Analisis Pondasi Mesin (Kedalaman 1.8 m)

74
Data Sondir S1 S2 S3 0.2 20 0.2 10 0.2 10 0.4 10 0.4 6 0.4 8 0.6 10 0.6 6 0.6 8 0.8 5 0.8 5 0.8 12 1 5 1 5 1 12 1.2 5 1.2 5 1.2 10 1.4 5 1.4 5 1.4 10 1.6 8 1.6 10 1.6 10 1.8 8 1.8 10 1.8 18 2 10 2 8 2 25 2.2 8 2.2 12 2.2 22 2.4 25 2.4 10 2.4 25 2.6 35 2.6 15 2.6 20 2.8 40 2.8 15 2.8 17 3 47 3 19 3 20 3.2 10 3.2 15 3.2 15 3.4 15 3.4 20 3.4 10 3.6 35 3.6 25 3.6 10 3.8 40 3.8 40 3.8 10 4 45 4 40 4 10 4.2 40 4.2 58 4.2 20 4.4 38 4.4 45 4.4 20 4.6 38 4.6 37 4.6 20 4.8 40 4.8 43 4.8 20 5 40 5 37 5 22 5.2 70 5.2 54 5.2 60 5.4 85 5.4 60 5.4 45 5.6 90 5.6 60 5.6 50 5.8 90 5.8 120 5.8 42 6 90 6 112 6 57 6.2 80 6.2 100 6.2 50 6.4 60 6.4 87 6.4 40 6.6 50 6.6 80 6.6 42 6.8 70 6.8 85 6.8 37 7 102 7 90 7 39 7.2 128 7.2 100 7.2 45 Kedalama n (m) Konus (kg/cm 2 ) Kedalama n (m) Konus (kg/cm 2 ) Kedalama n (m) Konus (kg/cm 2 )

Transcript of Analisis Pondasi Mesin (Kedalaman 1.8 m)

Page 1: Analisis Pondasi Mesin (Kedalaman 1.8 m)

Data Sondir

S1 S2 S3

0.2 20 0.2 10 0.2 100.4 10 0.4 6 0.4 80.6 10 0.6 6 0.6 80.8 5 0.8 5 0.8 121 5 1 5 1 12

1.2 5 1.2 5 1.2 101.4 5 1.4 5 1.4 101.6 8 1.6 10 1.6 101.8 8 1.8 10 1.8 182 10 2 8 2 25

2.2 8 2.2 12 2.2 222.4 25 2.4 10 2.4 252.6 35 2.6 15 2.6 202.8 40 2.8 15 2.8 173 47 3 19 3 20

3.2 10 3.2 15 3.2 153.4 15 3.4 20 3.4 103.6 35 3.6 25 3.6 103.8 40 3.8 40 3.8 104 45 4 40 4 10

4.2 40 4.2 58 4.2 204.4 38 4.4 45 4.4 204.6 38 4.6 37 4.6 204.8 40 4.8 43 4.8 205 40 5 37 5 22

5.2 70 5.2 54 5.2 605.4 85 5.4 60 5.4 455.6 90 5.6 60 5.6 505.8 90 5.8 120 5.8 426 90 6 112 6 57

6.2 80 6.2 100 6.2 506.4 60 6.4 87 6.4 406.6 50 6.6 80 6.6 426.8 70 6.8 85 6.8 377 102 7 90 7 39

7.2 128 7.2 100 7.2 457.4 160 7.4 100 7.4 387.6 215 7.6 110 7.6 40

7.8 120 7.8 37

Kedalaman (m)

Konus (kg/cm2)

Kedalaman (m)

Konus (kg/cm2)

Kedalaman (m)

Konus (kg/cm2)

Page 2: Analisis Pondasi Mesin (Kedalaman 1.8 m)

8 130 8 488.2 145 8.2 508.4 150 8.4 708.6 167 8.6 1098.8 215 8.8 130

9 215

Page 3: Analisis Pondasi Mesin (Kedalaman 1.8 m)

S4 S5

0.2 10 0.2 50.4 3 0.4 50.6 5 0.6 20.8 5 0.8 51 8 1 5

1.2 7 1.2 51.4 8 1.4 101.6 7 1.6 81.8 5 1.8 52 5 2 5

2.2 7 2.2 82.4 20 2.4 202.6 25 2.6 452.8 60 2.8 503 5 3 130

3.2 105 3.2 1703.4 62 3.4 2153.6 403.8 304 20

4.2 234.4 304.6 324.8 255 30

5.2 405.4 405.6 405.8 356 33

6.2 656.4 806.6 576.8 507 40

7.2 457.4 477.6 507.8 52

Kedalaman (m)

Konus (kg/cm2)

Kedalaman (m)

Konus (kg/cm2)

Page 4: Analisis Pondasi Mesin (Kedalaman 1.8 m)

8 608.2 1008.4 1078.6 1508.8 1809 215

Page 5: Analisis Pondasi Mesin (Kedalaman 1.8 m)

STRATIFIKASI DAN PARAMETER TANAH

Water Table :

Soil Sample (m)Log Symbol

General Soil Description

1.50 ~ 1.95 6 12

3.00 ~ 3.45 7 34

4.50 ~ 4.95 9 56

6.00 ~ 6.45 23 78

7.50 ~ 7.95 26 910

9.00 ~ 9.45 32 11

10.50 ~ 10.95 Pasir campur gravel,padat, abu-abu 41

12.00 ~ 12.45 Pasir campur gravel,padat, abu-abu 45

13.50 ~ 13.73 50

15.00 ~ 15.45 55

16.50 ~ 16.75 50

18.00 ~ 18.36 50

19.50 ~ 19.85 50

21.00 ~ 21.45 58

22.50 ~ 22.95 Pasir, padat, hitam 43

24.00 ~ 24.45 Pasir, padat, hitam 47

25.50 ~ 25.95 Pasir, padat, hitam 49

27.00 ~ 27.45 Pasir, padat, hitam 46

28.50 ~ 28.95 55

30.00 ~ 30.45 55

Nilai NsptLapisan Tanah

Lanau kelempungan, konsistensi sedang, abu-abu kecoklatan

Lanau kelempungan, konsistensi sedang, abu-abu kecoklatan

Lanau kelempungan, teguh, abu-abu kecoklatan

Lanau kelempungan, sangat teguh, abu-abu kehitaman

Lanau kelempungan, sangat teguh, abu-abu kehitaman

Lanau kelempungan, keras, abu kehitaman

Pasir, sangat padat, abu-abu kehitaman

Pasir campur gravel, sangat padat, hitam dan coklat

Pasir campur gravel, sangat padat, hitam dan coklat

Pasir campur gravel, sangat padat, hitam dan coklat

Pasir, sangat padat, hitam dan coklat

Pasir, sangat padat, hitam dan coklat

Pasir, sangat padat, hitam dan coklat

Pasir, sangat padat, hitam dan coklat

Page 6: Analisis Pondasi Mesin (Kedalaman 1.8 m)

30.00 ~ 30.45 55Pasir, sangat padat, hitam dan coklat

Page 7: Analisis Pondasi Mesin (Kedalaman 1.8 m)

STRATIFIKASI DAN PARAMETER TANAH

Water Table : 5.5 m

Kedalaman (m) Jenis Tanahσ σ'

φcu

0.00 ~ 0.70 Timbunan 1.00 1.38 1.52 0.97 0.48 0 0.710.70 ~ 3.60 Lanau 6.00 1.54 1.69 5.43 3.20 0 0.713.60 ~ 5.50 Lanau 9.00 1.58 1.74 8.44 6.93 0 2.865.50 ~ 8.50 Lanau 23.00 1.63 1.80 13.34 11.14 0 5.00

8.50 ~ 9.70 Lanau 32.00 1.66 1.82 15.33 11.44 0 15.369.70 ~ 12.50 Pasir 41.00 1.75 1.93 20.24 13.83 45 0

12.50 ~ 15.00 Pasir 50.00 1.83 2.02 24.82 15.76 47.5 015.00 ~ 18.65 Pasir 50.00 1.85 2.04 31.58 19.04 47.5 018.65 ~ 22.00 Pasir 50.00 1.94 2.13 38.07 22.00 47.5 022.00 ~ 27.50 Pasir 43.00 1.96 2.15 48.83 27.49 45.5 027.45 ~ 30.45 Pasir 46.00 1.97 2.17 54.75 30.14 46 0

Nilai Nspt

ϒn ϒsat

(t/m3) (t/m3) (t/m2) (t/m2) (kg/cm2)

Tabel Hubungan Shear Strain dan G/Su

Tabel Korelasi N Value Dengan Kuat Geser Tanah

Page 8: Analisis Pondasi Mesin (Kedalaman 1.8 m)

STRATIFIKASI DAN PARAMETER TANAH

E Su

7.60 0.35 0.7145.60 0.34 0.7168.40 0.33 2.86

174.80 0.31 5.00

243.20 0.29 15.36311.60 0.27 1.00380.00 0.25 1.09380.00 0.25 1.09380.00 0.25 1.09326.80 0.26 1.02349.60 0.26 1.04

Poisson's Ratio (ν)

Shear Strain(ton/m2) (kg/cm2)

Tabel Hubungan Shear Strain dan G/Su

Page 9: Analisis Pondasi Mesin (Kedalaman 1.8 m)

BAB IIIANALISIS PONDASI DINAMIS

STRATIFIKASI DAN PARAMETER TANAH

Data Titik Sondir 5

Jenis Tanah σ σ' φ cu E Su

1 0.20 Timbunan 5.00 1.36 1.50 0.27 0.14 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.42862 0.40 Timbunan 5.00 1.37 1.51 0.55 0.55 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.42863 0.60 Timbunan 2.00 1.37 1.51 0.82 0.82 0 0.14 4.00 0.35 0.14 0.001 1600 0.035 228.57144 0.80 Lanau 5.00 1.40 1.54 1.10 1.10 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.42865 1.00 Lanau 5.00 1.43 1.57 1.39 1.39 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.42866 1.20 Lanau 5.00 1.46 1.61 1.68 1.68 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.42867 1.40 Lanau 10.00 1.47 1.62 1.97 1.97 0 0.71 20.00 0.35 0.71 0.001 1600 0.035 1142.8578 1.60 Lanau 8.00 1.49 1.64 2.27 2.27 0 0.57 16.00 0.35 0.57 0.001 1600 0.035 914.28579 1.80 Lanau 5.00 1.50 1.65 2.57 2.57 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.4286

10 2.00 Lanau 5.00 1.57 1.73 2.88 2.88 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.428611 2.20 Lanau 8.00 1.68 1.85 3.22 3.22 0 0.57 16.00 0.35 0.57 0.001 1600 0.035 914.285712 2.4 Lanau 20 1.68 1.85 3.56 3.56 0 1.43 40.00 0.35 1.43 0.002 1600 0.035 2285.71413 2.6 Lanau 45 1.71 1.88 3.90 3.90 0 3.21 90.00 0.35 3.21 0.003 1600 0.035 5142.85714 2.8 Lanau 50 1.73 1.90 4.24 4.24 0 3.57 100.00 0.34 3.57 0.003 1500 0.035 5357.14315 3 Lanau 130 1.77 1.95 4.60 4.60 0 9.29 260.00 0.33 9.29 0.006 1300 0.035 12071.4316 3.2 Lanau 170 1.78 1.958 4.95 4.95 0 12.14286 340 0.33 12.14286 0.006 1300 0.035 15785.7117 3.4 Lanau 215 1.78 1.958 5.31 5.31 0 15.35714 430 0.25 15.35714 0.006 1300 0.035 19964.29

Lapisan Tanah

Kedalaman (m)

qc ϒn ϒsat Poisson's Ratio (ν)

Shear Strain Dumping

Ratio

Shear Modulus(kg/cm2) (t/m3) (t/m3) (t/m2) (t/m2) (kg/cm2) (ton/m2) (kg/cm2)

𝐺/𝑆𝑢

Page 10: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 11: Analisis Pondasi Mesin (Kedalaman 1.8 m)

TR-51ECNC TAPPING CENTER SPECIFICATION

Page 12: Analisis Pondasi Mesin (Kedalaman 1.8 m)

SPECIFICATION

A. Trial Dimensi Pondasi1. Dimensi "Badan" Pondasi

Panjang : 98 cm

Lebar : 39 cm

Tinggi : 110 cm

2. Dimensi "Kaki" Pondasi

Panjang : 109 cmLebar : 328 cmTinggi : 58 cm

3. Kontrol Berat Pondasi

Berat Badan = 1009.008 KgBerat Kaki = 4976.6784 KgBerat Total = 5985.6864 Kg

Berat Mesin = 42300 kg

Kontrol : Berat Pondasi > 3 x Berat Mesin

Page 13: Analisis Pondasi Mesin (Kedalaman 1.8 m)

5985.6864 >0.142

Page 14: Analisis Pondasi Mesin (Kedalaman 1.8 m)

B. Perhitungan Pondasi Statis

1. Peritungan Daya Dukung (Metode Terzaghi)0.98 m

0.39 m Pondasi diletakan pada kedalaman 2.4 m

1.1 m Maka, parameter tanahnya didapat :

φ

1.09 m 03.28 m0.58 m

Rumus Daya Dukung Tanah Metode Terzaghi :

qu = 1.3 C. Nc + q. Nq + 0.4 γm . B. Nγ

BJ Beton = 2400 qu = DD =

Kontrol :

Berat Pondasi > 3 x Berat Mesin

Kg/m3

Page 15: Analisis Pondasi Mesin (Kedalaman 1.8 m)

423000.142 Kali Berat Mesin Cek

Page 16: Analisis Pondasi Mesin (Kedalaman 1.8 m)

B. Perhitungan Pondasi Statis

1. Peritungan Daya Dukung (Metode Terzaghi)

Pondasi diletakan pada kedalaman 2.4 m

Maka, parameter tanahnya didapat :

cNc Nq

1.43 1.68 1.85 5.70 1.00 0.00

Rumus Daya Dukung Tanah Metode Terzaghi :

qu = 1.3 C. Nc + q. Nq + 0.4 γm . B. Nγ

3890.0013907.53 ton

DD > Berat Mesin + Pondasi13907.53 > 48.28569 OK!!

ϒn ϒsatNϒ

kg/cm2 kg/m3 kg/m3

t/m2

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

(t/m2

)

(m)

Page 17: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 18: Analisis Pondasi Mesin (Kedalaman 1.8 m)

C. Resume1. Parameter Tanah dan Pondasi 3. Data Peralatan Mesin

Daya Dukung Tanah 3890.00 Weight of Table 250

Modulus Geser (G) 898990.00 Weight of Tools 3

Internal Damping Ratio 0.049 Weight of Machines 423000.39 Total Weight 42300

Berat Jenis Tanah 16.80

Berat Jenis Beton 2.4

2. Data Pondasi 4. Data Mesin

"Badan Pondasi" Kecepatan blower 3890Panjang (P) 0.98 m Kecepatan motor 1589Lebar (l) 0.39 m Unbalanced Force 0.089

Tinggi (t) 1.1 m"Kaki Pondasi"

Panjang (P) 1.09 mLebar (l) 3.28 mTinggi (t) 0.58 m

t/m2

t/m2

Poisson's Ratio (ν)t/m3

t/m3

Page 19: Analisis Pondasi Mesin (Kedalaman 1.8 m)

3. Data Peralatan Mesin

kg

kg

kgkg

4. Data Mesin

rpmrpmton

Page 20: Analisis Pondasi Mesin (Kedalaman 1.8 m)

3.245 kN 1.000 tm0.325 ton

0.261 tm0.847 kN0.085 ton

3. Geometri Pondasi 4. Geometri Mesin

B = 1.55 m0.39 m L = 2.52 m0.98 m H = 2.8 m1.1 m

3.28 m1.09 m0.58 m

h = 1.68 m

5. Spek Mesin

Kecepatan Spindle : 3890 rpmKecepatan Tapping : 1589 rpm

Berat Total Mesin 42.3 ton

6. Parameter Tanah

Daya Dukung Tanah 3890.00

Modulus Geser (G) ###Damping Ratio 0.05

0.39

Berat Jenis Tanah 16.80

Berat Jenis Beton 2.40

1. Centrifugal Force 2. Rocking Dynamic Moment

a. For Spindle a. For Spindle

F0 = 0.001 x W x (rpm/1000)1.5 Mr = Fo x (h + hC.G Machine)F0 = Mr =F0 = b. For Tappingb. For Tapping Mr = Fo x (h + hC.G Machine)

F0 = 0.001 x W x (rpm/1000)1.5 Mr =F0 =F0 =

"Badan Pondasi"Bp =Lp =Hp =

"Kaki Pondasi"Bk =Lk =Hk =

t/m2

t/m2

Poisson's Ratio (ν)

t/m3

t/m3

Page 21: Analisis Pondasi Mesin (Kedalaman 1.8 m)

L/B Koefisien

0.3 2.190.3 10.3 0.5

7. Koefisien βv, βh, βr 8. Vertical Excitation Analysis

βv =βh =βr =

Page 22: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 23: Analisis Pondasi Mesin (Kedalaman 1.8 m)

8.1 Spring Constant 8.2 Damping Ratio

2.329

1.067 m

0.3621.474

βv = 2.191.646

0.05

8982051.183 t/m

1.695

8. Vertical Excitation Analysis

a. Radius Equivalent (rov) for Rectangular Foundation a. Effect of Depth of Embedment on Damping Ratio

αv =

rov =b. Mass Ratio

b. Embedment Factor for Spring Constant

Bv = (1-ν)/4 x W/(ϒ x rov3)ηv = 1 + 0.6 x (1-ν) x (h/rov) Bv = ηv =

c. Geometrical Damping Ratioc. Spring Constant Coefficient

Dv =d. Equivalent Spring Constant for Rectangular Foundation

d. Internal Damping

Dvi =

Kv = d. Total Damping Ratio

Dvt = Dv + Di

Dvt =

𝑟_𝑜𝑣= √((𝐵_𝑘 𝑥 𝐿_𝑘)/𝜋)

𝐾_𝑣=𝐺/((1−𝑣)) . 𝛽_(𝑣 ). √(𝐵 𝑥 𝐿) . 𝑛_𝑣

𝛼_𝑣= [1+1.9.(1−𝑣). ℎ/𝑟_𝑜𝑣 ]/√(𝑛_𝑣 )

𝐷_𝑣=0.425/√(𝐵_𝑣 ).𝛼_𝑣

Page 24: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 25: Analisis Pondasi Mesin (Kedalaman 1.8 m)

8.3 Frequency Check

### rpm

#NUM! # 3.390428 RESONANCE NOT POSSIBLE !!!

0.302 0.123

7.31E-01 OK

9.35E-01 OK

e. Transmissibility Factor

1.045

1.013

1.17E-07 m

Effect of Depth of Embedment on Damping Ratio a. Natural Frequency

Fnv =

b. Resonance Frequency (rpm)

Frv = 2 x Dvt =

c. Frequency Ratio

rv (spindle) = rv (tapping) =

d. Magnification Factor

Mv(spindle) =

Mv(tapping) =

Tv(spindle) =

Tv(tapping) =

f. Vibration Amplitude

V(spindle) = Mv(spindle) + Fo(spindle) / Kv Vrocking(spindle) =V(spindle) = Vrocking(spindle) =

𝛼_𝑣= [1+1.9.(1−𝑣). ℎ/𝑟_𝑜𝑣 ]/√(𝑛_𝑣 ) 𝐹_𝑛𝑣=60/(2𝑥𝜋)𝑥√((𝐾_𝑣/𝑚))

𝐹_𝑟𝑣= 𝐹_𝑛𝑣 𝑥√([1−[2𝑥𝐷_𝑣𝑡^2 ]] )

〖𝑟𝑣〗 _𝑠𝑝𝑖𝑛𝑑𝑙𝑒= 𝑓_𝑣/𝐹_𝑛𝑣 〖𝑟𝑣〗 _𝑡𝑎𝑝𝑝𝑖𝑛𝑔= 𝑓_𝑣/𝐹_𝑛𝑣

𝑀_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1−𝑟_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+〖 (2 _ _( (𝐷 𝑣𝑡 𝑥𝑟 𝑣 𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗 ^2 )𝑀_(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=1/√((1−𝑟_(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))^2 )^2+〖 (2 _ _( (𝐷 𝑣𝑡 𝑥𝑟 𝑣 𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗 ^2 )

𝑇_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) 𝑥√(1+〖 (2 _ _( (𝐷 𝑣𝑡 𝑥𝑟 𝑣 𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗 ^2 )𝑇_(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=𝑀_(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔)) 𝑥√(1+〖 (2 _ _( (𝐷 𝑣𝑡 𝑥𝑟 𝑣 𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗 ^2 )

Page 26: Analisis Pondasi Mesin (Kedalaman 1.8 m)

1.14E-07 m

2.31E-07 m

V(tapping) = Mv(tapping) + Fo(tapping) / Kv Vrocking(tapping) =V(tapping) = Vrocking(tapping) =

g. Vtotal

Vtotal = (V(spindle) + Vrocking(spindle))+ (V(tapping) + Vrocking(tapping))Vtotal =

Page 27: Analisis Pondasi Mesin (Kedalaman 1.8 m)

RESONANCE NOT POSSIBLE !!!

0.00E+00 mR(spindle) x (l/2)

Page 28: Analisis Pondasi Mesin (Kedalaman 1.8 m)

0.00E+00 mR(tapping) x (l/2)

Vrocking(tapping))

Page 29: Analisis Pondasi Mesin (Kedalaman 1.8 m)

3.245 kN 1.000 tm0.325 ton

0.261 tm0.847 kN0.085 ton

4. Geometri Pondasi 5. Geometri Mesin

B = 1.55 m0.39 m L = 2.52 m0.98 m H = 2.8 m1.1 m

3.28 m1.09 m0.58 m

h = 1.68 m

6. Spek Mesin

Kecepatan Spindle : 3890 rpmKecepatan Tapping : 1589 rpm

Berat Total Mesin 42.3 ton

7. Parameter Tanah

Daya Dukung Tanah 3890.00

Modulus Geser (G) ###Damping Ratio 0.05

0.39

Berat Jenis Tanah 16.80

Berat Jenis Beton 2.40

1. Centrifugal Force 2. Rocking Dynamic Moment

a. For Spindle a. For Spindle

F0 = 0.001 x W x (rpm/1000)1.5 Mr = Fo x (h + hC.G Machine)F0 = Mr =F0 = b. For Tappingb. For Tapping Mr = Fo x (h + hC.G Machine)

F0 = 0.001 x W x (rpm/1000)1.5 Mr =F0 =F0 =

"Badan Pondasi"Bp =Lp =Hp =

"Kaki Pondasi"Bk =Lk =Hk =

t/m2

t/m2

Poisson's Ratio (ν)

t/m3

t/m3

Page 30: Analisis Pondasi Mesin (Kedalaman 1.8 m)

L/B Koefisien

0.3 2.20.3 10.3 0.52

3. Koefisien βv, βh, βr 9. Horizontal Excitation Analysis

βv =βh =βr =

𝐾_ℎ=2𝑥(1+𝑣).𝐺 . 𝛽_(ℎ ). √(𝐵 𝑥 𝐿) . 𝑛_ℎ

Page 31: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 32: Analisis Pondasi Mesin (Kedalaman 1.8 m)

9.1 Spring Constant 9.2 Damping Ratio

3.761

1.067 m

0.4712.395

βh = 11.579

0.0511311275.126 t/m

1.628

9. Horizontal Excitation Analysis

a. Radius Equivalent (rov) for Rectangular Foundation a. Effect of Depth of Embedment on Damping Ratio

αh =

roh =b. Mass Ratio

b. Embedment Factor for Spring Constant

Bh = (7-8ν)/(32x(1-ν))x W/(ϒ x roh3)ηh = 1 + 0.55 x (2-ν) x (h/roh) Bh = ηh =

c. Geometrical Damping Ratioc. Spring Constant Coefficient

Dh =d. Equivalent Spring Constant for Rectangular Foundation

d. Internal Damping

Dhi =Kv =

d. Total Damping Ratio

Dht = Dv + Di

Dht =

𝐾_ℎ=2𝑥(1+𝑣).𝐺 . 𝛽_(ℎ ). √(𝐵 𝑥 𝐿) . 𝑛_ℎ

𝛼_ℎ= [1+1.9.(2−𝑣). ℎ/𝑟_𝑜ℎ ]/√(𝑛_ℎ )

𝐷_ℎ=0.288/√(𝐵_ℎ ).𝛼_ℎ

𝑟_𝑜ℎ= √((𝐵_𝑘 𝑥 𝐿_𝑘)/𝜋)

Page 33: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 34: Analisis Pondasi Mesin (Kedalaman 1.8 m)

9.3 Frequency Check

### rpm

#NUM! # 3.255032 RESONANCE NOT POSSIBLE !!!

0.269 0.110

7.84E-01 OK

9.52E-01 OK

e. Transmissibility Factor

1.042

1.011

9.80E-08 m

Effect of Depth of Embedment on Damping Ratio a. Natural Frequency

Fnh =

b. Resonance Frequency (rpm)

ν)/(32x(1-ν))x W/(ϒ x roh3)Frh = 2 x Dvt =

c. Frequency Ratio

rh (spindle) = rh (tapping) =

d. Magnification Factor

Mh(spindle) =

Mh(tapping) =

Th(spindle) =

Th(tapping) =

f. Vibration Amplitude

V(spindle) = Mh(spindle) + Fo(spindle) / Kh Vrocking(spindle) =V(spindle) = Vrocking(spindle) =

𝛼_ℎ= [1+1.9.(2−𝑣). ℎ/𝑟_𝑜ℎ ]/√(𝑛_ℎ ) 𝐹_𝑛ℎ=60/(2𝑥𝜋)𝑥√((𝐾_ℎ/𝑚))

𝐹_𝑟ℎ= 𝐹_𝑛ℎ 𝑥√([1−[2𝑥𝐷_ℎ𝑡^2 ]] )

ℎ〖𝑟 〗 _𝑠𝑝𝑖𝑛𝑑𝑙𝑒= 𝑓_ℎ/𝐹_𝑛ℎ ℎ〖𝑟 〗 _𝑡𝑎𝑝𝑝𝑖𝑛𝑔= 𝑓_ℎ/𝐹_𝑛ℎ

𝑀_(ℎ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1−𝑟_(ℎ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+〖 (2𝐷_ℎ𝑡 𝑥𝑟_(ℎ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗 ^2 )𝑀_(ℎ(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=1/√((1−𝑟_(ℎ(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))^2 )^2+〖 (2 _𝐷 ℎ _(𝑡 𝑥𝑟 ℎ(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗 ^2 )

𝑇_(ℎ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(ℎ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) 𝑥√(1+〖 (2 _𝐷 ℎ _(𝑡 𝑥𝑟 ℎ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗 ^2 )𝑇_(ℎ(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=𝑀_(ℎ(𝑡𝑎𝑝𝑝𝑖𝑛𝑔)) 𝑥√(1+〖 (2 _𝐷 ℎ _(𝑡 𝑥𝑟 ℎ(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗 ^2 )

Page 35: Analisis Pondasi Mesin (Kedalaman 1.8 m)

9.16E-08 m

1.90E-07 m

V(tapping) = Mh(tapping) + Fo(tapping) / Kh Vrocking(tapping) =V(tapping) = Vrocking(tapping) =

g. Vtotal

Vtotal = (V(spindle) + Vrocking(spindle))+ (V(tapping) + Vrocking(tapping))Vtotal =

Page 36: Analisis Pondasi Mesin (Kedalaman 1.8 m)

RESONANCE NOT POSSIBLE !!!

0.000 mR(spindle) x (h+C.G)

Page 37: Analisis Pondasi Mesin (Kedalaman 1.8 m)

0.000 mR(tapping) x (l/2)

Vrocking(tapping))

Page 38: Analisis Pondasi Mesin (Kedalaman 1.8 m)

3.245 kN 1.000 tm0.325 ton

0.298 tm0.967 kN

0.097 ton

4. Geometri Pondasi 5. Geometri Mesin

B = 1.55 m

0.39 m L = 2.52 m

0.98 m H = 2.8 m1.1 m

3.28 m1.09 m

0.58 m

h = 1.68 m

6. Spek Mesin

Kecepatan Spindle : 3890 rpmKecepatan Tapping : 1589 rpm

Berat Total Mesin 42.3 ton

7. Parameter Tanah

Daya Dukung Tanah 3890.00

Modulus Geser (G) ###Damping Ratio 0.05

0.39

Berat Jenis Tanah 16.80

Berat Jenis Beton 2.40

1. Centrifugal Force 2. Rocking Dynamic Moment

a. For Spindle a. For Spindle

F0 = 0.001 x W x (rpm/1000)1.5 Mr = Fo x (h + hC.G Machine)F0 = Mr =F0 = b. For Tappingb. For Tapping Mr = Fo x (h + hC.G Machine)

F0 = 0.001 x W x (rpm/1000)1.5 Mr =F0 =

F0 =

"Badan Pondasi"

Bp =

Lp =Hp =

"Kaki Pondasi"Bk =Lk =

Hk =

t/m2

t/m2

Poisson's Ratio (ν)

t/m3

t/m3

Page 39: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 40: Analisis Pondasi Mesin (Kedalaman 1.8 m)

L/B Koefisien

0.3 2.20.3 10.3 0.54

3. Koefisien βv, βh, βr 10. Rocking Excitation Analysis

βv =βh =βr =

𝐾_𝑟=𝐺/((1−𝑣) ) 𝑥 〖 〗𝛽 _𝑟 𝑥 𝐿 𝑥 𝐵^3 𝑥 𝑛_𝑟

Page 41: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 42: Analisis Pondasi Mesin (Kedalaman 1.8 m)

10.1 Spring Constant 10.2 Damping Ratio

1.020 m 3.153

3.646 401.27472

6.2745194692βr = 0.54

407.549239469

5.028111415421.972 t/m

1.010

0.030

10. Rocking Excitation Analysis

a. Radius Equivalent (rov) for Rectangular Foundation a. Effect of Depth of Embedment on Damping Ratio

ror = αr =

b. Embedment Factor for Spring Constant b. Mass Ratio

ηr = 1 + 1.2 x (1-ν) x (h/ror) + 0.2 x (2-ν) x (h/ror)3 Imachine = W x (h + C.G)2

ηr = Imachine =

c. Spring Constant Coefficient Ifoundation = Σ(Wf /12.(a2+b2) + Wf.k2)

Ifoundation =

Io= Imachine + Ifoundation

d. Equivalent Spring Constant for Rectangular Foundation Io=

Br = 3 x (1-ν)/8 x Io /(ϒ x ror5)Br =

Kr =

c. Effective Damping Coefficient

ηr =

d. Geometrical Damping Ratio

Dr =

e. Internal Damping

𝑟_𝑜𝑟= [(𝐿_𝑘 𝑥 𝐵_𝑘^3 )/(3 𝑥 𝜋)]^(1/4)

𝐾_𝑟=𝐺/((1−𝑣) ) 𝑥 〖 〗𝛽 _𝑟 𝑥 𝐿 𝑥 𝐵^3 𝑥 𝑛_𝑟

𝛼_𝑟= (1+0.7 𝑥 (1−𝑣)𝑥 (ℎ/𝑟_𝑜𝑟 )+0.6 𝑥 (2−𝑣)𝑥 (ℎ/𝑟_𝑜𝑟 )^3)/√(𝑛_𝑟 )

𝐷_𝑟=0.15 𝑥 𝛼_𝑟/[(1+ 𝑛_𝑟+ 𝛽_𝑟 )𝑥 √((𝑛_𝑟 𝑥 𝛽_𝑟))]

Page 43: Analisis Pondasi Mesin (Kedalaman 1.8 m)

0.05

0.079

Dri =

d. Total Damping Ratio

Drt = Dr + Di

Drt =

Page 44: Analisis Pondasi Mesin (Kedalaman 1.8 m)

10.3 Frequency Check

4992.913 rpm

4961.7951 RESONANCE NOT POSSIBLE !!!

0.779 0.318

2.43E+00 cek

1.11E+00 OK

e. Transmissibility Factor

2.45E+00

1.11E+00

Moment Arm =

Effect of Depth of Embedment on Damping Ratio a. Natural Frequency

Fnr =

b. Resonance Frequency (rpm)

t/m2 Frr=

/12.(a2+b2) + Wf.k2) c. Frequency Ratio

t/m2

machine + Ifoundation

t/m2 rr(spindle) = rr (tapping) =

3 x (1-ν)/8 x Io /(ϒ x ror5) d. Magnification Factor

Effective Damping Coefficient

Mr(spindle) =

Mr(tapping) =

Tr(spindle) =

Geometrical Damping Ratio

Tr(tapping) =

f. Vibration Amplitude

R(spindle) = Mr(spindle) + Fr(spindle) / Kr

𝛼_𝑟= (1+0.7 𝑥 (1−𝑣)𝑥 (ℎ/𝑟_𝑜𝑟 )+0.6 𝑥 (2−𝑣)𝑥 (ℎ/𝑟_𝑜𝑟 )^3)/√(𝑛_𝑟 )

𝐷_𝑟=0.15 𝑥 𝛼_𝑟/[(1+ 𝑛_𝑟+ 𝛽_𝑟 )𝑥 √((𝑛_𝑟 𝑥 𝛽_𝑟))]

𝐹_𝑛𝑟=60/((2𝑥𝜋) ) 𝑥 √(𝐾_𝑟/𝐼_0 )

𝐹_𝑟𝑟= 𝐹_𝑛𝑟 𝑥√([1−[2𝑥𝐷_𝑟𝑡^2 ]] )

𝑟_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))= 𝑓_𝑟/𝐹_𝑛𝑟 𝑟_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))= 𝑓_𝑟/𝐹_𝑛𝑟

𝑀_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1−𝑟_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+〖 (2𝐷_𝑟𝑡 𝑥𝑟_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗 ^2 )𝑀_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=1/√((1−𝑟_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))^2 )^2+〖 (2𝐷_𝑟𝑡 𝑥𝑟_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗 ^2 )

𝑇_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) 𝑥√(1+〖 (2𝐷_𝑟𝑡 𝑥𝑟_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗 ^2 )𝑇_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=𝑀_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔)) 𝑥√(1+ 〖 (2𝐷_𝑟𝑡 𝑥𝑟_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗 ^2 )

Page 45: Analisis Pondasi Mesin (Kedalaman 1.8 m)

2.43E+00 rad Moment Arm =

1.11E+00 rad

R(spindle) =

R(tapping) = Mr(tapping) + Fr(tapping) / Kr

R(tapping) =

Page 46: Analisis Pondasi Mesin (Kedalaman 1.8 m)

11. Amplitudo Check

2.31E-07 m0.000 cm

RESONANCE NOT POSSIBLE !!! 1.90E-07 m0.000 cm

0.00001 in

Moment Arm = (h + C.G)

11.1 Total Amplitudoa. Vertical Amplitudo

Vtotal = Vertical Vibration Amplitude + Rocking Vibration Amplitude x (B/2)Vtotal =Vtotal =

b. Horizontal Amplitude

Htotal = Horizontal Vibration Amplitude + Rocking Vibration Amplitude x (h + C.G)

Htotal =Htotal =

Htotal =

c. Maximum Velocity

𝑀_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1−𝑟_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+〖 (2𝐷_𝑟𝑡 𝑥𝑟_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗 ^2 )𝑀_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=1/√((1−𝑟_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))^2 )^2+〖 (2𝐷_𝑟𝑡 𝑥𝑟_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗 ^2 )

𝑇_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) 𝑥√(1+〖 (2𝐷_𝑟𝑡 𝑥𝑟_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗 ^2 )𝑇_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=𝑀_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔)) 𝑥√(1+ 〖 (2𝐷_𝑟𝑡 𝑥𝑟_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗 ^2 )

Page 47: Analisis Pondasi Mesin (Kedalaman 1.8 m)

Moment Arm = 3.080 m

Velocity = 0.01 in/secVelocity = 0.00025 m/sec

6.14E-07

Vertical Velocity

4.79E-05

1.89E-05

At(spindle) =

At(spindle) =

c. Vibration Velocity

Vv(spindle) = (V(spindle) + Vrocking(spindle)) x (2 x π x f/60)Vv(spindle) =

Vv(tapping) = (V(tapping) + Vrocking(tapping)) x (2 x π x f/60)Vv(tapping) =

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦/(2.𝜋.𝑚𝑎𝑐ℎ𝑖𝑛𝑒(𝑟𝑝𝑚))

√( 〖𝑉 _(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) 〗 ^2+ 〖𝑉_(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔)) 〗 ^2 )

Page 48: Analisis Pondasi Mesin (Kedalaman 1.8 m)

5.15E-05

Horizontal Velocity

3.99E-05

1.52E-05

4.27E-05

Vv(total) =Vv(total) =

Vh(spindle) = (H(spindle) + Hrocking(spindle)) x (2 x π x f/60)Vh(spindle) =

Vh(tapping) = (H(tapping) + Hrocking(tapping)) x (2 x π x f/60)Vh(tapping) =

Vh(total) =Vh(total) =

√( 〖𝑉 _(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) 〗 ^2+ 〖𝑉_(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔)) 〗 ^2 )

√( 〖𝑉 _(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) 〗 ^2+ 〖𝑉 _(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔)) 〗 ^2 )

Page 49: Analisis Pondasi Mesin (Kedalaman 1.8 m)

0.3392613 ton

0.09798289 ton

0.43724419 ton

0.33815314 ton

0.09776211 ton

0.43591525 ton

7.18E+00

9.32370151 ton m

12. Soil Bearing Check12.1 Transmissibility Forcea. Transmissibility Vertical Force

Rocking Vibration Amplitude x (B/2) Pv (spindle) = (Tv(spindle) x F0(spindle))Pv (spindle) =

Pv (tapping) = (Tv(tapping) x F0(tapping))Pv (tapping) =

Rocking Vibration Amplitude x (h + C.G) Pv (total) = Pv (spindle) + Pv (tapping)

Pv (total) =

b. Transmissibility Horizontal Force

Ph (spindle) = (Th(spindle) x F0(spindle))

Ph (spindle) =

Ph (tapping) = (Th(tapping) x F0(tapping))

Ph(tapping) =

Ph (total) = Ph(spindle) + Ph (tapping)

Ph (total) =

c. Transmissibility Moment

Pr = (Tr(spindle) x Mr(spindle)) + (Tr(tapping) x Mr(tapping))

Pr =

12.2 Total Transmissibility Moment

Ptr = Pr + (Pv(total) x (PL/2 + Edx) + (Ph(total) x (C.G + h))Ptr =

Page 50: Analisis Pondasi Mesin (Kedalaman 1.8 m)

6.00963E-05

cek

cek

At(motor) =

At(motor) =

) x (2 x π x f/60)

) x (2 x π x f/60)

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦/(2.𝜋.𝑚𝑎𝑐ℎ𝑖𝑛𝑒(𝑟𝑝𝑚))

Page 51: Analisis Pondasi Mesin (Kedalaman 1.8 m)

cek

cek

cek

cek

) x (2 x π x f/60)

) x (2 x π x f/60)

Page 52: Analisis Pondasi Mesin (Kedalaman 1.8 m)

(ξ) = 1.5

0.75 x qu

2917.5

20.23

6.78

19.20

7.81

Qall = 2917.5

20.23

Qall > Psta+dyn Ok !!

12.3 Soil Bearing Preassure (Static + Dynamic,Static)a. Fatigue Factor (ξ)

b. Qall

Qall =

Qall = t/m2

c. Psta+dyn

Psta+dyn (+) = t/m2

Psta+dyn (-) = t/m2

Psta+dyn (+) = t/m2

Psta+dyn (-) = t/m2

x Mr(spindle)) + (Tr(tapping) x Mr(tapping)) t/m2

Psta+dyn = t/m2

x (PL/2 + Edx) + (Ph(total) x (C.G + h))

𝑃_(𝑠𝑡𝑎+𝑑𝑦𝑛)= 𝑊_𝑡/𝐴𝑟𝑒𝑎 ± ("ξ" 𝑥 𝑃_(𝑣(𝑡𝑜𝑡𝑎𝑙)))/𝐴𝑟𝑒𝑎 ± ("ξ" 𝑥 𝑃_(ℎ(𝑡𝑜𝑡𝑎𝑙)) 𝑥 (𝐶.𝐺_𝑠ℎ𝑎𝑓𝑡+ℎ)𝑥 6)/(𝐵 𝑥 𝐿^2 ) ± ("ξ" 𝑥 𝑃_𝑟 𝑥 6)/(𝐵 𝑥 𝐿^2 )

𝑃_(𝑠𝑡𝑎+𝑑𝑦𝑛)= 𝑊_𝑡/𝐴𝑟𝑒𝑎 ± ("ξ" 𝑥 𝑃_(𝑣(𝑡𝑜𝑡𝑎𝑙)))/𝐴𝑟𝑒𝑎 ± ("ξ" 𝑥 𝑃_𝑡𝑟 𝑥 6)/(𝐵 𝑥 𝐿^2 )

Page 53: Analisis Pondasi Mesin (Kedalaman 1.8 m)

𝑃_(𝑠𝑡𝑎+𝑑𝑦𝑛)= 𝑊_𝑡/𝐴𝑟𝑒𝑎 ± ("ξ" 𝑥 𝑃_(𝑣(𝑡𝑜𝑡𝑎𝑙)))/𝐴𝑟𝑒𝑎 ± ("ξ" 𝑥 𝑃_(ℎ(𝑡𝑜𝑡𝑎𝑙)) 𝑥 (𝐶.𝐺_𝑠ℎ𝑎𝑓𝑡+ℎ)𝑥 6)/(𝐵 𝑥 𝐿^2 ) ± ("ξ" 𝑥 𝑃_𝑟 𝑥 6)/(𝐵 𝑥 𝐿^2 )

𝑃_(𝑠𝑡𝑎+𝑑𝑦𝑛)= 𝑊_𝑡/𝐴𝑟𝑒𝑎 ± ("ξ" 𝑥 𝑃_(𝑣(𝑡𝑜𝑡𝑎𝑙)))/𝐴𝑟𝑒𝑎 ± ("ξ" 𝑥 𝑃_𝑡𝑟 𝑥 6)/(𝐵 𝑥 𝐿^2 )

Page 54: Analisis Pondasi Mesin (Kedalaman 1.8 m)

A. Trial Dimensi Pondasi1. Dimensi "Badan" Pondasi

Panjang : 262 cm 2.62 mLebar : 165 cm 1.65 mTinggi : 180 cm 1.8 m

2. Dimensi "Kaki" Pondasi

Panjang : 1500 cm 15 mLebar : 1500 cm 15 mTinggi : 60 cm 0.6 m

3. Kontrol Berat Pondasi

Berat Bada 18675.36 Kg BJ Beton = 2400 Kg/m3Berat Kaki 324000 KgBerat Total 342675.36 Kg

Berat Mesi 3200 kg

Kontrol : Berat Pondasi > 3 x Berat Mesin342675.36 > 3200

107 Kali Berat Mesin OK!!

B. Perhitungan Pondasi Statis

1. Peritungan Daya Dukung (Metode Terzaghi)

Pondasi diletakan pada kedalaman 2.4 mMaka, parameter tanahnya didapat :

φ c ϒn ϒsat Nc Nq Nϒkg/cm2 kg/m3 kg/m3

0 1.43 1.68 1.85 5.70 1.00 0.00

Rumus Daya Dukung Tanah Metode Terzaghi :

qu = 1.3 C. Nc + q. Nq + 0.4 γm . B. Nγqu = 451.73 t/m2DD = 101639.81 ton

Kontrol : DD > Berat Mesin + Pondasi101639.81 > 345.8754 OK!!

2. Distribusi Tegangan Metode 2 : 1

h (m)

0.00 1.5370.10 1.517

0.20 1.497

0.30 1.478

0.40 1.458

0.50 1.440

0.60 1.421

0.70 1.403

0.80 1.385

0.90 1.368

1.00 1.351

1.10 1.334

1.20 1.318

1.30 1.302 Rumus :1.40 1.286

1.50 1.270

1.60 1.255 Dimana : Q = Beban Kerja (ton)1.70 1.240 B = Lebar Pondasi (m)1.80 1.225 L = Panjang Pondasi (m)1.90 1.211 z = Kedalaman (m)2.00 1.197

2.10 1.183

2.20 1.169

2.30 1.156

2.40 1.142

2.50 1.129

2.60 1.117

2.70 1.104

2.80 1.092

2.90 1.079

3.00 1.068

3.10 1.056

3.20 1.044

3.30 1.033

3.40 1.022

Δσv' (t/m2)

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.0000.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Page 55: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 56: Analisis Pondasi Mesin (Kedalaman 1.8 m)

3. Perhitungan Settlement

Dimana ; B = 15.00 m Df/B = 0.16 q = 1.54 t/m2L = 15.00 m h/B = 0.07 Es = 100 kg/cm2Df = 2.40 m L/B = 1.00h = 1.00 m µ1 = 0.99

µ2 = 0.36Df/B µ1 Mencari µ2

0 1h/B Circle L/B

2 0.9 1 2 5 104 0.88 1.00 0.36 0.36 0.36 0.36 0.366 0.875 2.00 0.47 0.53 0.63 0.64 0.648 0.87 4.00 0.58 0.63 0.82 0.94 0.94

10 0.865 6.00 0.61 0.67 0.88 1.08 1.1412 0.863 8.00 0.62 0.68 0.9 1.13 1.2214 0.86 10.00 0.63 0.7 0.92 1.18 1.316 0.856 20.00 0.64 0.71 0.93 1.26 1.4718 0.854 30.00 0.66 0.73 0.95 1.29 1.5420 0.85

Rumus Penurunan :Penurunan Primer : Penurunan Seketika :Sc = mv * Δσ * Δh Si = μ1 x μ2 (q.B/Es)Δh = 3.40 m Si = 0.008235 m

Sc (m)

2.4 40.00 0.0025 1.14 0.0068542.6 90.00 0.0011 1.12 0.0002482.8 100.00 0.0010 1.09 0.0002183 260.00 0.0004 1.07 8.212E-05

3.2 340.00 0.0003 1.04 6.142E-053.4 430.00 0.0002 1.02 4.752E-05

Total 0.007512

Penurunan Total (S) : 0.015747 m1.575 cm

C. Resume1. Parameter Tanah dan Pondasi 3. Data Peralatan Mesin

Daya Dukung Tanah 451.73 t/m2 Weight of Table 250 kgModulus Geser (G) 228.57 t/m2 Weight of Tools 3 kgInternal Damping Ratio 0.035 Weight of Machines 3200 kgPoisson's Ratio (ν) 0.35 Total Weight 3453 kgBerat Jenis Tanah 1.68 t/m3

Berat Jenis Beton 2.4 t/m3

2. Data Pondasi 4. Data Mesin

"Badan Pondasi" Kecepatan Spindle 8000 rpmPanjang (P) 2.62 m Kecepatan Tapping 3000 rpmLebar (l) 1.65 mTinggi (t) 1.8 m

"Kaki Pondasi"Panjang (P) 15 mLebar (l) 15 mTinggi (t) 0.6 m

Kedalaman (m) E (kg/cm2)

mv (m2/ton)

Δσ (ton/m2)

Page 57: Analisis Pondasi Mesin (Kedalaman 1.8 m)

1. Centrifugal Force 2. Rocking Dynamic Moment

a. For Spindle a. For SpindleF0 = 0.001 x W x (rpm/1000)1.5 Mr = Fo x (h + hC.G Machine)F0 = 0.781 kN Mr = 0.297 tmF0 = 0.078 ton b. For Tapping

b. For Tapping Mr = Fo x (h + hC.G Machine)F0 = 0.001 x W x (rpm/1000)1.5 Mr = 0.068 tmF0 = 0.179 kNF0 = 0.018 ton

3. Geometri Pondasi 4. Geometri Mesin

"Badan Pondasi" B = 1.55 mBp = 1.65 m L = 2.52 mLp = 2.62 m H = 2.8 mHp = 1.8 m

"Kaki Pondasi"Bk = 15 m 7. Koefisien βv, βh, βrLk = 15 mHk = 0.6 m L/B Koefisienh = 2.4 m βv = 1.0 2.19

βh = 1.0 1βr = 1.0 0.5

5. Spek Mesin

Kecepatan Spindle : 8000 rpmKecepatan Tapping : 3000 rpm

Berat Total Mesin 3.453 ton

6. Parameter Tanah

Daya Dukung Tanah 451.73 t/m2Modulus Geser (G) 228.57 t/m2Damping Ratio 0.04Poisson's Ratio (ν) 0.35Berat Jenis Tanah 1.68 t/m3

Berat Jenis Beton 2.40 t/m3

Page 58: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 59: Analisis Pondasi Mesin (Kedalaman 1.8 m)

8. Vertical Excitation Analysis8.1 Spring Constant 8.2 Damping Ratio 8.3 Frequency Checka. Radius Equivalent (rov) for Rectangular Foundation a. Effect of Depth of Embedment on Damping Ratio a. Natural Frequency

Fnv = 180.749 rpmαv = 1.290

rov = 8.463 m b. Resonance Frequency (rpm)b. Mass Ratio

b. Embedment Factor for Spring Constant Bv = (1-ν)/4 x W/(ϒ x rov3)

ηv = 1 + 0.6 x (1-ν) x (h/rov) Bv = 0.055 Frv = #NUM! # 2 x Dvt = 4.731708 RESONANCE NOT POSSIBLE !!!ηv = 1.097

c. Geometrical Damping Ratio c. Frequency Ratioc. Spring Constant Coefficient

βv = 2.19Dv = 2.331 rv (spindle) = 44.260 rv (tapping) = 16.598

d. Equivalent Spring Constant for Rectangular Foundationd. Internal Damping d. Magnification Factor

Dvi = 0.04

Kv = 12644.594 t/m d. Total Damping Ratio Mv(spindle) = 5.08E-04 OK

Dvt = Dv + DiDvt = 2.366

Mv(tapping) = 3.50E-03 OK

e. Transmissibility Factor

Tv(spindle) = 0.106

Tv(tapping) = 0.275

f. Vibration Amplitude

V(spindle) = Mv(spindle) + Fo(spindle) / Kv Vrocking(spindle) = R(spindle) x (l/2)V(spindle) = 6.22E-06 m Vrocking(spindle) = 0.00E+00 m

V(tapping) = Mv(tapping) + Fo(tapping) / Kv Vrocking(tapping) = R(tapping) x (l/2)V(tapping) = 1.70E-06 m Vrocking(tapping) = 0.00E+00 m

g. Vtotal

Vtotal = (V(spindle) + Vrocking(spindle))+ (V(tapping) + Vrocking(tapping))Vtotal = 7.92E-06 m

𝑟_𝑜𝑣= √((𝐵_𝑘 𝑥 𝐿_𝑘)/𝜋)

𝐾_𝑣=𝐺/((1−𝑣)) . 𝛽_(𝑣 ). √(𝐵 𝑥 𝐿) . 𝑛_𝑣

𝛼_𝑣= [1+1.9.(1−𝑣). ℎ/𝑟_𝑜𝑣 ]/√(𝑛_𝑣 )

𝐷_𝑣=0.425/√(𝐵_𝑣 ).𝛼_𝑣

𝐹_𝑛𝑣=60/(2𝑥𝜋)𝑥√((𝐾_𝑣/𝑚))

𝐹_𝑟𝑣= 𝐹_𝑛𝑣 𝑥√([1−[2𝑥𝐷_𝑣𝑡^2 ]] )

𝑀_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1−𝑟_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+〖(2𝐷_𝑣𝑡 𝑥𝑟_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗̂ 2 )𝑀_(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=1/√((1−𝑟_(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))^2 )^2+〖(2𝐷_𝑣𝑡 𝑥𝑟_(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗̂ 2 )

𝑇_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) 𝑥√(1+〖(2𝐷_𝑣𝑡 𝑥𝑟_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗̂ 2 )𝑇_(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=𝑀_(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔)) 𝑥√(1+〖(2𝐷_𝑣𝑡 𝑥𝑟_(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗̂ 2 )

〖 〗𝑟𝑣 _𝑠𝑝𝑖𝑛𝑑𝑙𝑒= 𝑓_𝑣/𝐹_𝑛𝑣 〖 〗𝑟𝑣 _𝑡𝑎𝑝𝑝𝑖𝑛𝑔= 𝑓_𝑣/𝐹_𝑛𝑣

Page 60: Analisis Pondasi Mesin (Kedalaman 1.8 m)

9. Horizontal Excitation Analysis9.1 Spring Constant 9.2 Damping Ratio 9.3 Frequency Checka. Radius Equivalent (rov) for Rectangular Foundation a. Effect of Depth of Embedment on Damping Ratio a. Natural Frequency

Fnh = 173.342 rpmαh = 1.685

roh = 8.463 m b. Resonance Frequency (rpm)b. Mass Ratio

b. Embedment Factor for Spring Constant Bh = (7-8ν)/(32x(1-ν))x W/(ϒ x roh3)

ηh = 1 + 0.55 x (2-ν) x (h/roh) Bh = 0.069 Frh = #NUM! # 2 x Dvt = 3.775443 RESONANCE NOT POSSIBLE !!!ηh = 1.258

c. Geometrical Damping Ratio c. Frequency Ratioc. Spring Constant Coefficient

βh = 1Dh = 1.853 rh (spindle) = 46.151 rh (tapping) = 17.307

d. Equivalent Spring Constant for Rectangular Foundationd. Internal Damping d. Magnification Factor

Dhi = 0.04Kv = 11629.452 t/m

d. Total Damping Ratio Mh(spindle) = 4.68E-04 OK

Dht = Dv + DiDht = 1.888

Mh(tapping) = 3.27E-03 OK

e. Transmissibility Factor

Th(spindle) = 0.082

Th(tapping) = 0.214

f. Vibration Amplitude

V(spindle) = Mh(spindle) + Fo(spindle) / Kh Vrocking(spindle) = R(spindle) x (h+C.G)V(spindle) = 6.76E-06 m Vrocking(spindle) = 0.000 m

V(tapping) = Mh(tapping) + Fo(tapping) / Kh Vrocking(tapping) = R(tapping) x (l/2)V(tapping) = 1.82E-06 m Vrocking(tapping) = 0.000 m

g. Vtotal

Vtotal = (V(spindle) + Vrocking(spindle))+ (V(tapping) + Vrocking(tapping))Vtotal = 8.58E-06 m

𝐾_ℎ=2𝑥(1+𝑣).𝐺 . 𝛽_(ℎ ). √(𝐵 𝑥 𝐿) . 𝑛_ℎ

𝛼_ℎ= [1+1.9.(2−𝑣). ℎ/𝑟_𝑜ℎ ]/√(𝑛_ℎ )

𝐷_ℎ=0.288/√(𝐵_ℎ ).𝛼_ℎ

𝐹_𝑛ℎ=60/(2𝑥𝜋)𝑥√((𝐾_ℎ/𝑚))

𝐹_𝑟ℎ= 𝐹_𝑛ℎ 𝑥√([1−[2𝑥𝐷_ℎ𝑡^2 ]] )

ℎ〖𝑟 〗 _𝑠𝑝𝑖𝑛𝑑𝑙𝑒= 𝑓_ℎ/𝐹_𝑛ℎ ℎ〖𝑟 〗 _𝑡𝑎𝑝𝑝𝑖𝑛𝑔= 𝑓_ℎ/𝐹_𝑛ℎ

𝑀_(ℎ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1−𝑟_(ℎ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+〖 (2𝐷_ℎ𝑡 𝑥𝑟_(ℎ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗 ^2 )𝑀_(ℎ(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=1/√((1−𝑟_(ℎ(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))^2 )^2+〖 (2𝐷_ℎ𝑡 𝑥𝑟_(ℎ(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗 ^2 )

𝑇_(ℎ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(ℎ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) 𝑥√(1+〖 (2𝐷_ℎ𝑡 𝑥𝑟_(ℎ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗 ^2 )𝑇_(ℎ(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=𝑀_(ℎ(𝑡𝑎𝑝𝑝𝑖𝑛𝑔)) 𝑥√(1+ 〖 (2𝐷_ℎ𝑡 𝑥𝑟_(ℎ(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗 ^2 )

𝑟_𝑜ℎ= √((𝐵_𝑘 𝑥 𝐿_𝑘)/𝜋)

Page 61: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 62: Analisis Pondasi Mesin (Kedalaman 1.8 m)

10. Rocking Excitation Analysis10.1 Spring Constant 10.2 Damping Ratio 10.3 Frequency Checka. Radius Equivalent (rov) for Rectangular Foundation a. Effect of Depth of Embedment on Damping Ratio a. Natural Frequency

Fnr = 375.843 rpmror = 1342.870 m αr = 1.000

b. Resonance Frequency (rpm)b. Embedment Factor for Spring Constant b. Mass Ratio

ηr = 1 + 1.2 x (1-ν) x (h/ror) + 0.2 x (2-ν) x (h/ror)3 Imachine = W x (h + C.G)2ηr = 1.001 Imachine = 49.86132 t/m2 Frr= #NUM! #NUM!

c. Spring Constant Coefficient Ifoundatio Σ(Wf /12.(a2+b2) + Wf.k2) c. Frequency RatioIfoundatio 6151.17236 t/m2

βr = 0.54Io= Imachine + Ifoundation

d. Equivalent Spring Constant for Rectangular Foundation Io= 6201.03368 t/m2 rr(spindle) = 21.285 rr (tapping) = 7.982

Br = 3 x (1-ν)/8 x Io /(ϒ x ror5) d. Magnification FactorBr = 0.000

Kr = 9605802.627 t/mc. Effective Damping Coefficient

Mr(spindle) = 1.44E-07 OKηr = 1.010

Mr(tapping) = 3.83E-07 OK

e. Transmissibility Factor

Tr(spindle) = 1.00E+00

d. Geometrical Damping Ratio

Tr(tapping) = 1.00E+00

Dr = 163458.025 f. Vibration Amplitude

e. Internal Damping R(spindle) = Mr(spindle) + Fr(spindle) / Kr Moment Arm = (h + C.G)R(spindle) = 5.47E-07 rad Moment Arm = 3.800 m

Dri = 0.04R(tapping) = Mr(tapping) + Fr(tapping) / Kr

d. Total Damping Ratio R(tapping) = 9.66E-07 rad

Drt = Dr + DiDrt = 163458.060

𝑟_𝑜𝑟= [(𝐿_𝑘 𝑥 𝐵_𝑘^3 )/(3 𝑥 𝜋)]^(1/4)

𝐾_𝑟=𝐺/((1−𝑣) ) 𝑥 〖 〗𝛽 _𝑟 𝑥 𝐿 𝑥 𝐵^3 𝑥 𝑛_𝑟

𝛼_𝑟= (1+0.7 𝑥 (1−𝑣)𝑥 (ℎ/𝑟_𝑜𝑟 )+0.6 𝑥 (2−𝑣)𝑥 (ℎ/𝑟_𝑜𝑟 )^3)/√(𝑛_𝑟 )

𝐷_𝑟=0.15 𝑥 𝛼_𝑟/[(1+ 𝑛_𝑟+ 𝛽_𝑟 )𝑥 √((𝑛_𝑟 𝑥 𝛽_𝑟))]

𝐹_𝑛𝑟=60/((2𝑥𝜋) ) 𝑥 √(𝐾_𝑟/𝐼_0 )

𝐹_𝑟𝑟= 𝐹_𝑛𝑟 𝑥√([1−[2𝑥𝐷_𝑟𝑡^2 ]] )

𝑟_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))= 𝑓_𝑟/𝐹_𝑛𝑟 𝑟_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))= 𝑓_𝑟/𝐹_𝑛𝑟

𝑀_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1−𝑟_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+〖(2𝐷_𝑟𝑡 𝑥𝑟_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗̂ 2 )𝑀_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=1/√((1−𝑟_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))^2 )^2+〖(2𝐷_𝑟𝑡 𝑥𝑟_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗̂ 2 )

𝑇_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) 𝑥√(1+〖(2𝐷_𝑟𝑡 𝑥𝑟_(𝑟(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) 〗̂ 2 )

𝑇_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))=𝑀_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔)) 𝑥√(1+〖(2𝐷_𝑟𝑡 𝑥𝑟_(𝑟(𝑡𝑎𝑝𝑝𝑖𝑛𝑔))) 〗̂ 2 )

Page 63: Analisis Pondasi Mesin (Kedalaman 1.8 m)

11. Amplitudo Check11.1 Total Amplitudoa. Vertical Amplitudo

Vtotal = Vertical Vibration Amplitude + Rocking Vibration Amplitude x (B/2)Vtotal = 7.92E-06 mVtotal = 0.001 cm

b. Horizontal Amplitude

Htotal = Horizontal Vibration Amplitude + Rocking Vibration Amplitude x (h + C.G)Htotal = 8.58E-06 mHtotal = 0.001 cmHtotal = 0.00034 in

c. Maximum Velocity

Velocity = 0.01 in/secVelocity = 0.00025 m/sec

At(spindle) = At(motor) =

At(spindle) 2.98E-07 At(motor) 3.183E-05

c. Vibration Velocity

Vertical Velocity

Vv(spindle)(V(spindle) + Vrocking(spindle)) x (2 x π x f/60)Vv(spindle) 5.21E-03 cek

Vv(tapping(V(tapping) + Vrocking(tapping)) x (2 x π x f/60)Vv(tapping 5.33E-04 cek

Vv(total) =Vv(total) = 5.24E-03 cek

Horizontal Velocity

Vh(spindle)(H(spindle) + Hrocking(spindle)) x (2 x π x f/60)Vh(spindle) 5.66E-03 cek

Vh(tapping(H(tapping) + Hrocking(tapping)) x (2 x π x f/60)Vh(tapping 5.73E-04 cek

Vh(total) =Vh(total) = 5.69E-03 cek

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦/(2.𝜋.𝑚𝑎𝑐ℎ𝑖𝑛𝑒(𝑟𝑝𝑚)) 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦/(2.𝜋.𝑚𝑎𝑐ℎ𝑖𝑛𝑒(𝑟𝑝𝑚))

√( 〖𝑉 _(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) 〗̂ 2+ 〖𝑉_(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔)) 〗̂ 2 )

√( 〖𝑉 _(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) 〗̂ 2+ 〖𝑉 _(𝑣(𝑡𝑎𝑝𝑝𝑖𝑛𝑔)) 〗̂ 2 )

Page 64: Analisis Pondasi Mesin (Kedalaman 1.8 m)

12. Soil Bearing Check12.1 Transmissibility Force 12.3 Soil Bearing Preassure (Static + Dynamic,Static)a. Transmissibility Vertical Force a. Fatigue Factor (ξ)

Pv (spindle(Tv(spindle) x F0(spindle)) (ξ) = 1.5Pv (spindle 0.00831 ton

b. QallPv (tapping(Tv(tapping) x F0(tapping))Pv (tapping 0.49479 ton Qall = 0.75 x qu

Qall = 338.7994 t/m2Pv (total) =Pv (spindle) + Pv (tapping)Pv (total) = 0.503099 ton c. Psta+dyn

b. Transmissibility Horizontal Force

Ph (spindle(Th(spindle) x F0(spindle))Ph (spindle 0.006373 ton Psta+dyn (+ 1.54 t/m2

Psta+dyn (- 1.53 t/m2Ph (tapping(Th(tapping) x F0(tapping))Ph(tapping)0.384602 ton

Ph (total) =Ph(spindle) + Ph (tapping)Ph (total) = 0.390976 ton Psta+dyn (+ 1.54 t/m2

Psta+dyn (- 1.53 t/m2c. Transmissibility Moment

Pr = (Tr(spindle) x Mr(spindle)) + (Tr(tapping) x Mr(tapping)) Qall = 338.7994 t/m2Pr = 5.27E-07 Psta+dyn = 1.54 t/m2

12.2 Total Transmissibility Moment Qall > Psta+dyn Ok !!

Ptr = Pr + (Pv(total) x (PL/2 + Edx) + (Ph(total) x (C.G + h))Ptr = 5.67401 ton m

𝑃_(𝑠𝑡𝑎+𝑑𝑦𝑛)= 𝑊_𝑡/𝐴𝑟𝑒𝑎 ± ("ξ" 𝑥 𝑃_(𝑣(𝑡𝑜𝑡𝑎𝑙)))/𝐴𝑟𝑒𝑎 ± ("ξ" 𝑥 𝑃_(ℎ(𝑡𝑜𝑡𝑎𝑙)) 𝑥 (𝐶.𝐺_𝑠ℎ𝑎𝑓𝑡+ℎ)𝑥 6)/(𝐵 𝑥 𝐿^2 ) ± ("ξ" 𝑥 𝑃_𝑟 𝑥 6)/(𝐵 𝑥 𝐿^2 )

𝑃_(𝑠𝑡𝑎+𝑑𝑦𝑛)= 𝑊_𝑡/𝐴𝑟𝑒𝑎 ± ("ξ" 𝑥 𝑃_(𝑣(𝑡𝑜𝑡𝑎𝑙)))/𝐴𝑟𝑒𝑎 ± ("ξ" 𝑥 𝑃_𝑡𝑟 𝑥 6)/(𝐵 𝑥 𝐿^2 )