BAHAN KAJIAN MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr Ir Soemarno...

44
BAHAN KAJIAN MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan: Prof Dr Ir Soemarno MS PMPSLP PPSUB Agustus 2010

description

BAHAN KAJIAN MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr Ir Soemarno MS PMPSLP PPSUB Agustus 2010. DEFINITION AND BOUNDING . Alam bidang Lingkungan: - PowerPoint PPT Presentation

Transcript of BAHAN KAJIAN MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr Ir Soemarno...

Page 1: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

BAHAN KAJIAN MK. PERENCANAAN LINGKUNGAN

INDEKS KUALITAS LINGKUNGAN

Disajikan:Prof Dr Ir Soemarno MS

PMPSLP PPSUB Agustus 2010

Page 2: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

DEFINITION AND BOUNDING

Alam bidang Lingkungan:

Penentuan apakah suatu masalah lingkungan akan menjadi lebih “baik” atau menjadi lebih “buruk” ; maka INDEKS memegang peranan komunikasi yang sangat penting

INDEKS …………… Untuk menyederhanakan

INDEKS atau INDIKATOR : Sarana yang disarakna untuk mereduksi banyak data dan informasi hingga menjadi bentuk yang paling sederhana , namun makna esensinya masih tetap ada.

Page 3: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

PERANAN INDEKS

Dalam Proses Pemantauan Lingkungan diperlukan dan digunakan DATA dan INFORMASI

Data dan Informasi ini harus dapat diterjemahkan menjadi bentuk yang mudah dipahami maknanya

INDEKS LINGKUNGAN dapat dipakai untuk:1. Melukiskan trend / kecenderungan kualitas lingkungan2. Menegaskan adanya kondisi dan masalah lingkungan yang

signifikan3. Proses penggunaan data teknis dalam pengambilan

keputusan oleh POLICY MAKER.

Dalam proses penyederhanaan DATA dan INFORMASI inilah diperlukan konsep tentang “INDEKS LINGKUNGAN”.

Page 4: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

PENTINGNYA INDEKS LINGKUNGAN

Empat peranan penting Indeks Lingkungan:1. Membantu dalam perumusan kebijakan2. Sarana untuk mengevaluasi efektivitas program

lingkungan3. Membantu dalam mendisain program lingkungan4. Mempermudah komunikasi dengan publik sehubungan

dengan kondisi lingkungan

Enam macam penggunaan Indeks Lingkungan:1. Alokasi sumberdaya2. Penyusunan urutan/ peringkat lokasional3. Pengam,anan baku mutu4. Trend analysis5. Informasi publik6. Kajian-kajian ilmiah

Page 5: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

BAHASA INDEKS

Dalam Konteks Matematika: VARIABEL, nilainya beragamDalam Profesi Lingkungan: PARAMETER = Environmental variable, menyatakan kualitas lingkungan yang diukur

INDEKS LINGKUNGAN:

Kadangkala melibatkan variabel polutan yang mencerminkan jumlah polutan yang dilepaskan ke dalam lingkungan, dan tidak melibatkan kuantitas polutan yang sebenarnya ada di dalam lingkungan

Variabel Polutan: Kuantitas fisik, KImia atau biologi yang dimaksudkan sebagai ukuran pencemaran lingkungan

Misalnya: Konsentrasi SO2 dalam atmosfer

Page 6: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

VARIABEL POLUTAN

Variabel sumber polutan: Tidak dapat mencerminkan kondisi lingkungan yang sebenarnya

Variabel Polutan mencakup makna:1. Variabel mutu lingkungan2. Variabel sumber polutan

Variabel polutan mutu lingkungan:

Menyatakan Keadaan Lingkungan ; mengukur kondisi ambien lingkungan yang aktual

Page 7: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

INDIKATOR LINGKUNGAN

Indikator Lingkungan merupakan Kuantitas tunggal yang diturunkan dari satu variabel polutan dan dipakai untuk mencerminkan (mempresentasikan) beberapa atribut lingkungan.

Misalnya: Indikator taraf pencemaran SO2 = banyaknya hari dimana konsentrasi SO2 atmosfer melampaui baku mutu

Beberapa indikator yang disajikan secara bersamaan untuk memberikan gambaran tentang kondisi lingkungan, disebut:

PROFIL KUALITAS LINGKUNGAN

Indikator lingkungan dapat disajikan secara individual atau diagregasikan secara matematik, membentuk suatu INDEKS LINGKUNGAN

Page 8: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

PROFIL KUALITAS LINGKUNGAN

Contoh: ENVIRONMENTAL QUALITY PROFILE (1976) Oleh: EPA SEATLE REGIONAL OFFICE

Untuk melaporkan pelanggaran mutu udara digunakan dua indikator:

1. Banyaknya hari selama mana baku mutu udara ambient terlampaui

2. Keparahan taraf pelanggaran baku mutu

Untuk melaporkan pelanggaran mutu air digunakan dua indikator:

1. Panjang sungai yang tidak memenuhi baku mutu ambient2. Keparahan pelanggaran baku mutu

Page 9: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

CONTOH PROFIL LINGKUNGAN

Komponen Indikator Trend.

AIR Panjang sungai yg tidak sesuai baku mutu x Improving Keparahan Pelanggaran baku mutu x Improving

UDARA Jumlah hari pelanggaran baku mutu x ImprovingKeparahan pelanggaran baku mutu x Improving

RADIASI Near term exposure x Tidak ada perubahan

PESTISIDA Konsentrasi dalam makanan dan air x Improving

LIMBAH % Populasi yang terpengaruhi x ImprovingPADAT

NIOSE Jumlah orang yg terkena dampak Serius Worsening

Keterangan: (x) perlu tindakan penanganan

Page 10: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

VARIABEL KUALITAS AIR

1. TROPH: Trophic Conditions = Intensitas aktivitas biologisyg berlebihan dinyatakan oleh air yang keruh, pertumbuhan algae yang subur dan juga gulma air

2. DO = dissolved oxygen; jumlah oksigen yang terlarut dalam air

3. TEMP: suhu air mengendalikan sifat bentuk-bentuk kehidupan dan laju reaksi kimia

4. pH: ukuran kemasaman air5. TDG: Total Dissolved Gases; ukuran konsentrasi gas-gas

yang larut dalam air, dapat mempengaruhi metabolisme bentuk-bentuk kehidupan air

6. TDS: Total dissolved solids; ukuran mineral non-gas yang larut dalam air, RELATIVE SALTINESS

7. BACT: Bacteria, Kemungkinan adanya organisme dan virus penyebab penyakit yang tidak bersifat alamiah dalam air, berasal dari pencernaan hewan dan manusia

8. AEST: Aesthetics, minyak, pelumas, sedimen dan bahan lain yang dapat dideketsi

9. RAD: Radioaktivitas10. Otox: Organic Toxicants, Pestisida, dll11. INTOX: Inorganic toxicant, Logam berat

Page 11: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

INDIKATOR KUALITAS UDARA

1. BAKU MUTU PRIMER: Ditetapkan pada taraf yang dirancang untuk melindungi

public health

2. BAKU MUTU SEKUNDER: Ditetapkan untuk melindungi efek polusi udara yang tidak berkaitan dengan kesehatan

Enam Macam Polutan Penting:1. Karbon Monoksida2. Nitrogen Oxides3. Hidrokarbon4. Oksidan Fotokimia5. Partikulat6. Sulfur Oksida

Page 12: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

KARBON MONOKSIDA: CO

Tidak berwarna, tidak berbauHasil pembakaran yang terjadi secara tidak lengkapMisalnya pembakaran bahan bakar dalam mesin

CO diikat oleh haemoglobin, sehingga mengganggu kemampuan Hb darah untuk mengikat oksigen.Akibatnya akan mengganggu suplai oksigen ke dalam otak

Gangguan fungsi mentalGangguan persepsi visualGangguan Alertness

Gangguan fungsi jantung:Memperlemah kontraksi jantung sehingga suplai darah ke seluruh tubuh berkurang, sehingga kapasitas kerja menurun

Page 13: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

. Daily Chemical Transformations Occurring in the Formation of Photochemical Smog

http://mtweb.mtsu.edu/nchong/Smog-Atm1.htm

Page 14: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

NITROGEN OXIDES: NOx

Berasal dari proses pembakaran suhu tinggi , industri kimia

Dapat mengganggu kesehatan dan kapasitas kerja

Oksida nitrogen bersama dengan hidrokarbon, melalui reaksi katalisis cahaya matahari, menjadi oksidan fotokimia, menjadi SMOG

Mengganggu pernafasan dan iritasi mata

Mempengaruhi jaringan paru-paru, peka influenza

Page 15: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

Chemical Transformations of Nitrogen Oxides in the Troposphere

http://mtweb.mtsu.edu/nchong/Smog-Atm1.htm

Page 16: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

HIDROKARBON

CH: Alkana, Alkena, AlkinaSumber: Mesin kendaraan bermotor

Bagaimana perilaku partikulat hidrokarbon di udara? …..

Pembentukan Kabut Fotokimia:………………………

Polycyclic aromatic hydrocarbons (PAHs), also known as poly-aromatic hydrocarbons or polynuclear aromatic hydrocarbons, are potent atmospheric pollutants that consist of fused aromatic

rings and do not contain heteroatoms or carry substituents. Naphthalene is the simplest example of a PAH. PAHs occur in oil,

coal, and tar deposits, and are produced as byproducts of fuel burning (whether fossil fuel or biomass). As a pollutant, they are

of concern because some compounds have been identified as carcinogenic, mutagenic, and teratogenic.

PAHs are also found in cooked foods. Studies have shown that high levels of PAHs are found, for example, in meat cooked at high temperatures such as grilling or barbecuing, and in smoked fish.

http://en.wikipedia.org/wiki/Polycyclic_aromatic_hydrocarbon

Page 17: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

CHEMISTRY OF PAH

The simplest PAHs, as defined by the International Union of Pure and Applied Chemistry (IUPAC) (G.P Moss, IUPAC nomenclature for fused-ring systems), are phenanthrene and anthracene, which both

contain three fused aromatic rings. Smaller molecules, such as benzene, are not PAHs.

PAHs may contain four-, five-, six- or seven-member rings, but those with five or six are most common. PAHs composed only of six-

membered rings are called alternant PAHs. Certain alternant PAHs are called benzenoid PAHs.

The name comes from benzene, an aromatic hydrocarbon with a single, six-membered ring. These can be benzene rings interconnected with

each other by single carbon-carbon bonds and with no rings remaining that do not contain a complete benzene ring.

The set of alternant PAHs is closely related to a set of mathematical entities called polyhexes, which are planar figures composed by

conjoining regular hexagons of identical size.

http://en.wikipedia.org/wiki/Polycyclic_aromatic_hydrocarbon

Page 18: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

CHEMISTRY OF PAH

PAHs containing up to six fused aromatic rings are often known as "small" PAHs, and those containing more than six aromatic rings are called "large" PAHs. Due to the availability of samples of the various small PAHs, the bulk of research on PAHs has been of those of up to

six rings.

The biological activity and occurrence of the large PAHs does appear to be a continuation of the small PAHs. They are found as combustion products, but at lower levels than the small PAHs due to the kinetic limitation of their production through addition of successive rings.

In addition, with many more isomers possible for larger PAHs, the occurrence of specific structures is much smaller.

http://en.wikipedia.org/wiki/Polycyclic_aromatic_hydrocarbon

Page 19: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

OKSIDAN FOTOKIMIA = Kabut Fotokimia

Muncul dari hasil serangkaian reaksi kimia atmosfer yang dimulai bila hidrokarbon bersama dengan oksida nitrogen terkena cahaya matahari

Senyawa yang terlibat: Ozon, Peroksi-asil-nitrat (PAN), Form-aldehide, Nitrogen peroksida, Peroksida organik

Oksidator fotokimia:Gangguan mataFungsi paru-paru ……………….. Asma

Photochemical smog is a unique type of air pollution which is caused by reactions between sunlight and pollutants like

hydrocarbons and nitrogen dioxide. Although photochemical smog is often invisible, it can be

extremely harmful, leading to irritations of the respiratory tract and eyes.

In regions of the world with high concentrations of photochemical smog, elevated rates of death and respiratory

illnesses have been observed.http://www.wisegeek.com/what-is-photochemical-smog.htm

Page 20: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

Sumber: http://www.shodor.org/master/environmental/air/photochem/smogapplication.html

Page 21: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

PEMBENTUKAN KABUT FOTOKIMIA

It begins at the bottom with the production of NO and reactive hydrocarbons by fossil fuel burning (such as an automobile). On the left

side, the NO reacts with tropospheric ozone or a hydrocarbon radical (RO2 ) to produce NO2 (a radical is a molecule fragment that has an

unpaired electron). This absorbs solar energy (represented by the letters hv) to create NO (which propagates the system) and atomic oxygen. Atomic oxygen reacts to form tropospheric ozone, which feeds back into the NOx

system (the "x" here refers to the number of oxygens, and serves as a general notational term for the nitrogen oxides). Atomic oxygen can also react with hydroxyl radicals, OH, and ozone to form the reactive

hydrocarbon radicals utilized in the NOx system.

These radicals also react to form other components of smog, such as PAN (peroxyacetyl nitrate) and aldehydes (RC=OH, where R is some

hydrocarbon chain).The graphic below shows the essential workings of the NOx system,

with the interactions between NO and NO2 on the left and the production/washout of HNO3 on the right:

Page 22: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

Rekasi Pembentukan kabut fotokimia

The development of photochemical smog is dependent upon solar radiation, source emissions of hydrocarbons and nitrogen oxides, and

atmospheric stability (for enhanced concentrations). Early in the morning, commuter traffic releases NO and hydrocarbons. At the same

time, NO2 may decrease through because the sunlight can break it down to NO and O. The O is then free to react with O2 to form O3.

Shortly thereafter, oxidized hydrocarbons react with NO to increase NO2 by midmorning. This reaction causes NO to decrease and O3 to

build up, producing a midday peak in O3 and minimum in NO. As the smog ripens, visibility may be reduced due to light scattering by

aerosols. Primarily due to the dependence on commuter traffic between surburbs and cities, there are presently more than 40 urban areas in

violation of the US ambient air quality standard for ozone.

Page 23: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

THE MAIN COMPONENTS OF PHOTOCHEMICAL SMOG FORMATION

http://mtweb.mtsu.edu/nchong/Smog-Atm1.htm

Page 24: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

We can also look at the formation of photochemical smog from a kinetic perspective.

This chart shows the nine key equations of smog production, and the rate constant that affects the speed (or rate) at which the reaction takes

place:

Page 25: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

In this graphic, we see the involvement of the NOx system and the production of ozone. Here is a narrative version of the graphic above:

1.Reaction 1: NO2, reacts with light energy, hv , to form NO and a singlet oxygen atom. The rate of this reaction depends on how much light energy there is -- a sunny day versus a cloudy day! 2.Reaction 2: singlet oxygen reacts with the oxygen molecule (what you breathe) in the presence of a catalyst "M" to form ozone, O3. The catalyst M remains unchanged (which is the definition of a catalyst!). The rate of this reaction depends on the temperature in the atmosphere. 3.Reaction 3: Ozone reacts with NO to produce more NO2 and O2. These products feed back into Reactions 1 and 2, thus ensuring a steady production of ozone! The rate of this reaction also depends on the temperature in the atmosphere. 4.Reaction 4: Ozone is degraded (broken down) by light energy, forming a charged form of singlet oxygen, O(1D), and more molecular oxygen. Notice that this reaction proceeds at a much slower rate than the first reaction (about one-fourth of one percent as slow!) 5.Reaction 5: the charged oxygen reacts with a catalyst to return to its normal state of singlet oxygen (which is, by the way, poisonous to breathe!) 6.Reaction 6: some of the charged oxygen reacts with water in the atmosphere to form a hydroxyl radical, OH . Radicals are fragments of molecules that have at least one unpaired electron, and are highly reactive. The hydroxyl radical, for example, is responsible for the majority of the chemical reactions that happen in the atmosphere during the day. Other radicals take control at night-time when there is no energy from the sun. 7.Reaction 7: carbon monoxide in the atmosphere, produced by fossil-fuel burning such as automobiles, reacts strongly with hydroxyl radicals to form carbon dioxide and HO2 radicals. 8.Reaction 8: the HO2 radicals formed in Reaction 7 react with the extra NO in the atmosphere to form more NO2 and more OH radicals. The rate of this reaction is dependent on the temperature in the atmosphere.9.Reaction 9: the hydroxyl radicals react with NO2 to form nitric acid, HNO3, which will eventually be one of the culprits in the formation of acid rain.

Page 26: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

PARTIKULAT

TSP: Total Suspended ParticulateAdalah total masa partikulat cair dan padatan yang ada di udara , seperti Jelaga, Asap, Debu, Mist dan Spray.

Berasal dari proses pembakaran

Konsentrasinya: 0.1 – 10 µ

Particulates – also known as particulate matter (PM), suspended particulate matter (SPM), fine particles,

and soot – are tiny subdivisions of solid matter suspended in a gas or liquid. In contrast, aerosol refers

to particles and/or liquid droplets and the gas together. Sources of particulate matter can be man

made or natural. Air pollution and water pollution can take the form of solid particulate matter, or be

dissolved.Salt is an example of a dissolved contaminant in water,

while sand is generally a solid particulate.

http://en.wikipedia.org/wiki/Particulates

Page 27: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

FOGFog is a collection of liquid water droplets or ice crystals suspended in the air at or near the Earth's surface. While fog is a type of stratus cloud, the term "fog" is typically distinguished from the more generic term "cloud" in that

fog is low-lying, and the moisture in the fog is often generated locally (such as from a nearby body of water, like

a lake or the ocean, or from nearby moist ground or marshes).

Fog is distinguished from mist only by its density, as expressed in the resulting decrease in visibility: Fog reduces visibility to less than 1 km (5/8 statute mile), whereas mist

reduces visibility to no less than 1 km .For aviation purposes in the UK, a visibility of less than

2 km but greater than 999 m is considered to be mist if the relative humidity is 95% or greater - below 95% haze is

reported.

http://en.wikipedia.org/wiki/Fog

Page 28: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

SOOT

Soot ( /ˈsʊt/) is a general term that refers to impure carbon particles resulting from the incomplete combustion of a

hydrocarbon. It is more properly restricted to the product of the gas-phase combustion process but is commonly

extended to include the residual pyrolyzed fuel particles such as coal, cenospheres, charred wood, petroleum coke, and so on, that may become airborne during pyrolysis and

that are more properly identified as cokes or chars.

The gas-phase soots contain polycyclic aromatic hydrocarbons (PAHs).

The PAHs in soot are known mutagens and are classified as a "known human carcinogen" by the International

Agency for Research on Cancer (IARC).

http://en.wikipedia.org/wiki/Soot

Page 29: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

SOOT

Soot, as an airborne contaminant in the environment has many different sources but they are all the result of some form of pyrolysis. They include soot from coal burning,

internal combustion engines, power plant boilers, hog-fuel boilers, ship boilers, central steam heat boilers, waste

incineration, local field burning, house fires, forest fires, fireplaces, furnaces, etc.

These exterior sources also contribute to the indoor environment sources such as smoking of plant matter,

cooking, oil lamps, candles, quartz/halogen bulbs with settled dust, fireplaces, defective furnaces, etc. Soot in very low

concentrations is capable of darkening surfaces or making particle agglomerates, such as those from ventilation systems,

appear black. Soot is the primary cause of "ghosting", the discoloration of

walls and ceilings or walls and flooring where they meet. It is generally responsible for the discoloration of the walls above baseboard electric heating units and can be known as a gas.

http://en.wikipedia.org/wiki/Soot

Page 30: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

SOOT

The formation of soot depends strongly on the fuel composition.

The rank ordering of sooting tendency of fuel components is: naphthalenes → benzenes → aliphatics. However, the

order of sooting tendencies of the aliphatics (alkanes, alkenes, alkynes) varies dramatically depending on the

flame type.

The difference between the sooting tendencies of aliphatics and aromatics is thought to result mainly from the different

routes of formation.

Aliphatics appear to first form acetylene and polyacetylenes; aromatics can form soot both by this route

and also by a more direct pathway involving ring condensation or polymerization reactions building on the

existing aromatic structure

http://en.wikipedia.org/wiki/Soot

Page 31: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

SULFUR OKSIDA: SOx

Dapat bereaksi dengan air menjadi Sulfit dan Sulfat

SO2 + H2O --------------- H2SO3

SO3 + H2O -------------- H2SO4

Gangguan kesehatan dan gangguan material (korosi)

Limbah pembakaran minyak dan batubara

The principal approaches to controlling SOx emissions include use of low-sulfur fuel; reduction or Sulfur Oxides:

Pollution Prevention and Control removal of sulfur in the feed; use of appropriate combustion technologies; and emissions control technologies such as sorbent injection and flue gas

desulfurization (FGD).

http://webcache.googleusercontent.com/search?q=cache:sgpFPol2unEJ:www.ifc.org/ifcext/enviro.nsf/

Page 32: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

. Photolysis of sulphuric acid as the source of sulphur oxides in the mesosphere of Venus

Xi Zhang, Mao-Chang Liang, Franck Montmessin, Jean-Loup Bertaux, Christopher Parkinson, and Yuk L. Yung. Nature Geoscience Year published:

(2010)

Page 33: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

FUNGSI KERUSAKAN

Fungsi matematik: Fungsi yang menyatakan hubungan antara variabel polutan dengan efeknya terhadap manusia dan lingkungan hidupnya

Fungsi ini penting untuk mendisain indikator pencemaran lingkungan

Penyusunan Indeks Pencemaran / Kualitas Lingkungan:

Dari hubungan antara pencemar terukur dengan “Estimated Death Rate”: DAMAGE FUNCTION

DOSE-EFFECT-FUNCTIONPersamaan yg menghubungkan pencemar dengan dampaknya terhadap organisme atau kualitas lingkungan

Page 34: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

FUNGSI KERUSAKAN

Ekspresi kuantitatif tentang hubungan antara keberadaan suatu polutan dengan tingkat dampak yang ditimbulkannya pada populasi target (sasaran)

Kerusakan BIOFISIK: Fungsi kerusakan fisik atau biologisKerusakan ekonomi: Fungsi kerusakan ekonomi, berdimensi moneter, Menyatakan korelasi antara kerusakan ekonomi dengan taraf polutan ambien

Dalam mempresentasikan fungsi kerusakan harus sejelas mungkin:

Polutan apaDosisnya berapaDampaknya bagaimanaPopulasi sasarannya

Page 35: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

FUNGSI KERUSAKAN: TEORITIS

Fungsi kerusakan: Harus mencerminkan fenomena ambangFenomena ambang: Ada nilai ambang minimal, di bawah mana tidak terjadi kerusakan

di atas nilai ambang akan terjadi peningkatan kerusakan secara cepat bila polutan bertambah

Dampak.

Ambang

Polutan

TLV: Threshold Limiting Value; merupakan konsep adaptasiKecenderungan organisme untuk mengembangkan toleransi terhadap konsentrasi rendah bahan toksik

Dampak. Jenuh

Linear

Ambang Polutan

Page 36: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

STRUKTUR INDEKS LINGKUNGAN

Tujuan Indeks adalah untuk menyederhanakan

Dua macam bentuk Indeks Lingkungan:1. ANGKA INDEKS: nilainya meningkat sejalan dengan

peningkatan pencemaran lingkungan; Indeks Pencemaran Lingkungan; Increasing scale

2. ANGKA INDEKS : Nilainya menurun apabila pencemaran lingkungan meningkat; Indeks Kualitas Lingkungan; Decreasing scale

Page 37: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010
Page 38: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

STRUKTUR MATEMATIKA INDEKS

Perhitungan indeks lingkungan terdiri atas dua tahap:1. Perhitungan sub-indeks untuk peubah-peubah polutan

yang digunakan dalam indeks2. Agregasi sub-indeks menjadi indeks

Agregasi sub-indeks:

I = g (I1, I2, ………………… In); n = 1 – I

Misalnya: ada sebanyak i variabel polutan : Xi = nilai untuk variabel polutan ke iSub indeks ke-i : Ii = f(Xi)

Subindeks menyatakan karakteristik lingkungan dari peubah polutan tertentu

Page 39: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

AGREGASI SUB-INDEKS:1. Summation

2. Multiplication3. Maximization, sub-indeks maksimum yang dipakai

Pengukuran Lingkungan

Peubah Polutan: X1

AGREGASI: I = g(I1,I2,…In)

Peubah Polutan: X2 Peubah Polutan: Xn

Subindeks 1I1 = f(X1)

Subindeks 2 I2 = f(X2)

Subindeks nIn = f(Xn)

INDEKS I

Page 40: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

MACAM INDEKS

INDEKS ABSOLUT:Fungsi hubungan antara variabel polutan dengan indeks lingkungan ditetapkan (telah diketahui)

INDEKS RELATIF:Indeks tidak hanya tergantung pada sesuatu observasi (variabel) tertentu, tetapi juga tergantung pada banyak observasi (variabel) lainnya

Page 41: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010
Page 42: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

SUB-INDEKS

FUNGSI LINEAR:

I = α X ………………… I : subindeks X : Variabel polutan

α : Konstante

NON-LINEAR (segmented) FUNCTION:Power functionLogarithm functionExponential functionAsymptotic function, etc.

SEGMENTED LINEAR FUNCTION:Threshold levelBreak point, titik kritis, titik belok

Page 43: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010

AGREGASI SUB-INDEKS

1. ADDITIVE FORM:Linear-sum UnweightedLinear-sum Weighted

3. ROOT-MEAN-SQUARE4. MAXIMUM OPERATOR:

I = Max (I1, I2, I3, ………………… In)

5. Multiplicative form Unweighted : I = ∏ Ii

Weighted : I = ∏ Ii wi

2. ROOT-SUM-POWER

I = √ (I1)2 + (I2)2 + ……..+ (In)2

Page 44: BAHAN KAJIAN  MK. PERENCANAAN LINGKUNGAN INDEKS KUALITAS LINGKUNGAN Disajikan : Prof Dr  Ir Soemarno  MS PMPSLP PPSUB  Agustus  2010