Bab 14 abs-asr-esp

23
Teknik Ototronik Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 377 BAB 14 SISTEM ABS, ASR/ETC dan ESP Sistem ABS, ASR/ETC dan ESP adalah suatu sistem yang merupakan pengembangan dari sistem rem pada kendaraan dimana dengan pema- sangan sensor putaran roda maka dapat diketahui apakah roda dalam keadaan slip akibat perlambatan, percepatan, oversteering dan under- steering, kelengkapan lain dipasang juga unit aktuator serta elektronic control unit (ECU), sehingga sensor dapat memberikan sinyal ke ECU untuk diolah sedemikian rupa dan menghasilkan sinyal output ke actuator guna mengkondisikan roda tidak terjadi slip. 14.1 Rem dengan Sistem Anti Blokir (ABS) Gambar 14.1 Komponen Rem ABS Keterangan : 1. Unit hidraulis 2. Sensor putaran roda 3. Kontrol unit ABS 4. Silinder master 5. Kaliper 6. Lampu kontrol ABS 14.1.1 Tujuan sistem ABS Ada beberapa tujuan yang dicapai pada kendaraan yang dilengkapi dengan sistem ABS antara lain : - Kemampuan pengendalian stir baik saat pengereman penuh - Stabilitas kendaraan tetap baik saat pengereman pada semua kondisi jalan. - Jarak pengereman sekecil mungkin dapat tercapai. 14.1.2 Fungsi Komponen ABS Komponen ABS memiliki fungsi masing-masing sehingga sistem dapat bekerja sesuai dengan tujuan yang akan dicapai : - Sensor putaran dan roda gigi, membangkitkan sinyal listrik de- ngan menginduksikan arus bolak balik berdasarkan putaran roda. - Kontrol unit , berfungsi : Menghitung percepatan / perlam-batan roda, menghitung besaran slip dan menentukan kecepatan reverensi kendaraan. Menetapkan sinyal listrik untuk mengendalikan katup regulator tekanan Rangkaian keamanan memeriksa fungsi dari sinyal in put sebelum dan selama katup regulator te-kanan bekerja fungsi ABS berhenti dan lampu menyala. - Unit hidraulis berfungsi : Meregulasi tekanan rem umum- nya pada tiga posisi kerja di setiap roda : Mempertahankan tekanan pada silinder roda.

description

 

Transcript of Bab 14 abs-asr-esp

Page 1: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 377

BAB 14 SISTEM ABS, ASR/ETC dan ESP

Sistem ABS, ASR/ETC dan ESP adalah suatu sistem yang merupakan pengembangan dari sistem rem pada kendaraan dimana dengan pema- sangan sensor putaran roda maka dapat diketahui apakah roda dalam keadaan slip akibat perlambatan, percepatan, oversteering dan under- steering, kelengkapan lain dipasang juga unit aktuator serta elektronic control unit (ECU), sehingga sensor dapat memberikan sinyal ke ECU untuk diolah sedemikian rupa dan menghasilkan sinyal output ke actuator guna mengkondisikan roda tidak terjadi slip.

14.1 Rem dengan Sistem Anti

Blokir (ABS)

Gambar 14.1 Komponen Rem ABS

Keterangan :

1. Unit hidraulis 2. Sensor putaran roda 3. Kontrol unit ABS 4. Silinder master 5. Kaliper 6. Lampu kontrol ABS

14.1.1 Tujuan sistem ABS

Ada beberapa tujuan yang

dicapai pada kendaraan yang dilengkapi dengan sistem ABS antara lain : - Kemampuan pengendalian stir baik

saat pengereman penuh - Stabilitas kendaraan tetap baik saat

pengereman pada semua kondisi jalan.

- Jarak pengereman sekecil mungkin dapat tercapai.

14.1.2 Fungsi Komponen ABS

Komponen ABS memiliki fungsi

masing-masing sehingga sistem dapat bekerja sesuai dengan tujuan yang akan dicapai : - Sensor putaran dan roda gigi,

membangkitkan sinyal listrik de-ngan menginduksikan arus bolak balik berdasarkan putaran roda.

- Kontrol unit , berfungsi : • Menghitung percepatan /

perlam-batan roda, menghitung besaran slip dan menentukan kecepatan reverensi kendaraan.

• Menetapkan sinyal listrik untuk mengendalikan katup regulator tekanan

• Rangkaian keamanan memeriksa fungsi dari sinyal in put sebelum dan selama katup regulator te-kanan bekerja → fungsi ABS berhenti dan lampu menyala.

- Unit hidraulis berfungsi : • Meregulasi tekanan rem umum-

nya pada tiga posisi kerja di setiap roda :

• Mempertahankan tekanan pada silinder roda.

Page 2: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 378

• Menurunkan tekanan pada silin- der roda walaupun pedal rem tetap diinjak

• Menaikkan tekanan pada silinder roda.

Gambar 14.2 Siklus kerja

14.1.3 Siklus kerja ABS

Proses pengaturan dalam sistem

anti blokir (ABS) merupakan rang-kaian proses tertutup yang berlang-sung berulang-ulang.

- Tekanan dari silinder (1), mengalir melalui katup elektro magnetis (2) ke kaliper (3) - Sensor putaran roda (4) mengukur putaran dan mengirim sinyal putaran tersebut ke kontrol unit ABS (5) - Kontrol unit ABS (5) mengolah sinyal putaran dan menetapkan sinyal out put dan mengirim ke katup elektro magnetis (2) - Katup elektro magnetis (2) ber- dasarkan sinyal out put dari kontrol unit mengatur tekanan rem dari silinder master ke kaliper sesuai dengan kebutuhan (menaikkan, me- nahan dan menurunkan tekanan)

14.2 Macam-macam ABS dan Cara Kerjanya

Sistem ABS berdasarkan aliran

hidrolis, penggunaan katup dan cara kerjanya ada beberapa macam : - Sistem Anti Blokir (ABS) Aliran

Tertutup dengan Katup Magnet 2/2 (2 saluran/2 fungsi)

Gambar 14.3 Rangkaian ABS aliran

tertutup dengan katup 2/2

Keterangan 1. Pedal rem 2. Silinder master 3. Reservoir 4. Katup masuk 2/2 5. Katup anti balik 6. Kaliper 7. Katup buang 2/2 8. Penyimpan tekanan 9. Katup anti balik 10. Pompa pengembali 11. Katup anti balik

Pada sistem ini saat menurunkan

tekanan aliran cairan rem dihubung-kan ke saluran masuk oleh pompa

Dan juga terdapat 2 buah katup, katup masuk 2/2 dan katup buang 2/2 dimana keduanya terdapat perbedaan, dalam keadaan normal katup masuk (4) tidak dialiri listrik posisi katup mengalirkan tekanan

Page 3: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 379

dan jika dialiri listrik posisi katup bergeser tidak mengalirkan tekanan, dan juga pada katup buang (7) keadaan normal tidak dialiri listrik katup pada posisi menutup aliran dan jika dialiri listrik katup bergeser ke posisi mengalirkan tekanan

- Cara Kerja ABS aliran tertutup

dengan katup magnet 2/2, sebagai berikut :

• Fase menaikkan tekanan

Gambar 14.4 Fase menaikkan tekanan

Pedal rem diinjak maka cairan

rem mengalir menuju kaliper melalui katup masuk 2/2

Tidak ada arus listrik ke katup masuk maupun katup buang, Katup masuk membuka saluran dan katup buang menutup.

Terjadi pengereman.dimana naik- nya tekanan tergantung seberapa besar injakan pedal

• Fase Menahan tekanan

Gambar 14.5. Fase menahan tekanan

Tekanan terus naik hingga terjadi slip (roda tidak berputar tetapi ke-cepatan kendaraan masih tinggi). Jika slip roda masih hampir mendekati 20% maka tekanan harus diper-tahankan untuk itu Hanya katup masuk yang diberi arus listrik → Katup masuk bergeser pada posisi menutup saluran. Dan katup buang tetap pada posisi menutup → Tekanan pada kaliper tertahan, de-ngan tertahannya tekanan dan dalam waktu yang sama energi kinetik kendaraan juga turun, terjadilah suatu kondisi dimana tekanan rem lebih besar maka slip naik lagi melebihi 20% untuk itu tekanan harus diturunkan kembali

• Fase Menurunkan Tekanan

Gambar 14.6 Fase menurunkan tekanan

Page 4: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 380

Katup masuk dan katup buang

diberi arus listrik akibatnya Katup masuk tetap menutup saluran dan katup buang pada posisi membuka saluran → Tekanan kaliper turun me- ngalir ke tabung penyimpan tekanan rendah dan selanjutnya dipompakan kembali ke saluran silinder master → Pedal rem naik.

Dengan Terjadi penurunan slip dan kecepatan juga naik yang akibatnya slip kembali turun kurang dari 20%, langkah berikutnya menaik- kan kembali tekanan kembali pada proses menaikkan tekanan yaitu katup masuk dan katup buang kembali tidak di beri arus artinya kembali ke fase awal menaikkan tekanan.

Seterusnya proses kembali ke-fase menaikkan tekanan lagi demikian seterusnya proses berulang dengan siklus sebagai berikut : - Fase menaikkan tekanan - Fase menahan tekanan - Fase menurunkan tekanan

Demikian ketiga fase ini meru-pakan siklus selama ABS bekerja hingga kendaraan dapat berhenti dengan slip dipertahankan 20%, Slip 20% suatu keadaan dimana ken-daraan masih memiliki kecepatan akan tetapi roda tidak berputar lagi.

k

rk

VVV

s−

=

s = Slip Vk = Kecepatan kendaraan Vr = Kecepatan roda

- Sistem Anti Blokir Aliran Tertutup dengan Katup Magnet 3/3 (3 saluran/ 3 fungsi)

Gambar 14.7 Rangkaian ABS aliran

tertutup dengan katup 3/3

Keterangan : 1. Pedal rem 2. Silinder master 3. Reservoir 4. Katup magnet 3/3 5. Kaliper 6. Penyimpanan tekanan 7. Katup anti balik 8. Pompa pengembali 9. Katup anti balik. 10. Unit hidaulis

11. Katup magnet 3/3 - Cara Kerja ABS aliran tertutup dengan katup magnet 3/3, dimana cara kerja sebagai berikut :

• Menaikan Tekanan :

Page 5: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 381

Gambar 14.8 Fase menaikkan tekanan

Tidak ada arus listrik ke katup

magnet 3/3 → katup pada posisi membuka saluran dari silinder master ke kaliper dan menutup saluran ke penyimpan tekanan rendah.

Tekanan silinder master mengalir melelui katup magnet 3/3 ke kaliper → terjadi pengereman → , pedal rem turun

• Menahan Tekanan :

Gambar 14.9 Fase menahan tekanan

Katup magnet 3/3 diberi arus listrik sebesar 2 amper → katup pada posisi menutup ketiga saluran → tekanan pada kaliper tertahan

• Menurunkan Tekanan :

Gambar 14.10 Fase menurunkan

tekanan

Katup magnet 3/3 diberi arus listrik 5 amper → katup pada posisi tetap menutup saluran dari silinder master dan membuka saluran dari kaliper ke saluran penyimpan te-kanan.

Tekanan kaliper turun mengalir ke tabung penyimpanan tekanan dan selanjutnya dipompakan kembali ke saluran silinder master → pedal rem naik.

Page 6: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 382

- Sistem Anti Blokir (ABS) Aliran Terbuka

Gambar 14.11 Komponen rem ABS aliran terbuka

Keterangan : 1. Pedal rem 2. Sensor posisi pedal rem 3. Penguat gaya rem 4. Unit hidraulis 5. Pompa tekanan tinggi 6. Silinder master 7. Reservoir 8. Lampu kontrol ABS 9. Sensor putaran roda depan kiri 10. Sensor putaran roda depan kanan 11. Sensor putaran roda belakang

kanan 12. Sensor putaran roda belakang kiri 13. Kontrol unit ABS

- Sistem Anti Blokir (ABS) Aliran Terbuka dengan katup magnet 2/2

Gambar 14.12 Rangkaian ABS aliran terbuka dengan katup 3/3

Keterangan : 1. Pedal rem 2. Silinder master 3. Reservoir 4. Katup masuk 5. Katup anti balik 6. Kaliper 7. Katup buang 8. Pompa tekanan tinggi 9. Katup anti balik - Cara Kerja ABS aliran terbuka

dengan katup magnet 2/2, sebagai berikut :

• Menaikkan tekanan :

Gambar 14.13 Fase menaikkan tekanan

Katup masuk dan katup buang

tidak diberi arus listrik → Katup masuk pada posisi membuka saluran dan katup buang menutup saluran.

Tekanan cairan rem mengalir melalui katup masuk ke kaliper → Terjadi pengereman.

• Menahan tekanan :

Page 7: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 383

Gambar 14.14 Fase menahan tekanan

Katup masuk diberi arus listrik

dan katup buang tetap tidak berarus → Katup masuk pada posisi menutup saluran dari silinder master ke kaliper juga katup buang masih pada posisi menutup → Tekanan pada kaliper tertahan.

• Menurunkan tekanan :

Gambar 14.15 Fase menurunkan

tekanan

Katup masuk dan katup buang diberi arus listrik → katup masuk pada posisi menutup saluran dan katup buang membuka saluran.

Tekanan cairan rem pada kaliper mengalir melalui katup buang ke reservoir → Tekanan turun pompa tekanan tinggi mengisap cairan dari reservoir dan ditekan ke dalam sa-luran rem → Pedal rem bergerak naik sampai batas tertentu.

- Cara Kerja ABS aliran terbuka dengan katup magnet 3/3, sebagai berikut :

• Menaikkan tekanan :

Gambar 14.16 Fase menaikkan tekanan

Tidak ada arus listrik ke katup

magnet 3/3 → katup pada posisi membuka saluran dari silinder master ke kaliper dan menutup saluran ke penyimpan tekanan rendah.

Tekanan silinder master mengalir melelui katup magnet 3/3 ke kaliper → terjadi pengereman → , pedal rem turun

• Menahan tekanan :

Gambar 14.17 Fase menahan tekanan

Page 8: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 384

Katup magnet 3/3 diberi arus listrik sebesar 2 amper → katup bergeser pada posisi menutup ketiga saluran → tekanan pada kaliper tertahan - Menurunkan tekanan :

Gambar 14.18 Fase menurunkan

tekanan

Katup magnet 3/3 diberi arus listrik 5 amper → katup bergeser pada posisi tetap menutup saluran dari silinder master dan membuka saluran dari kaliper ke reservoir. Dan selanjutnya agar pedal rem tidak turun maka pompa pengembali diaktifkan mengalirkan cairan rem ke saluran master

14.3 Electronic Tracsion Control (ETC)/ASR

Gambar 14.19 Kendaraan dengan

fasilitas ETC/ASR

Electronic Traksion Control (ETC), adalah teknik untuk meng-hindari slip pada roda penggerak, akibat dari penggunaan differensial bila salah satu roda penggerak terjadi slip maka gaya penggerak mengalir hanya ke roda penggerak yang slip saja akibatnya kendaraan tidak bisa jalan karena daya dari mesin mengalir ke roda yang slip saja. 14.3.1 Permasalahan :

Gambar 14.20 Proses terjadinya slip pada ¼ kendaraan

Fp adalah Gaya penggerak yang

besarnya tergantung gaya dari mesin.dan Ft adalah Gaya traksi yang besarnya tergantung gesekan

Page 9: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 385

antara permukaan ban dengan permukaan jalan : Fp → Gaya dari mesin dimana

besarnya tergantung sopir (injakan pedal gas)

Ft → Gaya gesek Permukaan ban dengan permukaan jalan dimana besarnya tergantung W dan µ

WFtFp .µ== Sehingga terdapat beberapa

kemungkinan : traksipenggerak FF > → terjadi Slip

traksipenggerak FF = → tak terjadi Slip

traksipenggerak FF < → tak terjadi Slip Pada saat mobil dipercepat

hingga kecepatan roda penggerak melebihi batas slip, maka mobil akan jalan tidak stabil.

Gambar 14.21 Slip penggerak depan

• Pada mobil dengan

penggerak roda depan mobil tidak bisa dibelokkan.karena pada roda penggerak terjadi slip

Gambar 14.22 Pada mobil dengan penggerak belakang

• Roda belakang mobil tidak

bisa dibelokkan mengikuti radius jalan atau juga tidak bisa berjalan lurus karena pada roda penggerak terjadi slip

14.3.2 Perbaikan :

Mengerem roda penggerak

yang slip dan atau menurunkan daya motor Macam-macam pengendali slip per-cepatan : Untuk mengendalikan slip percepatan dibedakan menjadi tiga yaitu : • Pengereman roda yang slip • Menurunkan daya motor • Kombinasi antara pengereman

roda yang slip dengan menu-runkan daya motor.

14.3.2.1 ASR dengan prinsip pe-

ngatur moment rem

Sistem pengatur moment rem dibangun pada komponen listrik dan

Page 10: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 386

hidraulis sistem rem yang meng-gunakan ABS.

Gambar 14.23 Roda dalam keadaan µ

split

Pada saat awal berjalan/ perce-patan tanpa pengatur momen rem pada split. (µ roda kiri dan kanan berbeda). roda penggerak berdiri diatas jalan yang mempunyai ham-batan gesek (µ) yang berbeda. Dimana (µ roda kiri > µ roda kiri). Oleh karena deferensial selalu mem-bagi moment penggerak (MP) sama besar antara roda kanan dan kiri, sehingga MP/2 ditentukan oleh roda dengan µ kecil

Gambar 14.24 Pengereman pada roda

yang slip (µ kecil)

Pada saat awal berjalan/ perce-patan dengan sistem pengatur mo-men rem pada µ slip. Pada saat roda melebihi batas slip, roda peng-gerak kanan berputar lebih cepat (slip). Dengan bantuan sensor pu-taran roda, besar slip diinformasikan ke kontrol unit ABS/ASR. Kontrol unit dengan bantuan unit hidraulis mem-berikan tekanan rem pada roda yang slip. Sehingga pada roda kanan me-nimbulkan moment pengereman dan

defferensial menghasilkan persa-maan moment (M kanan = M kiri) Oleh karena itu berlaku :

• M kiri =Mp/2 + M rem → Gaya penggerak kiri sama dengan gaya penggerak rem kanan + 1/2 Mp

• Jumlah gaya penggerak = gaya traksi

Pengertian beberapa istilah : ASR : Antriebs Schlupf Regelung LTCS : Low Speeds Traktion

Control Sistem BSD : Bremsen Sperv Differential EDS : Elektronische Differential

Spere ABD : Automatisches Bremsen

Differential ETC : Elektronic Traktion Control ETS : Elektronic Traktion Suport BTC : Breake Traktion Control 14.3.2.2 Pengendalian Slip Perce-

patan. Umumnya pada saat mobil mulai

berjalan atau percepatan, perpin-dahan tenaga tergantung pada slip antara roda dan jalan. Berjalan normal di atas jalan licin tidak cukup hanya dengan mengatur pedal gas untuk menghindari slip roda penggerak. Dengan meningkatkan slip maka turun gaya samping. Oleh karena itu mobil tidak bisa jalan stabil.

Pada pengatur slip yang lengkap bekerja pada sistem rem dan atau pada motor manajemen dan bekerja pada semua tingkat kecepatan.

ASR dengan sistem kerja tunggal pada sistem rem :

Mp/2+M Mp/2+M Mp = 100 %

50 50

Page 11: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 387

Pada sistem ini traksi dan gaya samping yang optimal dicapai pada kecepatan < 50 km/jam.

Gambar 14.25. ASR Pengereman pada

roda penggerak

Dengan ASR roda yang slip dapat diperlambat dengan rem roda itu sendiri tanpa menginjak rem, sehingga dicapai slip yang ideal pada kecepatan yang semestinya. Melalui defferensial dipindahkan moment rem yang ada sebagai moment penggerak pada roda yang berlawanan.

Jika momen penggerak terlalu tinggi, ke dua roda direm tetapi lama-nya pengereman harus dibatasi su-paya rem tidak terlalu panas. 14.3.2.3 ASR dengan pengatur

daya motor Pengaturan daya motor dimak-

sud adalah menurunkan daya motor dengan jalan mengatur saat penga-pian, injeksi bahan bakar dan posisi katup gas sehingga daya motor dapat diturunkan sesuai traksi yang me-mungkinkan tidak terjadi slip.

Gambar 14.26. ASR pengaturan daya

motor Gaya samping optimal pada

semua tingkat kecepatan. Untuk

meng-hindari kerugian gaya dorong ke samping (pada penggerak be-lakang) atau kemampuan di belokkan (pada penggerak depan) pengaturan sudah harus bekerja jika salah satu roda penggerak slip lebih dari 30 %. Kemungkinan yang diatur pada mesin :

• Meregulasi daya mesin melalui katup gas dengan motor listrik penggerak katup gas (E gas)

• Memundurkan saat pengapian (melalui kontrol unit mesin)

• Mematikan silinder motor (dengan mematikan injektor)

• Mengurangi tekanan turbo (melalui kontrol unit mesin)

• Memindahkan gigi yang besar (pada transmisi automatis) elektronik

ASR dengan pengaturan daya motor disebut juga : ASC : Automatic Stability Control EMS : Elektronische Motorleistungs Stenerung 14.3.2.4 ASR dengan pengaturan

kombinasi antara rem dan daya motor.

Pada ASR kombinasi terjadi

pengaturan pada sistem rem dan moment putar motor. Oleh karena itu keuntungan pada ke dua sistem dapat disatukan.

Page 12: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 388

Gambar 14.27. ASR pengaturan kombinasi antara daya motor dengan

rem Pada sistem ini dapat diperoleh

traksi dan gaya samping yang optimal pada semua kecepatan sehingga didapatkan tidak terjadi slip perce-patan

14.3.2.4.1 Prinsip kerja.

Jika salah satu roda berputar

bebas (slip) segera sistem rem pada roda itu aktif. Jika roda kedua ikut berputar bebas (slip) segera pula sistem rem pada roda kedua aktif (kedua roda direm) bersamaan dengan itu moment putar roda dikurangi.

Pada kecepatan tinggi yang bekerja hanya ASR dengan pe-ngaturan moment motor ASR Simtem Pengaturan Slip pada Rem Aliran hidraulis tertutup dengan pembatas tekanan (Misal Bosch ASR5) Contoh : Mobil penggerak depan de-ngan pembagian saluran rem diagonal.

Gambar 14.28. Rangkaian ABS dan ASR

Keterangan gambar : KM = Katup masuk KB = Katup buang

KP = Katup pemindah dengan pembatas tekanan (70-130 bar)

KI = Katup isap P = Pompa pengembali yang

mampu mengisap PT = Penyimpan tekanan PP = Peredam getaran (pulsasi) 14.3.2.4.2 Cara Kerja Unit Hi-

draulis ABS/ASR Pada tahapan ini roda yang slip

akibat percepatan di rem untuk menghindari daya mesin hanya me-ngalir ke roda yang slip tersebut dimana fase kerjanya sama dengan ABS :

Gambar 14.29. Menaikkan

tekanan

Menaikkan Tekanan ABS

• Tekanan rem dari silinder master melalui katup KP dari KM ke kaliper.

Menahan Tekanan ABS

Gambar 14.30 Menahan tekanan

Page 13: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 389

• Katup KM berarus → tekanan

pada kaliper tetap. Menurunkan Tekanan ABS

Gambar 14.31 Menurunkan tekanan

• Katup KB, KM dan pompa

berarus → cairan rem me-ngalir ke penyimpan tekanan rendah dan dipompa melalui peredam pulsasi dan katup pemindah ke sil master.

ASR Menaikkan Tekanan

Gambar 14.32 ASR menaikan tekanan

• Katup KI, pompa dan katup

KP berarus → pompa meng-isap cairan dari silinder master melalui katup KI

• Tekanan pompa mengalir melalui katup KM ke kaliper

• Tekanan maksimal dibatasi oleg katup pembatas tekanan KP

ASR Menurunkan Tekanan

Gambar 14.33 ASR menurunkan

tekanan

• Katup KB, pompa, katup KP dan katup KI berarus → tekanan kaliper turun melalui katup KB.

Gambar 14.34 Skema lengkap ABS

Bosch generasi 5 dengan pembagian saluran diagonal.

Page 14: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 390

Gambar 14.35 Skema lengkap ABS/ASR

Bosch generasi 5 dengan pembagian saluran diagonal.

ASR Sistem Pengaturan Daya Motor Macam-macam pengaturan motor : a. Pengaturan pembukaan katup

gas : Jika salah satu atau kedua

roda penggerak slip, momen putar motor akan dikurangi de-ngan menutup katup gas. Batas slip tergantung dari kecepatan mobil dan apakah salah satu atau kedua roda yang slip.

Pada kendaraan dengan penggerak depan pengaturan katup gas tidak harus dengan cepat karena stabilitas mobil masih terjaga oleh roda bela-kang yang masih berputar se-suai dengan kecepatan ken-daraan.

Pada kendaraan penggerak aksel belakang katup gas harus menutup sangat cepat supaya stabilitas kendaraan terjaga.

b. Pengendalian tambahan : Melalui sistem pengapian

dan injeksi apabila slip pada

penggerak melebihi batas ter-tentu saat pengapian diper-lambat. Jika moment mesin masih terlalu besar pengapian dimatikan (injeksi dimatikan juga).

c. Penaturan gaya mesin dengan

injeksi : Pada kondisi yang ideal

(untuk penggerak depan) semua komponen yang dibutuhkan ada pada kendaraan, yaitu : Kontrol unit ABS/ASR kontrol unit mesin dan hubungan antara kedua kontrol unit tersebut.

Dengan demikian sistem ini menjadi sederhana dan murah. Supaya regulasi daya mesin lebih baik, untuk mematikan injektor diperlukan persetengah silinder, artinya : injektor dima-tikan setiap langkah kerja kedua.

Macam-macam Pengaturan Katup Gas :

Gambar 14.36 Pengatur throutle

Page 15: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 391

Gambar 14.37 Mekanisme pengendali

gas dengan dos vacum

a) Penutupan katup gas dengan motor :

Pada sistem ini katup gas dikendali-kan oleh sopir melalui kabel gas dengan pegas peng-hubung ke poros katup gas. Jika roda bergerak melebihi batas slip tertentu kontrol unit ABS/ASR memberi arus ke motor penutup.

Motor penutup mengurangi pembu-kaan katup gas ber-lawanan gaya kaki sopir. Sudut katup gas diukur dari potensio meter katup gas dan sinyal dialirkan ke kontrol unit ABS/ASR.

b) Pengaturan daya mesin dengan

katup ASR tersendiri Pada mesin ini akan di-

tambah sebuah katup penutup yang letaknya di atas atau di bawah katup gas. Jika slip pada roda penggerak melebihi batas tertentu kontrol unit ABS/ASR memberikan arus ke motor penutup.

Posisi katup ASR diukur dengan sebuah potensio meter

dan sinyal dialirkan ke konrol unit ABS/ASR.

1. Katup gas 2. Saluran isap 3. Katup ASR 4. Motor penutup

Gambar 14.38 Mekanisme pengendali

gas dengan motor listrik

Tegangan bateray

Tegangan kunci kontak

Informasi ABS "OFF"

Sensor 4 putaran roda

Putaran mesin

Tombol ETC"ON-OFF"

Saklar pedal rem

Sudut katup gas

Kontrol unit ETC (ASR)

Temperatutr mesin

Sudut katup ETC (ASR)

Kontrol unit ABS

Kontrol unit Motronik

Steker diagnoso

Sinyal menurunkandaya mesin

Melarang campurandiperkaya pada beban

penuh

Lampu kontrol ETC(ASR)

Kontrol pengatur katupgas ETC (tambahan)

Katup ETC

Gambar 14.39 Blok skema ETC/ASR

Page 16: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 392

c) Pengaturan Katup Gas dengan Sistem E Gas

Pada sistem ini buhungan mekanis antara pedal gas dan katup gas tidak ada. Posisi pedal gas akan dirubah menjadi sinyal listrik dengan sebuah potensio meter, sinyal tersebut dialirkan ke kontrol unit “E” gas (data kondisi yang diinginkan)

Pembukaan/penutupan katup gas terjadi dengan sebuah motor listrik, posisi katup gas diukur dengan sebuah potensio meter (data kondisi sebe-narnya).

Disamping itu E gas juga berfungsi sebagai :

• Regulator putaran idel • Sebagai Cruse Control • Sebagai pembatas kece-

patan • Sebagai pembatas putaran

mesin maksimal • Sebagai pengatur gaya

pengereman motor

Sensor posisi pedal terdiri dari sebuah potensiometer gan-da dengan demikian kemam-puan dapat diandalkan.

Gaya pedal ditentukan oleh pegas yang cocok. Contoh : Mercedes dengan engi-ne management system

Gambar 14.40 Potensiometer pada

katup gas

Terdapat satu potensio meter ganda yang mengukur posisi katup gas yang sebe-narnya. Katup gas listrik me-rubah sudut tergantung :

• Fungsi ASR • Fungsi Cruse Control

(tempomat) • Pengatur putaran idel • Fungsi rpm maksimal • Kecepatan maksimal • Pengatur gaya

pengereman motor Kontrol unit ABS/ASR mempunyai dua mikro prosesor untuk fungsi ABS dan dua untuk ASR. Kontrol unit ini mampu mendiagnosa diri untuk mengeluarkan kode gang-guan dan pemeriksaan sistem dibu-tuhkan tester dari merek mobil.

Sensor rodadepan kiri

Katup 3/3 depankiri

Katup pemindah

Relay pompatekan

Relay pompapengembali

Posisi katup gassebenarnya

Lampu fungsi ASR

Lampu saklarrantai salju

Relay katup

Lampu kontrolABS

Lampu kontrolASR

Steker diagnosa

Tran

sist

or p

engu

at

Sensor rodadepan kanan

Sensor rodabelakang kiri

Sensor rodabelakang kanan

Saklar rem

Sudut katup gassebenarnya

Saklar rantai saljudengan tampu

kontrol

Saklar tekan

Persiapan sinyaldari sensor rodadepan kanan danbelakang kanan

Persiapan sinyaldari saklar rem

Persiapan sinyal

Persiapan sinyal

Persiapan sinyal

Mik

ro p

rose

sor A

BS

Mik

ro p

rose

sor A

SR

Mik

ro p

rose

sor A

SR

Mik

ro p

rose

sor A

BS

Persiapan sinyaldari sensor rodadepan kiri danbelakang kiri

Kontrol unit ABS/ASR

Katup 3/3 depankanan

Katup belakangkiri

Katup belakangkanan

Gambar 14.41 Skema Blok Kontrol Unit ASR (Mercedes ARS2)

Page 17: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 393

Pengaturan Gaya Pengereman Mesin :

Apabila pengereman mesin terlalu besar dan licin, roda penggerak dapat slip lebih dari 30% walaupun rem tidak diinjak. Hal ini berbahaya pada kendaraan dengan penggerak roda belakang karena stabilitas kendaraan hilang

Momen pengereman mesin yang besar terjadi biasanya ditimbulkan setelah pemnindahan gigi besar ke gigi kecil pada saat kopling dilepas.

Sistem ini menghindari slip roda yang terlalu besar dengan menaikkan putaran mesin. Putaran mesin dinaikkan dengan putaran sebuah katup gas listrik atau dengan bantuan dari pengatur putaran idel.

Gambar 14.42 Lampu kontrol ABS/ASR

Lampu Kontrol, Saklar dan Lampu Fungsi Lampu Kontrol :

Lampu kontrol ASR ditunjukkan dengan lampu ASR yang menyala atau ASR tidak berfungsi lagi pada saat lampu tersebut menyala, tetapi ABS tetap berfungsi baik. Lampu ABS dan ASR menyala

Ini berarti ada gangguan pada kedua sistem.

Lampu Fungsi ASR Lampu ini menyala berkedip jika

ASR bekerja dengan demikian sopir dapat informasi bahwa jalan licin sekali.

Gambar 14.43 Tombol rantai salju

Tombol Rantai Salju.

Pada saat banyak salju dan rantai yang terpasang pada roda penggerak, ASR bisa mengurang efek rantai salju oleh karena itu dengan menekan tombol rantai salju batas ASR diperbesar (± 50%). Sistem ini berfungsi sampai 30 km/jam.

Gambar 14.44 Saklar ASR

Saklar ASR Off

Apabila mesin hidup saklar ASR “Off” di”On”kan pengaturan daya mesin tidak berfungsi lagi dan pengaturan daya rem tetap berfungsi sampai 38 km/jam. Pada saat saklar di On kan

Page 18: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 394

lampu fungsi akan menyala terus dan apabila batas slip dicapai lampu akan berkedip. 14.4. Pengatur Stabilitas

Otomatis ”ESP”

Gambar 14.45 Efek understeering dan

oversteering

Jika kendaraan berjalan dan belok di jalan yang licin maka kendaraan tersebut akan Oversteering atau Understeering.

Perbaikan : Mengerem salah satu atau

kedua roda pada satu aksel untuk meng-hindari oversteering atau under-steering.

14.4.1. Fungsi Pengontrol Sta-

bilitas Elektronik Sistem ini untuk memperbaiki

stabilitas kendaraan pada semua kondisi berjalan. Sistem ini biasanya disebut juga : ESP = Elektronik Stability Program

(Mercedes) FDR = Fahr Dinamik Regelung

(Bosch) DSR = Dinamik Stability Control

(BMW) 14.4.2. Prinsip Kerja :

Pengontrolan stabilitas elektronik bekerja dengan pengereman individual pada salah satu atau kedua roda pada satu aksel. Dengan demikian pada saat kendaraan dibelokkan selalu mengikuti sudut stir dan stabil saat percepatan maupun perlambatan.

ESP merupakan tambahan dari fungsi ABS, ASR dan MSR. Pengaturan momen mesin melalui kontrol unit mesin. Pengaturan momen rem dikendalikan kontrol ESP.

Page 19: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 395

Pengaturan DayaPengereman

Kontrol Unit ESP

ABS

ESP Berfungsi

Pengaturan Daya Motor

Kontrol Unit Mesin

ASR ESP ASR ESP

Gambar 14.46 Sistem kombinasi

ABS : Menghindari blokir dari roda

pada saat pengereman dengan demikian kemam-puan belok dan stabilitas terjaga.

ASR : Menghindari slip pada saat percepatan dengan demikian kemampuan stir dan sta-bilitas terjaga.

MSR : Menghindari blokir dari roda penggerak oleh karena pengereman motor.

ESP : Menghindari jalannya ken-daraan menyimpang dari sudut stir (Oversteering dan Understeering).

14.4.3. Cara Kerja Sistem ESP

pada beberapa situasi jalan

a) Kendaraan understeering pada

saat belok ke kiri

Gambar 14.47 Understeering

Keterangan:

1. Arah jalan yang diinginkan 2. Roda dengan pengereman 3. Momen putar kendaraan yang

ditim-bulkan 4. Arah understeering

• Kendaraan akan menggeser

dengan aksel depan keluar jalur yang diinginkan

• ESP akan mengerem roda belakang kiri waktu dan gaya pengereman sangat teliti sesuai kondisi µ

b) Kendaraan Oversteering pada

saat belok ke kiri

Page 20: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 396

Gambar 14.48 Oversteering

Keterangan:

1. Arah jalan yang diinginkan 2. Roda dengan pengereman 3. Momen putar kendaraan yang

ditim-bulkan. 4. Arah oversteering.

• Kendaraan akan menggeser

dengan aksel belakang keluar jalur yang diinginkan

• ESP akan mengerem roda depan kanan waktu dan gaya pengereman sangat teliti sesuai kondisi µ

Kon

trol U

nit M

esin

Kon

trol U

nit T

rans

mis

iO

tom

otif

Kon

trol U

nit E

SP

Tega

ngan

Ker

ja (3

0-31

)

Uni

t Hid

raul

is P

ompa

Pen

gem

bali

Kat

up M

agne

t

Rel

ay P

ompa

Pen

gem

bali

Pom

pa A

wal

Lam

pu K

ontro

l EP

C

Lam

pu K

ontro

l ES

P

Lam

pu K

ontro

l AB

S

Lam

pu K

ontro

l ES

P

Ste

ker D

iagn

osa

D+

Alte

rnat

or (6

1)

Sen

sor P

utar

an R

oda

Dep

an K

iri

Sen

sor P

utar

an R

oda

Dep

an K

anan

Sen

sor P

utar

an R

oda

Bel

akan

g K

iri

Sen

sor P

utar

an R

oda

Bel

akan

gK

anan

Sen

sor K

ecep

atan

Put

arK

enda

raan

Sen

sor T

ekan

an R

em

Sen

sor G

aya

Sam

ping

Sen

sor S

udut

Stir

Sak

lar P

edal

Rem

Sak

lar R

em T

anga

n

Sak

lar E

SP

"O

FF"

Gambar 14.49 Blok skema ESP

Aliran Hidraulis ESP Aliran hidraulis ESP berdasarkan unit hidraulis BOSCH ASR 5 dengan pompa awal agar kenaikan tekanan ESP bisa lebih cepat. 14.4.4. Sensor Tambahan a) Sensor kemudi :

Kegunaan : Untuk mengukur su-dut stir seteliti mungkin

Gambar 14.50 Sensor kemudi

Page 21: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 397

Sensor sudut stir adalah digital dengan 9 pasang LED dan foto transistor. 2 buah mikro kontroler yang terpasang pada stator mengolah sinyal sudut stir. Rotor mempunyai 8 sirip penghalang dengan panjang yang berbeda.

Posisi stir bisa diukur seteliti 2,50 sepanjang ± 7200 (2 putaran stir). 1. Spiral kontak 2. Elektronika sensor 3. LED dan foto transistor 4. Roda dengan sirip penghalang. b) Sensor Gaya Samping

Kegunaan : untuk mengukur be-sar percepatan gaya samping (m/det2)

Gambar 14.51 Sensor gaya samping

Keterangan :

a. Elektronika sensor. b. Pengirim sinyal Hall c. Elemen pegas dan masa d. Pegas pengukur e. Peredam

Prinsip Kerja :

Sistem pegas dan masa (untuk masa magnet permanen) akan bergerak sesuai besar gaya samping dengan demikian magnet permanen terhadap sensor Hall berubah → tegangan Hall berubah juga. c) Sensor Kecepatan Putar Kegunaan : Mengukur kecepatan putar keliling sumbu vertikal.

Gambar 14.52 Sensor gaya putar (yaw)

Keterangan :

a. Rumah sensor b. Elemen pengukur c. Rangkaian elektrinik (Hi Bird) d. Plat pengantar fleksibel.

Cara Kerja :

Sebuah silinder dari baja dapat getaran dengan frekuensi tertentu, dari 4 elemen piezo (yang me-nimbulkan getaran). 4 pasang elemen piezo terpasang berhadapan melin-tang pada saat kendaraan berputar getaran yang ditimbulkan dari elemen piezo berubah. Besar perubahan getaran adalah hasil dari putaran kendaraan. 14.5. Mendiagnosa kerusakan

pada sistem ABS, ASR/ETC dan ESP

Diagnosa pada kerusakan

sistem ABS, ASR/ETC dan ESP pada kendaraan bermotor pada dasarnya dapat dilakukan melalui 2 cara yaitu:

Page 22: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 398

• Dengan memanfaatkan lampu in-dikator ABS, ASR/ETC dan ESP.

• Dengan menggunakan Auto- motive Diagnose Scantool

14.5.1 Diagnosa dengan meman-

faatkan lampu indikator. Pada panel instrumen terdapat

lampu-lampu indikator, diantaranya untuk ABS, ASR/ETC dan ESP. Lampu indikator ini dapat kita gunakan sebagai alat bantu diagnosa. Pada sistem ini apabila terjadi kerusakan di dalam sistem maka lampu indikator akan menyala, disamping itu kode kerusakan yang terjadi akan disimpan di dalam memori kontrol unit. Dengan menggunakan prosedur yang ada (contoh menjamper pin tertentu pada DLC) maka lampu indikator akan berkedip. Kedipan lampu indikator ini menunjukan kode kerusakan yang terjadi. Selanjutnya kode tersebut kita cocokan dengan manual yang ada untuk mengetahui apa sebenarnya yang rusak.

Gambar 14.53 lampu indikator

14.5.2 Mendiagnosa dengan menggunakan Automotive Diagnose Scantool

Pada setiap kendaraan bermotor

yang sudah dilengkapi dengan sistem kontrol elektronik disediakan konektor DLC (Data Link Conector) yang berfungsi sebagai sambungan untuk dapat membaca kondisi yang ada pada sistem.

Untuk dapat membaca kondisi tersebut tentulah dibutuhkan alat yang namanya Scantool, yang berfungsi membantu kita untuk berkomunikasi dengan sistem.

Dengan menggunakan Scantool kita dapat dengan mudah mengetahui dan mendiagnosa kerusakan yang terjadi, karena Scantool langsung menampilkan data kode dan part yang rusak secara visual dan juga dapat langsung membaca sinyal-sinyal yang ada.

Gambar 14.54 Data link conector (DLC)

Page 23: Bab 14 abs-asr-esp

Teknik Ototronik

Direktorat Pembinaan Sekolah Menengah Kejuruan (2008) 399

Gambar 14.55 Scanner handy

Gambar 14.56 Scanner handy

Gambar 14.57 Scanner PC base

14.6 Memperbaiki sistem ABS, ASR/ETC dan ESP

Pada sistem ini sebetulnya

sudah tidak ada lagi istilah perbaikan, karena komponen sistem yang ada tidak untuk diperbaiki akan tetapi diganti. Jadi pada sistem yang demikian lebih banyak dilakukan adalah penggantian komponen sistem yang rusak yang sudah ditunjukkan melalui proses diagnosa. Pekerjaan yang sesung-guhnya setelah diagnosa adalah melepas komponen lama dan memasang komponen baru sebagai pengganti.