AtkinsPW Id

29
Kimia Fisika Peter Atkins dan Julio de Paula i

Transcript of AtkinsPW Id

Page 1: AtkinsPW Id

Kimia Fisika

Peter Atkins dan Julio de Paula

i

Page 2: AtkinsPW Id

Daftar Isi

Daftar Isi ii

II Struktur 1

8 Teori Kuantum: Pendahuluan dan Prinsip 3Asal mula mekanika kuantum . . . . . . . . . . . . . . . . . . . . . . 38.1 Kegagalan fisika klasik . . . . . . . . . . . . . . . . . . . . . . . 3

Radiasi benda hitam . . . . . . . . . . . . . . . . . . . . . . . . 3Distribusi Planck . . . . . . . . . . . . . . . . . . . . . . . . . . 3Kapasitas panas . . . . . . . . . . . . . . . . . . . . . . . . . . 3Spektrum atom dan molekul . . . . . . . . . . . . . . . . . . . . 3

8.2 Dualitas gelombang dan partikel . . . . . . . . . . . . . . . . . 3Sifat partikel dari gelombang elektromagnetik . . . . . . . . . . 3Sifat gelombang dari partikel . . . . . . . . . . . . . . . . . . . 3

Dinamika sistem mikroskopik . . . . . . . . . . . . . . . . . . . . . . 48.3 Persamaan Schrodinger . . . . . . . . . . . . . . . . . . . . . . 48.4 Penafsiran Born tentang fungsi gelombang . . . . . . . . . . . . 4

Penormalan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Kuantisasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Prinsip-prinsip mekanika kuantum . . . . . . . . . . . . . . . . . . . 48.5 Informasi fungsi gelombang . . . . . . . . . . . . . . . . . . . . 4

Rapat kebolehjadian . . . . . . . . . . . . . . . . . . . . . . . . 4Operator, nilai eigen, fungsi eigen . . . . . . . . . . . . . . . . . 4Operator Hermitian . . . . . . . . . . . . . . . . . . . . . . . . 4Superposisi dan nilai harapan . . . . . . . . . . . . . . . . . . . 4

8.6 Prinsip ketidakpastian . . . . . . . . . . . . . . . . . . . . . . . 48.7 Postulat mekanika kuantum . . . . . . . . . . . . . . . . . . . . 4

ii

Page 3: AtkinsPW Id

DAFTAR ISI iii

9 Teori kuantum: teknik dan terapan 6Gerak translasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69.1 Partikel dalam kotak . . . . . . . . . . . . . . . . . . . . . . . . 6

Penyelesaian yang dapat diterima . . . . . . . . . . . . . . . . . 6Penormalan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Sifat-sifat penyelesaian . . . . . . . . . . . . . . . . . . . . . . . 6Keortogonalan . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

9.2 Gerak dalam dua atau lebih dimensi . . . . . . . . . . . . . . . 6Pemisahan variabel . . . . . . . . . . . . . . . . . . . . . . . . . 6Degenerasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

9.3 Terobosan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Gerak vibrasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69.4 Tingkat-tingkat energi . . . . . . . . . . . . . . . . . . . . . . . 69.5 Fungsi gelombang . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Bentuk fungsi gelombang . . . . . . . . . . . . . . . . . . . . . 6Sifat-sifat osilator . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Gerak rotasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79.6 Rotasi dalam dua dimensi: partikel pada cincin . . . . . . . . . 7

Penjelasan kualitatif rotasi yang terkuantisasi . . . . . . . . . . 7Kuantisasi rotasi . . . . . . . . . . . . . . . . . . . . . . . . . . 7

9.7 Rotasi dalam tiga dimensi: partikel pada kulit bola . . . . . . . 7Persamaan Schrodinger . . . . . . . . . . . . . . . . . . . . . . 7Momentum sudut . . . . . . . . . . . . . . . . . . . . . . . . . . 7Kuantisasi ruang . . . . . . . . . . . . . . . . . . . . . . . . . . 7Model vektor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

9.8 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Teknik hampiran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79.9 Teori gangguan tak-bergantung-waktu . . . . . . . . . . . . . . 79.10 Teori gangguan bergantung waktu . . . . . . . . . . . . . . . . 7

10 Struktur atom dan spektrum atom 10Struktur dan spektrum atom hidrogen . . . . . . . . . . . . . . . . . 1010.1 Struktur atom hidrogen . . . . . . . . . . . . . . . . . . . . . . 10

Pemisahan variabel . . . . . . . . . . . . . . . . . . . . . . . . . 10Penyelesaian radial . . . . . . . . . . . . . . . . . . . . . . . . . 10

10.2 Orbital atom dan energinya . . . . . . . . . . . . . . . . . . . . 10Tingkat-tingkat energi . . . . . . . . . . . . . . . . . . . . . . . 10Energi pengionan . . . . . . . . . . . . . . . . . . . . . . . . . . 10Kulit dan subkulit . . . . . . . . . . . . . . . . . . . . . . . . . 10Orbital atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Page 4: AtkinsPW Id

iv DAFTAR ISI

Fungsi distribusi radial . . . . . . . . . . . . . . . . . . . . . . . 10Orbital p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Orbital d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

10.3 Transisi spektroskopi dan aturan seleksi . . . . . . . . . . . . . 10Struktur atom banyak elektron . . . . . . . . . . . . . . . . . . . . . 1010.4 Hampiran orbital . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Atom helium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Asas Pauli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Penetrasi dan perisai . . . . . . . . . . . . . . . . . . . . . . . . 10Asas pengisian . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Energi pengionan dan afinitas elektron . . . . . . . . . . . . . . 10

10.5 Orbital medan konsisten-diri . . . . . . . . . . . . . . . . . . . 10Spektrum atom rumit . . . . . . . . . . . . . . . . . . . . . . . . . . 1010.6 Defek kuantum dan batas pengionan . . . . . . . . . . . . . . . 1010.7 Keadaan singlet dan triplet . . . . . . . . . . . . . . . . . . . . 1010.8 Pentautan spin-orbit . . . . . . . . . . . . . . . . . . . . . . . . 10

Momentum sudut total . . . . . . . . . . . . . . . . . . . . . . . 10Struktur halus . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

10.9 ”Term symbol” dan aturan seleksi . . . . . . . . . . . . . . . . 10Momentum sudut orbital total . . . . . . . . . . . . . . . . . . 10Multiplisitas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Momentum sudut total . . . . . . . . . . . . . . . . . . . . . . . 10Aturan seleksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

11 Struktur molekul 12Hampiran Born-Oppenheimer . . . . . . . . . . . . . . . . . . . . . . 12Teori ikatan-valensi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1211.1 Molekul diatom homo-nuklir . . . . . . . . . . . . . . . . . . . . 1211.2 Molekul poliatom . . . . . . . . . . . . . . . . . . . . . . . . . . 12Teori orbital molekul . . . . . . . . . . . . . . . . . . . . . . . . . . . 1211.3 Molekul-ion hidrogen . . . . . . . . . . . . . . . . . . . . . . . . 12

Kombinasi linier orbital atom . . . . . . . . . . . . . . . . . . . 12Orbital ikatan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Orbital anti-ikatan . . . . . . . . . . . . . . . . . . . . . . . . . 12

11.4 Molekul diatom homonuklir . . . . . . . . . . . . . . . . . . . . 12Orbital σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Orbital π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Integral tumpang-tindih . . . . . . . . . . . . . . . . . . . . . . 12The electronic structures of homonuclear diatomic molecules . . 12Photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . 12

Page 5: AtkinsPW Id

DAFTAR ISI v

11.5 Heteronuclear diatomic molecules . . . . . . . . . . . . . . . . . 12Polar bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Electronegativity . . . . . . . . . . . . . . . . . . . . . . . . . . 12The variation principle . . . . . . . . . . . . . . . . . . . . . . . 12Two simple cases . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Molecular orbitals for polyatomic systems . . . . . . . . . . . . . . . 1211.6 The Huckel approximation . . . . . . . . . . . . . . . . . . . . . 12

Ethene and frontier orbitals . . . . . . . . . . . . . . . . . . . . 12The matrix formulation of the Huckel method . . . . . . . . . . 12Butadiene and ?π-electron binding energy . . . . . . . . . . . . 12Benzene and aromatic stability . . . . . . . . . . . . . . . . . . 12

11.7 Computational chemistry . . . . . . . . . . . . . . . . . . . . . 12The Hartree-Fock equations . . . . . . . . . . . . . . . . . . . . 12Semi-empirical and ab initio methods . . . . . . . . . . . . . . 12Density functional theory . . . . . . . . . . . . . . . . . . . . . 12

11.8 The prediction of molecular properties . . . . . . . . . . . . . . 12Electron density and the electrostatic potential surfaces . . . . 12Thermodynamic and spectroscopic properties . . . . . . . . . . 12

12 Molecular Symmetry 14The symmetry elements of objects . . . . . . . . . . . . . . . . . . . 1412.1 Operations and symmetry elements . . . . . . . . . . . . . . . . 1412.2 The symmetry classification of molecules . . . . . . . . . . . . . 14

The groups C1, Ci, and Cs . . . . . . . . . . . . . . . . . . . . . 14The groups Cn, Cnv, and Cnh . . . . . . . . . . . . . . . . . . . 14The groups Dn, Dnh, and Dnd . . . . . . . . . . . . . . . . . . 14The groups Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . 14The cubic groups . . . . . . . . . . . . . . . . . . . . . . . . . . 14The full rotation group . . . . . . . . . . . . . . . . . . . . . . . 14

12.3 Some immediate consequences of symmetry . . . . . . . . . . . 14Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Chirality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Applications to molecular orbital theory and spectroscopy . . . . . . 1412.4 Character tables and symmetry labels . . . . . . . . . . . . . . 14

Representations and characters . . . . . . . . . . . . . . . . . . 14The structure of character tables . . . . . . . . . . . . . . . . . 14Character tables and orbital degeneracy . . . . . . . . . . . . . 14Character and operations . . . . . . . . . . . . . . . . . . . . . 14The classification of linear combinations of orbitals . . . . . . . 14

12.5 Vanishing integrals and orbital overlap . . . . . . . . . . . . . . 14

Page 6: AtkinsPW Id

vi DAFTAR ISI

The criteria for vanishing integral . . . . . . . . . . . . . . . . . 14Orbitals with non-zero overlap . . . . . . . . . . . . . . . . . . 14Symmetry-adapted linear combinations . . . . . . . . . . . . . 14

12.6 Vanishing integral and selection rules . . . . . . . . . . . . . . . 14

13 Molecular spectroscopy 1: rotational and vibrational spectra 16General features of spectroscopy . . . . . . . . . . . . . . . . . . . . 1613.1 Experimental techniques . . . . . . . . . . . . . . . . . . . . . . 1613.2 The intensities of spectral lines . . . . . . . . . . . . . . . . . . 16

Absorption intensities . . . . . . . . . . . . . . . . . . . . . . . 16Selection rules and transition moments . . . . . . . . . . . . . . 16

13.3 Linewidths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Doppler broadening . . . . . . . . . . . . . . . . . . . . . . . . 16Lifetime broadening . . . . . . . . . . . . . . . . . . . . . . . . 16

Pure rotation spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 1613.4 Moments of inertia . . . . . . . . . . . . . . . . . . . . . . . . . 1613.5 The rotational energy levels . . . . . . . . . . . . . . . . . . . . 16

Spherical rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Symmetric rotors . . . . . . . . . . . . . . . . . . . . . . . . . . 16Linear rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Degeneracies and the Stark effect . . . . . . . . . . . . . . . . . 16Centrifugal distortion . . . . . . . . . . . . . . . . . . . . . . . 16

13.6 Rotational transitions . . . . . . . . . . . . . . . . . . . . . . . 16Rotational selection rules . . . . . . . . . . . . . . . . . . . . . 16The appearance of rotational spectra . . . . . . . . . . . . . . . 16

13.7 Rotational Raman spectra . . . . . . . . . . . . . . . . . . . . . 1613.8 Nuclear statistics and rotational states . . . . . . . . . . . . . . 1613.9 The vibrations of diatomic molecules . . . . . . . . . . . . . . . 16The vibrations of diatomic molecules . . . . . . . . . . . . . . . . . . 1613.10Molecular vibrations . . . . . . . . . . . . . . . . . . . . . . . . 1613.11Selection rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1613.12Anharmonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

The convergence of energy levels . . . . . . . . . . . . . . . . . 16The Birge-Sponer plot . . . . . . . . . . . . . . . . . . . . . . . 16

13.13Vibration-roration spectra . . . . . . . . . . . . . . . . . . . . . 16Spectral branches . . . . . . . . . . . . . . . . . . . . . . . . . . 16Combination differences . . . . . . . . . . . . . . . . . . . . . . 16

13.14Vibrational Raman spectra of diatomic molecules . . . . . . . . 1613.15The vibrations of polyatomic molecules . . . . . . . . . . . . . 16The vibrations of polyatomic molecules . . . . . . . . . . . . . . . . 16

Page 7: AtkinsPW Id

DAFTAR ISI vii

13.16Normal modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 1613.17Infrared absorption spectra of polyatomic molecules . . . . . . 1613.18Vibrational Raman spectra of polyatomic molecules . . . . . . 16

Depolarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Resonance Raman spectra . . . . . . . . . . . . . . . . . . . . . 16Coherent anti-Stokes Raman spectroscopy . . . . . . . . . . . . 16

13.19Symmetry aspects of molecular vibration . . . . . . . . . . . . 16Infrared activity of normal modes . . . . . . . . . . . . . . . . . 16Raman activity of normal modes . . . . . . . . . . . . . . . . . 16

14 Molecular spectroscopy 2: electronic transitions 1714.1 The characteristics of electronic transitions . . . . . . . . . . . 17The characteristics of electronic transitions . . . . . . . . . . . . . . 1714.2 The electronic spectra of diatomic molecules . . . . . . . . . . . 1714.3 The electronic spectra of polyatomic molecules . . . . . . . . . 17The fates of electronically excited states . . . . . . . . . . . . . . . . 1714.4 Fluorescence and phosphorescence . . . . . . . . . . . . . . . . 1714.5 Dissociation and predissociation . . . . . . . . . . . . . . . . . . 17Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1714.6 General principles of laser action . . . . . . . . . . . . . . . . . 1714.7 Applications of lasers in chemistry . . . . . . . . . . . . . . . . 17

15 Molecular spectroscopy 3: magnetic resonance 19

16 Statistical thermodynamics 1: the concepts 21

Page 8: AtkinsPW Id
Page 9: AtkinsPW Id

Bagian II

Struktur

1

Page 10: AtkinsPW Id
Page 11: AtkinsPW Id

Bab 8

Teori Kuantum: Pendahuluandan Prinsip

Asal mula mekanika kuantum

8.1 Kegagalan fisika klasik

Radiasi benda hitam

Distribusi Planck

Kapasitas panas

Spektrum atom dan molekul

8.2 Dualitas gelombang dan partikel

Sifat partikel dari gelombang elektromagnetik

(Photoelectric effect)

Sifat gelombang dari partikel

(Electron diffraction, Relation of de Broglie)

3

Page 12: AtkinsPW Id

4 BAB 8. TEORI KUANTUM: PENDAHULUAN DAN PRINSIP

Dinamika sistem mikroskopik

8.3 Persamaan Schrodinger

(One dimensional system, three dimensional system, Hamiltonian operator)

8.4 Penafsiran Born tentang fungsi gelombang

(Probability of finding the particle, probability density)

Penormalan

Kuantisasi

Prinsip-prinsip mekanika kuantum

8.5 Informasi fungsi gelombang

Rapat kebolehjadian

Operator, nilai eigen, fungsi eigen

Operator Hermitian

Superposisi dan nilai harapan

8.6 Prinsip ketidakpastian

(Heisenberg uncertainly principle)

8.7 Postulat mekanika kuantum

Page 13: AtkinsPW Id

5

Page 14: AtkinsPW Id

6 BAB 9. TEORI KUANTUM: TEKNIK DAN TERAPAN

Bab 9

Teori kuantum: teknik danterapan

Gerak translasi

9.1 Partikel dalam kotak

Penyelesaian yang dapat diterima

Penormalan

Sifat-sifat penyelesaian

Keortogonalan

9.2 Gerak dalam dua atau lebih dimensi

Pemisahan variabel

Degenerasi

9.3 Terobosan

Gerak vibrasi

9.4 Tingkat-tingkat energi

9.5 Fungsi gelombang

Bentuk fungsi gelombang

(Harmonic ascillator, Hermite polynomial)

Page 15: AtkinsPW Id

9.6. ROTASI DALAM DUA DIMENSI: PARTIKEL PADA CINCIN 7

Sifat-sifat osilator

Gerak rotasi

9.6 Rotasi dalam dua dimensi: partikel padacincin

Penjelasan kualitatif rotasi yang terkuantisasi

Kuantisasi rotasi

9.7 Rotasi dalam tiga dimensi: partikel pada kulitbola

Persamaan Schrodinger

Momentum sudut

Kuantisasi ruang

Model vektor

9.8 Spin

Teknik hampiran

9.9 Teori gangguan tak-bergantung-waktu

9.10 Teori gangguan bergantung waktu

Page 16: AtkinsPW Id
Page 17: AtkinsPW Id

9

Page 18: AtkinsPW Id

10 BAB 10. STRUKTUR ATOM DAN SPEKTRUM ATOM

Bab 10

Struktur atom dan spektrumatom

Struktur dan spektrum atom hidrogen

10.1 Struktur atom hidrogen

Pemisahan variabel

Penyelesaian radial

10.2 Orbital atom dan energinya

Tingkat-tingkat energi

Energi pengionan

Kulit dan subkulit

Orbital atom

Fungsi distribusi radial

Orbital p

Orbital d

10.3 Transisi spektroskopi dan aturan seleksi

Struktur atom banyak elektron

10.4 Hampiran orbital

Atom helium

Asas Pauli

Penetrasi dan perisai

Prinsip pengisian

Energi pengionan dan afinitas elektron

10.5 Orbital medan konsisten-diri

Spektrum atom rumit

10.6 Defek kuantum dan batas pengionan

10.7 Keadaan singlet dan triplet

10.8 Pentautan spin-orbit

Momentum sudut total

Struktur halus

10.9 ”Term symbol” dan aturan seleksi

Momentum sudut orbital total

Multiplisitas

Momentum sudut total

Aturan seleksi

Page 19: AtkinsPW Id

11

Page 20: AtkinsPW Id

12 BAB 11. STRUKTUR MOLEKUL

Bab 11

Struktur molekul

Hampiran Born-Oppenheimer

Teori ikatan-valensi

11.1 Molekul diatom homo-nuklir

11.2 Molekul poliatom

Teori orbital molekul

11.3 Molekul-ion hidrogen

Kombinasi linier orbital atom

Orbital ikatan

Orbital anti-ikatan

11.4 Molekul diatom homonuklir

Orbital σ

Orbital π

Integral tumpang-tindih

Struktur elektron molekul diatom homonuklir

Spektroskopi fotoelektron

11.5 Molekul diatom heteronuklir

Ikatan polar

Keelektronegatifan

Prinsip variasi

Dua kasus sederhana

Orbital molekul untuk sistem poliatom

11.6 Hampiran Huckel

Etena dan orbital frontier

Perumusan matriks dari metode Huckel

Butadiene and ?π-electron binding energy

Benzene and aromatic stability

11.7 Computational chemistry

The Hartree-Fock equations

Semi-empirical and ab initio methods

Density functional theory

11.8 The prediction of molecular properties

Electron density and the electrostatic potential surfaces

Thermodynamic and spectroscopic properties

Page 21: AtkinsPW Id

13

Page 22: AtkinsPW Id

14 BAB 12. MOLECULAR SYMMETRY

Bab 12

Molecular Symmetry

The symmetry elements of objects

12.1 Operations and symmetry elements

12.2 The symmetry classification of molecules

The groups C1, Ci, and Cs

The groups Cn, Cnv, and Cnh

The groups Dn, Dnh, and Dnd

The groups Sn

The cubic groups

The full rotation group

12.3 Some immediate consequences of symmetry

Polarity

Chirality

Applications to molecular orbital theory andspectroscopy

12.4 Character tables and symmetry labels

Representations and characters

The structure of character tables

Character tables and orbital degeneracy

Character and operations

The classification of linear combinations of orbitals

12.5 Vanishing integrals and orbital overlap

The criteria for vanishing integral

Orbitals with non-zero overlap

Symmetry-adapted linear combinations

12.6 Vanishing integral and selection rules

Page 23: AtkinsPW Id

15

Page 24: AtkinsPW Id

16BAB 13. MOLECULAR SPECTROSCOPY 1: ROTATIONAL AND

VIBRATIONAL SPECTRA

Bab 13

Molecular spectroscopy 1:rotational and vibrationalspectra

General features of spectroscopy

13.1 Experimental techniques

13.2 The intensities of spectral lines

Absorption intensities

Selection rules and transition moments

13.3 Linewidths

Doppler broadening

Lifetime broadening

Pure rotation spectra

13.4 Moments of inertia

13.5 The rotational energy levels

Spherical rotors

Symmetric rotors

Linear rotors

Degeneracies and the Stark effect

Centrifugal distortion

13.6 Rotational transitions

Rotational selection rules

The appearance of rotational spectra

13.7 Rotational Raman spectra

13.8 Nuclear statistics and rotational states

13.9 The vibrations of diatomic molecules

13.10 Molecular vibrations

13.11 Selection rules

13.12 Anharmonicity

The convergence of energy levels

The Birge-Sponer plot

13.13 Vibration-roration spectra

Spectral branches

Combination differences

13.14 Vibrational Raman spectra of diatomicmolecules

13.15 The vibrations of polyatomic molecules

13.16 Normal modes

13.17 Infrared absorption spectra of polyatomicmolecules

13.18 Vibrational Raman spectra of polyatomicmolecules

Depolarization

Resonance Raman spectra

Coherent anti-Stokes Raman spectroscopy

13.19 Symmetry aspects of molecular vibration

Infrared activity of normal modes

Raman activity of normal modes

Page 25: AtkinsPW Id

Bab 14

Molecular spectroscopy 2:electronic transitions

14.1 The characteristics of electronic transitions

14.2 The electronic spectra of diatomic molecules

14.3 The electronic spectra of polyatomicmolecules

The fates of electronically excited states

14.4 Fluorescence and phosphorescence

14.5 Dissociation and predissociation

Lasers

14.6 General principles of laser action

14.7 Applications of lasers in chemistry

17

Page 26: AtkinsPW Id
Page 27: AtkinsPW Id

Bab 15

Molecular spectroscopy 3:magnetic resonance

19

Page 28: AtkinsPW Id
Page 29: AtkinsPW Id

Bab 16

Statistical thermodynamics 1:the concepts

21