Bagian 1 Introduction-2011

download Bagian 1 Introduction-2011

of 40

Transcript of Bagian 1 Introduction-2011

  • 7/27/2019 Bagian 1 Introduction-2011

    1/40

    1

    Pendahuluan

    Mekanika Fluida - TF 2204

    CFDEFDAFD

    2

    0

    1

    Rei j

    Dp u u

    Dt

    U

    UU

    Dr. Suprijanto ST MTemail : [email protected]

    Analytic Experiment Computational

  • 7/27/2019 Bagian 1 Introduction-2011

    2/40

    2

    THE DOs AND THE DONTs

    THE DO-s Kerjakanlah pekerjaan rumah sebaik-baiknya karena

    sumbangannya terhadap nilai akhir cukup besar.

    Pekerjaan rumah dapat dikerjakan bersama-sama namunjangan hanya sekedar menyalin pekerjaan kawan;pahamilah solusi setiap pekerjaan rumah karena dengan

    itu sekurang-kurangnya Anda telah belajar memahamiperkuliahan ini.

    Peraturan umum mengenai kehadiran di kelas wajibdipatuhi.

  • 7/27/2019 Bagian 1 Introduction-2011

    3/40

    3

    THE DOs AND THE DONTs

    THE DONT-s menggunakan telepon genggam (HP) di dalam

    kelas; pelanggaran terhadap hal ini dikenakandenda : Rp 100.000,- dan dana terkumpul akanmenjadi milik seluruh peserta kelas.

    menggunakan sandal selama mengikutiperkuliahan ini.

    hadir lebih lambat dari dosen.

  • 7/27/2019 Bagian 1 Introduction-2011

    4/40

    4

    Penilaian

    Mid Term Test/Quizes ? %

    Final Term Test ? %

    Home Work/Take Home ? %

  • 7/27/2019 Bagian 1 Introduction-2011

    5/40

    5

    Pustaka

    Fox and McDonald, P.J. Pritchard,Introduction to Fluid Mechanics, John Wiley, 2004

    S.W. Yuan, Foundation of Fluid Mechanics, Prentice-Hall,

    3 SKS BERARTI AKTIVITAS PER MINGGU TERDIRI DARI :

    PER MINGGU:1 JAM TATAP MUKA

    1 JAM KEGIATAN TERSTRUKTUR : HOME WORK, TAKE HOME TEST1 JAM KEGIATAN MANDIRI : MEMBACA LITERATUR

    BERARTI : 3 SKS --> BEBAN DILUAR KELAS 6 JAM PER MINGGU !

  • 7/27/2019 Bagian 1 Introduction-2011

    6/40

    6

    Satuan Acara Perkuliahan

  • 7/27/2019 Bagian 1 Introduction-2011

    7/407

    Satuan Acara Perkuliahan

  • 7/27/2019 Bagian 1 Introduction-2011

    8/408

    Fluid Mechanics

    Fluids essential to life Human body 65% water

    Earths surface is 2/3 water

    Atmosphere extends 17km above the earths surface

    Affects every part of our lives

  • 7/27/2019 Bagian 1 Introduction-2011

    9/409

    History

    Faces of Fluid Mechanics

    Archimedes(C. 287-212 BC)

    Newton(1642-1727)

    Leibniz(1646-1716)

    Euler(1707-1783)

    Navier(1785-1836)

    Stokes(1819-1903)

    Reynolds(1842-1912)

    Prandtl(1875-1953)

    Bernoulli(1667-1748)

    Taylor(1886-1975)

    http://www-gap.dcs.st-and.ac.uk/~history/PictDisplay/Taylor_Geoffrey.html
  • 7/27/2019 Bagian 1 Introduction-2011

    10/4010

    Relevansi Mekanika Fluida dalam kehidupan

    Kehadiran fluida Cuaca dan musim

    Sistem Transportasi: mobil, KA, kapal,pesawat terbang

    Lingkungan

    Physiology dan kedokteran

    Olah raga

  • 7/27/2019 Bagian 1 Introduction-2011

    11/4011

    Cuaca dan Musim

    Tornadoes

    HurricanesGlobal Climate

    Thunderstorm

  • 7/27/2019 Bagian 1 Introduction-2011

    12/4012

    Kendaraan

    Pesawat terbang

    Kapal selamKA kecept. tinggi

    Kapal laut

  • 7/27/2019 Bagian 1 Introduction-2011

    13/4013

    Lingkungan

    Polusi udara Sungai

  • 7/27/2019 Bagian 1 Introduction-2011

    14/4014

    WarmedFiltered

    MoisturizedJutaan kantung

    aveoli

    Medik

    Trachea bercabang dua

    padabronchusdibagi

    sekitar 15 bagianberakhir padabronchioles

    yang mengirimkanudara pada jutaankantung kecil yang

    disebut Alveoli

  • 7/27/2019 Bagian 1 Introduction-2011

    15/4015

    Medik

  • 7/27/2019 Bagian 1 Introduction-2011

    16/4016

    Olah raga

    Water sports

    Auto racing

    Offshore racingCycling

    Surfing

  • 7/27/2019 Bagian 1 Introduction-2011

    17/4017

    Fluids Engineering

    Reality

    Fluids Engineering System Components Idealized

    EFD Mathematical Physics Problem Formulation

    AFD CFD,

  • 7/27/2019 Bagian 1 Introduction-2011

    18/40

    18

    Analytical Fluid Dynamics (AFD)

    Teori formulasi masalah fisika matematik Control volume & differential analysis

    Solusi eksak untuk kondisi dan geometri sederhana

    Solusi aproksimasi pada aplikasi praktis

    Linear

    Hubungan empiris dengan menggunakan data EFD(eng. Fluid dynamics)

  • 7/27/2019 Bagian 1 Introduction-2011

    19/40

    19

    Analytical Fluid Dynamics

    Pokok bahasan Definisi dan sifat-sifat fluida

    Statika fluida

    Gerak fluida

    Kontinuitas, momentum, dan prinsip energy

    Analisis dimensional dan keserupaan

    Tahanan permukaan

    Aliran dalam conduits Hambatan dan gaya angkat

  • 7/27/2019 Bagian 1 Introduction-2011

    20/40

    20

    Analytical Fluid Dynamics

    Schematic

    Contoh: aliran laminar pada pipa

    Solusi pasti :

    2 21( ) ( )( )

    4

    pu r R r

    x

    Faktor gesekan:8

    8 64Re2 2

    w

    du

    dywfV V

    Asumsi: Fully developed, Low

    Pendekatan: Penyederhanaan persmomentum, integrasi, penerapan syaratbatas untuk menentukan konstanta integrasidan menggunakan pers energi untuk

    menghitung head loss

    xgy

    u

    x

    u

    x

    p

    Dt

    Du

    2

    2

    2

    2

    Head loss:1 2

    1 2 f

    p pz z h

    2

    2

    32

    2f

    L V LVh f

    D g D

    UD2000Re

    00

    0

  • 7/27/2019 Bagian 1 Introduction-2011

    21/40

    21

  • 7/27/2019 Bagian 1 Introduction-2011

    22/40

    22

    Analytical Fluid Dynamics Contoh: aliran turbulent flow pada pipa smooth (

    )

    0 5y

    1lnu y B

    520 10y

    *

    0

    1U u r

    fu r

    510y

    u y

    *

    0*

    1 lnu r r r u Bu

    Re 3000

    *y yu *u u u *

    wu Three layer concept (using dimensional analysis)

    1. Laminar sub-layer (viscous shear dominates)

    2. Overlap layer (viscous and turbulent shear important)

    3. Outer layer (turbulent shear dominates)

    Assume log-law is valid across entire pipe:

    Integration for average velocity and using EFD data to adjust constants:

    1 21

    2 log Re .8ff

    (k=0.41, B=5.5)

  • 7/27/2019 Bagian 1 Introduction-2011

    23/40

    23

    Analytical Fluid Dynamics Example: turbulent flow in rough pipe

    u u y k

    1 ln yuk

    12log

    3.7

    k D

    f

    1ln 8.5 Re

    yu f

    k

    Three regimes of flow depending on k+1. K+ 70, fully rough (independent Re)

    Both laminar sublayer and overlap layerare affected by roughnessInner layer:

    Outer layer: unaffected

    Overlap layer:

    Friction factor:

    For 3, using EFD data to adjust constants:

    constant

  • 7/27/2019 Bagian 1 Introduction-2011

    24/40

    24

    Analytical Fluid Dynamics Example: Moody diagram for turbulent pipe flow

    1 1 22

    1 2.512log

    3.7 Re

    k D

    ff

    Composite Log-Law for smooth and rough pipes is given by the Moody diagram:

  • 7/27/2019 Bagian 1 Introduction-2011

    25/40

    25

    Experimental Fluid Dynamics (EFD)

    Definition:

    Use of experimental methodology and procedures for solving fluidsengineering systems, including full and model scales, large and tabletop facilities, measurement systems (instrumentation, data acquisitionand data reduction), uncertainty analysis, and dimensional analysis andsimilarity.

    EFD philosophy:

    Decisions on conducting experiments are governed by the ability of theexpected test outcome, to achieve the test objectives within allowableuncertainties.

    Integration of UA into all test phases should be a key part of entireexperimental program

    test design determination of error sources estimation of uncertainty documentation of the results

  • 7/27/2019 Bagian 1 Introduction-2011

    26/40

    26

    Purpose

    Science & Technology: understand and investigate aphenomenon/process, substantiate and validate a theory(hypothesis)

    Research & Development: document a process/system,provide benchmark data (standard procedures,validations), calibrate instruments, equipment, andfacilities

    Industry: design optimization and analysis, provide datafor direct use, product liability, and acceptance

    Teaching: instruction/demonstration

  • 7/27/2019 Bagian 1 Introduction-2011

    27/40

    27

    Applications of EFD

    Application in research & development

    Tropic Wind Tunnel has the ability to create

    temperatures ranging from 0 to 165 degrees

    Fahrenheit and simulate rain

    Application in science & technology

    Picture of Karman vortex shedding

    http://www.damtp.cam.ac.uk/user/turbmix/Biagio/images/vortex-small.gif
  • 7/27/2019 Bagian 1 Introduction-2011

    28/40

    28

    Applications of EFD (contd)

    Example of industrial application

    NASA's cryogenic wind tunnel simulates flightconditions for scale models--a critical tool in

    designing airplanes.

    Application in teaching

    Fluid dynamics laboratory

  • 7/27/2019 Bagian 1 Introduction-2011

    29/40

    29

    Full and model scale

    Scales: model, and full-scale

    Selection of the model scale: governed by dimensional analysis and similarity

  • 7/27/2019 Bagian 1 Introduction-2011

    30/40

    30

    Measurement systems

    Instrumentation

    Load cell to measure forces and moments Pressure transducers

    Pitot tubes

    Hotwire anemometry

    PIV, LDV

    Data acquisition Serial port devices

    Desktop PCs

    Plug-in data acquisition boards

    Data Acquisition software - Labview

    Data analysis and data reduction Data reduction equations

    Spectral analysis

  • 7/27/2019 Bagian 1 Introduction-2011

    31/40

    31

    Instrumentation

    Load cell

    Pitot tube

    Hotwire3D - PIV

  • 7/27/2019 Bagian 1 Introduction-2011

    32/40

    32

    Data acquisition system

    Hardware

    Software - Labview

    Di i l l i

  • 7/27/2019 Bagian 1 Introduction-2011

    33/40

    33

    Dimensional analysis

    Definition : Dimensional analysis is a process of formulating fluid mechanics problems inin terms of non-dimensional variables and parameters.

    Why is it used :

    Reduction in variables ( If F(A1, A2, , An) = 0, then f(P1, P2, Pr < n) = 0,where, F = functional form, Ai = dimensional variables, Pj = non-dimensionalparameters, m = number of important dimensions, n = number of dimensional variables, r

    = nm ). Thereby the number of experiments required to determine f vs. F is reduced.

    Helps in understanding physics

    Useful in data analysis and modeling

    Enables scaling of different physical dimensions and fluid properties

    Example

    Vortex shedding behind cylinder

    Drag = f(V, L, r, m, c, t, e, T, etc.)

    From dimensional analysis,

    Examples of dimensionless quantities : Reynolds number, Froude

    Number, Strouhal number, Euler number, etc.

    EFD h d i

  • 7/27/2019 Bagian 1 Introduction-2011

    34/40

    34

    EFDhands on experience

    Lab1: Measurement of density andkinematic viscosity of a fluid

    Lab2: Measurement of

    flow rate, friction factor and

    velocity profiles in smooth and

    rough pipes.

    Lab3: Measurement of surface pressure

    Distribution, lift and drag coefficient for an airfoil

    ToScanivalve

    Chord-wisePressure

    Taps

    TygonTubing

    Load Cell

    Load CellL

    D

  • 7/27/2019 Bagian 1 Introduction-2011

    35/40

    35

    Computational Fluid Dynamics CFD is use of computational methods for

    solving fluid engineering systems, includingmodeling (mathematical & Physics) andnumerical methods (solvers, finite differences,and grid generations, etc.).

    Rapid growth in CFD technology since adventof computer

    ENIAC 1, 1946 IBM WorkStation

  • 7/27/2019 Bagian 1 Introduction-2011

    36/40

    36

    Purpose The objective of CFD is to model the continuous fluids

    with Partial Differential Equations (PDEs) anddiscretize PDEs into an algebra problem, solve it,validate it and achieve simulation based designinstead of build & test

    Simulation of physical fluid phenomena that aredifficult to be measured by experiments: scalesimulations (full-scale ships, airplanes), hazards

    (explosions,radiations,pollution), physics (weatherprediction, planetary boundary layer, stellarevolution).

  • 7/27/2019 Bagian 1 Introduction-2011

    37/40

    37

    Modeling

    Mathematical physics problem formulation of fluid

    engineering system Governing equations: Navier-Stokes equations (momentum),

    continuity equation, pressure Poisson equation, energyequation, ideal gas law, combustions (chemical reactionequation), multi-phase flows(e.g. Rayleigh equation), and

    turbulent models (RANS, LES, DES). Coordinates: Cartesian, cylindrical and spherical coordinatesresult in different form of governing equations

    Initial conditions(initial guess of the solution) and BoundaryConditions (no-slip wall, free-surface, zero-gradient,

    symmetry, velocity/pressure inlet/outlet) Flow conditions: Geometry approximation, domain, Reynolds

    Number, and Mach Number, etc.

    M d li ( l )

  • 7/27/2019 Bagian 1 Introduction-2011

    38/40

    38

    Modeling (examples)

    Free surface animation for ship inregular waves

    Developing flame surface (Bell et al., 2001)

    Evolution of a 2D mixing layer laden with particles of Stokes

    Number 0.3 with respect to the vortex time scale (C.Narayanan)

    Modeling (examples contd)

  • 7/27/2019 Bagian 1 Introduction-2011

    39/40

    39

    Modeling (examples, cont d)

    3D vortex shedding behind a circular cylinder(Re=100,DNS,J.Dijkstra)

    DES,Re=105, Iso-

    surface of Q

    criterion (0.4)

    for turbulent

    flow aroundNACA12 with

    angle of attack

    60 degrees

    LES of a turbulent jet. Back wall shows a slice of the dissipation rate and the

    bottom wall shows a carpet plot of the mixture fraction in a slice through the jetcenterline, Re=21,000 (D. Glaze).

  • 7/27/2019 Bagian 1 Introduction-2011

    40/40

    Numerical methods Finite difference methods:

    using numerical scheme to

    approximate the exact derivativesin the PDEs

    Finite volume methods Grid generation: conformal

    mapping, algebraic methods anddifferential equation methods

    Grid types: structured,

    unstructured Solvers: direct methods(Cramersrule, Gauss elimination, LUdecomposition) and iterativemethods (Jacobi, Gauss-Seidel,SOR)

    Slice of 3D mesh of a fighter aircraft

    ox

    y

    i i+1i-1

    j+1

    j

    j-1

    imax

    jmaxx

    y

    2

    1 1

    2 2

    2i i iP P PP

    x x

    2

    1 1

    2 2

    2j j jP P PP

    y y