BAB III · Web viewJika diameter kawat adalah d(mm), maka besarnya momen puntir kawat yang...

30
TEORI PEGAS 3.1. Definisi Pegas Pegas adalah elemen mesin flexibel yang digunakan untuk memberikan gaya, torsi, dan juga untuk menyimpan atau melepaskan energi. Energi disimpan pada benda padat dalam bentuk twist, stretch, atau kompresi. Energi di-recover dari sifat elastis material yang telah terdistorsi. Pegas haruslah memiliki kemampuan untuk mengalami defleksi elastis yang besar. Beban yang bekerja pada pegas dapat berbentuk gaya tarik, gaya tekan, atau torsi (twist force). Pegas umumnya beroperasi dengan ‘high working stresses’ dan beban yang bervariasi secara terus menerus. Beberapa contoh spesifik aplikasi pegas adalah : 1. Untuk menyimpan dan mengembalikan energi potensial, seperti misalnya pada gun recoil mechanism’. 2. untuk memberikan gaya dengan nilai tertentu, seperti misalnya pada relief valve. 3. untuk meredam getaran dan beban kejut, seperti pada automobil. 4. untuk indikator/kontrol beban, contohnya pada timbangan. 5. untuk mengembalikan komponen pada posisi semula, contonya pada ‘brake pedal’. 3.2. Klasifikasi Pegas

Transcript of BAB III · Web viewJika diameter kawat adalah d(mm), maka besarnya momen puntir kawat yang...

TEORI PEGAS

3.1. Definisi Pegas

Pegas adalah elemen mesin flexibel yang digunakan untuk

memberikan gaya, torsi, dan juga untuk menyimpan atau melepaskan

energi. Energi disimpan pada benda padat dalam bentuk twist, stretch, atau

kompresi. Energi di-recover dari sifat elastis material yang telah terdistorsi.

Pegas haruslah memiliki kemampuan untuk mengalami defleksi elastis

yang besar. Beban yang bekerja pada pegas dapat berbentuk gaya tarik,

gaya tekan, atau torsi (twist force). Pegas umumnya beroperasi dengan

‘high working stresses’ dan beban yang bervariasi secara terus menerus.

Beberapa contoh spesifik aplikasi pegas adalah :

1. Untuk menyimpan dan mengembalikan energi potensial, seperti

misalnya pada ‘gun recoil mechanism’.

2. untuk memberikan gaya dengan nilai tertentu, seperti misalnya pada

relief valve.

3. untuk meredam getaran dan beban kejut, seperti pada automobil.

4. untuk indikator/kontrol beban, contohnya pada timbangan.

5. untuk mengembalikan komponen pada posisi semula, contonya pada

‘brake pedal’.

3.2. Klasifikasi Pegas

Pegas dapat diklasifikasikan berdasarkan jenis fungsi dan beban yang

bekerja yaitu pegas tarik, pegas tekan, pegas torsi, dan pegas penyimpan energi.

Tetapi klasifikasi yang lebih umum adalah diberdasarkan bentuk fisiknya.

Klasifikasi berdasarkan bentuk fisik adalah:

1. Wire form spring (helical compression, helical tension, helical

torsion, custom form).

2. Spring washers (curved, wave, finger, belleville).

3. Flat spring (cantilever, simply supported beam).

4. Flat wound spring (motor spring, volute, constant force spring).

Pegas ‘helical compression’ dapat memiliki bentuk yang sangat

bervariasi. Gambar 1(a) menunjukkan beberapa bentuk pegas helix tekan.

Bentuk yang standar memiliki diameter coil, pitch, dan spring rate yang

konstan. Picth dapat dibuat bervariasi sehingga spring rate-nya juga bervariasi.

Penampang kawat umumnya bulat, tetapi juga ada yang berpenampang segi

empat. Pegas konis biasanya memiliki spring rate yang non-linear, meningkat

jika defleksi bertambah besar. Hal ini disebabkan bagian diameter coil yang

kecil memiliki tahanan yang lebih besar terhadap defleksi, dan coil yang

lebih besar akan terdefleksi lebih dulu. Kelebihan pegas konis adalah dalam hal

tinggi pegas, dimana tingginya dapat dibuat hanya sebesar diameter kawat.

Bentuk barrel dan hourglass terutama digunakan untuk mengubah frekuensi

pribadi pegas standar.

(a)

(b) (c) (d)

Gambar 3.1. Wire form spring: (a) Helical compression spring, (b)

Helical extension spring, (c) drawbar spring, (d) torsion spring

Pegas helix tarik perlu memiliki pengait (hook) pada setiap ujungnya

sebagai tempat untuk pemasangan beban. Bagian hook akan mengalami tegangan

yang relatif lebih besar dibandingkan bagian coil, sehingga kegagalan umumnya

terjadi pada bagian ini. Kegagalan pada bagian hook ini sangat berbahaya karena

segala sesuatu yang ditahan pegas akan terlepas. Salah satu metoda untuk mengatasi

kegagalan hook adalah dengan menggunakan pegas tekan untuk menahan beban

tarik seperti ditunjukkan pada gambar 1(c). Pegas wire form juga dapat untuk

memberikan/menahan beban torsi seperti pada gambar 1(d). Pegas tipe ini banyak

digunakan pada mekanisme ‘garage door counter balance’, alat penangkap tikus,

dan lain-lain.

Spring washer dapat memiliki bentuk yang sangat bervariasi, tetapi lima

tipe yang banyak digunakan ditunjukkan pada gambar 2(a). Spring washer hanya

mampu menyediakan beban tekan aksial. Pegas jenis ini memiliki defleksi yang

relatif kecil, dan mampu memberikan beban yang ringan. Volute spring, seperti

pada gambar 2(b) mampu memberikan beban tekan tetapi ada gesekan dan

histerisis yang cukup signifikan.

Beam spring dapat memiliki bentuk yang bevariasi, dengan

menggunakan prinsip kantilever atau simply supported. Spring rate dapat

dikontrol dari bentuk dan panjang beam. Pegas beam mampu memberikan atau

menahan beban yang relatif besar, tetapi dengan defleksi yang terbatas.

(a)

(b) (c) (d)

Gambar 3.2. Spring washer dan flat spring : (a) lima tipe spring washer, (b) Volute

spring, (c) Beam Spring, (d) Power spring

Power spring seperti ditunjukkan pada gambar 2(d) sering juga disebut

pegas motor atau clock spring. Fungsi utamanya adalah menyimpan energi dan

menyediakan twist. Contoh aplikasinya adalah pada windup clock, mainan anak-

anak. Tipe yang kedua disebut dengan constant force spring. Kelebihan pegas ini

adalah defleksinya atau stroke yang sangat besar dengan gaya tarik yang hampir

konstan.

3.3. Material Pegas

Material pegas yang ideal adalah material yang memiliki kekuatan

ultimate yang tinggi, kekuatan yield yang tinggi, dan modulus elastisitas atau

modulus geser yang rendah untuk menyediakan kemampuan penyimpanan

energi yang maksimum.

Parameter loss coefficient, Δv yang menyatakan fraksi energi yang

didisipasikan pada siklus stress-strain juga merupakan faktor penting dalam

pemilihan material. Material pegas yang baik haruslah memiliki sifat loss

coefficient yang rendah, kekuatan fatigue tinggi, ductility tinggi, ketahanan tinggi

serta harus tahan creep.

Pegas dapat dibuat dari berbagai jenis bahan sesuai pemakaiannya. Bahan

baja dengan penampang lingkaran adalah yang paling banyak dipakai. Bahan-bahan

pegas terlihat pada tabel berikut :

Tabel 3.1 . Jenis Material Penyusun Pegas

BAB IV

PERHITUNGAN PEGAS

Gambar 4.1. Jenis- jenis pegas

4.1. Perhitungan Pegas helik (tekan/ tarik)

Gambar 4.2. Pegas Tekan

4.1.1. Panjang Rapat (Solid length of the spring):

LS= n’ d

Dimana : n’ = jumlah koil lilitan

d = diameter kawat

4.1.2. Panjang Bebas (Free length of the spring)

LF= n’ d + δmak + (n’ – 1) x 1 mm

Dalam kasus ini, jarak antara dua kumparan yang berdekatan diambil 1 mm.

4.1.3. Indek pegas (C)

Didefinisikan sebagai rasio perbandingan antara diameter pegas dengan

diameter kawat, persamaan matematikanya adalah :

Indek pegas (C) =

Dimana : D = diameter lilitan / pegas

4.1.4. Spring rate (k)

Didefinisikan sebagai sebagai beban yang diperlukan per unit defleksi pegas,

persamaan matematikanya adalah :

k =

Dimana : W = Beban

δ = Defleksi dari pegas

4.1.5. Pitch (p)

Didefinisikan sebagai jarak aksial antara kumparan yang berdekatan pada

daerah yang tidak terkompresi, persamaan matematikanya adalah :

Pitch (p) =

Atau dapat dicari dengan cara :

Pitch of The Coil (p) =

4.1.6. Tegangan pada pegas helik :

Gambar 4.3. Pegas Helik

D = Mean diameter of spring coil

d = Diameter of the spring wire

n = Number of active coil

G = Modulus of rigidity for the spring material

W = Axial load on the spring

Τ = Maximum shear stress induced in the wire

C = Spring index = D/d

P = Pitch of the coils

δ = Deflection of the spring, as a result of an axial load W

Bila tarikan atau kompresi bekerja pada pegas ulir, besarnya momen puntir T

(kg.mm) adalah tetap untuk seluruh penampang kawat yang bekerja. Untuk diameter

lilitan rata-rata (diukur pada sumbu kawat) D (mm), berdasarkan kesetimbangan

momen besar momen puntir tersebut adalah:

T = W.

Jika diameter kawat adalah d(mm), maka besarnya momen puntir kawat yang

berkorelasi dengan tegangan geser akibat torsi τ1 (kg/mm2) adalah:

Torsi = τ1 x x d3

Sehingga:

τ1 = 3 x

τ1 = 3

Sedangkan tegangan geser langsung akibat beban W adalah :

τ2 =

τ2 = 2

Sehingga, tegangan geser maksimum yang terjadi di permukaan dalam lilitan pegas

ulir adalah :

Ks = shear stress factor =

( tegangan hanya mempertimbangkan pembebanan langsung)

(tegangan dengan mempertimbangkan efek lengkungan dan pembebanan )

D = diameter pegas rata-rata

d = diameter of the spring wire

n = jumlah lilitan aktif

G = modulus kekakuan

W = Beban aksial

C = Spring index = D/d

τ = tegangan geser

K = faktor Wah’l

4.1.7. Contoh Permasalahan:

1. Sebuah kumparan pegas kompresi yang terbuat dari baja paduan adalah memiliki

spesifikasi sebagai berikut:

diameter koil = 50 mm; diameter kawat = 5 mm; Jumlah koil aktif = 20. Jika

spring dikenakan ke beban aksial dari 500 N; hitung tegangan geser maksimum

(abaikan pengaruh kelengkungan).

Penyelesaian:

Dik: D = 50 mm; d = 5 mm; n = 20; W = 500 N

Jawab:

Shear stress factor, adalah:

Sehingga, tegangan geser maksimum (mengabaikan pengaruh kelengkungan

kawat), adalah:

2. Sebuah pegas helik terbuat dari kawat dengan diameter 6 mm dan memiliki

diameter luar dari 75 mm. Jika tegangan geser diperbolehkan 350 MPa dan

modulus kekakuan 84 kN/mm2, tentukan beban aksial dan defleksi per koil

pegas.

Dik: d = 6 mm; D0 = 75 mm; τ = 350 Mpa = 350 N/mm2; G = 84 kN/ mm2 =

84x103 N/mm2.

Penyelesaian:

Dapat dicari diameter pegas

d = 6 mm, D = D0 – d = 75 – 6 = 69 mm

a) mengabaikan efek lengkungan:

Tegangan geser maksimum pada kawat adalah:

Kita ketahui persamaan defleksi adalah:

Sehingga besarnya defleksi per koil pegas adalah :

b) Mempertimbangkan efek lengkungan

Kita ketahui besarnya Wahl’s stress factor adalah:

Tegangan geser maksimum pada kawat adalah :

Kita ketahui persamaan defleksi adalah :

Sehingga besarnya defleksi per koil pegas adalah:

3. Rancanglah pegas yang digunakan untuk mengukur beban 0 sampai 1000 N,

dimana defleksi pegas 80 mm. Pegas akan dimasukkan ke dalam casing

berukuran diameter 25 mm. Perkiraan jumlah koil adalah 30. Modulus kekakuan

adalah 85 kN/mm2. Hitunglah juga tegangan geser maksimum.

Penyelesaian:

Diketahui:

W = 1000 N; δ = 80 mm; n = 30; G = 85 kN/mm2 = 85 x 103 N/mm2.

Agar pegas dapat masuk kedalam casing, maka diameter pegas < diameter casing.

Kita ketahui persamaan defleksi adalah:

Selanjutnya, kita asumsikan jika besarnya d = 4 mm, maka:

C3 = 28,3d = 28,3 x 4 = 113,2 atau C = 4,84

D = C.d = 4,84 x 4 = 19,36 mm

Untuk mencari diameter luar pegas, dicari melalui persamaan :

Sehingga,

D0 = D + d = 19,36 + 4 = 23,36 mm

Besarnya D0 lebih kecil daripada diameter casing, sehingga asumsi diameter

coil sebesar 4 mm telah benar.

Selanjutnya besarnya tegangan geser maksimum adalah :

Wahl’s stress factor,

Sehingga, tegangan geser maksimum

4.2. Perhitungan Pegas Torsi Helik

Gambar 4.4. Pegas torsi helik

4.2.1. Tegangan lentur dapat dicari dengan persamaan :

Dimana : M = momen lentur = W x y

d = diameter kawat

K = Faktor Wahl =

4.2.2. Sudut defleksi :

Keterangan: L = panjang kawat

n = jumlah lilitan

4.2.3. Defleksi

Jika pegas berbentuk kotak , dimana lebar = b dan tebal = t, maka :

Dimana Wahl’s stress factor,

Dalam kasus pegas terbuat dari kawat persegi dengan tiap sisi sama dengan b,

kemudian mengganti t = b, persamaan diatas menjadi :

4.2.4. Contoh permasalahan :

1. Sebuah pegas torsi helik memiliki diameter 60 mm terbuat dari kawat

berdiameter 6 mm. Jika torsi sebesar 6 Nm diterapkan pada pegas, tentukan

tegangan lentur dan sudut defleksi (derajat) dari pegas. Jika diketahui indeks

pegas adalah 10 dan modulus elastisitas untuk material pegas adalah 200

kN/mm2. Jumlah koil efektif sebesar 5,5.

Penyelesaian:

Diketahui:

D = 60 mm; d = 6 mm; M = 6 Nm = 6000 Nmm; C= 10; E= 200 kN/mm 2 = 200 x

103 kN/mm2 ; n = 5,5.

Jawab :

Wahl’s stress factor,

Tegangan lentur :

Sudut defleksi (dalam derajat)

4.3. Perhitungan Pegas Plat Spiral

Pegas plat spiral terdiri dari bahan tipis, panjang dan merupakan material

elastis seperti yang ditunjukkan pada Gambar. 7.5. Sering digunakan dalam jam dan

produk yang membutuhkan sebagai media untuk menyimpan energi.

Gambar 4.5. Pegas Plat Spiral

4.3.1. Analisis Pegas Plat Spiral

W = Beban tarik ujung pegas

y = Jarak pusat gravitasi ke titik A

l = panjang plat pegas

b = lebar plat

t = tebal plat

I = momen inersia =

Z = modulus permukaan =

Ketika ujung pegas A ditarik oleh gaya W, maka momen lentur pada pegas :

M = W x y

Momen lentur terbesar terjadi pada pegas di B yang berada pada jarak maksimum dari

beban tarik W.

Tegangan lentur maksimum pada material pegas :

Dengan asumsi bahwa kedua ujung pegas dijepit, sudut defleksi (dalam radian) dari

pegas adalah :

Sehingga defleksinya adalah :

Energi yang tersimpan dalam pegas :

4.3.2. Contoh permasalahan

1. Sebuah pegas terbuat dari plat dengan lebar 6 mm dan tebal 0,25 mm. Panjang

plat adalah 2,5 meter. Dengan asumsi tegangan maksimum 800 MPa terjadi pada

titik momen lentur terbesar. Jika E = 200 kN/mm2, hitunglah momen lentur,

jumlah putaran pegas, dan energi regangan yang tersimpan pada pegas.

Penyelesaian:

Diketahui:

b = 6 mm; t = 0,25 mm; l = 2,5 m = 2500 mm; σb = 800 MP =800 N/mm2 ;

E = 200 kN/mm2 = 200 x 103 N/mm2.

Jawab :

Momen lentur pada pegas :

Jika M = Momen lentur pada pegas, dan kita ketahui bahwa tegangan lentur

maksimum pada material pegas (σb) :

Jumlah putaran pegas :

Kita tahu bahwa sudut defleksi pegas,

Karena satu putaran pegas sama dengan

2π radian, maka jumlah putaran untuk

pegas adalah = 40/2π = 6,36 putaran

Energi regangan yang tersimpan pada

pegas adalah

= ½ M θ = ½ x 25 x 40 = 500 Nmm

Gambar 4.6. Pegas pelat spiral

4.4. Pegas Daun

Pegas ini biasanya dibuat dari plat baja yang memiliki ketebalan 3-6 mm.

susunan pegas daun terdiri atas 3-10 lembar plat yang diikat menjadi satu

menggunakan baut atau klem pada bagian tengahnya. Pada ujung plat terpanjang

dibentuk mata pegas untuk pemasangannya. Sementara itu bagian belakang dari plat

baja paling atas dihubungkan dengan kerangka menggunakan ayunan yang dapat

bergerak bebas saat panjang pegas berubah-ubah karena pengaruh perubahan beban.

Gambar 4.7. pegas daun

Pemasangan pegas daun : yaitu pegas daun dipasang diatas poros roda

belakang dan pegas daun dipasang dibawah poros roda belakang. Kebanyakan pegas

daun dipasang tepat ditengah-tengah panjang pegas tersebut sehingga bagian depan

dan belakang sama panjang. Tetapi ada juga pemasangan pegas daun yang tidak tepat

ditengah, yaitu bagian depan lebih pendek dari bagian belakang. Getaran yang timbul

ketika kendaraan direm atau meluncur dapat dikurangi. Pada kendaraan-kendaraan

yang berat seperti truk dan bus, pegas daun mengalami beda tekanan pada saat kosong

dan berisi muatan penuh. Untuk memenuhi beban saat pengangkutan pada kendaraan

berat biasanya menggunakan pegas ganda, yaitu pegas primer dan sekunder. Saat

kendaraan berat tidak menerima beban berat maka yang digunakan saat itu pegas

primer, sedangkan saat diberi beban berat maka pegas primer dan sekunder akan

bekerja bersama-sama.

4.4.1. Analisis Pegas Daun

Pada kasus plat tunggal, salah satu ujungnya dijepit dan ujung lainnya

diberikan beban W seperti ditunjukkan pada Gambar dibawah. Plat ini dapat

digunakan sebagai pegas datar.

Gambar 4.8. Pegas Daun

Keterangan:

t = Tebal pelat,

b = Lebar pelat, dan

L = Panjang pelat atau jarak dari beban W ke ujung kantilever.

Momen lentur maksimum pada titik A, adalah:

M = W. L

Modulus permukaan :

Tegangan lentur pegas :

Defleksi maksimum untuk kantilever dengan beban terkonsentrasi pada ujung bebas

adalah :

Jika pegas bukan tipe kantilever tetapi seperti balok tumpuan sederhana

(untuk konstruksi dimana pegas ditumpu pada kedua ujungnya), dengan panjang 2L

dan beban di tengah 2W, seperti yang ditunjukkan pada gambar dibawah ini.

Gambar 4.9. Pegas Daun Dua Tumpuan

maka :

a) Momen bending maksimum di tengah :

M = W x L

b) Modulus permukaan:

Z = b t2 / 6

c) Tegangan bending maksimum:

Defleksi maksimum balok sederhana berada ditengah, yaitu :

Dari atas kita melihat bahwa pegas seperti pegas mobil dengan panjang 2L di pusat

dan diberikan beban 2W, dapat diperlakukan sebagai kantilever ganda.

Selanjutnya jika plat kantilever dipasang seperti ditunjukkan pada Gambar. 8, maka

persamaan (i) dan (ii) dapat ditulis sebagai :

Gambar 4.10. Pegas dengan Plat Jamak

Hubungan di atas memberikan tegangan dan defleksi pegas daun seragam.

Ada dua kondisi susunan pegas, yaitu susunan pegas triangular

menyamping/mendatar seperti ditunjukkan pada gambar 4.11(a), dan susunan pegas

triangular yang lebarnya seragam dimana ditempatkan satu di bawah yang lain

(susunan menurun / vertikal), seperti yang ditunjukkan pada gambar 4.11(b).

Gambar 4.11. Susunan Pegas

Maka persamaan pegas triangular:

Dengan pengaturan di atas pegas menjadi kompak sehingga ruang yang

ditempati oleh pegas dapat berkurang. Kita lihat dari persamaan (iv) dan (vi) bahwa

untuk defleksi yang sama, tegangan pada pegas susunan penuh (rata) lebih besar 50%

dari pegas sususan triangular dengan asumsi bahwa setiap unsur pegas adalah elastis.

Jika F dan G digunakan untuk menunjukkan perbandingan pegas daun susunan penuh

dan pegas daun susunan triangular, maka :

Pengembangan dari persamaan di atas diperoleh tegangan lentur maksimum :

Keterangan:

W = beban total = WG + WF

WG = beban yang dikenakan pada susunan bertingkat

WF = beban yang dikenakan pada susunan rata

nF = jumlah plat yang tersusun rata

nG = jumlah plat yang tersusun betingkat

4.4.2. Konstruksi susunan pegas daun pada mobil :

Sebuah pegas daun umum digunakan dalam mobil adalah bentuk semielips

seperti ditunjukkan pada Gambar 12. Hal ini dibangun dari sejumlah pelat (dikenal

sebagai daun). Daun biasanya diberikan kelengkungan awal atau melengkung. Daun

disatukan dengan menggunakan band atau baut. Band dapat memberikan efek yang

kaku dan memperkuat.

Gambar 4.12. Kontruksi Pegas Daun

Seperti telah disampaikan didepan bahwa tegangan pada susunan rata lebih

besar 50% dari susunan bertingkat, sehingga konstruksi pegas daun hal tersebut tidak

diijinkan. Untuk itu harus disamakan tegangannya dengan cara sebagai berikut :

a) Ketebalan plat pegas pada susunan penuh dibuat lebih tipis dari susunan

bertingkat;

b) Radius kelengkungan pegas pada susunan penuh dibuat lebih besar dari

susunan bertingkat, kemudian disatukan.

Gambar 4.13. Menyamakan Tegangan

Pertimbangkan bahwa dalam kondisi beban maksimum, tegangan semua

daun sama. Kemudian pada beban maksimum, defleksi total susunan daun bertingkat

akan melebihi defleksi total susunan daun rata.

Cara diatas dapat diformulasikan sebagai berikut:

Dimana C adalah selisih.

Karena tegangan dibuat sama, maka :

Persamaan diatas jika dimasukan dalam persamaan (1) diperoleh :

Beban Wb yang dipakai untuk merapatkan pegas daun :

Tegangan akhir dari pegas daun :

Panjang Pegas Daun

Panjang Terpendek = + panjang tidak efektif

Panjang Selanjutnya = x 2 + panjang tidak efektif

Panjang ke (n-1) = x (n-1) + panjang tidak efektif

Panjang efektif = 2L

= 2L1 – l

Panjang tidak efektif = jarak antar U pengikat = l

Panjang busur pegas = 2L1

n = jumlah total pegas

t = tebal pegas daun

4.4.3. Contoh permasalahan

1. Sebuah pegas truk memiliki 12 daun, dua di antaranya adalah daun yang tersusun

rata. Panjang busur pegas 1,05 m dan panjang tidak efektifnya 85 mm. Beban

pusat 5,4 kN dengan tegangan yang diizinkan 280 MPa. Tentukan ketebalan dan

lebar pegas daun serta defleksi pegas. Perbandingan tebal total dan lebar pegas

adalah 3.

Penyelesaian:

Diketahui:

n = 12; nF = 2; 2L1 = 1.05 m = 1050 mm; l = 85 mm; 2W = 5,4 kN = 5400 N atau

W = 2700 N; σF = 280 Mpa = 280 N/mm2

Panjang efektif: 2L = 2L1 – l = 1050 – 85 = 965 mm

L = 482,5 mm

2W = 5,4 KN = 5400 N

W = 2700 N

Karena mengingat bahwa rasio dari total kedalaman pegas (n × t) dan lebar pegas

(b) adalah 3, maka:

Dengan asumsi bahwa daun awalnya tidak memiliki tegangan, sehingga tegangan

maksimum atau tegangan lentur untuk panjang penuh daun (σF) adalah:

Dan tebal plat diambil 10 mm dan lebarnya b = 4x10 = 40 mm, maka:

Defleksi pegas :