi jalan besar dan pelataran ramai di pusat kota. Cahaya kuning terbit karena sesaat sebelumnya energi gas natrium dinaikkan oleh loncatan listrik.

Sangat efisien, sebagian besar energi listrik beralih menjadi cahaya. Ini berbeda dari lampu pijar yang tenaga setrumnya banyak terpakai untuk memanaskan kawat. Sebagian saja yang menjadi terang, sebagian besar lainnya membuat gerah wilayah di sekeliling lampu.

Page 3: Barang

Yang sayang dari lampu natrium hanya warnanya. Kuning mencorong, sehingga benda yang diterangi kehilangan warna aslinya. Bahkan warna kulit manusia cenderung menjadi keabuan, memunculkan pemandangan seakan mayat-mayat gentayangan di bawah lampu. Menjadi pertanyaan, mungkinkah membuat lampu yang efisien tetapi putih cahayanya?

Ultra violet

Akal ditemukan untuk melibatkan tidak hanya satu, tetapi dua jurus kenaikan dan penurunan kembali energi. Pertama-tama peningkatan energi diciptakan dengan loncatan listrik. Mirip sekali dengan lampu natrium, hanya kali ini diberikannya pada uap merkuri (air raksa). Jika gas natrium mengeluarkan sinar kuning ketika energinya turun lagi, pancaran yang dilepaskan uap merkuri adalah ultra violet.

Berbeda dari cahaya kuning, pancaran ultra violet tidak menyebabkan kesan terang. Tidak apa, bukan efek cerah yang dimanfaatkan dari ultra violet, melainkan tenaganya. Yaitu untuk mendongkrak energi bahan tertentu yang berada di dekatnya, sehingga menyebabkan jurus kenaikan yang kedua. Pada gilirannya, kenaikan kedua ini di saat luruh akan melepaskan (ini dia yang ditunggu-tunggu) cahaya putih terang.

Gejala peralihan ultra violet menjadi cahaya lain dinamai fluoresensi, dan bahan yang dikenai ultra violet disebut bahan fluoresen. Dalam praktek, bahan fluoresen dilapiskan pada tabung lampu yang berisi uap merkuri. Maka terwujudlah lampu fluoresen, atau lampu TL (dari tube luminescent, tabung bercahaya), dikenal secara awam sebagai “lampu neon” dengan panjang tabung mulai sekitar 30 cm sampai lebih dari 1 meter.

Lampu hemat energi

Serupa dengan lampu natrium, lampu TL mempunyai efisiensi yang tinggi sehingga menghemat rekening listrik. Sebuah karakternya ialah ketika saklar dinyalakan, TL memerlukan waktu tunggu sebelum terang sepenuhnya. Tetapi kemudian orang mengganti balast konvensional pada lampu dengan sistem penyala elektronik. Hasilnya menjadi lebih cepat terang, tidak berkedip-kedip dulu. Porsi listrik yang termanfaatkan sebagai cahayapun bertambah. Di pihak lain, tabungnya dibuat tidak panjang tetapi ditekuk atau digulung seperti spiral sehingga lebih ringkas dan praktis. Keseluruhannya dikenal sebagai “lampu hemat energi” (CFL, compact fluorescent lamp).

Perhatikan bahwa TL maupun CFL mengandung merkuri yang beracun. Perlu kehati-hatian dengan kedua jenis lampu ini. Jika sampai terjatuh dan pecah, lokasinya harus segera dijauhi, pintu dan jendela dibuka lebar setidaknya selama 15 menit untuk membersihkan udara.

Dibandingkan lampu pijar yang terangnya sama, CFL memang lebih mahal. Tetapi ongkos setrumnya lebih rendah, lagi pula usianya lebih panjang, sehingga harga pembelian cenderung impas. Yang penting, penghematan energi terjadi, dan ini adalah isu utama yang mendorong sejumlah negara untuk beralih ke CFL.

Page 4: Barang

Ganti akrab dengan CFL dan mengucapkan selamat tinggal kepada lampu pijar, berarti mengurangi emisi CO2 pada pusat pembangkit listrik dan mengerem pemanasan global. Australia sudah mengumumkan akan melarang lampu pijar pada tahun 2010. Di Finlandia, perdana menterinya mengusulkan pelarangan mulai tahun 2011. ***

Bacaan:

Cara kerja lampu pijar (bohlam)

Bola lampu, atau lebih dikenal dengan lampu pijar (bohlam) adalah sumber cahaya buatan yang dihasilkan melalui penyaluran arus listrik melalui filamen yang kemudian memanas dan menghasilkan foton. Kaca yang menyelubungi filamen panas tersebut menghalangi oksigen di udara berhubungan dengannya, sehingga filamen tidak akan langsung rusak akibat teroksidasi.Bagian-bagian bola lampu pijarBohlam terdiri dari dua buah kawat yang saling berhubungan (Contact wire) dan bagian ujungnya di hubungkan ke sirkuit listrik (Electrical contact). Kawat di hubungkan ke filamen (filament) yang berbentuk gulungan kumparan. Filamen di letakan di tengah dan di topang oleh glass mount dengan bantuan kawat penopang (Support wires). Kawat dan filamen ini di selubungi dengan kaca yang di dalamnya di penuhi dengan gas bertekanan rendah (inert gas) seperti argon, neon, nitrogen.Cara kerja lampu pijarSaat bola lampu pijar di hidupkan, arus listrik akan mengalir dari Electrical contact menuju filamen dengan melewati kawat penghubung. Akibatnya akan terjadi pergerakan elektron bebas dari kutub negatif ke kutup positif.Elektron di sepanjang filamen ini secara konstan akan menabrak atom pada filamen. Energinya akan mengetarkan atom atau arus listrik memanaskan atom.Ikatan elektron dalam atom-atom yang bergetar ini akan mendorong atom pada tingkatan tertinggi secara berkala. Saat energinya kembali ketingkat normal, elektron akan melepaskan energi ekstra dalam bentuk poton. Atom-atom yang dilepaskan ini dalam bentuk poton-poton sinar infrared yang tidak mungkin dilihat oleh mata manusia. Tetapi bila dipanaskan sampai temperatur 2.200 derajat Celcius, cahaya yang dipancarkan dapat kita lihat seperti halnya bola lampu pijar yang sering kita pakai sehari-hari.

A compact fluorescent lamp (CFL), also called compact fluorescent light, energy-saving light, and compact fluorescent tube, is a fluorescent lamp designed to replace an incandescent lamp; some types fit into light fixtures formerly used for incandescent lamps. The lamps use a tube which is curved or folded to fit into the space of an incandescent bulb, and a compact electronic ballast in the base of the lamp.

Compared to general-service incandescent lamps giving the same amount of visible light, CFLs use one-fifth to one-third the electric power, and last eight to fifteen times longer. A CFL has a higher purchase price than an incandescent lamp, but can save over five times its purchase price in electricity costs over the lamp's lifetime.[2] Like all fluorescent lamps, CFLs contain mercury,

Page 5: Barang

which complicates their disposal. In many countries, governments have established recycling schemes for CFLs and glass generally.

CFLs radiate a spectral power distribution that is different from that of incandescent lamps. Improved phosphor formulations have improved the perceived colour of the light emitted by CFLs, such that some sources rate the best "soft white" CFLs as subjectively similar in colour to standard incandescent lamps.

The parent to the modern fluorescent lamp was invented in the late 1890s by Peter Cooper Hewitt.[4] The Cooper Hewitt lamps were used for photographic studios and industries.[4]

Edmund Germer, Friedrich Meyer, and Hans Spanner patented a high-pressure vapor lamp in 1927.[4] George Inman later teamed with General Electric to create a practical fluorescent lamp, sold in 1938 and patented in 1941.[4] Circular and U-shaped lamps were devised to reduce the length of fluorescent light fixtures. The first fluorescent bulb and fixture were displayed to the general public at the 1939 New York World's Fair.

The helical (three-dimensional spiral) CFL was invented in 1976 by Edward Hammer, an engineer with General Electric,[5] in response to the 1973 oil crisis. Although the design met its goals, it would have cost GE about $25 million to build new factories to produce the lamps, and thus the invention was shelved.[6] The design eventually was copied by others.[6] In 1995, helical lamps, manufactured in China, became commercially available.[7] Since that time, their sales have steadily increased.

In 1980, Philips introduced its model SL, which was a screw-in lamp with integral magnetic ballast. The lamp used a folded T4 tube, stable tri-color phosphors, and a mercury amalgam. This was the first successful screw-in replacement for an incandescent lamp. In 1985 Osram started selling its model EL lamp, which was the first CFL to include an electronic ballast.[8]

Development of fluorescent lamps that could fit in the same volume as comparable incandescent lamps required the development of new, high-efficacy phosphors that could withstand more power per unit area than the phosphors used in older, larger fluorescent tubes.

There are two types of CFLs: integrated and non-integrated lamps. Integrated lamps combine the tube and ballast in a single unit. These lamps allow consumers to replace incandescent lamps easily with CFLs. Integrated CFLs work well in many standard incandescent light fixtures, reducing the cost of converting to fluorescent. 3-way lamp bulbs and dimmable models with standard bases are available.

Non-integrated CFLs have the ballast permanently installed in the luminaire, and only the lamp bulb is usually changed at its end of life. Since the ballasts are placed in the light fixture they are larger and last longer compared to the integrated ones, and they don't need to be replaced when the bulb reaches its end-of-life. Non-integrated CFL housings can be both more expensive and sophisticated. They have two types of tubes: a bi-pin tube designed for conventional ballast, and a quad-pin tube designed for an electronic ballast or a conventional ballast with an external

Page 6: Barang

starter. A bi-pin tube contains an integrated starter which obviates the need for external heating pins but causes incompatibility with electronic ballasts.

An electronic ballast and permanently attached tube in an integrated CFL

CFLs have two main components: a magnetic or electronic ballast and a gas-filled tube (also called bulb or burner). Replacement of magnetic ballasts with electronic ballasts has removed most of the flickering and slow starting traditionally associated with fluorescent lighting, and has allowed the development of smaller lamps directly interchangeable with more sizes of incandescent bulb.

Electronic ballasts contain a small circuit board with rectifiers, a filter capacitor and usually two switching transistors. The incoming AC current is first rectified to DC, then converted to high frequency AC by the transistors, connected as a resonant series DC to AC inverter. The resulting high frequency is applied to the lamp tube. Since the resonant converter tends to stabilize lamp current (and light produced) over a range of input voltages, standard CFLs do not respond well in dimming applications and special lamps are required for dimming service.

Standard shapes of CFL tube are single-turn double helix, double-turn, triple-turn, quad-turn, circular, and butterfly.

CFL power sources

CFLs are produced for both alternating current (AC) and direct current (DC) input. DC CFLs are popular for use in recreational vehicles and off-the-grid housing. There are various aid agency initiatives in developing countries to replace kerosene lamps, which have associated health and safety hazards, with CFLs powered by batteries, solar panels or wind generators.[9]

CFLs in solar powered street lights, use solar panels mounted on the pole.

A photograph of various lamps illustrates the effect of color temperature differences. From left to right: Compact Fluorescent: General Electric, 13 W, 6,500 K; Incandescent: Sylvania 60 W Extra Soft White; Compact Fluorescent: Bright Effects, 15 W, 2,644 K; Compact Fluorescent: Sylvania, 14 W, 3,000 K

CFLs emit light from a mix of phosphors inside the bulb, each emitting one band of color. Modern phosphor designs balance the emitted light color, energy efficiency, and cost. Every extra phosphor added to the coating mix improves color rendering but decreases efficiency and increases cost. Good quality consumer CFLs use three or four phosphors to achieve a "white" light with a color rendering index (CRI) of about 80, where the maximum 100 represents the appearance of colors under daylight or a black-body (depending on the correlated color temperature).

Characteristic spectral power distributions (SPDs) for an incandescent lamp (left) and a CFL (right). The horizontal axes are in nanometers and the vertical axes show relative intensity in arbitrary units

Page 7: Barang

Color temperature can be indicated in kelvins or mireds (1 million divided by the color temperature in kelvins). The color temperature of a light source is the temperature of a black body that has the same chromaticity (i.e. color) of the light source. A notional temperature, the correlated color temperature, the temperature of a black body which emits light of a hue which to human color perception most closely matches the light from the lamp, is assigned.

A true color temperature is characteristic of black-body radiation; a fluorescent lamp may approximate the radiation of a black body at a given temperature, but will not have an identical spectrum. In particular, narrow bands of shorter-wavelength radiation are usually present even for lamps of low color temperature ("warm" light)[10].

As color temperature increases, the shading of the white light changes from red to yellow to white to blue. Color names used for modern CFLs and other tri-phosphor lamps vary between manufacturers, unlike the standardized names used with older halophosphate fluorescent lamps. For example, Sylvania's Daylight CFLs have a color temperature of 3,500 K, while most other lamps called daylight have color temperatures of at least 5,000 K.

FLs typically have a rated service life of 6,000 to 15,000 hours, whereas standard incandescent lamps have a service life of 750 or 1,000 hours.[11][12][13]

The lifetime of any lamp depends on many factors, including operating voltage, manufacturing defects, exposure to voltage spikes, mechanical shock, frequency of cycling on and off, lamp orientation, and ambient operating temperature, among other factors. The life of a CFL is significantly shorter if it is turned on and off frequently. In the case of a 5-minute on/off cycle the lifespan of a CFL can be reduced to "close to that of incandescent light bulbs". The U.S. Energy Star program suggests that fluorescent lamps be left on when leaving a room for less than 15 minutes to mitigate this problem.[14]

CFLs produce less light later in their lives than when they are new. The light output decay is exponential, with the fastest losses being soon after the lamp is first used. By the end of their lives, CFLs can be expected to produce 70–80% of their original light output.[15]

The response of the human eye to light is logarithmic (a photographic "f-stop" reduction represents a halving in actual light, but is subjectively quite a small change).[16] A 20–30% reduction over many thousands of hours represents a change of about half an f-stop. So, presuming the illumination provided by the lamp was ample at the beginning of its life, such a difference will be compensated for by the eyes, for most purposes.[17]

[edit] Energy efficiency

Page 8: Barang

Energy usage for different types of light bulbs operating at different light outputs. Points lower on the graph correspond to lower energy useFor more details on this topic, see Luminous efficacy.

Because the eye's sensitivity changes with the wavelength, the output of lamps is commonly measured in lumens, a measure of the power of light as perceived by the human eye. The luminous efficacy of lamps is the number of lumens produced for each watt of electrical power used. The luminous efficacy of a typical CFL is 50–70 lumens per watt (lm/W) and that of a typical incandescent lamp is 10–17 lm/W.[18] Compared to a theoretical 100%-efficient lamp (680 lm/W), these lamps have lighting efficiency ranges of 9–11% for CFLs and 1.9–2.6%, for incandescents.[19]

Because of their higher efficacy, CFLs use between one-quarter and one-third of the power of equivalent incandescent lamps.[18] Fifty to seventy percent of the world's total lighting market sales were incandescent in 2010.[20] Replacing all inefficient lighting with CFLs would save 409 terawatt hours (TWh) per year, 2.5% of the world's electricity consumption. In the US, it is estimated that replacing all the incandescents would save 80 TWh yearly.[21] Since CFLs use much less energy than incandescent lamps (ILs), a phase-out of ILs would result in less carbon dioxide (CO2) being emitted into the atmosphere. Exchanging ILs for efficient CFLs on a global scale would achieve annual CO2 reductions of 230 Mt (million tons), more than the combined yearly CO2 emissions of the Netherlands and Portugal.

If a building's indoor incandescent lamps are replaced by CFLs, the heat produced due to lighting is significantly reduced. In warm climates or in office or industrial buildings where air conditioning is often required, CFLs reduce the load on the cooling system when compared to the use of incandescent lamps, resulting in savings in electricity in addition to the energy efficiency savings of using CFLs instead of incandescent lamps. However in cooler climates in which buildings require heating, the heating system needs to replace the reduced heat from lighting fixtures. While the CFLs are still saving electricity, total greenhouse gas emissions may increase in certain scenarios, such as the operation of a natural gas furnace to replace the unintended heating from CFLs running on low-GHG electricity. In Winnipeg, Canada, it is estimated that CFLs will only generate 17% savings in energy compared to incandescent bulbs, as opposed to the 75% savings that can be expected without heating or cooling considerations.[24]

[edit] Cost

Page 9: Barang

While the purchase price of a CFL is typically 3–10 times greater than that of an equivalent incandescent lamp, a CFL lasts 8–15 times longer and uses two-thirds to three-quarters less energy. A U.S. article stated "A household that invested $90 in changing 30 fixtures to CFLs would save $440 to $1,500 over the five-year life of the bulbs, depending on your cost of electricity. Look at your utility bill and imagine a 12% discount to estimate the savings."[25]

CFLs are extremely cost-effective in commercial buildings when used to replace incandescent lamps. Using average U.S. commercial electricity and gas rates for 2006, a 2008 article found that replacing each 75 W incandescent lamp with a CFL resulted in yearly savings of $22 in energy usage, reduced HVAC cost, and reduced labour to change lamps. The incremental capital investment of $2 per fixture is typically paid back in about one month. Savings are greater and payback periods shorter in regions with higher electric rates and, to a lesser extent, also in regions with higher than U.S. average cooling requirements.[26]

The current price of CFLs reflects the manufacturing of nearly all CFLs in China, where labour costs less. In September 2010, the Winchester, Virginia General Electric plant closed,[27] leaving Osram Sylvania and the tiny American Light Bulb Manufacturing Inc. the last companies to make standard incandescent bulbs in the United States.[28] At that time, Ellis Yan, whose Chinese company made the majority of CFLs sold in the United States, said he was interested in building a United States factory to make CFL bulbs, but wanted $12.5 million from the U.S. government to do so. General Electric had considered changing one of its bulb plants to make CFLs, but said that even after a $40 million investment in converting a plant, wage differences would mean costs would be 50% higher.[27]

[edit] Comparison with alternative technologies

Solid-state lighting using light-emitting diodes (LEDs) now fills many specialist niches such as traffic lights. Recent consumer availability of household LED lights now compete with CFLs for high-efficiency house lighting as well.[29] LEDs providing over 200 lm/W have been demonstrated in laboratory tests[30] and expected lifetimes of around 50,000 hours are typical. The luminous efficacy of available LED lamps does not typically exceed that of CFLs, though there have been LED lamps available for purchase with better than 90 lm/W overall luminous efficacy at least since early 2012. U.S. Department of Energy (DOE) tests of commercial LED lamps designed to replace incandescent or CFLs showed that average efficacy was still about 30 lm/W in 2008 (tested performance ranged from 4 lm/W to 62 lm/W).[31] Solid-state lighting continues to improve; in June 2011 the 8 products in the A-line bulb configuration that DOE tested[32] ranged from 50 to 97 lumens per watt, with an average of 62 lumens/watt.

General Electric discontinued a 2007 development project intended to develop a high-efficiency incandescent bulb with the same lumens per watt as fluorescent lamps.[33] Meanwhile other companies have developed and are selling halogen incandescent bulbs that use 70% of the energy of standard incandescents.[34]

Page 10: Barang

[edit] Other CFL technologies

Another type of fluorescent lamp is the electrodeless lamp, known as magnetic induction lamp, radiofluorescent lamp or fluorescent induction lamp. These lamps have no wire conductors penetrating their envelopes, and instead excite mercury vapour using a radio-frequency oscillator.[35] As of 2011 this type of light source was struggling with high cost of production, stability of the products produced by domestic manufacturers in China, establishing an internationally recognized standard and problems with EMC and RFI [36] . Furthermore, induction lighting is excluded from Energy Star standard for 2007 by the EPA.

The cold-cathode fluorescent lamp (CCFL) is a newer form of CFL. CCFLs use electrodes without a filament. The voltage of CCFLs is about 5 times higher than CFLs, and the current is about 10 times lower. CCFLs have a diameter of about 3 millimeters. CCFLs were initially used for document scanners and also for back-lighting LCD displays, and later manufactured for use as lamps. The efficacy (lumens per watt) is about half that of CFLs[citation needed]. Their advantages are that they are instant-on, like incandescents, they are compatible with timers, photocells, and dimmers, and they have a long life of approximately 50,000 hours. CCFLs are an effective and efficient replacement for lighting that is turned on and off frequently with little extended use (for example, in a bathroom or closet).

A few manufacturers make CFL bulbs with mogul Edison screw bases intended to replace 250- and 400-watt metal halide lamps, claiming a 50% energy reduction; these lamps require rewiring of the lamp fixtures to bypass the lamp ballast.[37]

[edit] Disadvantages

[edit] Starting time

Incandescents reach full brightness a fraction of a second after being switched on. As of 2009, CFLs turn on within a second, but many still take time to achieve full brightness.[38] The light color may be slightly different immediately after being turned on.[39] Some CFLs are marketed as "instant on" and have no noticeable warm-up period,[40] but others can take up to a minute to reach full brightness,[41] or longer in very cold temperatures. Some that use a mercury amalgam can take up to three minutes to reach full output.[40] This and the shorter life of CFLs when turned on and off for short periods may make CFLs less suitable for applications such as motion-activated lighting. Hybrid lamps, combining a halogen lamp with a CFL, are available where warm up time is unacceptable. .[42][43] The halogen lamp lights immediately, and is switched off once the CFL has reached full brightness.

[edit] Human health

Main article: Fluorescent lamps and health

According to the European Commission Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) in 2008, CFLs may pose an added health risk due to the ultraviolet and blue light emitted. This radiation could aggravate symptoms in people who

Page 11: Barang

already suffer skin conditions that make them exceptionally sensitive to light. The light produced by some single-envelope CFLs at distances of less than 20 cm could lead to ultraviolet exposures approaching the current workplace limit set to protect workers from skin and retinal damage. Industry sources claim the UV radiation received from CFLs is too small to contribute to skin cancer and the use of double-envelope CFLs "largely or entirely" mitigates any other risks.[44]

A 2012 study comparing cellular health effects of CFL light and incandescent light found statistically significant cell damage in cultures exposed to CFL light. Spectroscopic analysis confirmed the presence of significant UVA and UVC radiation, which the study's authors conjectured was attributable to damage in the bulbs' internal phosphor coatings. No cellular damage was observed following exposure to incandescent light of equivalent intensity. The study's authors suggest that the ultraviolet exposure could be limited by the use of "double-walled" bulbs manufactured with an additional glass covering surrounding the phosphor-coated layer.[45]

[edit] Environmental impact

CFLs, like all fluorescent lamps, contain mercury [46] [47] as vapor inside the glass tubing. Most CFLs contain 3–5 mg per bulb, with the bulbs labeled "eco-friendly" containing as little as 1 mg.[48][49] Because mercury is poisonous, even these small amounts are a concern for landfills and waste incinerators where the mercury from lamps may be released and contribute to air and water pollution. In the U.S., lighting manufacturer members of the National Electrical Manufacturers Association (NEMA) have voluntarily capped the amount of mercury used in CFLs.[50] In the EU the same cap is required by the RoHS law.

In areas with coal-fired power stations, the use of CFLs saves on mercury emissions when compared to the use of incandescent bulbs. This is due to the reduced electrical power demand, reducing in turn the amount of mercury released by coal as it is burned.[51][52] In July 2008 the U.S. EPA published a data sheet stating that the net system emission of mercury for CFL lighting was lower than for incandescent lighting of comparable lumen output. This was based on the average rate of mercury emission for U.S. electricity production and average estimated escape of mercury from a CFL put into a landfill.[53] Coal-fired plants also emit other heavy metals, sulphur, and carbon dioxide.

In the United States, the U.S. Environmental Protection Agency estimated that if all 270 million CFLs sold in 2007 were sent to landfill sites, around 0.13 metric tons of mercury would be released, 0.1% of all U.S. emissions of mercury (around 104 metric tons that year).[54]

The EPA updated their mercury comparison graph in November 2010. The graph assumes that CFLs last an average of 8,000 hours regardless of manufacturer and premature breakage. In areas where coal is not used to produce energy, the content emissions would be less than the power plant emissions for both types of bulb.[55]

[edit] Broken and discarded lampsSee also: Fluorescent lamp recycling

Page 12: Barang

Health and environmental concerns about mercury have prompted many jurisdictions to require spent lamps to be properly disposed of or recycled, rather than being included in the general waste stream sent to landfills. Safe disposal requires storing the bulbs unbroken until they can be processed.

It is unlawful to dispose of fluorescent bulbs as universal waste in the US states of California, Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin.[56] Home-supply chain stores make free CFL recycling widely available.[57]

In the European Union, CFLs are one of many products subject to the WEEE recycling scheme. The retail price includes an amount to pay for recycling, and manufacturers and importers have an obligation to collect and recycle CFLs.

Special handling instructions for breakage are not printed on the packaging of household CFL bulbs in many countries. The amount of mercury released by one bulb can temporarily exceed U.S. federal guidelines for chronic exposure.[58][59] Chronic, however, implies exposure for a significant time, and it remains unclear what the health risks are from short-term exposure to low levels of elemental mercury[59]. Despite following EPA best-practice clean-up guidelines on broken CFLs, researchers were unable to remove mercury from carpet, and agitation of the carpet — such as by young children playing — created localized concentrations as high as 0.025 mg/m3 in air close to the carpet, even weeks after the initial breakage[59].

The U.S. Environmental Protection Agency (EPA) has published best practices for cleanup of broken CFLs, as well as ways to avoid breakage, on its web site.[60] It recommends airing out the room and carefully disposing of broken pieces in a jar. A Maine Department of Environmental Protection (DEP) study of 2008 comparing clean-up methods warns that using plastic bags to store broken CFL bulbs is dangerous because vapors well above safe levels continue to leach from the bags. The EPA and the Maine DEP recommend a sealed glass jar as the best repository for a broken bulb.[61]

According to the Northwest Compact Fluorescent Lamp Recycling Project, because household users in the U.S. Northwest have the option of disposing of these products in the same way they dispose of other solid waste, in Oregon "a large majority of household CFLs are going to municipal solid waste". They also note the EPA's estimates for the percentage of fluorescent lamps' total mercury released when they are disposed of in the following ways: municipal waste landfill 3.2%, recycling 3%, municipal waste incineration 17.55% and hazardous waste disposal 0.2%.[62]

[edit] Mercury poisoning of Chinese factory workers

In the past decade, hundreds of Chinese factory workers who manufacture CFLs for export to first world countries were being poisoned and hospitalized because of mercury exposure. Examples include workers at the Nanhai Feiyang lighting factory in Foshan, where 68 out of 72 were so badly poisoned that they required hospitalization. At another CFL factory in Jinzhou, 121 out of 123 employees were found to have excessive mercury levels, with one employee's mercury level 150 times the accepted standard.[63]

Page 13: Barang

[edit] Recycling

The first step of processing CFLs involves crushing the bulbs in a machine that uses negative pressure ventilation and a mercury-absorbing filter or cold trap to contain mercury vapor. Many municipalities are purchasing such machines.[citation needed] The crushed glass and metal is stored in drums, ready for shipping to recycling factories.

[edit] Greenhouse gases

In some places, such as Quebec and British Columbia, central heating for homes is provided by the burning of natural gas, whereas electricity is primarily provided by hydroelectric or nuclear power. In such areas, heat generated by conventional electric light bulbs significantly reduces the release of greenhouse gases from the natural gas.[64] Ivanco, Karney, and Waher estimate that "If all homes in Quebec were required to switch from (incandescent) bulbs to CFLs, there would be an increase of almost 220,000 tonnes in CO2 emissions in the province, equivalent to the annual emissions from more than 40,000 automobiles." Such calculations are based on the implicit assumption that changes in power consumption equally affect the electricity generation in different types of power stations. (The electricity generation mix is assumed to stay unchanged.) In case of hydroelectric and nuclear power stations, which in most cases produce as much electric energy as technically possible (independent of consumption), changes in power consumption may in reality affect the import/export volumes and thus the amount of power generation in other regions, where fossil power plants are used.

[edit] Design and application issues

The primary objectives of CFL design are high luminous efficacy and durability. However, there are some other areas of CFL design and operation that are problematic:

[edit] Size

CFL light output is roughly proportional to phosphor surface area, and high output CFLs are often larger than their incandescent equivalents. This means that the CFL may not fit well in existing light fixtures.

[edit] End of life

In addition to the wear-out failure modes common to all fluorescent lamps, the electronic ballast may fail, since it has a number of component parts. Ballast failures may be accompanied by discolouration or distortion of the ballast enclosure, odors, or smoke.[65] The lamps are internally protected and are meant to fail safely at the end of their lives. Industry associations are working toward advising consumers of the different failure modes of CFLs compared to incandescent lamps, and to develop lamps with inoffensive failure modes.[66] New North American technical standards aim to eliminate smoke or excess heat at the end of lamp life.[67]

Page 14: Barang

[edit] Incandescent replacement wattage inflation

According to an August 2009 newspaper report, some manufacturers claimed that CFLs could be used to replace higher-power incandescent lamps than justified by their light output.[68] Equivalent wattage claims can be replaced by comparison of actual light output produced by the lamp, which is measured in lumens and marked on the packaging.

Only some CF lamps are labeled for dimming control. Using a dimmer with a regular CFL is ineffective and can shorten bulb life and void the warranty.[70][third-party source needed] Dimmable CFLs are available. The dimmer switch used in conjunction with a dimmable CFL must be matched to its power consumption range; many dimmers installed for use with incandescent bulbs do not function acceptably below 40 W, whereas CFL applications commonly draw power in the range 7-20 W. Dimmable CFLs have been marketed before suitable dimmers are available. The dimming range of CFLs is usually between 20% and 90%,[71][unreliable source] but many modern CFLs have a dimmable range of 2% to 100%, more akin to that of incandescent lights. There are two types of dimmable CFL on the market: Regular dimmable CFLs, and "switch-dimmable" CFLs. The latter use a regular light switch, and the on-board electronics chooses the light output level based on the number of times the switch is turned on and off quickly. Dimmable CFLs are not a 100% replacement for incandescent fixtures that are dimmed for "mood scenes" such as wall sconces in a dining area. Below the 20% limit, the lamp may remain at 20% or flicker or the starter circuitry may stop and restart.[72] Above 80%, the bulb may operate at 100%. However, recent products have solved these problems so that they perform more like incandescent lamps. Dimmable CFLs are more expensive than standard CFLs due to the additional circuitry.

A further limitation is that multiple dimmable CFLs on the same dimmer switch may not have the same brightness level, if not of the same manufacturer and type.

Cold-cathode CFLs can be dimmed to low levels, making them popular replacements for incandescent bulbs on dimmer circuits.

[edit] Perceived coldness of low intensity CFL

When a CFL is dimmed, its colour temperature (warmth) stays the same. This is counter to most other light sources (such as the sun or incandescents) where colour gets redder as the light source gets dimmer. The Kruithof curve from 1934 described an empirical relationship between intensity and color temperature of visually pleasing light sources.[citation needed]

[edit] Heat

Some CFLs are labeled not to be run base up, since heat will shorten the ballast's life. Such CFLs are unsuitable for use in pendant lamps and especially unsuitable for recessed light fixtures. CFLs for use in such fixtures are available.[73] Current recommendations for fully enclosed, unventilated light fixtures (such as those recessed into insulated ceilings), are either to use "reflector CFLs" (R-CFL),[74][75] cold-cathode CFLs or to replace such fixtures with those designed for CFLs.[74] A CFL will thrive in areas that have good airflow, such as in a table lamp.[76]

Page 15: Barang

[edit] Power quality

The introduction of CFLs may affect power quality appreciably, particularly in large-scale installations. The input stage of a CFL is a rectifier, which presents a non-linear load to the power supply and introduces harmonic distortion on the current drawn from the supply.[77][78] In such cases, CFLs with low (below 30 percent) total harmonic distortion (THD) and power factors greater than 0.9 should be used

Infrared signals

Electronic devices operated by infrared remote control can interpret the infrared light emitted by CFLs as a signal; this may limit the use of CFLs near televisions, radios, remote controls, or mobile phones. Energy Star certified CFLs must meet FCC standards, and so are required to list all known incompatibilities on the package. [82][83]

[edit] Iridescence

CFLs can cause window film to exhibit iridescence. This phenomenon usually occurs at night. The amount of iridescence may vary from almost imperceptible, to very visible and most frequently occurs when the film is constructed using one or more layers of sputtered metal. It can however occur in non-reflective films as well. When iridescence does occur in window film, the only way to stop it is to prevent the fluorescent light from illuminating the film.

[edit] Use with timers, motion sensors, light sensors, and other electronic controls

Some electronic (but not mechanical) timers can interfere with the electronic ballast in CFLs and can shorten their lifespan.[82] Some timers rely on a connection to neutral through the bulb and so pass a tiny current through the bulb, charging the capacitors in the electronic ballast. They may not work with a CFL connected, unless an incandescent bulb is also connected. They may also cause the CFL to flash when off. This can also be true for illuminated wall switches and motion sensors. Also, most CFLs will not work with light sensor devices, as in a "dusk to dawn" device. Cold-cathode CFLs avoid many of these problems. Timer manufacturers may make products compatible with CFLs.[citation needed]

[edit] Fire hazard

When the base of the bulb is not made to be flame-retardant, as required in the voluntary standard for CFLs, overheating of the electrical components in the bulb may create a fire hazard

CFLs are generally not designed for outdoor use and some will not start in cold weather. CFLs are available with cold-weather ballasts, which may be rated to as low as −23 °C (−10 °F).[85] Light output drops at low temperatures.[86] Cold-cathode CFLs will start and perform in a wide range of temperatures due to their different design.

Page 16: Barang

[edit] Differences among manufacturers

There are large differences among quality of light, cost, and turn-on time among different manufacturers, even for lamps that appear identical and have the same colour temperature.

Fluorescent lamps get dimmer over their lifetime,[87] so what starts out as an adequate luminosity may become inadequate. In one test by the U.S. Department of Energy of "Energy Star" products in 2003–04, one quarter of tested CFLs no longer met their rated output after 40% of their rated service life.[88][89]

Ultraviolet light can damage paintings and textiles which have light-sensitive dyes and pigment. Display of such objects may require fitting fluorescent lighting with filters to block UV.[90]

[edit] Efforts to encourage adoptionMain article: Phase-out of incandescent light bulbs

Due to the potential to reduce electric consumption and pollution, various organizations have encouraged the adoption of CFLs and other efficient lighting. Efforts range from publicity to encourage awareness, to direct handouts of CFLs to the public. Some electric utilities and local governments have subsidized CFLs or provided them free to customers as a means of reducing electric demand (and so delaying additional investments in generation).

More controversially, some governments are considering stronger measures to entirely displace incandescents. These measures include taxation, or bans on production of incandescent light bulbs that do not meet energy efficiency requirements.

In 2008, the European Union approved regulations progressively phasing out incandescent bulbs starting in 2009 and finishing at the end of 2012. By switching to energy saving bulbs, EU citizens will save almost 40 TW·h (almost the electricity consumption of 11 million European households), leading to a reduction of about 15 million metric tons of CO2 emissions per year.[91]

Australia, Canada, and the United States have also announced plans for nationwide efficiency standards that would constitute an effective ban on most current incandescent bulbs.[92][93][94]

Venezuela and Cuba have launched massive incandescent light bulbs replacement programs in order to save energy. In the case of Venezuela, the government was able to save 2000 MW of electricity in the first six months of the 2006 program called Mission Energy Revolution, which by 2007 replaced 20 million incandescent light bulbs with CFL from a total of an estimated 55 million light bulbs in the country. Cuba replaced all the 11 million light bulbs used on the island.[95] Also, Venezuela signed an agreement with Vietnam, one of the largest producers of CFLs in the world, to establish a factory to supply the future demand and hand-outs of government light bulbs.[96]

The United States Department of Energy reports that sales of CFLs have dropped between 2007 and 2008, and estimated only 11% of suitable domestic light sockets use CFLs.[97][98]

Page 17: Barang

In the United States, the Program for the Evaluation and Analysis of Residential Lighting (PEARL) was created to be a watchdog program. PEARL has evaluated the performance and ENERGY STAR compliance of more than 150 models of CFL bulbs.[99][100]

The UN Environment Programme (UNEP)/Global Environment Facility (GEF) en.lighten initiative has developed The Global Efficient Partnership Program which focuses on country-led policies and approaches to enable the implementation of energy-efficient lighting, including CFLs, quickly and cost-effectively in developing and emerging countries..

[edit] Labeling programs

In the United States and Canada, the Energy Star program labels lamps that meet a set of standards for efficiency, starting time, life expectancy, color, and consistency of performance. The intent of the program is to reduce consumer concerns due to variable quality of products.[101] Those CFLs with a recent Energy Star certification start in less than one second and do not flicker. Energy Star Light Bulbs for Consumers is a resource for finding and comparing Energy Star qualified lamps. There is ongoing work in improving the "quality" (color rendering index) of the light.

General DesignThe general design of a simple fluorescent lamp consists of a sealed glass tube. The tube contains a small bit of mercury and a gas (usually argon) kept under very low pressure. The tube also contains a phosphor powder, coated along the inside of the glass. The tube has two electrodes, one at each end, which are wired to an electrical circuit. The electrical circuit, which includes a starter and ballast, is hooked up to an alternating current (AC) supply.

General Operation:When the lamp is first turned on, the current travels through the path of least resistance, which is

Page 18: Barang

through the bypass circuit, and across the starter switch. This current then passes through the circuit heating up the filament in each electrode, which are located at both ends of the tube (these electrodes are simple filaments, like those found in incandescent light bulbs). This boils off electrons from the metal surface, sending them into the gas tube, ionizing the gas. The mercury vapor becomes "excited" and it generates radiant energy, mainly in the ultraviolet range. This energy causes the phosphor coating on the inside of the tube to fluoresce, converting the ultraviolet into visible light.The Starter:

The starter is basically a time delay switch. Its job is to let the current flow through to the electrodes at each end of the tube, causing the filaments to heat up and create a cloud of electrons inside the tube. The starter then opens after a second or two. The voltage across the tube allows a stream of electrons to flow across the tube and ionize the mercury vapor. Without the starter, a steady stream of electrons is never created between the two filaments, and the lamp flickers.The Ballast:The ballast works mainly as a regulator. They consume, transform, and control electrical power for various types of electric-discharge lamps, providing the necessary circuit conditions for starting and operating them. In a fluorescent lamp, the voltage must be regulated because the current in the gas discharge causes resistance to decrease in the tube. The AC voltage will cause the current to climb on its own. If this current isn’t controlled, it can cause the blow out of various components.

Arthur Johannson asks about Magnatek Ballasts in APD #244. I do not have my catalog at hand, so I am answering his question from memory - a risky endeavor! However, I believe he is describing a very common type of "magnetic" ballast. Magnatek is a very well-known brand of magnetic ballasts. They are well made. Ballasts seem to be poorly understood, and the differences between the various kinds are also poorly understood.

I will stick my neck out, and try to describe how ballasts work, and the differences between them. Again, this is risky, as it is a lot easier to describe these devices with drawings. Also, I am NOT an engineer. This will not be as organized nor as clear as an Engineer would say it, but I will do my best.

The "ballast" for any fluorescent bulb is mostly a current limiting device. Once the "arc" is started between the ends of the tube, an essentially unlimited direct "short circuit" is developed. The best illustration that immediately comes to mind is a bolt of lightning. Lighting does not just suddenly blast a giant spark from cloud to ground. First, in an extremely short time just before the bolt of lightning, an "ion trail" is established between the cloud and the earth. In other words, a "pathway" is established in the air, the pathway made up of "ionized" molecules of the gases that air is made of. Then, the giant "spark," the actual "lightning bolt" follows that pathway in an enormous burst of energy. The loud "Bang" is generated from the suddenly heated air as the spark jumps from ground to cloud. (The main "bolt" most often actually jumps from the ground up to the cloud, not the other way around.) The arc in a fluorescent tube is similar, in that it must be controlled to keep a sort of miniature "lightning bolt" from ruining the fluorescent bulb.

Now I will 'backtrack' a bit. If you could take the white "phosphor" coating off of the inside of an ordinary fluorescent bulb, you would see that there is a "filament," a tightly coiled wire, that runs from one of the pins in the end of the bulb to the other pit at that end of the bulb. There is a

Page 19: Barang

"filament" on both ends of the bulb. They are usually covered with a whitish powdery stuff. The powdery stuff is a material that "boils off" lots of electrons when heated. The filament is the thing that actually "fails" when a fluorescent bulb wears out. Either the filament burns out, or all of the powdery stuff has "boiled off"

What is in the clear space from one end of the bulb to the other? That depends upon several Engineering decisions made by the folks that designed that particular bulb. However, it is always a pretty good vacuum, with a small amount of some gas or other. If you look at a Neon sign that is not lit, it has a pretty good vacuum, with a teeeny tiny bit of Neon gas. It looks like just "clear glass" until it is lit. When an arc of electrons passes through that gas, it glows with the familiar reddish orange "NEON" color. In the fluorescent bulb, you get an arc that generates ultraviolet light. The Ultraviolet from the arc bangs right up against that white powder that coats the inside of the bulb, and the powder glows. Electricity passes through the very thin, almost a vacuum, gas in the bulb, generating ultraviolet light, which bangs into the powder, which generates visible light. Ultraviolet light has a very short wavelength, and we cannot see it. (Bees and many other insects, on the other hand, have really tiny eyes, and they see ultraviolet light just fine! In fact, flowers (that show pretty colors to our big eyes) reflect the Ultraviolet light in sunlight very strongly, and appear "bright bee white" to a honey bee. We see colors, they see "white.") ( :-) )

When a fluorescent bulb is "started," one or both of the filaments at the ends of the bulb is heated by electricity, and "boils off" a cloud of electrons, which quickly moves down the tube until this cloud of electrons fills the bulb. (actually, the electrons "ionise" the gas in the bulb, just like the ion trail that forms the path for a lightning bolt) Then the arc jumps from one end of the bulb to the other, and the bulb is "lit."

Without the ballast, the arc would be a direct "short circuit" between the ends of the bulb, and a huge blast of electricity would jump through the bulb, and it would either instantly burn up the filaments, or the bulb would literally explode. Rather like the lightning bolt I mentioned earlier. An uncontrolled arc through a fluorescent bulb is BIG trouble for the bulb! Actual bulb explosions from a "shorted ballast" are very rare, but they can happen. Most often, if the "ballast" in a fluorescent fixture fails by shorting out, you hear a loud "pop," accompanied by a very bright flash from the bulb, then nothing. No noise, no light. The bulb has burned out. (Actually, the filaments were destroyed by the suddenly uncontrolled big arc.)

The ballast regulates, or controls, the flow of current through the arc, one way or another. The magnetic ballast literally "chokes" off the current at a set point. It does this by taking advantage of some basic physics. Remember, the electric power in your home is (depending upon what country you live in) either 50 or 60 cycle alternating current. In a "cycle," the flow of electicity goes from no flow at all, up to a set voltage, then back to zero, then goes THE OTHER WAY, from zero up to the set voltage, then back to zero. The current in that arc in the bulb does the same thing. It goes from zero to maximum, back to zero, then the other way, then back to zero. The ultraviolet light from the arc also goes from zero to maximum, back to zero, up to maximum, then back to zero. The glow from the phosphor powder coating the inside of the bulb does the same thing, except the powder never completely stops glowing.

Page 20: Barang

An alternator, for example the one in your automobile, often spins magnets inside a set of coils of wire. Any time a wire moves through a magnetic field, it generates an "ElectroMotive Force," a force measured in volts. The amount of the force (voltage) depends upon how strong the magnetic field is, and how FAST the wire moves through the field. Or, you could move the magnet, and let the wire stand still. It does not matter which is moving, the magnet, or the wire.

If you pass a current of electricity through a wire, it generates a magnetic field. Since one of the most basic Laws of Physics can crudely be stated as "There ain't no such thing as a free lunch," that magnetic field is exactly opposite to that magnetic field that we were moving the wire through just a moment ago. If the ends of the wire (or the ends of a coil made of many turns of wire) are connected, an electrical current is generated when you move the coil through a magnetic field. Or, you could move the magnetic field past the coil. Is does not matter which is moving. Yes, I suppose you could move both of them at the same time if you wished. ( :-) ) And, any time an electric current moves through a wire, it generates a magnetic field.

The most difficult concept for most of us is, both things happen at the same time. You generate a current in the coil of wire by moving it through a magnetic field, and then that current in the coil of wire generates another magnetic field. That magnetic field is exactly opposite to the magnetic field you are moving the wire through to generate the current. The magnetic fields "fight", as does the current. I did not say that particularly well. Sorry!

In a magnetic ballast, the rapid changes in current direction (the "cycles per second," or "Hertz") makes equally rapid changes in the magnetic field generated by the coil of wire in the ballast. The magnetic field reverses 120 times a second. (Each "cycle" or "Hertz" goes from zero up, than back to zero, then the other way, then back to zero.) The corresponding current in the arc in the bulb is doing the same thing.

The "fighting" magnetic fields and currents in the magnetic ballast "fight" much stronger as the amount of current flowing through the ballast increases. This "fighting" impedes, or chokes, the current flow. An individual ballast is designed by the Engineers so that it will let just exactly the right amount of current through to light that particular fluorescent bulb, but not let too much current through. It gets hot from the effects of the "fight." That heat is totally wasted electricity. You pay for it, but you don't get any light from it. Magnetic Ballasts are lots simpler and cheaper to make than Electronic Ballasts. That is probably why they are used so much.

Now, lets go to the actual generation of the light. The white coating on the inside of the tube, the phosphor, glows from the ultraviolet light generated from the arc. The arc goes from zero, up to a maximum, then back to zero, then the other way, than back to zero. So does the Ultraviolet light. So does the light from the glowing phosphor! The phosphor is a bit goofy, though. It does not quite stop glowing between current pulses. It almost stops, but not quite. If you are in a dark room, you can wave your hand under a single fluorescent bulb, and you will see multiple hands, as the light turns on and off and on and off, following the current cycles. A "strobe" light turns on and off very abruptly and completely. The fluorescent bulb is kind of lazy, and does not turn either on or off all that quickly. Its brightness depends mostly upon a combination of the phosphors used, and upon the amount of current flowing through it. Too much current, and the filaments will burn up. Too little, and you don't get much light.

Page 21: Barang

In a common magnetic ballast, you start the arc by flowing a current through the filaments, heating them until enough electrons have boiled off to "start" the bulb. Once the bulb is started, the filaments stop glowing, and the light comes entirely from the arc. Starting a "pre-heat" bulb can be accomplished by using the common "starter," which looks like a very small aluminum can with two pins on one end, or by using a "starter switch." If your light is started with the switch, you hold the button down for a few seconds, then release it. If you watch the bulb at the same time, you will see the ends of the bulb start to glow, first very dimly, then brighter. When you release the switch, you change the flow of the current from through the filaments to through the bulb itself. The "starter" does this for you automatically. The hand starting switch is lots cheaper to make than the circuitry and the socket for the "starter." It also takes a lot less room in the "hood" or reflector over your tank.

In a "rapid start ballast," a differently designed fluorescent bulb is used. "Rapid Start" bulbs are designed to be started by Rapid Start Ballasts. In these, a small current always flows through the filaments. The inside of the bulb - the amount of vacuum, the gases, etc. - is designed to start the arc very very quickly, without much heating of the filaments. Most "Pre-Heat" bulbs will not start with magnetic rapid start ballasts. Some can be induced to start by rubbing the bulb from end to end, thus capacitatively inducing the arc. If you do get a Pre-Heat bulb to work with a rapid start ballast, the end or ends of the bulb will get really black really soon. This is because the filaments always have a current going through them, something that does not happen with the normal "pre-heat" ballast. Interestingly enough, Rapid Start Fluorescent Bulbs work just fine with either the hand start switch or the "starter." It just does not work the other way! Rapid Start ballasts are made in Magnetic, Electronic, or Hybrid kinds. They don't look any different on the outside. The differences are inside.

Why The Electronic Ballast Gives More Light For The Same Amount Of Electricity

Remember how the bulb flickers, up to maximum brightness, then almost to zero, then up, then down, over and over? Well, the Electronic Ballast does its wizardry and changes the 50 or 60 cycle alternating current into (usually) 400 cycle alternating current. This (to make a very crude analogy) keeps the bulb phosphor glowing at almost the peak brighness almost all of the time. The current cycles back and forth, going up and down 800 times a second, and the phosphor never has a chance to quit glowing like it did on ordinary alternating current. Another advantage to the Electronic Ballast is the fact that is wastes very little electricity as useless heat. The new Electronic Ballasts we are installing here in the Aquarium Center draw slightly over 60 watts of total energy. Yet, they light two, 40 watt bulbs, and light them much brighter than the Magnetic Ballasts they are replacing. The Magnetic Ballasts draw more than a hundred watts of electicicy to light two, 40 watt bulbs. They waste a lot of electricity as heat. And, the bulbs are not nearly as bright!!

During the Iowa State Fair, there is a severe voltage drop in our area. Too many other exhibitors, all drawing electricity from under-sized main wiring. Anyway, we sometimes have voltages UNDER 100 volts. Many Magnetic Ballasts just quit then. The lights just dim, then go out. They cannot be re-started until late at night, when all of the other current users close up shop and turn

Page 22: Barang

off their lights. The Electronic Ballasts we are now using are very cleverly designed, and give the same amount of light with line voltages from a low of only 90 volts up to over 140 volts.

Why doesn't everybody use Electronic Ballasts? Probably because Magnetic Ballasts are cheaper to make and install.

What About High Output And Very High Output Fluorescent Bulbs?

High Output bulbs and Very High Output bulbs are just bulbs designed for much higher current arcs. A 24 inch long, 40 watt High Output fluorescent bulb needs the same amount of current as a 48 inch long standard fluorescent bulb. Don't try to use a 40 watt magnetic ballast on a 24 inch, 40-watt High Output bulb. It probably will not work. Some newer magnetic ballasts will work, not as well as a proper ballast, but they will work. Sort of. At least some of our old ballasts won't work at all with such bulbs. You turn on the light, and exactly nothing happens. We found both "Hybrid" 40 watt Rapid Start Ballasts and Electronic 40 watt Rapid Start Ballasts worked just fine with 24 inch long, 40 watt High Output bulbs. (I have a friend who is a Licensed Professional Engineer, with a PhD in Electronic Engineering who told me to try the Electronic Ballasts.) If you watch Electronic Ballasts as they are starting bulbs, they seem to work really weird. They "pulse" current through the filaments to start the bulbs, then turn off the filament current when the bulbs start. You can see this happen if you only have the pins on one end of the bulb connected to the ballast. The filaments at the ends of the bulb glow bright then dim then bright and so on. (This can happen if you are using those rubber "plug in" special aquarium end caps. You don't always get the pins lined up just right.)

``Ice Cap Electronic Ballasts are very good ballasts.'' My friend tells me it is entirely possible to make an Electronic Ballast that can "sense" what kind of bulb is connected to it, and automatically regulate the current in the arc to the right level. I have never tried an Ice Cap, but I would guess they are designed to operate that way.

Ordinary Electronic Ballasts are a lot cheaper!!!! We are paying from #39.50 up to about $44.00 each for the Electronic Ballasts we are using. (That is wholesale from Grainger.) There are Electronic Ballasts made for all sorts of fluorescent bulbs. You can get them to light only one bulb. Or, light two bulbs at once. Or, you can get them to light two or even three bulbs, each bulb lighting all by itself. The advantage of that is, just because one bulb "wears out," the others will keep on working all by themselves. You pretty much get what you want, and are willing to pay for.

Do You Really Get All That Much More Light From High Output Bulbs?

Sort of. There is no such thing as a free lunch!!! The bulbs are much brighter, but they also draw much more electic current. The lighting engineers say you want "the most Lumens per Watt," I would say "Most Bang for the Buck." The bottom line seems to be you get pretty much the same Lumens per Watt from any Electronic Ballast with any combination of bulbs. It takes more bulbs with "standard" 40 watt bulbs, fewer bulbs with High Output and Very High Output bulbs. The amount of electricity used per actual Lumen of light output is just about the same, no matter which bulbs you use. We found here that High Output Bulbs "leak" more Ultraviolet light, which

Page 23: Barang

actually burned some corals before we figured out what was happening. All Electronic Ballasts are brighter than Magnetic Ballasts. As far as I know, there are no exceptions to this rule.

Should you buy Ice Caps? Darned if I know! They sure seem expensive! My Engineer friend thinks they are pretty "pricey." They work very well indeed, and have some good safety features built in. They turn off automatically if you have a dangerous current leakage. So does any properly installed Ground Fault Interrupter. Tunze makes excellent stuff, so does Dupla. Expensive stuff! Is it worth the money? Again, I simply do not

Lampu Hemat Energi & Ballas ElektronikLatar BelakangSesuai Keputusan Presiden RI. No. 43 Th 1991 Tentang Konversi Energi, maka Perusahaan Umum Listrik Negara (PLN) selaku penyedia dan pengelola energi listrik di Indonesia telah melakukan salah satu kegiatan penelitian untuk dapat mewujudkan konservasi energi khususnya dalam hal penggunaan lampu penerangan dengan sumber energi listrik. Sejalan dengan keinginan pemerintah, sejarah teknologi perlampuan pada dekade Th 90-an telah menghasilkan lampu penerangan yang hemat energi yang umum digunakan oleh masyarakat. Diharapkan dalam pelaksanaan Pembangunan Jangka Panjang II yang baru mulai dilaksanakan pada Tahun Anggaran 1994/1995, sistem penerangan listrik sudah dapat menjangkau pada daerah-daerah pelosok di tanah air yang pada akhirnya dapat meningkatkan taraf hidup yang memadai sesuai yang dicita-citakan dalam kehidupan berbangsa dan bernegara. 

Kenyataan yang dihadapi saat ini, masyarakat masih banyak yang belum mengenal atau belum memahami apa yang dimaksud dengan Lampu Hemat Energi (LHE) dan Ballas Elektronik (BE). Masyarakat cenderung memilih lampu yang murah dan mudah sisapat di pasaran, namun kenyataannya tidak hemat energi, yaitu lampu jenis pijar (Incandescent). Dengan bertitik tolak hal tersebut diatas, penulis mencoba membahas dan menganalisa untuk kemudian dapat memperoleh kesimpulan yang baik dengan harapan dapat bermanfaat bagi masyarakat luas.

Seperti telah diuraikan diatas bahwa jenis yang dimaksud jenis LHE adalah lampu jenis Fluorescen atau lebih dikenla dengan lampu neon. Sekarang ini yang sedang populer dan giat-giatnya dipublikasikan oleh para produsen perlampuan adalah lampu fluorescen model SL & PL. Lampu model SL & PL pada prinsipnya secara teknis sama dengan model lampu jenis fluorescen biasa yaitu efficacy lampu berkisar 60 Lumen/W, hanya keistimewaan mempunyai bentuk yang ringkas, tidak memanjang seperti lampu fluorescen biasa, komponen elektrisnya yang terdiri dari ballas, capasitor dan stater terpadu dalam suatu kesatuan dalam lampu dan disebut model SL, sedangkan model PL untuk komponen elektrisnya terpisah dari lampu . Bentuk kaki lampu dibuat sama seperti pada kaki lampu pijar yaitu dengan sistem ulir dengan ukkuran standar E.27. Hal ini dimaksudkan untuk memudahkan penggantian pada lampu pijar diubah menjadi lampu fluorescen . Ada juga lampu fluorescen model ring yang kaki lampunya diubah mengikuti seperti lampu pijar, yaitu sistem ulir ukuran standar E.27. 

Renderasi warna (Colour rendering) dapat dipilih berbagai masam sesuai yang diinginkan oleh konsumen, Bila diinginkan warna cahaya seperti lampu pijar maka dapat dipilih dengan indeks renderasi warna yang tinggi, karena warna pada lampu pijar adalah warna standar / acuanyang mendekati warna cahaya dengan spektrum yang lengkap seperti pada sinar matahari. 

Page 24: Barang

Selain itu bila diinginkan warna cahaya lain seperti warna white, cool white, day ligh, dll, maka hal ini lebih dimungkinkan didapat pada lempu fluorescen dibandingkan dengan lampu pijar yang hanya mempunyai satu jenis redensi warna. 

Umur lampu fluorescen adalah 8000 jam, lebih lama bila dibandingkan dengan umur lampu pijar yang hanya 1000 jam.

Lampu pendar adalah salah satu jenis lampu lucutan gas yang menggunakan daya listrik untuk mengeksitasi uap raksa.[1] Uap raksa yang tereksitasi itu menghasilkan gelombang cahaya ultraungu yang pada gilirannya menyebabkan lapisan fosfor berpendar dan menghasilkan cahaya kasatmata.[1] Lampu pendar mampu menghasilkan cahaya secara lebih efisien daripada lampu pijar.

Lampu pendar dikenal dalam dua bentuk utama.[3] Yang pertama berbentuk tabung panjang atau yang umum dikenal dengan lampu TL (tubular lamp) atau lampu neon dan yang kedua berukuran lebih kecil dengan tabung ditekuk menyerupai spiral, umum disebut dengan sebutan lampu hemat energi (LHE).[3]

Karena lampu pendar memiliki efisiensi lebih tinggi daripada lampu pijar, pemerintah Indonesia pernah mencanangkan program penggantian lampu pijar dengan lampu pendar secara gratis.[4] Namun seiring dengan kemajuan teknologi, efisiensi pencahayaan diode cahaya atau lebih dikenal dengan lampu LED mulai setara dengan efisiensi pencahayaan lampu pendar walaupun harus dalam kondisi tertentu.

Fenomena pendaran (fosforesens) pada beberapa jenis batu dan material lain selama ratusan tahun, bahkan sebelum dipahami cara kerjanya.[6] Sejak pertengahan abad XIX, eksperimen memperlihatkan suatu nyala terjadi dari bejana kaca hampa udara yang dilewati arus listrik.[6] Penjelasan pertama kali dilakukan sekitar tahun 1845 oleh ilmuwan berkewarganegaraan Inggris, Sir George G. Stokes dari Universitas Cambridge.[6] Dia menamakan fenomena ini sebagai fluorescence dari kata flourite, yaitu nama sebuah mineral yang dapat berpendar.[6] Penjelasan ini berdasarkan sifat alamiah listrik dan fenomena cahaya yang dikembangkan pada tahun 1840an oleh Michael Faraday dan James Clerk Maxwell, keduanya ilmuwan dari Inggris.[6]

Pada tahun 1857, seorang ilmuwan dari Perancis, Alexandre E. Becquerel menginvestigasi dua macam fenomena pendaran (fosforesens dan fluoresens).[7] Dia berteori tentang pembuatan tabung pendaran serupa dengan yang dibuat pada masa kini.[7] Becquerel bereksperimen dengan melapisi tabung vakum dengan material yang dapat berpendar dan kemudian menjadi dasar pengembangan lampu pendar selanjutnya.[7]

[sunting] Lampu generasi awal

Lampu pendar pertama dipatenkan dengan dokumen paten U.S. Patent No. 889,692 pada tahun 1901 oleh Peter Cooper Hewitt (1861-1921), seorang berkebangsaan Amerika Serikat.[7] Lampu pendar tersebut bekerja dengan uap raksa tekanan rendah dan adalah prototipe pertama dari lampu pendar masa kini.[7] Lampu tersebut digunakan untuk studio fotografi dan industri.[7]

Page 25: Barang

Pada tahun 1927, Edmund Germer, Friedrich Meyer, dan Hans Spanner mematenkan lampu dengan uap bertekanan tinggi dengan U.S. Patent No. 2,182,732 dan berikutnya George Inman bekerja sama dengan General Electric (GE) untuk membuat lampu pendar yang praktis.[7] Lampu tersebut pertama dijual pada tahun 1938 dan dipatenkan pada tanggal 14 Oktober 1941 dengan U.S. Patent No. 2,259,040.[7] Paten inilah yang kemudian dianggap menjadi dasar dari pembuatan lampu pendar modern.[7]

Sedangkan lampu hemat energi (LHE) masa kini pertama dikembangkan oleh Edward E. Hammer, seorang insinyur dari General Electric saat terjadi krisis energi tahun 1970an.[8] Walaupun pihak pimpinan GE menyukai rancangan tersebut, mereka memutuskan untuk tidak memasarkannya pada saat itu karena LHE membutuhkan fasilitas produksi baru yang akan memakan biaya $25 juta.[8] Rancangan lampu tersebut pada akhirnya bocor dan disalin oleh pihak-pihak lain.

Sebuah lampu pendar pada dasarnya selalu berbentuk tabung yang panjang terbuat dari kaca, dengan ruang kosong di dalamnya, dan terminal listrik pada ujungnya yang terhubung dengan catu daya.[2] Tabung tersebut dapat dibentuk ke dalam berbagai macam bentuk seperti pada lampu pendar jenis LHE tabung kaca tersebut ditekuk ke dalam bentuk spiral atau bentuk lainnya.[2] Sejumlah kecil raksa ditempatkan di dalam tabung pendar dan tabung tersebut diisi dengan gas argon.[2]

Saat listrik dialirkan melalui tabung tersebut, listrik tersebut mengalir melalui gas argon dan membangkitkan atom-atom raksa dan menyebabkan sebagian di antara atom-atom tersebut menguap.[2] Atom raksa menyerap energi dari elektron-elektron yang bergerak bebas dan menjadi dalam keadaan tereksitasi.[2][1] Atom-atom raksa yang tereksitasi kemudian akan melepaskan energinya dalam bentuk cahaya pada panjang gelombang ultraungu.[1]

Cahaya pada panjang gelombang ultraungu tidak dapat kasatmata dan oleh karena itu lampu pendar mensiasatinya dengan melapisi bagian dalam tabung kaca dengan lapisan fosfor.[2] Fosfor yang terkena energi dari cahaya ultraungu akan berpendar, mengubah cahaya ultraungu menjadi cahaya kasatmata.[1] Fosfor berbentuk serbuk yang berwarna putih yang dapat dilihat pada lampu pendar yang pecah.

Ballas atau pemberat[9] bekerja sebagai pengatur arus listrik. Ballas menyediakan kondisi yang tepat untuk menghidupkan dan mengoperasikan lampu pendar.[1] Jika tegangan listrik pada lampu pendar tidak diatur, maka besar arus listrik yang mengalir melalui lampu akan meningkat pesat dan dapat menyebabkan hancurnya komponen-komponen.[1] Ballas bekerja mengatur tegangan dengan prinsip pembatasan arus.[10]

Ada dua jenis ballas dalam lampu pendar, yang pertama adalah ballas magnetik dan yang kedua adalah ballas elektronik.[2] Ballas magnetik bekerja dengan cara mencekik (bahasa Inggris: choke) arus pada titik yang sudah ditentukan berdasarkan siklus arus bolak-balik pada frekuensi jala-jala sumber, atau 50/60Hz.[10] Sedangkan ballas elektronik menggunakan komponen-komponen elektronik aktif untuk membatasi arus dan bekerja pada frekuensi yang lebih tinggi (sekitar 25KHz).[10] Beberapa orang mungkin dapat melihat kedipan cepat pada lampu pendar yang menggunakan ballas magnetik namun tidak untuk lampu yang menggunakan ballas elektronik.[10]

Page 26: Barang

Ballas elektronik pada umumnya juga dapat menghidupkan lampu dengan lebih cepat, dengan lebih sedikit gangguan, dan dengan daya yang lebih rendah, sehingga membuat lampu pendar bekerja lebih efisien daripada ballas magnetik.[

Ketika jaringan listrik masih terbatas, manusia menggunakan obor untuk menerangi lingkungan di sekitarnya pada malam hari. Sebagian dari mereka ada pula yang menggunakan lampu tempel (teplok) berbahan bakar minyak tanah. Beberapa dari mereka juga menggunakan lampu yang dikenal dengan petromaks, yaitu lampu berbahan bakar spirtus (parafin).2. Lampu fluorescentLampu fluorescent atau lebih dikenal dengan TL atau lampu neon masih banyak digunakan karena konsumsi daya yang dipakai relatif lebih kecil ketimbang lampu bohlam. Sebagai perbandingan, sebuah penelitian menunjukkan 32 watt lampu neon dapat menghasilkan cahaya 1.700 lumen pada jarak 1 meter, sedangkan 75 watt lampu bohlam biasa menghasilkan 1.200 lumen. Tak pelak, penggunaan lampu yang berbentuk silinder memanjang ini lebih dingin ketimbang lampu bohlam.

Sekarang ini juga telah tersedia pelbagai bentuk lampu neon lebih ringkas, yakni model model SL dan PL. Model SL memiliki komponen elektrik yang terdiri dari ballas (berupa induktor), kapasitor, dan stater yang berpadu dalam satu kesatuan, sedangkan komponen model PL terpisah dari lampu.

Bentuk kaki lampu neon tersebut menggunakan sistem ulir dengan ukuran standar E.27. Desain itu untuk memudahkan penggantian dari lampu pijar ke lampu neon. Di pasaran, ditawarkan beberapa warna lampu neon semisal putih dan terang (seperti sinar matahari). Umur lampu neon adalah 8.000 jam, lebih lama ketimbang umur lampu pijar yang hanya 1.000 jam. frans ekodhanto

Rangkaian lampu TL. Rangkaian lampu TL ini menggunakan transistor 2N3055 dan beberapa rangkaian passip lainnya. Jika diperhatikan sekilas rangkaian ini cukup sederhana, tetapi saat Anda mencoba merakitnya mungkin Anda akan mengalami kesulitan dalam pengadaan trafonya. Inti trafo bisa menggunakan batang ferit yang dililit menggunakan kawat email tembaga berdiameter 0,1 mm pada sisi skunder (yang ke lampu TL) dan 0,8 mm pada sis primer.

Lampu tabung atau lampu TL (Tubular lamp) yaitu jenis lampu pelepasan gas berbentuk tabung, berisi uap raksa bertekanan rendah. Radiasi ultraviolet yang ditimbulkan oleh ion gas raksa oleh lapisan fosfor dalam tabung akan dipancarkan berupa cahaya tampak (gejala fluorensensi). Elektroda yang dipasang pada ujung-ujung tabung berupa kawat lilitan pijar dan akan menyala bila dialiri listrik.

Lampu TL juga disebut dengan lampu pendar. Lampu pendar adalah salah satu jenis lampu lucutan gas yang menggunakan daya listrik untuk mengeksitasi uap raksa. Uap raksa yang tereksitasi itu menghasilkan gelombang cahaya ultraungu yang pada gilirannya menyebabkan lapisan fosfor berpendar dan menghasilkan cahaya kasat mata. Lampu pendar mampu menghasilkan cahaya secara lebih efisien daripada lampu pijar.

Page 27: Barang

Dalam bidang penerangan, lampu fluorescent atau dikenal juga dengan lampu TL telah digunakan secara luas baik di dalam industri maupun digunakan oleh rumah tangga. Lampu jenis fluorescent atau lampu TL merupakan jenis lampu yang paling banyak digunakan dari semua jenis lampu yang mempunyai prinsip kerja yang sama yaitu pelepasan muatan listrik.

Lampu fluorescent merupakan lampu jenis lampu yang cukup efisien dalam mengubah energi listrik menjadi energi cahaya, terutama jika dibandingkan dengan lampu jenis kawat pijar. Tetapi dengan semakin mahalnya harga energi listrik , akhir–akhir ini telah banyak diperkenalkan lampu–lampu jenis fluorescent dengan berbagai bentuk dan ukuran yang ternyata cukup hemat akan penggunaan energi listrik. Salah satunya adalah lampu fluorescent dengan ballast kumparan berinti besi.

Indonesia sedang krisis energi, tak terkecuali energi listrik. Marilah sekrang kita menghemat energi listrik dengan rangkaian lampu TL.